1
|
Du N, Chang D, Boisvert J, Hron B, Rosen R, Punshon T, Silvester J. Effect of Adopting a Gluten-Free Diet on Exposure to Arsenic and Other Heavy Metals in Children With Celiac Disease: A Prospective Cohort Study. Am J Gastroenterol 2024:00000434-990000000-01365. [PMID: 39487831 DOI: 10.14309/ajg.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Lifelong adherence to a gluten-free diet (GFD) is the primary treatment of celiac disease (CeD), a gluten-driven enteropathy. Concerns have been raised about increased exposure to arsenic from a GFD because rice, which naturally bioaccumulates arsenic, is commonly used as a substitute for gluten-containing grains such as wheat. We hypothesize that arsenic exposure increases in newly diagnosed children with CeD after they adopt a GFD. METHODS This is a single-center prospective longitudinal cohort study of children (age 2-18 years) with elevated celiac serology who underwent a diagnostic endoscopy before initiation of a GFD between January and May 2022. The primary outcome was change in urinary arsenic concentration between endoscopy and after 6 months on a GFD. RESULTS Of the 67 recruited participants, 50 had a biopsy diagnostic of CeD and were invited to continue the study. Thirty-five participants completed sample collection. Participants were from a middle-class, well-educated population that was predominantly White with presenting symptoms of abdominal pain (51%) and diarrhea (29%). After 6 months on a GFD, there was a significant increase in the median urinary arsenic concentration (3.3 µg/L vs 13.6 µg/L, P = 0.000004). In regression models, family history of CeD and Hispanic ethnicity were associated with having a higher urinary arsenic concentration after 6 months on a GFD. DISCUSSION Children with newly diagnosed CeD have increased arsenic exposure shortly after transitioning to a GFD. While the arsenic levels were well below acutely toxic concentrations, the clinical impact of chronic exposure to mildly elevated arsenic levels is unknown.
Collapse
Affiliation(s)
- Nan Du
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Denis Chang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jason Boisvert
- University of Rochester School of Medicine, Rochester, New York, USA
| | - Bridget Hron
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rachel Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jocelyn Silvester
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Celiac Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. Environ Health 2024; 23:51. [PMID: 38831396 PMCID: PMC11145859 DOI: 10.1186/s12940-024-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md Nafaur Rahman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Ziauddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, , 300 Pasteur Drive, CA, 94305, USA
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Diana F Gomberg
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Koushki M, Amiri-Dashatan N, Rezaei-Tavirani M, Robati RM, Fateminasab F, Rahimi S, Razzaghi Z, Farahani M. Screening the critical protein subnetwork to delineate potential mechanisms and protective agents associated with arsenic-induced cutaneous squamous cell carcinoma: A toxicogenomic study. Food Chem Toxicol 2024; 185:114451. [PMID: 38219847 DOI: 10.1016/j.fct.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Recent studies show that complex mechanisms are involved in arsenic-induced malignant transformation of cells. This study aimed to decipher molecular mechanisms associated with arsenic-induced cutaneous squamous cell carcinoma (cSCC) and suggest potential protective factors. RNA-seq-based differentially expressed genes between arsenic-exposed human keratinocytes (HaCaT) and controls were used to construct a protein-protein interaction (PPI) network and discover critical subnetwork-based mechanisms. Protective compounds against arsenic toxicity were determined and their target interactions in the core sub-network were identified by the comparative toxicogenomic database (CTD). The binding affinity between the effective factor and target was calculated by molecular docking. A total of 15 key proteins were screened out as critical arsenic-responsive subnetwork (FN1, IL-1A, CCN2, PECAM1, FGF5, EDN1, FGF1, PXDN, DNAJB9, XBP1, ERN1, PDIA4, DNAJB11, FOS, PDIA6) and 7 effective protective agents were identified (folic acid, quercetin, zinc, acetylcysteine, methionine, catechin, selenium). The GeneMANIA predicted detailed interactions of the subnetwork and revealed terms related to unfolded protein response as the main processes. FN1, IL1A and CCN2, as top significant genes, had good docking affinity with folic acid and quercetin, as selected key compounds. Integration of gene expression and protein-protein interaction related to arsenic exposure in cSCC explored the potential mechanisms and protective agents.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Al-Horani RA, Ayyad A. Educating the public about toxic chemicals that we unknowingly consume: A potential important role for the practicing pharmacists. J Am Pharm Assoc (2003) 2024; 64:355-363. [PMID: 37940098 PMCID: PMC10947896 DOI: 10.1016/j.japh.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Although lifestyle factors are important in determining the overall health of the general public, the impact of endocrine-disrupting chemicals and other environmental toxins is often underestimated. There is growing evidence indicating that these substances have a significant influence on metabolic health, cancer risks, and fertility. Therefore, it is the shared responsibility of public health officials and health care professionals, including pharmacists, to educate the public about the potential exposure to harmful toxins present in our immediate surroundings, particularly toxic chemicals that we unknowingly consume. Pharmacists play a crucial role in promoting and maintaining public health. This article reviews a selection of common toxins and their significant health risks. Pharmacists can prepare educational materials, hold presentations at public libraries, and participate in scientific meetings to disseminate knowledge about the potential exposure to these toxins, their detrimental impact on health, and strategies and recommendations to minimize exposure.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA
| | - Ahlam Ayyad
- Division of Clinical and Administrative Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA
| |
Collapse
|
5
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. RESEARCH SQUARE 2024:rs.3.rs-3989039. [PMID: 38464105 PMCID: PMC10925447 DOI: 10.21203/rs.3.rs-3989039/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. Methods We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified using data from observations by neurosurgeons and available imaging. Controls were drawn from children who presented to NINS&H or Dhaka Shishu Hospital (DSH) during the same study period. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). Results We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median, and no association was seen among mothers with toenail arsenic concentrations higher than median (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). Conclusions Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - D M Arman
- National Institute of Neurosciences & Hospital
| | | | | | | | | | - Md Ziauddin
- National Institute of Neurosciences & Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Smith AR, Lin PID, Rifas-Shiman SL, Switkowski KM, Fleisch AF, Wright RO, Coull B, Oken E, Hivert MF, Cardenas A. Associations Between Prenatal Blood Metals and Vitamins and Cord Blood Peptide Hormone Concentrations. GLOBAL REPRODUCTIVE HEALTH 2023; 7:e275. [PMID: 38645676 PMCID: PMC11031200 DOI: 10.1097/ee9.0000000000000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 04/23/2024]
Abstract
Background Nonessential metals have endocrine disrupting properties, interfere with cellular processes, generate reactive oxygen and deplete antioxidants, while essential metals and vitamins act as antioxidants. The extent to which prenatal metals and vitamins are associated with cord blood hormones involved in maternal and fetal metabolic and growth processes is unknown. Methods We measured six nonessential (arsenic, barium, cadmium, cesium, lead, mercury) and four essential (magnesium, manganese, selenium, zinc) metals and trace elements, and two vitamins (B12 and folate) in first trimester blood from participants in the longitudinal pre-birth Project Viva cohort, who were recruited between 1999-2002 in eastern Massachusetts. We measured adiponectin, C-peptide, IGF-1, IGF-2, IGFBP-3, insulin, and leptin concentrations in cord blood (~n=695). We used covariate-adjusted quantile g-computation for mixtures and linear regression for individual exposures to estimate associations with cord blood peptide hormones. Results The essential metal mixture (magnesium, manganese, selenium, zinc) was associated with higher IGF-1 (β=3.20 ng/ml per quartile, 95% CI: 0.39, 6.01), IGF-2 (β=10.93 ng/ml, 95% CI: 0.08, 21.79), and leptin (β=1.03 ng/ml, 95% CI: 0.25, 1.80). Magnesium was associated with higher leptin (β=2.90 ng/ml, 95% CI: 0.89, 4.91), while B12 was associated with lower adiponectin, IGF-2, and leptin, but higher C-peptide. Other individual nonessential metals were associated with cord blood hormones. Conclusions Our findings suggest that some prenatal metals and vitamins are associated with cord blood hormones, which may influence growth and development.
Collapse
Affiliation(s)
- Anna R. Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, California
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Karen M. Switkowski
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Abby F. Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, Maine
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, Maine
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, California
| |
Collapse
|
8
|
Kaur G, Desai KP, Chang IY, Newman JD, Mathew RO, Bangalore S, Venditti FJ, Sidhu MS. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2023; 37:1167-1174. [PMID: 35029799 DOI: 10.1007/s10557-021-07313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karan P Desai
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Jonathan D Newman
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Roy O Mathew
- Division of Nephrology, Loma Linda VA Health Care System, Loma Linda, CA, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Ferdinand J Venditti
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
9
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
10
|
Calao-Ramos CR, Marrugo Negrete JL, Urango Cárdenas I, Díez S. Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. ENVIRONMENTAL RESEARCH 2023; 233:116229. [PMID: 37236386 DOI: 10.1016/j.envres.2023.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 μg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 μg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.
Collapse
Affiliation(s)
- Clelia Rosa Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia; Universidad de Córdoba, Carrera 6 No. 76-103, Montería, College of Health Sciences, Bacteriology Department, Córdoba, Colombia
| | - Jose Luis Marrugo Negrete
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia.
| | - Iván Urango Cárdenas
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
11
|
Song YP, Lv JW, Zhang ZC, Qian QH, Fan YJ, Chen DZ, Zhang H, Xu FX, Zhang C, Huang Y, Wang H, Wei W, Xu DX. Effects of Gestational Arsenic Exposures on Placental and Fetal Development in Mice: The Role of Cyr61 m6A. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97004. [PMID: 37682722 PMCID: PMC10489955 DOI: 10.1289/ehp12207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS Dams were exposed to 0.15, 1.5, and 15 mg / L NaAsO 2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO 2 (2 μ M ) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N 6 -Methyladenosine (m 6 A ) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As + 3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS Sizes of fetuses (exposed to 1.5 and 15 mg / L NaAsO 2 ) and placentas (exposed to 15 mg / L NaAsO 2 ) were lower in As-exposed mice. More glycogen + trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15 mg / L NaAsO 2 -exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m 6 A . Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m 6 A was affected. Depletion of intracellular SAM, a cofactor for m 6 A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m 6 A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m 6 A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Qing-Hua Qian
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Nicole W. FACT Finding: Folic Acid Supplementation May Lower Risk from Arsenic in Drinking Water. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:74001. [PMID: 37399146 PMCID: PMC10317210 DOI: 10.1289/ehp13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
|
13
|
Zhang Y, Mustieles V, Wang YX, Sun Y, Agudelo J, Bibi Z, Torres N, Oulhote Y, Slitt A, Messerlian C. Folate concentrations and serum perfluoroalkyl and polyfluoroalkyl substance concentrations in adolescents and adults in the USA (National Health and Nutrition Examination Study 2003-16): an observational study. Lancet Planet Health 2023; 7:e449-e458. [PMID: 37286242 PMCID: PMC10901144 DOI: 10.1016/s2542-5196(23)00088-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a family of highly fluorinated aliphatic compounds, which are widely used in commercial applications, including food packaging, textiles, and non-stick cookware. Folate might counteract the effects of environmental chemical exposures. We aimed to explore the relationship between blood folate biomarker concentrations and PFAS concentrations. METHODS This observational study pooled cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2016 cycles. NHANES is a population-based national survey that measures the health and nutritional status of the US general population every 2 years by means of questionnaires, physical examination, and biospecimen collection. Folate concentrations in red blood cells and in serum, and perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) concentrations in serum were examined. We used multivariable regression models to assess the percentage change in serum PFAS concentrations in relation to changes in folate biomarker concentrations. We additionally used models with restricted cubic splines to investigate the shape of these associations. FINDINGS This study included 2802 adolescents and 9159 adults who had complete data on PFAS concentrations, folate biomarkers, and covariates, were not pregnant, and had never had a cancer diagnosis at the time of the survey. The mean age was 15·4 years (SD 2·3) for adolescents and 45·5 years (17·5) for adults. The proportion of male participants was slightly higher in adolescents (1508 [54%] of 2802 participants) than in adults (3940 [49%] of 9159 participants). We found negative associations between red blood cell folate concentrations and serum concentrations of PFOS (percentage change for a 2·7 fold-increase in folate level -24·36%, 95% CI -33·21 to -14·34) and PFNA (-13·00%, -21·87 to -3·12) in adolescents, and PFOA (-12·45%, -17·28 to -7·35), PFOS (-25·30%, -29·67 to -20·65), PFNA (-21·65%, -26·19 to -16·82), and PFHxS (-11·70%, -17·32 to 5·70) in adults. Associations for serum folate concentrations and PFAS were in line with those found for red blood cell folate levels, although the magnitude of the effects was lower. Restricted cubic spline models suggested linearity of the observed associations, particularly for associations in adults. INTERPRETATION In this large-scale, nationally representative study, we found consistent inverse associations for most examined serum PFAS compounds in relation to folate concentrations measured in either red blood cells or serum among both adolescents and adults. These findings are supported by mechanistic in-vitro studies that show the potential of PFAS to compete with folate for several transporters implicated in PFAS toxicokinetics. If confirmed in experimental settings, these findings could have important implications for interventions to reduce the accumulated PFAS body burden and mitigate the related adverse health effects. FUNDING United States National Institute of Environmental Health Sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research, Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | - Zainab Bibi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Carmen Messerlian
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
14
|
Eaves LA, Fry RC. Invited Perspective: Toxic Metals and Hypertensive Disorders of Pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:41303. [PMID: 37079391 PMCID: PMC10117635 DOI: 10.1289/ehp11963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Wu H, Kalia V, Niedzwiecki MM, Kioumourtzoglou MA, Pierce B, Ilievski V, Goldsmith J, Jones DP, Navas-Acien A, Walker DI, Gamble MV. Metabolomic changes associated with chronic arsenic exposure in a Bangladeshi population. CHEMOSPHERE 2023; 320:137998. [PMID: 36746250 PMCID: PMC9993428 DOI: 10.1016/j.chemosphere.2023.137998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic (AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) As species were measured in blood and urine collected at baseline and at 12 weeks. Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted spectral features were modeled using a metabolome-wide association study (MWAS) approach. Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR). In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species (FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results were consistent across blood As species and between blood and urine As. Untargeted MWAS identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed metabolites, untargeted model results were not consistent across As species, with AsV and DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched metabolic pathways that overlapped with the 17 identified metabolites, including one carbon metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism. Exposure to As may affect numerous essential pathways that underlie the well-characterized associations of As with multiple chronic diseases.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Abuawad AK, Bozack AK, Navas-Acien A, Goldsmith J, Liu X, Hall MN, Ilievski V, Lomax-Luu AM, Parvez F, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. The Folic Acid and Creatine Trial: Treatment Effects of Supplementation on Arsenic Methylation Indices and Metabolite Concentrations in Blood in a Bangladeshi Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37015. [PMID: 36976258 PMCID: PMC10045040 DOI: 10.1289/ehp11270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation. OBJECTIVE Our aim was to investigate the effects of supplementation with folic acid (FA), creatine, or the two combined on the concentrations of As metabolites and the primary methylation index (PMI: MMAs/InAs) and secondary methylation index (SMI: DMAs/MMAs) in blood in Bangladeshi adults having a wide range of folate status. METHODS In a randomized, double-blinded, placebo (PBO)-controlled trial, 622 participants were recruited independent of folate status and assigned to one of five treatment arms: a) PBO (n = 102 ), b) 400 μ g FA/d (400FA; n = 153 ), c) 800 μ g FA/d (800FA; n = 151 ), d) 3 g creatine/d (creatine; n = 101 ), or e) 3 g creatine + 400 μ g of FA / d (creatine + 400 FA ; n = 103 ) for 12 wk. For the following 12 wk, half of the FA participants were randomly switched to the PBO while the other half continued FA supplementation. All participants received As-removal water filters at baseline. Blood As (bAs) metabolites were measured at weeks 0, 1, 12, and 24. RESULTS At baseline, 80.3% (n = 489 ) of participants were folate sufficient (≥ 9 nmol / L in plasma). In all groups, bAs metabolite concentrations decreased, likely due to filter use; for example, in the PBO group, blood concentrations of MMAs (bMMAs) (geometric mean ± geometric standard deviation ) decreased from 3.55 ± 1.89 μ g / L at baseline to 2.73 ± 1.74 at week 1. After 1 wk, the mean within-person increase in SMI for the creatine + 400 FA group was greater than that of the PBO group (p = 0.05 ). The mean percentage decrease in bMMAs between baseline and week 12 was greater for all treatment groups compared with the PBO group [400FA: - 10.4 (95% CI: - 11.9 , - 8.75 ), 800FA: - 9.54 (95% CI: - 11.1 , - 7.97 ), creatine: - 5.85 (95% CI: - 8.59 , - 3.03 ), creatine + 400 FA : - 8.44 (95% CI: - 9.95 , - 6.90 ), PBO: - 2.02 (95% CI: - 4.03 , 0.04)], and the percentage increase in blood DMAs (bDMAs) concentrations for the FA-treated groups significantly exceeded that of PBO [400FA: 12.8 (95% CI: 10.5, 15.2), 800FA: 11.3 (95% CI: 8.95, 13.8), creatine + 400 FA : 7.45 (95% CI: 5.23, 9.71), PBO: - 0.15 (95% CI: - 2.85 , 2.63)]. The mean decrease in PMI and increase in SMI in all FA groups significantly exceeded PBO (p < 0.05 ). Data from week 24 showed evidence of a reversal of treatment effects on As metabolites from week 12 in those who switched from 800FA to PBO, with significant decreases in SMI [- 9.0 % (95% CI: - 3.5 , - 14.8 )] and bDMAs [- 5.9 % (95% CI: - 1.8 , - 10.2 )], whereas PMI and bMMAs concentrations continued to decline [- 7.16 % (95% CI: - 0.48 , - 14.3 ) and - 3.1 % (95% CI: - 0.1 , - 6.2 ), respectively] for those who remained on 800FA supplementation. CONCLUSIONS FA supplementation lowered bMMAs and increased bDMAs in a sample of primarily folate-replete adults, whereas creatine supplementation lowered bMMAs. Evidence of the reversal of treatment effects on As metabolites following FA cessation suggests short-term benefits of supplementation and underscores the importance of long-term interventions, such as FA fortification. https://doi.org/10.1289/EHP11270.
Collapse
Affiliation(s)
- Ahlam K. Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Angela M. Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Wu L, Li H, Ye F, Wei Y, Li W, Xu Y, Xia H, Zhang J, Guo L, Zhang G, Chen F, Liu Q. As3MT-mediated SAM consumption, which inhibits the methylation of histones and LINE1, is involved in arsenic-induced male reproductive damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120090. [PMID: 36064055 DOI: 10.1016/j.envpol.2022.120090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Studies have demonstrated that arsenic (As) induces male reproductive injury, however, the mechanism remains unknown. The high levels of arsenic (3) methyltransferase (As3MT) promote As-induced male reproductive toxicity. For As-exposed mice, the germ cells in seminiferous tubules and sperm quality were reduced. Exposure to As caused lower S-adenosylmethionine (SAM) and 5-methylcytosine (5 mC) levels, histone and DNA hypomethylation, upregulation of long interspersed element class 1 (LINE1, or L1), defective repair of double-strand breaks (DSBs), and the arrest of meiosis, resulting in apoptosis of germ cells and lower litter size. For GC-2spd (GC-2) cells, As induced apoptosis, which was prevented by adding SAM or by reducing the expression of As3MT. The levels of LINE1, affected by SAM content, were involved in As-induced apoptosis. Furthermore, folic acid (FA) and vitamin B12 (VB12) supplements restored SAM, 5 mC, and LINE1 levels and blocked impairment of spermatogenesis and testes and lower litter size. Exposed to As, mice with As3MT knockdown showed less impairment of spermatogenesis and testes and greater litter size compared to As-exposed wild-type (WT) mice. Thus, the high As3MT levels induced by As consume SAM and block histone and LINE1 DNA methylation, elevating LINE1 expression and evoking impairment of spermatogenesis, which causes male reproductive damage. Overall, we have found a mechanism for As-induced male reproductive damage, which provides biological insights into the alleviation of reproductive injury induced by environmental factors.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Inherited genetic effects on arsenic metabolism: A comparison of effects on arsenic species measured in urine and in blood. Environ Epidemiol 2022; 6:e230. [PMID: 36530933 PMCID: PMC9746746 DOI: 10.1097/ee9.0000000000000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and chronic exposure is associated with adverse health outcomes, including cancer and cardiovascular disease. Consumed iAs can undergo two methylation reactions catalyzed by arsenic methyltransferase (AS3MT), producing monomethylated and dimethylated forms of arsenic (MMA and DMA). Methylation of iAs helps facilitate excretion of arsenic in urine, with DMA composing the majority of arsenic species excreted. Past studies have identified genetic variation in the AS3MT (10q24.32) and FTCD (21q22.3) regions associated with arsenic metabolism efficiency (AME), measured as the proportion of each species present in urine (iAs%, MMA%, and DMA%), but their association with arsenic species present in blood has not been examined. We use data from three studies nested within the Health Effects and Longitudinal Study (HEALS)-the Nutritional Influences on Arsenic Toxicity Study, the Folate and Oxidative Stress study, and the Folic Acid and Creatine Trial-to examine the association of previously identified genetic variants with arsenic species in both urine and blood of 334 individuals. We confirm that the genetic variants in AS3MT and FTCD known to effect arsenic species composition in urine (an excreted byproduct of metabolism) have similar effects on arsenic species in blood (a tissue type that directly interacts with many organs, including those prone to arsenic toxicity). This consistency we observe provides further support for the hypothesis the AME SNPs identified to date impact the efficiency of arsenic metabolism and elimination, thereby influencing internal dose of arsenic and the dose delivered to toxicity-prone organs and tissues.
Collapse
|
19
|
Patti MA, Kelsey KT, MacFarlane AJ, Papandonatos GD, Arbuckle TE, Ashley-Martin J, Fisher M, Fraser WD, Lanphear BP, Muckle G, Braun JM. Maternal Folate Status and the Relation between Gestational Arsenic Exposure and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11332. [PMID: 36141604 PMCID: PMC9517145 DOI: 10.3390/ijerph191811332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Gestational arsenic exposure adversely impacts child health. Folate-mediated 1-carbon metabolism facilitates urinary excretion of arsenic and may prevent arsenic-related adverse health outcomes. We investigated the potential for maternal folate status to modify associations between gestational arsenic exposure and child health. We used data from 364 mother-child pairs in the MIREC study, a prospective pan-Canadian cohort. During pregnancy, we measured first trimester urinary arsenic concentrations, plasma folate biomarkers, and folic acid supplementation intake. At age 3 years, we evaluated twelve neurodevelopmental and anthropometric features. Using latent profile analysis and multinomial regression, we developed phenotypic profiles of child health, estimated covariate-adjusted associations between arsenic and these phenotypic profiles, and evaluated whether folate status modified these associations. We identified three phenotypic profiles of neurodevelopment and three of anthropometry, ranging from less to more optimal child health. Gestational arsenic was associated with decreased odds of optimal neurodevelopment. Maternal folate status did not modify associations of arsenic with neurodevelopmental phenotypic profiles, but gestational arsenic was associated with increased odds of excess adiposity among those who exceed recommendations for folic acid (>1000 μg/day). However, arsenic exposure was low and folate status was high. Gestational arsenic exposure may adversely impact child neurodevelopment and anthropometry, and maternal folate status may not modify these associations; however, future work should examine these associations in more arsenic-exposed or lower folate-status populations.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Amanda J. MacFarlane
- Nutrition Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - George D. Papandonatos
- Department of Biostatistics, Brown University, 121 S Main St., Providence, RI 02903, USA
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9, Canada
| | - William D. Fraser
- Department D’obstétrique et Gynécologie, Université de Sherbrooke, 2500 Bd de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Bruce P. Lanphear
- Department of Health Sciences, Simon Fraser University, 515 W Haastings St., Vancouver, BC V5A 1S6, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Ville de Québec, 2325 Rue de L’Université, Québec, QC G1V 0B4, Canada
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, 121 S Main St., Providence, RI 02903, USA
| |
Collapse
|
20
|
Crider KS, Qi YP, Yeung LF, Mai CT, Head Zauche L, Wang A, Daniels K, Williams JL. Folic Acid and the Prevention of Birth Defects: 30 Years of Opportunity and Controversies. Annu Rev Nutr 2022; 42:423-452. [PMID: 35995050 PMCID: PMC9875360 DOI: 10.1146/annurev-nutr-043020-091647] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For three decades, the US Public Health Service has recommended that all persons capable of becoming pregnant consume 400 μg/day of folic acid (FA) to prevent neural tube defects (NTDs). The neural tube forms by 28 days after conception. Fortification can be an effective NTD prevention strategy in populations with limited access to folic acid foods and/or supplements. This review describes the status of mandatory FA fortification among countries that fortify (n = 71) and the research describing the impact of those programs on NTD rates (up to 78% reduction), blood folate concentrations [red blood cell folate concentrations increased ∼1.47-fold (95% CI, 1.27, 1.70) following fortification], and other health outcomes. Across settings, high-quality studies such as those with randomized exposures (e.g., randomized controlled trials, Mendelian randomization studies) are needed to elucidate interactions of FA with vitamin B12 as well as expanded biomarker testing.
Collapse
Affiliation(s)
- Krista S Crider
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Yan Ping Qi
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Lorraine F Yeung
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Cara T Mai
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Lauren Head Zauche
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Arick Wang
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | | | - Jennifer L Williams
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| |
Collapse
|
21
|
Bjørklund G, Rahaman MS, Shanaida M, Lysiuk R, Oliynyk P, Lenchyk L, Chirumbolo S, Chasapis CT, Peana M. Natural Dietary Compounds in the Treatment of Arsenic Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154871. [PMID: 35956821 PMCID: PMC9370003 DOI: 10.3390/molecules27154871] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022]
Abstract
Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Md. Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan; or
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Petro Oliynyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61002 Kharkiv, Ukraine;
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, strada Le Grazie 9, 37134 Verona, Italy
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
- Correspondence: (G.B.); (M.P.)
| |
Collapse
|
22
|
Sandhi A, Yu C, Rahman MM, Amin MN. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51354-51366. [PMID: 35618999 PMCID: PMC9288370 DOI: 10.1007/s11356-022-20880-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/12/2022] [Indexed: 04/12/2023]
Abstract
The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Md Marufur Rahman
- Bangladesh Institute of Research and Training On Applied Nutrition, Rangpur Regional Station, Pirgonj-5470, Rangpur, Bangladesh
| | - Md Nurul Amin
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh-5020, Bangladesh
| |
Collapse
|
23
|
Haque E, Moran ME, Wang H, Adamcakova-Dodd A, Thorne PS. Validation of blood arsenic and manganese assessment from archived clotted erythrocyte fraction in an urban cohort of mother-child dyads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152320. [PMID: 34915002 PMCID: PMC9709768 DOI: 10.1016/j.scitotenv.2021.152320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Exposure to arsenic (As) and manganese (Mn) from contaminated food, drinking water and dust are linked to a host of adverse health effects. The recent discovery of unmonitored community exposures to hazardous levels of metals, as seen in the Flint Water Crisis and East Chicago, have demonstrated a need for novel biomonitoring methods utilizing samples other than whole blood. Here, we present a method utilizing clotted erythrocyte fraction samples, a blood component commonly archived in biorepositories, to predict whole blood levels of As and Mn. This method would allow for innovative retrospective assessments of environmental exposures in previously unused samples. Whole blood and clotted erythrocyte fraction samples were simultaneously collected from 84 participants in the Airborne Exposure to Semivolatile Organic Pollutants (AESOP) cohort study of mother-child dyads in East Chicago. Clotted erythrocyte fraction samples were prepared by alkaline dilution and subsequently analyzed using inductively coupled plasma-mass spectrometry. A strong linear relationship was observed between whole blood and clotted erythrocyte fraction with Pearson correlation coefficients (r, p < 0.001) of 0.74, and 0.82 for As and Mn, respectively. Modeled whole blood Mn levels predicted from clotted erythrocyte fractions evaluated at a test threshold representing the NHANES median of 9.7 μg/L, were found to have diagnostic sensitivity of 88% and specificity of 71%. Clotted erythrocyte partitioning of As was tested on a wide range of oral gavage doses using a rat model. Results from this investigation demonstrate clotted erythrocyte fraction samples are a viable alternative biological sample for retrospective public health surveillance of environmental exposure to As and Mn.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, Graduate College, University of Iowa, United States of America; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, United States of America
| | - Margaret E Moran
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, United States of America
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, United States of America
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, United States of America
| | - Peter S Thorne
- Human Toxicology Program, Graduate College, University of Iowa, United States of America; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, United States of America.
| |
Collapse
|
24
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
26
|
Zhang Q, Zhang X, Li S, Liu H, Liu L, Huang Q, Hou Y, Liang X, Cui B, Zhang M, Xia L, Zhang L, Li C, Li J, Sun G, Tang N. Joint effect of urinary arsenic species and serum one-carbon metabolism nutrients on gestational diabetes mellitus: A cross-sectional study of Chinese pregnant women. ENVIRONMENT INTERNATIONAL 2021; 156:106741. [PMID: 34217037 DOI: 10.1016/j.envint.2021.106741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing evidence indicates that arsenic (As) exposure can increase the risk of gestational diabetes mellitus (GDM). However, little is known about As species and GDM and the combined effect of As and one-carbon metabolism (OCM) on GDM. OBJECTIVES We aimed to examine the associations between As species and GDM and evaluate the potential interactions of folate, vitamin B12, and homocysteine (Hcy) with As species on GDM prevalence. METHOD We measured levels of arsenite (As3+), arsenate (As5+), dimethylarsinic acid (DMA), and arsenobetaine (AsB) species in urine and folate, vitamin B12, and Hcy in serum from 396 pregnant women in Tianjin, China. The diagnosis of GDM was based on an oral glucose tolerance test. Associations of As species in urine with GDM were evaluated using generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR). Additive interactions of As and OCM with GDM were estimated by determining the relative excess risk due to interaction (RERI). RESULTS Of the 396 pregnant women, 89 were diagnosed with GDM. Continuous increases in urinary inorganic As were associated with GDM in the GLMs, with adjusted odds ratios of 2.12 (95% CI: 0.96, 4.71) for As3+, and 0.27 (95% CI: 0.07, 0.98) for As5+. The BKMR in estimating the exposure-response functions showed that As3+ and AsB were positively associated with GDM. However, As5+ showed a negative relationship with GDM. Although the additive interactions between As exposure and OCM indicators were not significant, we found that pregnant women with higher urinary As3+ and total As accompanied by lower serum vitamin B12 were more likely to have higher odds of GDM (3.12, 95% CI: 1.32, 7.38 and 3.10, 95% CI: 1.30, 7.38, respectively). CONCLUSIONS Our data suggest a positive relation between As3+ and GDM but a negative relation between As5+ and GDM. Potential additive interaction of As and OCM with GDM requires further investigation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin 300400, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
28
|
Sijko M, Kozłowska L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II-Human Studies. TOXICS 2021; 9:259. [PMID: 34678956 PMCID: PMC8541625 DOI: 10.3390/toxics9100259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 01/25/2023]
Abstract
Exposure to various forms of arsenic (As), the source of which may be environmental as well as occupational exposure, is associated with many adverse health effects. Therefore, methods to reduce the adverse effects of As on the human body are being sought. Research in this area focuses, among other topics, on the dietary compounds that are involved in the metabolism of this element. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of inorganic As (iAs) metabolism and the reduction in the severity of the whole spectrum of disorders related to As exposure. In this review, which included 62 original papers (human studies) we present the current knowledge in the area. In human studies, these compounds (methionine, choline, folic acid, vitamin B2, B6, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency may impair iAs metabolism and increase As toxicity. Taking into account the results of studies conducted in populations exposed to As, it is reasonable to carry out prophylactic activities. In particular nutritional education seems to be important and should be focused on informing people that an adequate intake of those dietary compounds potentially has a modulating effect on iAs metabolism, thus, reducing its adverse effects on the body.
Collapse
Affiliation(s)
- Monika Sijko
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Lucyna Kozłowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
29
|
Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines 2021; 9:biomedicines9091105. [PMID: 34572288 PMCID: PMC8469608 DOI: 10.3390/biomedicines9091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
In following study we examined whether blood arsenic (As) levels combined with specific polymorphisms in MT1B, GSTP1, ABCB1, NQO1, CRTC3, GPX1, SOD2, CAT, XRCC1, ERCC2 can be used as a marker for the detection of colorectal cancer (CRC) among Polish women. A retrospective case-control study of CRC included 83 CRC cases and 78 healthy controls. From each study participant pre-treatment peripheral blood was collected for As level measurement by inductively coupled–plasma mass spectrometry (ICP-MS). We estimated the odds ratio (OR) of the association between blood-As levels and CRC using multivariable unconditional logistic regression models. A low blood-As level (0.27–0.67 µg/L) was associated with an increased frequency of CRC (OR: 3.69; p = 0.005). This correlation was significantly greater when participants carried particular gene variants: CAT, rs1001179-nonCC (OR: 19.4; p = 0.001); ABCB1 rs2032582–CC (OR: 14.8; p = 0.024); GPX1 rs1050450-CC (OR: 11.6; p = 0.002) and CRTC3 rs12915189-nonGG (OR: 10.3; p = 0.003). Our study provides strong evidence that low blood-As levels are significantly associated with increased CRC occurrence and that particular gene variants significantly enhanced this correlation however, due to the novelty of these findings, we suggest further validation before a definitive statement that the combined effect of low blood-As levels with specific gene polymorphisms is a suitable CRC biomarker.
Collapse
|
30
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Tsuji JS, Lennox KP, Watson HN, Chang ET. Essential concepts for interpreting the dose-response of low-level arsenic exposure in epidemiological studies. Toxicology 2021; 457:152801. [PMID: 33905760 DOI: 10.1016/j.tox.2021.152801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
Scientifically robust selections of epidemiological studies and assessments of the dose-response of inorganic arsenic in the low-dose range must consider key issues specific to arsenic in order to reduce risk of bias. The abundance of toxicological, mechanistic, and epidemiological evidence on arsenic enables a nuanced assessment of risk of bias in epidemiological studies of low-level arsenic, as opposed to a generic evaluation based only on standard principles. Important concepts in this context include 1) arsenic metabolism and mode of action for toxicity and carcinogenicity; 2) effects of confounding factors such as diet, health status including nutritional deficiencies, use of tobacco and other substances, and body composition; 3) strengths and limitations of various metrics for assessing relevant exposures consistent with the mode of action; and 4) the potential for bias in the positive direction for the observed dose-response relationship as exposure increases in the low-dose range. As an example, evaluation of a recent dose-response modeling using eight epidemiological studies of inorganic arsenic and bladder cancer demonstrated that the pooled risk estimate was markedly affected by the single study that was ranked as having a high risk of bias, based on the above factors. The other seven studies were also affected by these factors to varying, albeit lesser, degrees that can influence the apparent dose-response in the low-dose range (i.e., drinking water concentration of 65 µg/L or dose of approximately ≤1 µg/kg-day). These issues are relevant considerations for assessing health risks of oral exposures to inorganic arsenic in the U.S. population, and setting evidence-based regulatory limits to protect human health.
Collapse
|
32
|
Saxena R, Liu X, Navas-Acien A, Parvez F, LoIacono NJ, Islam T, Uddin MN, Ilievski V, Slavkovich V, Balac O, Graziano JH, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation in Bangladeshi adolescents. ENVIRONMENTAL RESEARCH 2021; 195:110750. [PMID: 33476663 PMCID: PMC7987757 DOI: 10.1016/j.envres.2021.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Over 57 million people in Bangladesh are chronically exposed to arsenic-contaminated drinking water. Ingested inorganic arsenic (InAs) undergoes hepatic methylation generating monomethyl- (MMAs) and dimethyl- (DMAs) arsenic species in a process that facilitates urinary As (uAs) elimination. One-carbon metabolism (OCM), a biochemical pathway that is influenced by folate and vitamin B12, facilitates the methylation of As. OCM also supports nucleotide and amino acid synthesis, particularly during periods of rapid growth such as adolescence. While folate supplementation increases As methylation and lowers blood As (bAs) in adults, little data is available for adolescents. OBJECTIVES To examine the associations between OCM-related micronutrients and As methylation in Bangladeshi adolescents chronically exposed to As-contaminated drinking water. METHODS We conducted a cross-sectional study of 679 Bangladeshi adolescents, including 320 boys and 359 girls aged 14-16 years. Nutritional status was assessed by red blood cell (RBC) folate, plasma folate, plasma B12 and homocysteine (Hcys). Arsenic-related outcomes included blood arsenic (bAs), urinary arsenic (uAs), and urinary arsenic metabolites expressed as a percentage of total urinary As: %InAs, %MMAs, %DMAs. RESULTS Boys had significantly lower B12, higher Hcys, higher bAs, higher uAs, higher %MMAs, and a trend toward lower RBC folate compared to girls. Therefore, regression analyses controlling for water As and BMI were sex stratified. Among girls, RBC folate was inversely associated with bAs, plasma B12 was inversely associated with uAs, and plasma Hcys was inversely associated with %MMA. Among boys, plasma folate was inversely associated with %InAs and positively associated with %DMA, RBC folate was inversely associated with %InAs and positively associated with %MMA, while Hcys was positively associated with %InAs. CONCLUSIONS These findings suggest that associations between OCM nutritional status, bAs, and distribution of As metabolites in adolescents are similar to previously reported observations in adults and in children. The As methylation findings are statistically significant among boys but not among girls; this may be related to estrogen which more strongly influences OCM in females. The inverse association between Hcys and %MMA in girls is somewhat unexpected given that Hcys is known to be an indicator of impaired OCM and low folate/B12 in adults. Overall, these results indicate that the associations between OCM-related micronutrients and arsenic methylation in adolescents are generally similar to prior findings in adults, though these associations may differ by sex. Additionally, these findings suggest that more investigation into the role of Hcys in adolescent physiology is needed, perhaps particularly for girls. Additional studies are needed to evaluate the impact of OCM and As methylation on As-related adverse health outcomes (such as cancer and cardiovascular disease) in people exposed to As during adolescence.
Collapse
Affiliation(s)
| | - Xinhua Liu
- Mailman School of Public Health, New York, NY, USA
| | | | | | | | - Tariqul Islam
- Columbia University Arsenic Project Office, Mohakhali, Dhaka, Bangladesh
| | | | | | | | - Olgica Balac
- Mailman School of Public Health, New York, NY, USA
| | | | | |
Collapse
|
33
|
Delgado DA, Chernoff M, Huang L, Tong L, Chen L, Jasmine F, Shinkle J, Cole SA, Haack K, Kent J, Umans J, Best LG, Nelson H, Griend DV, Graziano J, Kibriya MG, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Rare, Protein-Altering Variants in AS3MT and Arsenic Metabolism Efficiency: A Multi-Population Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47007. [PMID: 33826413 PMCID: PMC8041273 DOI: 10.1289/ehp8152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common genetic variation in the arsenic methyltransferase (AS3MT) gene region is known to be associated with arsenic metabolism efficiency (AME), measured as the percentage of dimethylarsinic acid (DMA%) in the urine. Rare, protein-altering variants in AS3MT could have even larger effects on AME, but their contribution to AME has not been investigated. OBJECTIVES We estimated the impact of rare, protein-coding variation in AS3MT on AME using a multi-population approach to facilitate the discovery of population-specific and shared causal rare variants. METHODS We generated targeted DNA sequencing data for the coding regions of AS3MT for three arsenic-exposed cohorts with existing data on arsenic species measured in urine: Health Effects of Arsenic Longitudinal Study (HEALS, n = 2,434 ), Strong Heart Study (SHS, n = 868 ), and New Hampshire Skin Cancer Study (NHSCS, n = 666 ). We assessed the collective effects of rare (allele frequency < 1 % ), protein-altering AS3MT variants on DMA%, using multiple approaches, including a test of the association between rare allele carrier status (yes/no) and DMA% using linear regression (adjusted for common variants in 10q24.32 region, age, sex, and population structure). RESULTS We identified 23 carriers of rare-protein-altering AS3MT variant across all cohorts (13 in HEALS and 5 in both SHS and NHSCS), including 6 carriers of predicted loss-of-function variants. DMA% was 6-10% lower in carriers compared with noncarriers in HEALS [β = - 9.4 (95% CI: - 13.9 , - 4.8 )], SHS [β = - 6.9 (95% CI: - 13.6 , - 0.2 )], and NHSCS [β = - 8.7 (95% CI: - 15.6 , - 2.2 )]. In meta-analyses across cohorts, DMA% was 8.7% lower in carriers [β = - 8.7 (95% CI: - 11.9 , - 5.4 )]. DISCUSSION Rare, protein-altering variants in AS3MT were associated with lower mean DMA%, an indicator of reduced AME. Although a small percentage of the population (0.5-0.7%) carry these variants, they are associated with a 6-10% decrease in DMA% that is consistent across multiple ancestral and environmental backgrounds. https://doi.org/10.1289/EHP8152.
Collapse
Affiliation(s)
- Dayana A. Delgado
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lei Huang
- Center for Research Informatics, UChicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jason Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donald Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph Graziano
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
- Department of Medicine, UChicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
Venkatratnam A, Marable CA, Keshava AM, Fry RC. Relationships among Inorganic Arsenic, Nutritional Status CpG Methylation and microRNAs: A Review of the Literature. Epigenet Insights 2021; 14:2516865721989719. [PMID: 33615137 PMCID: PMC7868494 DOI: 10.1177/2516865721989719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Inorganic arsenic is a naturally occurring toxicant that poses a significant and persistent challenge to public health. The World Health Organization has identified many geographical regions where inorganic arsenic levels exceed safe limits in drinking water. Numerous epidemiological studies have associated exposure to inorganic arsenic with increased risk of adverse health outcomes. Randomized clinical trials have shown that nutritional supplementation can mitigate or reduce exacerbation of exposure-related effects. Although a growing body of evidence suggests that epigenetic status influences toxicity, the relationships among environmental exposure to arsenic, nutrition, and the epigenome are not well detailed. This review provides a comprehensive summary of findings from human, rodent, and in vitro studies highlighting these interactive relationships.
Collapse
Affiliation(s)
- Abhishek Venkatratnam
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carmen A Marable
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Curriculum in Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arjun M Keshava
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Desai G, Millen AE, Vahter M, Queirolo EI, Peregalli F, Mañay N, Yu J, Browne RW, Kordas K. Associations of dietary intakes and serum levels of folate and vitamin B-12 with methylation of inorganic arsenic in Uruguayan children: Comparison of findings and implications for future research. ENVIRONMENTAL RESEARCH 2020; 189:109935. [PMID: 32980017 PMCID: PMC10927014 DOI: 10.1016/j.envres.2020.109935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the human body, inorganic arsenic (iAs) is methylated via the one-carbon cycle to form monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Lower proportions of iAs and MMA, and higher proportions of DMA in urine indicate efficient methylation; formation of DMA is thought to detoxify iAs and MMA. Studies on folate, vitamin B-12 and iAs methylation yield mixed findings, depending on whether folate and vitamin B-12 were assessed from diet, supplements, or using a blood biomarker. OBJECTIVE First, to compare the associations of serum concentrations and estimated intake of folate and vitamin B-12 with indicators of iAs methylation. Second, to highlight the implications of these different B-vitamin assessment techniques on the emerging evidence of the impact of dietary modifications on iAs methylation. METHODS The study was conducted among ~7-year-old children from Montevideo, Uruguay. Serum folate and vitamin B-12 levels were measured on the Horiba ABX Pentra 400 analyzer; urinary arsenic was measured using High-Performance Liquid Chromatography on-line with Inductively Coupled Plasma Mass Spectrometry. Dietary intakes were assessed using the average of two 24-h dietary recalls. Linear regressions assessed the associations of serum levels, and dietary intakes of folate (n = 237) and vitamin B-12 (n = 217) with indicators of iAs methylation. Models were adjusted for age, sex, body mass index, total urinary arsenic, and rice intake. RESULTS Serum folate and vitamin B-12 levels were above the adequacy threshold for 99% of the participants. No associations were observed between serum folate, serum vitamin B-12, or vitamin B-12 intake and iAs methylation. Folate intake was inversely associated with urinary %MMA [β (95% confidence interval): -1.04 (-1.89, -0.18)]. CONCLUSION Additional studies on the role of B-vitamins in iAs methylation are needed to develop a deeper understanding of the implications of assessing folate and vitamin B-12 intake compared to the use of biomarkers. Where possible, both methods should be employed because they reflect different exposure windows and inherent measurement error, and if used individually, will likely continue to contribute to lack of consensus.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
36
|
Mise N, Ohtsu M, Ikegami A, Hosoi Y, Nakagi Y, Yoshida T, Kayama F. Concentration of folic acid (FA) in serum of Japanese pregnant women. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:277-280. [PMID: 32651989 DOI: 10.1515/reveh-2020-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Objectives Exposure to inorganic arsenic (iAs) is a world-wide health concern. We reported that Japanese children and pregnant women are exposed to moderate levels of iAs through food. Reducing iAs contamination from foods of high iAs is an important issue unique in Japan. Integrated iAs is methylated to less toxic organic forms, and S-adenosyl-L-methyonine (SAM), a common methyl-donor of DNA and histones, is utilized in this process. Chronic consumption of SAM by iAs metabolism due to exposure to iAs might alter the epigenetic modification of genome. The SAM biosynthesis pathway is dependent on folate cycle, and it is possible that ingestion of sufficient folic acid (FA) is protective to iAs induced toxicity. Methods In the course of our cross-sectional body burden analyses of Pb and iAs in Japanese children and pregnant women, termed "PbAs study", FA concentration in serum of 104 pregnant women was measured. Results Mean (±SEM) of serum FA concentration was 15.8 ± 1.3 (ng/mL). There are significant number of people showing very high FA (>30 ng/ mL), and large fraction of them were taking supplements daily. Conclusions These results suggested that level of FA ingestion of Japanese pregnant women is high for supporting normal fetal development.
Collapse
Affiliation(s)
- Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Mayumi Ohtsu
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoko Hosoi
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoshihiko Nakagi
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, Japan
| | - Takahiko Yoshida
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| |
Collapse
|
37
|
Bozack AK, Howe CG, Hall MN, Liu X, Slavkovich V, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. Betaine and choline status modify the effects of folic acid and creatine supplementation on arsenic methylation in a randomized controlled trial of Bangladeshi adults. Eur J Nutr 2020; 60:1921-1934. [PMID: 32918135 DOI: 10.1007/s00394-020-02377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Methylation of ingested inorganic arsenic (InAs) to monomethyl- (MMAs) and dimethyl-arsenical species (DMAs) facilitates urinary arsenic elimination. Folate and creatine supplementation influenced arsenic methylation in a randomized controlled trial. Here, we examine if baseline status of one-carbon metabolism nutrients (folate, choline, betaine, and vitamin B12) modified the effects of FA and creatine supplementation on changes in homocysteine, guanidinoacetate (GAA), total blood arsenic, and urinary arsenic metabolite proportions and indices. METHODS Study participants (N = 622) received 400 or 800 μg FA, 3 g creatine, 400 μg FA + 3 g creatine, or placebo daily for 12 weeks. RESULTS Relative to placebo, FA supplementation was associated with greater mean increases in %DMAs among participants with betaine concentrations below the median than those with levels above the median (FDR < 0.05). 400 μg FA/day was associated with a greater decrease in homocysteine among participants with plasma folate concentrations below, compared with those above, the median (FDR < 0.03). Creatine treatment was associated with a significant decrease in %MMAs among participants with choline concentrations below the median (P = 0.04), but not among participants above the median (P = 0.94); this effect did not significantly differ between strata (P = 0.10). CONCLUSIONS Effects of FA and creatine supplementation on arsenic methylation capacity were greater among individuals with low betaine and choline status, respectively. The efficacy of FA and creatine interventions to facilitate arsenic methylation may be modified by choline and betaine nutritional status. CLINICAL TRIAL REGISTRATION Clinical Trial Registry Identifier: NCT01050556, U.S. National Library of Medicine, https://clinicaltrials.gov ; registered January 15, 2010.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Pulmonary Medicine, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA.,Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megan N Hall
- Department of Epidemiology, Columbia University, New York, NY, USA.,Department of Environmental and Occupational Health Sciences, SUNY Downstate School of Public Health, Brooklyn, NY, USA.,Department of Epidemiology, SUNY Downstate School of Public Health, Brooklyn, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Angela M Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107E, New York, NY, 10032, USA.
| |
Collapse
|
38
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Kordas K. Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. ENVIRONMENT INTERNATIONAL 2020; 142:105883. [PMID: 32599352 PMCID: PMC10927015 DOI: 10.1016/j.envint.2020.105883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Arsenic is a known childhood neurotoxicant, but its neurotoxicity at low exposure levels is still not well established. The aim of our cross-sectional study was to test the association between low-level arsenic exposure and executive functions (EF) among children in Montevideo. We also assessed effect modification by arsenic methylation capacity, a susceptibility factor for the health effects of arsenic, and by B-vitamin intake, which impacts arsenic methylation. METHODS Arsenic exposure was assessed as the specific gravity-adjusted sum of urinary arsenic metabolites (U-As) among 255 ~ 7 year-old children, and methylation capacity as the proportion of urinary monomethylarsonic acid (%MMA). Arsenic concentrations from kitchen water samples at participants' homes were assessed. B-vitamin intake was calculated from the average of two 24-hour dietary recalls. EF was measured using three tests from the Cambridge Neuropsychological Test Automated Battery- Stockings of Cambridge (SOC), Intra-dimensional/extra-dimensional shift task (IED), and Spatial Span (SSP). Generalized linear models assessed the association between U-As and EF measures; models were adjusted for age, sex, maternal education, possessions score, Home Observation for Measurement of the Environment Inventory score, season, and school clusters. Additional analyses were conducted to address issues of residual confounding and sample size. A "B-vitamin index" was calculated using principal component analysis. Effect modification by the index and urinary %MMA was assessed in strata split at the respective medians of these variables. RESULTS The median (range) U-As and water arsenic levels were 9.9 µg/L (2.2, 47.7) and 0.45 µg/L (0.1, 18.9) respectively, indicating that exposure originated mainly from other sources. U-As was inversely associated with the number of stages completed (β = -0.02; 95% CI: -0.03, -0.002) and pre-executive shift errors (β = -0.08; 95% CI: -0.14, -0.02) of the IED task, and span length of the SSP task (β = -0.01; 95% CI: -0.02, -0.004). There was no clear pattern of effect modification by B-vitamin intake or urinary %MMA. CONCLUSION Low-level arsenic exposure may adversely affect executive function among children but additional, including longitudinal, studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
39
|
Saxena R, Babadi M, Namvarhaghighi H, Roullet FI. Role of environmental factors and epigenetics in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:35-60. [PMID: 32711816 DOI: 10.1016/bs.pmbts.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder thought to be caused by predisposing high-risk genes that may be altered during the early development by environmental factors. The impact of maternal challenges during pregnancy on the prevalence of ASD has been widely studied in clinical and animal studies. Here, we review some clinical and pre-clinical evidence that links environmental factors (i.e., infection, air pollution, pesticides, valproic acid and folic acid) and the risk of ASD. Additionally, certain prenatal environmental challenges such as the valproate and folate prenatal exposures allow us to study mechanisms possibly linked to the etiology of ASD, for instance the epigenetic processes. These mechanistic pathways are also presented and discussed in this chapter.
Collapse
Affiliation(s)
- Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Melika Babadi
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | | | - Florence I Roullet
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Desai G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Vitamin B-6 Intake Is Modestly Associated with Arsenic Methylation in Uruguayan Children with Low-Level Arsenic Exposure. J Nutr 2020; 150:1223-1229. [PMID: 31913474 PMCID: PMC7198313 DOI: 10.1093/jn/nxz331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Detoxification of inorganic arsenic (iAs) occurs when it methylates to form monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Lower proportions of urinary iAs and MMA, and higher proportions of DMA indicate efficient methylation. The role of B-vitamins in iAs methylation in children with low-level arsenic exposure is understudied. OBJECTIVES Our study objective was to assess the association between B-vitamin intake and iAs methylation in children with low-level arsenic exposure (<50 µg/L in water; urinary arsenic 5-50 µg/L). METHODS We conducted a cross-sectional study in 290 ∼7-y-old children in Montevideo. Intake of thiamin, riboflavin, niacin, vitamin B-6, and vitamin B-12 was calculated by averaging 2 nonconsecutive 24-h recalls. Total urinary arsenic concentration was measured as the sum of urinary iAs, MMA, and DMA, and adjusted for urinary specific gravity; iAs methylation was measured as urinary percentage As, percentage MMA, and percentage DMA. Arsenic concentrations from household water sources were assessed. Linear regressions tested the relationships between individual energy-adjusted B-vitamins and iAs methylation. RESULTS Median (range) arsenic concentrations in urine and water were 9.9 (2.2-48.7) and 0.45 (0.1-18.9) µg/L, respectively. The median (range) of urinary percentage iAs, percentage MMA, and percentage DMA was 10.6% (0.0-33.8), 9.7% (2.6-24.8), and 79.1% (58.5-95.4), respectively. The median (range) intake levels of thiamin, riboflavin, niacin, and vitamin B-6 were 0.81 (0.19-2.56), 1.0 (0.30-2.24), 8.6 (3.5-23.3), and 0.67 (0.25-1.73) mg/1000 kcal, respectively, whereas those of folate and vitamin B-12 were 216 (75-466) and 1.7 (0.34-8.3) µg/1000 kcal, respectively. Vitamin B-6 intake was inversely associated with urinary percentage MMA (β = -1.60; 95% CI: -3.07, -0.15). No other statistically significant associations were observed. CONCLUSIONS Although vitamin B-6 intake was inversely associated with urinary percentage MMA, our findings suggest limited support for a relation between B-vitamin intake and iAs methylation in children exposed to low-level arsenic.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA,Address correspondence to GD (e-mail: )
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
41
|
Urinary Arsenic Species are Detectable in Urban Underserved Hispanic/Latino Populations: A Pilot Study from the Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072247. [PMID: 32230710 PMCID: PMC7178047 DOI: 10.3390/ijerph17072247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Background: Hispanics/Latinos represent >15% of the United States (US) population and experience a high burden of cardiovascular disease (CVD) and diabetes. Dietary exposure, particularly to arsenic (As), may be associated with CVD and diabetes in Hispanics/Latinos. Rural populations in the US exposed to As in drinking water have increased risk of diabetes and CVD; however, little is known about the risk among urban populations with low As in water who are mostly exposed to As through food. Methods: To explore the levels of inorganic arsenic exposure (the sum of inorganic and methylated arsenic species in urine, ∑As, corrected by a residual-based method) in persons of Hispanic/Latino origin, we conducted a pilot study quantifying urinary arsenic levels among 45 participants in the Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS). Results: The median (interquartile range) of the urinary arsenic species (µg/L) were as follows: inorganic As 0.6 (0.4, 1.0), monomethylarsonic acid 1.2 (0.7, 1.9), dimethylarsinic acid 7.2 (4.3, 15.3), and ∑As 6.0 (4.3, 10.5). Conclusions: This study adds to the existing evidence that harmful forms of arsenic are present in this group of Hispanics/Latinos.
Collapse
|
42
|
Karagas MR, Punshon T, Davis M, Bulka CM, Slaughter F, Karalis D, Argos M, Ahsan H. Rice Intake and Emerging Concerns on Arsenic in Rice: a Review of the Human Evidence and Methodologic Challenges. Curr Environ Health Rep 2019; 6:361-372. [PMID: 31760590 PMCID: PMC7745115 DOI: 10.1007/s40572-019-00249-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Rice is a major staple food worldwide and a dietary source of arsenic. We therefore summarized the state of the epidemiologic evidence on whether rice consumption relates to health outcomes associated with arsenic exposure. RECENT FINDINGS While epidemiologic studies have reported that higher rice consumption may increase the risk of certain chronic conditions, i.e., type 2 diabetes, most did not consider specific constituents of rice or other sources of arsenic exposure. Studies that examined rice intake stratified by water concentrations of arsenic found evidence of increasing trends in cardiovascular disease risk, skin lesions, and squamous cell skin cancers and bladder cancer associated with higher rice consumption. Further studies are needed to understand the health impacts of arsenic exposure from rice consumption taking into account all sources of rice intake and potential confounding by other dietary constituents or contaminants and arsenic exposure from sources such as water.
Collapse
Affiliation(s)
- Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Matt Davis
- Department of Systems, Populations and Leadership, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis Slaughter
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Despina Karalis
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Maria Argos
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
43
|
Navas-Acien A, Spratlen MJ, Abuawad A, LoIacono NJ, Bozack AK, Gamble MV. Early-Life Arsenic Exposure, Nutritional Status, and Adult Diabetes Risk. Curr Diab Rep 2019; 19:147. [PMID: 31758285 PMCID: PMC7004311 DOI: 10.1007/s11892-019-1272-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW In utero influences, including nutrition and environmental chemicals, may induce long-term metabolic changes and increase diabetes risk in adulthood. This review evaluates the experimental and epidemiological evidence on the association of early-life arsenic exposure on diabetes and diabetes-related outcomes, as well as the influence of maternal nutritional status on arsenic-related metabolic effects. RECENT FINDINGS Five studies in rodents have evaluated the role of in utero arsenic exposure with diabetes in the offspring. In four of the studies, elevated post-natal fasting glucose was observed when comparing in utero arsenic exposure with no exposure. Rodent offspring exposed to arsenic in utero also showed elevated insulin resistance in the 4 studies evaluating it as well as microRNA changes related to glycemic control in 2 studies. Birth cohorts of arsenic-exposed pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that increased prenatal arsenic exposure is related to altered cord blood gene expression, microRNA, and DNA methylation profiles in diabetes-related pathways. Thus far, no epidemiologic studies have evaluated early-life arsenic exposure with diabetes risk. Supplementation trials have shown B vitamins can reduce blood arsenic levels in highly exposed, undernourished populations. Animal evidence supports that adequate B vitamin status can rescue early-life arsenic-induced diabetes risk, although human data is lacking. Experimental animal studies and human evidence on the association of in utero arsenic exposure with alterations in gene expression pathways related to diabetes in newborns, support the potential role of early-life arsenic exposure in diabetes development, possibly through increased insulin resistance. Given pervasive arsenic exposure and the challenges to eliminate arsenic from the environment, research is needed to evaluate prevention interventions, including the possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related disease risk.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Nancy J LoIacono
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| |
Collapse
|
44
|
Gao S, Lin PI, Mostofa G, Quamruzzaman Q, Rahman M, Rahman ML, Su L, Hsueh YM, Weisskopf M, Coull B, Christiani DC. Determinants of arsenic methylation efficiency and urinary arsenic level in pregnant women in Bangladesh. Environ Health 2019; 18:94. [PMID: 31690343 PMCID: PMC6833186 DOI: 10.1186/s12940-019-0530-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/01/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Prenatal inorganic arsenic (iAs) exposure is associated with pregnancy outcomes. Maternal capabilities of arsenic biotransformation and elimination may influence the susceptibility of arsenic toxicity. Therefore, we examined the determinants of arsenic metabolism of pregnant women in Bangladesh who are exposed to high levels of arsenic. METHODS In a prospective birth cohort, we followed 1613 pregnant women in Bangladesh and collected urine samples at two prenatal visits: one at 4-16 weeks, and the second at 21-37 weeks of pregnancy. We measured major arsenic species in urine, including iAs (iAs%) and methylated forms. The proportions of each species over the sum of all arsenic species were used as biomarkers of arsenic methylation efficiency. We examined the difference in arsenic methylation using a paired t-test between first and second visits. Using linear regression, we examined determinants of arsenic metabolism, including age, BMI at enrollment, education, financial provider income, arsenic exposure level, and dietary folate and protein intake, adjusted for daily energy intake. RESULTS Comparing visit 2 to visit 1, iAs% decreased 1.1% (p < 0.01), and creatinine-adjusted urinary arsenic level (U-As) increased 21% (95% CI: 15, 26%; p < 0.01). Drinking water arsenic concentration was positively associated with iAs% at both visits. When restricted to participants with higher adjusted urinary arsenic levels (adjusted U-As > 50 μg/g-creatinine) gestational age at measurement was strongly associated with DMA% (β = 0.38, p < 0.01) only at visit 1. Additionally, DMA% was negatively associated with daily protein intake (β = - 0.02, p < 0.01) at visit 1, adjusting for total energy intake and other covariates. CONCLUSIONS Our findings indicate that arsenic metabolism and adjusted U-As level increase during pregnancy. We have identified determinants of arsenic methylation efficiency at visit 1.
Collapse
Affiliation(s)
- Shangzhi Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Pi-I Lin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Golam Mostofa
- Dhaka Community Hospital Trust, 190 Wireless Railgate, 1 Baro Moghbazar, Dhaka, Bangladesh
| | - Quazi Quamruzzaman
- Dhaka Community Hospital Trust, 190 Wireless Railgate, 1 Baro Moghbazar, Dhaka, Bangladesh
| | - Mahmudur Rahman
- Dhaka Community Hospital Trust, 190 Wireless Railgate, 1 Baro Moghbazar, Dhaka, Bangladesh
| | - Mohammad Lutfar Rahman
- Harvard Medical School, Department of Population Medicine, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA 02215 USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Yu-mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City, Taiwan
| | - Marc Weisskopf
- Department of Epidemiology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - Brent Coull
- Department of Biostatistics, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - David Chistopher Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 USA
| |
Collapse
|
45
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. Int J Hyg Environ Health 2019; 223:124-131. [PMID: 31588016 DOI: 10.1016/j.ijheh.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Millions of children globally, including the U.S., are exposed to low levels of arsenic from water and food. Arsenic is a known neurotoxicant at high levels but its effects at lower exposure levels are understudied. Arsenic methylation capacity, influenced by B-vitamin intake and status, potentially influences arsenic toxicity. In a cross-secitonal study of 5-8 year-old children from Montevideo, we assessed the relationship between urinary arsenic (U-As) and academic achievement, and tested for effect modification by B-vitamin intake, status, and arsenic methylation capacity. METHODS Broad math and reading scores were calculated based on six subtests (calculation, math facts fluency, applied problems, sentence reading fluency, letter word identification, passage comprehension) from the Woodcock-Muñoz Achievement Battery. B-vitamin intake was assessed from two non-consecutive 24-h dietary recalls, serum folate and vitamin B-12 levels were measured in a subset of participants. Arsenic methylation capacity was measured as the proportion of urinary monomethylarsonic acid (%MMA). Multiple imputation using chained equations was conducted to account for missing covariate and exposure data. Ordinal regressions assessed associations between U-As and achievement score tertiles in the complete case and imputed samples. A "B-vitamin index" was calculated using principal component analysis. Interactions by urinary %MMA and the B-vitamin index were assessed. RESULTS Median specific gravity adjusted U-As was 11.7 μg/L (range: 2.6, 50.1). We found no association between U-As and broad math and reading scores, nor effect modification by %MMA or B-vitamins. CONCLUSION At low-levels of exposure, U-As does not appear to affect children's academic achievement.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
46
|
Marciniak W, Derkacz R, Muszyńska M, Baszuk P, Gronwald J, Huzarski T, Cybulski C, Jakubowska A, Falco M, Dębniak T, Lener M, Oszurek O, Pullella K, Kotsopoulos J, Sun P, Narod SA, Lubiński J. Blood arsenic levels and the risk of familial breast cancer in Poland. Int J Cancer 2019; 146:2721-2727. [PMID: 31348523 PMCID: PMC7154768 DOI: 10.1002/ijc.32595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Arsenic is recognized as a potent carcinogen at high concentrations, but the relationship between environmental arsenic and breast cancer risk has not well been studied. Most research has focused on the effect of arsenic in populations with high endemic exposure, and not in populations with arsenic levels within normal limits. We sought to determine if blood arsenic levels predict the risk of breast and other cancers risk among women in northern Poland. The cohort consisted of 1,702 healthy women, aged 40 and above, identified between 2010 and 2017. Blood arsenic level was determined by inductively coupled plasma mass spectrometry. After an average of 4.5 years of follow‐up (range 0.7–7.3 years), there were 110 incident cases of cancer diagnosed in the cohort, including 68 cases of breast cancer. Women in the highest quartile of arsenic had a highly significant 13‐fold increased risk of developing breast cancer, compared to women in the lowest quartile (hazard ratio [HR] = 13.2; 95% confidence interval [CI] 4.02–43.0). Results were similar for arsenic and all incident cancers (HR quartile 4 vs. quartile 1 = 13.3; 95% CI 4.78–37.0). If confirmed, our study suggests that the blood arsenic level may be a useful predictive marker of cancer risk in women. What's new? Arsenic has long been recognized as a potent carcinogen at high concentrations. But can it affect cancer risk at “normal,” environmental concentrations? In this Polish study, the authors found that women whose blood levels of arsenic were in the highest quartile had a 13‐fold increased risk of developing breast cancer, compared to women in the lowest quartile. If confirmed in further studies, these results suggests that blood arsenic level may be a useful predictive marker of cancer risk in women.
Collapse
Affiliation(s)
- Wojciech Marciniak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Róża Derkacz
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Magdalena Muszyńska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Michał Falco
- Radiation Oncology Department, West Pomeranian Oncology Center, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Marcin Lener
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Joanne Kotsopoulos
- Women's College Research Institute, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ping Sun
- Women's College Research Institute, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| |
Collapse
|
47
|
Tu P, Xue J, Bian X, Chi L, Gao B, Leng J, Ru H, Knobloch TJ, Weghorst CM, Lu K. Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2′-deoxyguanosine in mice. Toxicol Appl Pharmacol 2019; 377:114633. [DOI: 10.1016/j.taap.2019.114633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
|
48
|
Navas-Acien A, Sanchez TR, Mann K, Jones MR. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Zhang X, Xu X, Zhong Y, Power MC, Taylor BD, Carrillo G. Serum folate levels and urinary arsenic methylation profiles in the US population: NHANES, 2003-2012. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:323-334. [PMID: 29483566 DOI: 10.1038/s41370-018-0021-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/11/2017] [Accepted: 10/22/2017] [Indexed: 06/08/2023]
Abstract
Arsenic is a prevalent environmental contaminant, and its folate-dependent methylation is important for detoxification in the body. In this study, we investigated the association between serum folate levels and methylation using data from the US National Health and Nutrition Examination Survey (NHANES) (2003-2012) (N = 11,016). Multivariate linear regression and penalized spline regression models were used to examine the association and possible upper limit of folate level regarding its impact on methylation in children (≤18 years) and adults (>18 years), respectively. Serum folate levels, methylation metabolites including urinary monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)), and demographic variables were extracted from NHANES. Results showed that urinary percentage of DMA(V) (%DMA(V)) was positively associated with log(serum folate levels) after adjustment in children (β = 1.93, p < 0.01); urinary percentage of MMA(V) (%MMA(V)) was positively associated with log (serum folate levels) after adjustment in adults (β = 0.40, p < 0.01). No upper limit of folate level regarding its impact on arsenic methylation was identified. More than 50% of Non-Hispanic black and smokers with high total urinary arsenic levels had low serum folate levels. Our results indicate that folate promotes arsenic methylation, but the patterns are different in children versus in adults. Future interventions may be needed for the population exposed to high level of arsenic but with low serum folate to protect against the potential adverse health effects of arsenic.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA.
| | - Yan Zhong
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, Texas A&M University School of Public health, College Station, TX, USA
| |
Collapse
|
50
|
Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2019; 15:e1007984. [PMID: 30893314 PMCID: PMC6443193 DOI: 10.1371/journal.pgen.1007984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/01/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.
Collapse
Affiliation(s)
- Brandon L. Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Samantha Dean
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md. Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Vincent J. Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|