1
|
Castro EM, Lotfipour S, Leslie FM. Neuroglia in substance use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:347-369. [PMID: 40148055 DOI: 10.1016/b978-0-443-19102-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Substance use disorders (SUD) remain a major public health concern in which individuals are unable to control their use of substances despite significant harm and negative consequences. Drugs of abuse dysregulate major brain and behavioral functions. Glial cells, primarily microglia and astrocytes, play a crucial role in these drug-induced molecular and behavioral changes. This review explores preclinical and clinical studies of how neuroglia and their associated neuroinflammatory responses contribute to SUD and reward-related properties. We evaluate preclinical and clinical evidence for targeting neuroglia as therapeutic interventions. In addition, we evaluate the literature on the gut microbiome and its role in SUD. Clinical treatments are most effective for reducing drug cravings, and some have yielded promising results in other measures of drug use. N-Acetylcysteine, through modulation of cysteine-glutamate antiporter of glial cells, shows encouraging results across a variety of drug classes. Neuroglia and gut microbiome interactions are important factors to consider with regard to SUD and could lead to novel therapeutic avenues. Age- and sex-dependent properties of neuroglia, gut microbiome, and drug use behaviors are important areas in need of further investigation.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
2
|
Gómez García AM, López Muñoz F, García-Rico E. The Microbiota in Cancer: A Secondary Player or a Protagonist? Curr Issues Mol Biol 2024; 46:7812-7831. [PMID: 39194680 DOI: 10.3390/cimb46080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The intestinal microbiota and the human body are in a permanent interaction. There is a symbiotic relationship in which the microbiota plays a vitally important role in the performance of numerous functions, including digestion, metabolism, the development of lymphoid tissue, defensive functions, and other processes. It is a true metabolic organ essential for life and has potential involvement in various pathological states, including cancer and pathologies other than those of a digestive nature. A growing topic of great interest for its implications is the relationship between the microbiota and cancer. Dysbiosis plays a role in oncogenesis, tumor progression, and even the response to cancer treatment. The effect of the microbiota on tumor development goes beyond a local effect having a systemic effect. Another aspect of great interest regarding the intestinal microbiota is its relationship with drugs, modifying their activity. There is increasing evidence that the microbiota influences the therapeutic activity and side effects of antineoplastic drugs and also modulates the response of several tumors to antineoplastic therapy through immunological circuits. These data suggest the manipulation of the microbiota as a possible adjuvant to improve oncological treatment. Is it possible to manipulate the microbiota for therapeutic purposes?
Collapse
Affiliation(s)
- Ana María Gómez García
- Internal Medicine Unit, Hospital Universitario HM Madrid, 28015 Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco López Muñoz
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Eduardo García-Rico
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
- Medical Oncology Unit, Hospital Universitario HM Torrelodones, 28250 Torrelodones, Spain
| |
Collapse
|
3
|
Hoisington AJ, Stearns-Yoder KA, Stamper CE, Holliday R, Brostow DP, Penzenik ME, Forster JE, Postolache TT, Lowry CA, Brenner LA. Association of homelessness and diet on the gut microbiome: a United States-Veteran Microbiome Project (US-VMP) study. mSystems 2024; 9:e0102123. [PMID: 38132705 PMCID: PMC10804991 DOI: 10.1128/msystems.01021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Military veterans account for 8% of homeless individuals living in the United States. To highlight associations between history of homelessness and the gut microbiome, we compared the gut microbiome of veterans who reported having a previous experience of homelessness to those from individuals who reported never having experienced a period of homelessness. Moreover, we examined the impact of the cumulative exposure of prior and current homelessness to understand possible associations between these experiences and the gut microbiome. Microbiome samples underwent genomic sequencing and were analyzed based on alpha diversity, beta diversity, and taxonomic differences. Additionally, demographic information, dietary data, and mental health history were collected. A lifetime history of homelessness was found to be associated with alcohol use disorder, substance use disorder, and healthy eating index compared to those without such a history. In terms of differences in gut microbiota, beta diversity was significantly different between veterans who had experienced homelessness and veterans who had never been homeless (P = 0.047, weighted UniFrac), while alpha diversity was similar. The microbial community differences were, in part, driven by a lower relative abundance of Akkermansia in veterans who had experienced homelessness (mean; range [in percentages], 1.07; 0-33.9) compared to veterans who had never been homeless (2.02; 0-36.8) (P = 0.014, ancom-bc2). Additional research is required to facilitate understanding regarding the complex associations between homelessness, the gut microbiome, and mental and physical health conditions, with a focus on increasing understanding regarding the longitudinal impact of housing instability throughout the lifespan.IMPORTANCEAlthough there are known stressors related to homelessness as well as chronic health conditions experienced by those without stable housing, there has been limited work evaluating the associations between microbial community composition and homelessness. We analyzed, for the first time, bacterial gut microbiome associations among those with experiences of homelessness on alpha diversity, beta diversity, and taxonomic differences. Additionally, we characterized the influences of diet, demographic characteristics, military service history, and mental health conditions on the microbiome of veterans with and without any lifetime history of homelessness. Future longitudinal research to evaluate the complex relationships between homelessness, the gut microbiome, and mental health outcomes is recommended. Ultimately, differences in the gut microbiome of individuals experiencing and not experiencing homelessness could assist in identification of treatment targets to improve health outcomes.
Collapse
Affiliation(s)
- Andrew J. Hoisington
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA
| | - Kelly A. Stearns-Yoder
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher E. Stamper
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Holliday
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana P. Brostow
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molly E. Penzenik
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeri E. Forster
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Teodor T. Postolache
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Veterans Affairs, Veterans Integrated Service Networks (VISN) 5 MIRECC, Baltimore, Maryland, USA
| | - Christopher A. Lowry
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lisa A. Brenner
- Department of Veterans Affairs, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, Colorado, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
5
|
Zhang B, Zhang R, Deng H, Cui P, Li C, Yang F, Leong Bin Abdullah MFI. Research protocol of the efficacy of probiotics for the treatment of alcohol use disorder among adult males: A comparison with placebo and acceptance and commitment therapy in a randomized controlled trial. PLoS One 2023; 18:e0294768. [PMID: 38051740 PMCID: PMC10697511 DOI: 10.1371/journal.pone.0294768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND AND AIM Primarily, this study compares the efficacy of probiotic and acceptance and commitment therapy (ACT) in alleviating the severity of alcohol craving and alcohol use disorder (AUD) among patients who had undergo two weeks of in-patient detoxification. Secondarily, this study compares the efficacy of probiotic and ACT in mitigating the severity of comorbid depression and anxiety symptoms; decreasing serum level of pro-inflammatory cytokines, such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α); changing the event-related potential in electroencephalogram (EEG) and restoring microbiota flora in the gut of AUD patients. METHODS AND ANALYSIS Initially, during Phase I of the study, the serum level of IL-1β, IL-6 and TNF-α; ERP changes in the EEG and fecal microbiota content will be compared between 120 AUD patients and 120 healthy controls. Subsequently in Phase II of the study, 120 AUD patients will be randomized by stratified permuted block randomization into the probiotic, ACT and placebo groups in a 1:1:1 ratio. Participants in the probiotic and placebo groups will be administered one sachet per day of Lactobacillus spp. probiotic and placebo, respectively for 12 weeks. While those in the ACT group will receive one session per week of ACT for 8 weeks. Outcome measures will be administered at four timepoints, such as t0 = baseline assessment prior to intervention, t1 = 8 weeks after intervention began, t2 = 12 weeks after intervention and t3 = 24 weeks after intervention. Primary outcomes are the degrees of alcohol craving, alcohol withdrawal during abstinence and AUD. Secondary outcomes to be assessed are the severity of co-morbid depression and anxiety symptoms; the serum levels of IL-1β, IL-6 and TNF-α; changes in ERP and fecal microbiota content. TRIAL REGISTRATION NUMBER NCT05830708 (ClinicalTrials.gov). Registered on April 25, 2023.
Collapse
Affiliation(s)
- Bingyu Zhang
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruiling Zhang
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongdu Deng
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Cui
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chunyan Li
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Fan Yang
- Department of Psychiatry, 2 Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | | |
Collapse
|
6
|
Wen X, Yang H, Li Z, Chu W. Alcohol degradation, learning, and memory-enhancing effect of Acetobacter pasteurianus BP2201 in Caenorhabditis elegans model. J Appl Microbiol 2023; 134:lxad253. [PMID: 37934610 DOI: 10.1093/jambio/lxad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to investigate the probiotic effects of Acetobacter pasteurianus BP2201, isolated from brewing mass, for the treatment of alcohol-induced learning and memory ability impairments in a Caenorhabditis elegans model. METHODS AND RESULTS Acetobacter pasteurianus BP2201 was examined for probiotic properties, including acid and bile salt resistance, ethanol degradation, antioxidant efficacy, hemolytic activity, and susceptibility to antibiotics. The strain displayed robust acid and bile salt tolerance, efficient ethanol degradation, potent antioxidant activity, and susceptibility to specific antibiotics. Additionally, in the C. elegans model, administering A. pasteurianus BP2201 significantly improved alcohol-induced learning and memory impairments. CONCLUSIONS Acetobacter pasteurianus BP2201 proves to be a promising candidate strain for the treatment of learning and memory impairments induced by alcohol intake.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huazhong Yang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongqi Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Yu Z, Chen W, Zhang L, Chen Y, Chen W, Meng S, Lu L, Han Y, Shi J. Gut-derived bacterial LPS attenuates incubation of methamphetamine craving via modulating microglia. Brain Behav Immun 2023; 111:101-115. [PMID: 37004759 DOI: 10.1016/j.bbi.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in the pathophysiology of neuropsychiatric disorders, and the compositions of gut microbiota are altered by addictive drugs. However, the role of gut microbiota in the incubation of methamphetamine (METH) craving remains poorly understood. METHODS 16S rRNA gene sequencing was performed to assess the richness and diversity of gut microbiota in METH self-administration model. Hematoxylin and eosin staining was performed to evaluate the integrity of intestinal barrier. Immunofluorescence and three-dimensional reconstruction were performed to assess the morphologic changes of microglia. Serum levels of lipopolysaccharide (LPS) were determined using the rat enzyme-linked immunosorbent assay kits. Quantitative real-time PCR was performed to assess transcript levels of dopamine receptor, glutamate ionotropic AMPA receptor 3 and brain-derived neurotrophic factor. RESULTS METH self-administration induced gut microbiota dysbiosis, intestinal barrier damage and microglia activation in the nucleus accumbens core (NAcc), which was partially recovered after prolonged withdrawal. Microbiota depletion via antibiotic treatment increased LPS levels and induced a marked change in the microglial morphology in the NAcc, as indicated by the decreases in the lengths and numbers of microglial branches. Depleting the gut microbiota also prevented the incubation of METH craving and increased the population of Klebsiella oxytoca. Furthermore, Klebsiella oxytoca treatment or exogenous administration of the gram-negative bacterial cell wall component LPS increased serum and central LPS levels, induced microglial morphological changes and reduced the dopamine receptor transcription in the NAcc. Both treatments and NAcc microinjections of gut-derived bacterial LPS significantly decreased METH craving after prolonged withdrawal. CONCLUSIONS These data suggest that LPS from gut gram-negative bacteria may enter circulating blood, activate microglia in the brain and consequently decrease METH craving after withdrawal, which may have important implications for novel strategies to prevent METH addiction and relapse.
Collapse
Affiliation(s)
- Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China; The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
9
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|
10
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
11
|
Frausto DM, Engen PA, Naqib A, Jackson A, Tran L, Green SJ, Shaikh M, Forsyth CB, Keshavarzian A, Voigt RM. Impact of alcohol-induced intestinal microbiota dysbiosis in a rodent model of Alzheimer's disease. FRONTIERS IN AGING 2022; 3:916336. [PMID: 36046496 PMCID: PMC9421609 DOI: 10.3389/fragi.2022.916336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a devastating neurodegenerative disorder. While genetics are important in the development of AD, environment and lifestyle are also important factors influencing AD. One such lifestyle factor is alcohol consumption. Unhealthy and excessive chronic alcohol consumption is associated with a greater risk of all types of dementia, especially AD. Alcohol consumption has numerous effects on the body, including alterations to the intestinal microbiota (dysbiosis) and intestinal barrier dysfunction (leakiness and intestinal hyperpermeability), with evidence indicating that inflammation resulting from dysbiosis and barrier dysfunction can promote neuroinflammation impacting brain structure and function. Objective: This study sought to determine the impact of alcohol-induced dysbiosis and barrier dysfunction on AD-like behavior and brain pathology using a transgenic rodent model of AD (3xTg-AD). Methods: Alcohol (20%) was administered to 3xTg-AD mice in the drinking water for 20 weeks. Intestinal (stool) microbiota, intestinal barrier permeability, systemic inflammation (IL-6), behavior, and AD pathology (phosphorylated tau and β-amyloid), and microglia were examined. Results: Alcohol consumption changed the intestinal microbiota community (dysbiosis) and increased intestinal barrier permeability in both control and 3xTg-AD mice (oral/urine sugar test and lipopolysaccharide-binding protein (LBP)). However, alcohol consumption did not influence serum IL-6, behavior, or β-amyloid, phosphorylated tau, or microglia in 3xTg-AD mice. Important differences in genotype and sex were noted. Conclusion: Alcohol-induced microbiota dysbiosis and intestinal barrier dysfunction did not exacerbate behavior or AD-like brain pathology in the 3xTg-AD mouse model of AD which could, in part, be the result of a lack of systemic inflammation.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Aeja Jackson
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Laura Tran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
12
|
Khalyfa AA, Punatar S, Yarbrough A. Hepatocellular Carcinoma: Understanding the Inflammatory Implications of the Microbiome. Int J Mol Sci 2022; 23:ijms23158164. [PMID: 35897739 PMCID: PMC9332105 DOI: 10.3390/ijms23158164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. It is well known that repeated inflammatory insults in the liver can cause hepatic cellular injury that lead to cirrhosis and, ultimately, hepatocellular carcinoma. Furthermore, the microbiome has been implicated in multiple inflammatory conditions which predispose patients to malignancy. With this in mind, we explore the inflammatory implications of the microbiome on pathways that lead to HCC. We also focus on how an understanding of these underlying inflammatory principles lead to a more wholistic understanding of this deadly disease, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Ahamed A. Khalyfa
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
- Correspondence:
| | - Shil Punatar
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| |
Collapse
|
13
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
14
|
Koppenol E, Terveer EM, Vendrik KE, van Lingen E, Verspaget HW, Keller JJ, Kuijper EJ, Giltay EJ. Fecal microbiota transplantation is associated with improved aspects of mental health of patients with recurrent Clostridioides difficile infections. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
15
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
16
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
17
|
Philips CA, Ahamed R, Rajesh S, Abduljaleel JK, Augustine P. Long-term Outcomes of Stool Transplant in Alcohol-associated Hepatitis-Analysis of Clinical Outcomes, Relapse, Gut Microbiota and Comparisons with Standard Care. J Clin Exp Hepatol 2022; 12:1124-1132. [PMID: 35814513 PMCID: PMC9257856 DOI: 10.1016/j.jceh.2022.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Healthy donor fecal microbiota transplantation (FMT) was preliminarily shown to have clinical benefits in hepatic encephalopathy (HE), severe alcohol-associated hepatitis (SAH), and alcohol use disorder. However, the long-term outcomes of FMT and the gut microbiota (GM) changes in patients with SAH are unknown. METHODS Patients with SAH who underwent FMT (N = 35) or standard of care (SoC, N = 26) from May 2017 to June 2018 were included, and their stored stool samples were analyzed prospectively. Clinical outcomes, including infections, hospitalizations, critical illness, alcohol relapse, and survival, were evaluated. Metagenomic analysis was undertaken to identify the relative abundances (Ras) and significant taxa at baseline and post-therapy (up to three years) among survivors between the two groups. RESULTS At follow-up, the incidences of ascites, HE, infections, and major hospitalizations were significantly higher in the SoC than in the FMT group (P < 0.05). Alcohol relapse was lower (28.6% versus 53.8%), and the time to relapse was higher in the FMT than in the SoC group (P = 0.04). Three-year survival was higher in the FMT than in the SoC group (65.7% versus 38.5%, P = 0.052). Death due to sepsis was significantly higher in the SoC group (N = 13/16, 81.2%; P = 0.008). GM analysis showed a significant increase in the RA of Bifidobacterium and a reduction in the RA of Acinetobacter in the FMT group. Beyond one to two years, the RA of Porphyromonas was significantly higher and that of Bifidobacterium was lower in the SoC than in the FMT group. CONCLUSIONS In terms of treatment for patients with SAH, healthy donor FMT is associated with significantly lesser ascites, infections, encephalopathy, and alcohol relapse (with a trend toward higher survival rates) than SoC, associated with beneficial GM modulation. Larger controlled studies on FMT are an unmet need.
Collapse
Affiliation(s)
- Cyriac A. Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India,Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India,Address for correspondence. Cyriac Abby Philips M.D., D.M., The Liver Institute, Center of Excellence in GI Sciences, Ground Floor, Phase II, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala 683 112, India.
| | - Rizwan Ahamed
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Sasidharan Rajesh
- Diagnostic and Interventional Radiology, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Jinsha K.P. Abduljaleel
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Philip Augustine
- Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India,Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| |
Collapse
|
18
|
Amadieu C, Coste V, Neyrinck AM, Thijssen V, Leyrolle Q, Bindels LB, Piessevaux H, Stärkel P, de Timary P, Delzenne NM, Leclercq S. Restoring an adequate dietary fiber intake by inulin supplementation: a pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes 2022; 14:2007042. [PMID: 34923905 PMCID: PMC8726664 DOI: 10.1080/19490976.2021.2007042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disease associated with malnutrition, metabolic disturbances, and gut microbiota alterations that are correlated with the severity of psychological symptoms. This study aims at supplementing AUD patients with prebiotic fiber during alcohol withdrawal, in order to modulate the gut microbiota composition and to evaluate its effect on gastrointestinal tolerance, metabolism, and patient's behavior. A randomized, double-blind, placebo-controlled study included 50 AUD patients assigned to inulin versus maltodextrin daily supplementation for 17 days. Biological measurements (fecal microbial 16S rDNA sequencing, serum biology), dietary intake, validated psychological questionnaires, and gastrointestinal tolerance assessment were performed before and after the intervention. Inulin significantly decreased the richness and evenness and induced changes of 8 genera (q < 0.1) including Bifidobacterium and Bacteroides. Prebiotic had minor effects on gastrointestinal symptoms and nutritional intakes compared to placebo. All patients showed an improvement in depression, anxiety, and craving scores during alcohol withdrawal regardless of the intervention group. Interestingly, only patients treated with inulin significantly improved the sociability score and had an increased serum level of brain-derived neurotrophic factor. This pilot study shows that inulin is well tolerated and modulates the gut microbiota and the social behavior in AUD patients, without further improving other psychological and biological parameters as compared to placebo. Gut2Brain study, clinicaltrial.gov: NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.
Collapse
Affiliation(s)
- Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Valentin Coste
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Victoria Thijssen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Hubert Piessevaux
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université Catholique De Louvain, UCLouvain, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université Catholique De Louvain, UCLouvain, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Department of Adult Psychiatry, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| |
Collapse
|
19
|
Pizarro N, Kossatz E, González P, Gamero A, Veza E, Fernández C, Gabaldón T, de la Torre R, Robledo P. Sex-Specific Effects of Synbiotic Exposure in Mice on Addictive-Like Behavioral Alterations Induced by Chronic Alcohol Intake Are Associated With Changes in Specific Gut Bacterial Taxa and Brain Tryptophan Metabolism. Front Nutr 2021; 8:750333. [PMID: 34901109 PMCID: PMC8662823 DOI: 10.3389/fnut.2021.750333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol intake has been shown to disrupt gut microbiota homeostasis, but whether microbiota modulation could prevent behavioral alterations associated with chronic alcohol intake remains unknown. We investigated the effects of synbiotic dietary supplementation on the development of alcohol-related addictive behavior in female and male mice and evaluated whether these effects were associated with changes in bacterial species abundance, short-chain fatty acids, tryptophan metabolism, and neurotransmitter levels in the prefrontal cortex and hippocampus. Chronic intermittent exposure to alcohol during 20 days induced escalation of intake in both female and male mice. Following alcohol deprivation, relapse-like behavior was observed in both sexes, but anxiogenic and cognitive deficits were present only in females. Synbiotic treatment reduced escalation and relapse to alcohol intake in females and males. In addition, the anxiogenic-like state and cognitive deficits observed in females following alcohol deprivation were abolished in mice exposed to synbiotic. Alcohol-induced differential alterations in microbial diversity and abundance in both sexes. In females, synbiotic exposure abrogated the alterations provoked by alcohol in Prevotellaceae UCG-001 and Ruminococcaceae UCG-014 abundance. In males, synbiotic exposure restored the changes induced by alcohol in Akkermansia and Muribaculum uncultured bacterium abundance. Following alcohol withdrawal, tryptophan metabolites, noradrenaline, dopamine, and γ-aminobutyric acid concentrations in the prefrontal cortex and the hippocampus were correlated with bacterial abundance and behavioral alterations in a sex-dependent manner. These results suggested that a dietary intervention with a synbiotic to reduce gut dysbiosis during chronic alcohol intake may impact differently the gut-brain-axis in females and males.
Collapse
Affiliation(s)
- Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Elk Kossatz
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Alba Gamero
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Emma Veza
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fernández
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
20
|
Rodríguez-González A, Vitali F, Moya M, De Filippo C, Passani MB, Orio L. Effects of Alcohol Binge Drinking and Oleoylethanolamide Pretreatment in the Gut Microbiota. Front Cell Infect Microbiol 2021; 11:731910. [PMID: 34888256 PMCID: PMC8651011 DOI: 10.3389/fcimb.2021.731910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction Chronic alcohol consumption is known to cause gut dysbiosis (changes in microbiota composition and/or function, disruptive of the normal host–microbiota interactions). However, little is known about the changes that alcohol binge drinking induces in the gut microbiota. Here, we have tested the hypothesis that a protocol of alcohol binge drinking, known to induce neuroinflammation in previous studies, also promotes intestinal dysbiosis, and we explored how oleoylethanolamide (OEA, an acylethanolamide proven to counteract alcohol binge drinking-induced neuroinflammation) pretreatment modulates alcohol-induced dysbiosis. Methods Alcohol binges were forced by gavage three times per day during 4 consecutive days; OEA pretreatment (intraperitoneal or intragastric) was administered before each alcohol gavage. Stool microbiota composition was assessed by next-generation 16S rRNA gene sequencing, prior and after the 4-day alcohol binge protocol. Results Alcohol binge drinking reduced the richness of the gut microbiota and changed the microbial community, reducing Lactobacillus among other genera. Pretreatment with OEA in the alcohol-administered rats decreased the richness, evenness, and Shannon indices to a greater extent with respect to alcohol alone, also changing the community structure. Microbial interactions in the association network were further decreased following OEA administration in the alcohol group, with respect to the water administration. The synergistic interaction between alcohol binge and OEA was affected by the route of administration of OEA, since oral and i.p. administrations differently changed the community structure. Conclusion Results suggest that alcohol binge drinking produces a clear dysbiosis in animals; we observed that the well-known protective actions of OEA in the context of alcohol abuse might not be related to OEA-induced changes in alcohol-induced dysbiosis. These are observational results, and thus, further research will be needed for a complete understanding of the biological significance of the observed changes.
Collapse
Affiliation(s)
- Alicia Rodríguez-González
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Marta Moya
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | | | - Laura Orio
- Laboratory of Psychobiology, Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Piacentino D, Grant-Beurmann S, Vizioli C, Li X, Moore CF, Ruiz-Rodado V, Lee MR, Joseph PV, Fraser CM, Weerts EM, Leggio L. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking. Transl Psychiatry 2021; 11:609. [PMID: 34853299 PMCID: PMC8636625 DOI: 10.1038/s41398-021-01728-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.
Collapse
Affiliation(s)
- Daria Piacentino
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Silvia Grant-Beurmann
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carlotta Vizioli
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Xiaobai Li
- grid.94365.3d0000 0001 2297 5165Biostatistics and Clinical Epidemiology Services, National Institutes of Health, Bethesda, MD USA
| | - Catherine F. Moore
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Victor Ruiz-Rodado
- grid.94365.3d0000 0001 2297 5165Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Mary R. Lee
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Claire M. Fraser
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elise M. Weerts
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD, 20892, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, 121 South Main Street, Providence, RI, USA. .,Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.
| |
Collapse
|
22
|
Kuracha MR, Thomas P, Tobi M, McVicker BL. Role of cell-free network communication in alcohol-associated disorders and liver metastasis. World J Gastroenterol 2021; 27:7080-7099. [PMID: 34887629 PMCID: PMC8613644 DOI: 10.3748/wjg.v27.i41.7080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The aberrant use of alcohol is a major factor in cancer progression and metastasis. Contributing mechanisms include the systemic effects of alcohol and the exchange of bioactive molecules between cancerous and non-cancerous cells along the brain-gut-liver axis. Such interplay leads to changes in molecular, cellular, and biological functions resulting in cancer progression. Recent investigations have examined the role of extracellular vesicles (EVs) in cancer mechanisms in addition to their contribution as diagnostic biomarkers. Also, EVs are emerging as novel cell-free mediators in pathophysiological scenarios including alcohol-mediated gut microbiome dysbiosis and the release of nanosized EVs into the circulatory system. Interestingly, EVs in cancer patients are enriched with oncogenes, miRNA, lipids, and glycoproteins whose delivery into the hepatic microenvironment may be enhanced by the detrimental effects of alcohol. Proof-of-concept studies indicate that alcohol-associated liver disease is impacted by the effects of exosomes, including altered immune responses, reprogramming of stromal cells, and remodeling of the extracellular matrix. Moreover, the culmination of alcohol-related changes in the liver likely contributes to enhanced hepatic metastases and poor outcomes for cancer patients. This review summarizes the numerous aspects of exosome communications between organs with emphasis on the relationship of EVs in alcohol-associated diseases and cancer metastasis. The potential impact of EV cargo and release along a multi-organ axis is highly relevant to the promotion of tumorigenic mechanisms and metastatic disease. It is hypothesized that EVs target recipient tissues to initiate the formation of prometastatic niches and cancer progression. The study of alcohol-associated mechanisms in metastatic cancers is expected to reveal a better understanding of factors involved in the growth of secondary malignancies as well as novel approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Murali R Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Peter Thomas
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, United States
| | - Martin Tobi
- Research and Development Service, Detroit VAMC, Detroit, MI 48201, United States
- Department of Medicine, Central Michigan University College of Medicine, Detroit, MI 48201, United States
| | - Benita L McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
| |
Collapse
|
23
|
Burnette EM, Grodin EN, Eisenberger NI, Ray LA. Endotoxin for Alcohol Research: A Call for Experimental Medicine Using Lipopolysaccharide Challenge. Alcohol Alcohol 2021; 56:715-717. [PMID: 33592623 PMCID: PMC8557676 DOI: 10.1093/alcalc/agaa148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Studies of inflammation in alcohol use disorder (AUD) are overwhelmingly preclinical, and translation to clinical samples is necessary. Endotoxin administration has been used successfully in humans to study mood disorders, offering a translational, reliable and safe model that may be validated in AUD research. We argue for the use of endotoxin challenge to elucidate the interplay between AUD and inflammation.
Collapse
Affiliation(s)
- Elizabeth M Burnette
- Department of Psychology, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
| | - Erica N Grodin
- Department of Psychology, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
| | - Naomi I Eisenberger
- Department of Psychology, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
| | - Lara A Ray
- Department of Psychology, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, 5555 Campus Hall, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:ijms222111680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82–33–240–5646
| |
Collapse
|
25
|
Fu X, Chen T, Cai J, Liu B, Zeng Y, Zhang X. The Microbiome-Gut-Brain Axis, a Potential Therapeutic Target for Substance-Related Disorders. Front Microbiol 2021; 12:738401. [PMID: 34690981 PMCID: PMC8526971 DOI: 10.3389/fmicb.2021.738401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Substance addiction is a complex worldwide public health problem. It endangers both personal life and social stability, causing great loss on economy. Substance-related disorder is considered to be a complicated chronic brain disorder. It resulted from interactions among pharmacological properties of addictive substances, individual susceptibility, and social–environmental factors. Unfortunately, there is still no ideal treatment for this disorder. Recent lines of evidence suggest that gut microbiome may play an important role in the pathogenesis of neuropsychiatric disorders, including substance-related disorders. This review summarizes the research on the relationship between gut microbiome and substance-related disorders, including different types of substance, different individual susceptibility, and the occurrence and development of substance-induced mental disorders. We also discuss the potentiation of gut microbiome in the treatment of substance-related disorders, especially in the treatment of substance-induced mental disorders and manipulation on individuals’ responsiveness to addictive substances.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingda Cai
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Bo Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Yaohui Zeng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
26
|
Agustí A, Campillo I, Balzano T, Benítez-Páez A, López-Almela I, Romaní-Pérez M, Forteza J, Felipo V, Avena NM, Sanz Y. Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat. Mol Neurobiol 2021; 58:4959-4979. [PMID: 34228269 PMCID: PMC8497301 DOI: 10.1007/s12035-021-02462-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Food addiction (FA) is characterized by behavioral and neurochemical changes linked to loss of food intake control. Gut microbiota may influence appetite and food intake via endocrine and neural routes. The gut microbiota is known to impact homeostatic energy mechanisms, but its role in regulating the reward system is less certain. We show that the administration of Bacteroides uniformis CECT 7771 (B. uniformis) in a rat FA model impacts on the brain reward response, ameliorating binge eating and decreasing anxiety-like behavior. These effects are mediated, at least in part, by changes in the levels of dopamine, serotonin, and noradrenaline in the nucleus accumbens and in the expression of dopamine D1 and D2 receptors in the prefrontal cortex and intestine. B. uniformis reverses the fasting-induced microbiota changes and increases the abundance of species linked to healthy metabolotypes. Our data indicate that microbiota-based interventions might help to control compulsive overeating by modulating the reward response.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain.
| | - Isabel Campillo
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología Unidad Mixta de Patología Molecular, Centro Investigación Príncipe Felipe/Universidad Católica de Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nicole M Avena
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain.
| |
Collapse
|
27
|
Goswami A, Wendt FR, Pathak GA, Tylee DS, De Angelis F, De Lillo A, Polimanti R. Role of microbes in the pathogenesis of neuropsychiatric disorders. Front Neuroendocrinol 2021; 62:100917. [PMID: 33957173 PMCID: PMC8364482 DOI: 10.1016/j.yfrne.2021.100917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Microbes inhabit different anatomical sites of the human body including oral cavity, gut, and skin. A growing literature highlights how microbiome variation is associated with human health and disease. There is strong evidence of bidirectional communication between gut and brain mediated by neurotransmitters and microbial metabolites. Here, we review the potential involvement of microbes residing in the gut and in other body sites in the pathogenesis of eight neuropsychiatric disorders, discussing findings from animal and human studies. The data reported provide a comprehensive overview of the current state of the microbiome research in neuropsychiatry, including hypotheses about the mechanisms underlying the associations reported and the translational potential of probiotics and prebiotics.
Collapse
Affiliation(s)
- Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT 06516, USA.
| |
Collapse
|
28
|
Martin OA, Grant-Beurmann S, Orellana ER, Hajnal A, Fraser CM. Changes in the Gut Microbiota Following Bariatric Surgery Are Associated with Increased Alcohol Intake in a Female Rat Model. Alcohol Alcohol 2021; 56:605-613. [PMID: 34155502 DOI: 10.1093/alcalc/agab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023] Open
Abstract
AIMS We aimed to investigate if differences in gut microbiota diversity and composition are associated with post-operative alcohol intake following bariatric surgery in a rat model. METHODS Twenty-four female rats were randomized to three treatment groups: sham surgery, vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). Stool was collected pre- and post-operatively and 16S rRNA gene amplification and sequencing was performed. Analysis focused on correlating microbial diversity, type of surgery and alcohol (EtOH) intake. RESULTS Pre-operative stools samples on regular diet showed similar taxonomic composition and Shannon diversity among the three treatment groups. There was a significant decrease in Shannon diversity and a change in taxonomic composition of the gut microbiota after rats was fed high fat diet. Post-operatively, the RYGB group showed significantly lower taxonomic diversity than the VSG and sham groups, while the VSG and sham groups diversity were not significantly different. Taxonomic composition and function prediction based on PICRUSt analysis showed the RYGB group to be distinct from the VSG and sham groups. Shannon diversity was found to be negatively associated with EtOH intake. CONCLUSIONS Changes in the taxonomic profile of the gut microbiota following bariatric surgery, particularly RYGB, are associated with increased EtOH intake and may contribute to increased alcohol use disorder risk through the gut-brain-microbiome axis.
Collapse
Affiliation(s)
- Olivia A Martin
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Surgery, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| | - Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| | - Elise R Orellana
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, University Drive. 10733, Hershey, PA, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, University Drive. 10733, Hershey, PA, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| |
Collapse
|
29
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
30
|
A biological framework for emotional dysregulation in alcohol misuse: from gut to brain. Mol Psychiatry 2021; 26:1098-1118. [PMID: 33288871 DOI: 10.1038/s41380-020-00970-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) has been associated with impairments in social and emotional cognition that play a crucial role in the development and maintenance of addiction. Repeated alcohol intoxications trigger inflammatory processes and sensitise the immune system. In addition, emerging data point to perturbations in the gut microbiome as a key regulator of the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators of one another. At the same time, accumulating evidence implicates the gut microbiome in shaping emotional and social cognition, suggesting the possibility of a common underlying loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-immuno-affective framework of how emotional dysregulation and alcohol-related microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- from binge drinking to addiction. In addition, we emphasise adolescence as a sensitive period for the confluence of alcohol harmful effects and emotional dysregulation in the developing gut-brain axis.
Collapse
|
31
|
Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology (Berl) 2021; 238:833-844. [PMID: 33410985 PMCID: PMC7914216 DOI: 10.1007/s00213-020-05735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION clinicaltrials.gov NCT03878225, NCT03255031.
Collapse
|
32
|
Farokhnia M, Abshire KM, Hammer A, Deschaine SL, Saravanakumar A, Cobbina E, You ZB, Haass-Koffler CL, Lee MR, Akhlaghi F, Leggio L. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined With Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2021; 24:464-476. [PMID: 33560411 PMCID: PMC8278796 DOI: 10.1093/ijnp/pyab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Aaron Hammer
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | | | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carolina L Haass-Koffler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA,Correspondence: Lorenzo Leggio, MD, PhD, NIDA and NIAAA, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Room 01A844, Baltimore, MD 21224 ()
| |
Collapse
|
33
|
Gut Microbiota at the Intersection of Alcohol, Brain, and the Liver. J Clin Med 2021; 10:jcm10030541. [PMID: 33540624 PMCID: PMC7867253 DOI: 10.3390/jcm10030541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, increased research into the cognizance of the gut-liver-brain axis in medicine has yielded powerful evidence suggesting a strong association between alcoholic liver diseases (ALD) and the brain, including hepatic encephalopathy or other similar brain disorders. In the gut-brain axis, chronic, alcohol-drinking-induced, low-grade systemic inflammation is suggested to be the main pathophysiology of cognitive dysfunctions in patients with ALD. However, the role of gut microbiota and its metabolites have remained unclear. Eubiosis of the gut microbiome is crucial as dysbiosis between autochthonous bacteria and pathobionts leads to intestinal insult, liver injury, and neuroinflammation. Restoring dysbiosis using modulating factors such as alcohol abstinence, promoting commensal bacterial abundance, maintaining short-chain fatty acids in the gut, or vagus nerve stimulation could be beneficial in alleviating disease progression. In this review, we summarize the pathogenic mechanisms linked with the gut-liver-brain axis in the development and progression of brain disorders associated with ALD in both experimental models and humans. Further, we discuss the therapeutic potential and future research directions as they relate to the gut-liver-brain axis.
Collapse
|
34
|
Carbone EA, D'Amato P, Vicchio G, De Fazio P, Segura-Garcia C. A systematic review on the role of microbiota in the pathogenesis and treatment of eating disorders. Eur Psychiatry 2020; 64:e2. [PMID: 33416044 PMCID: PMC8057489 DOI: 10.1192/j.eurpsy.2020.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background There is growing interest in new factors contributing to the genesis of eating disorders (EDs). Research recently focused on the study of microbiota. Dysbiosis, associated with a specific genetic susceptibility, may contribute to the development of anorexia nervosa (AN), bulimia nervosa, or binge eating disorder, and several putative mechanisms have already been identified. Diet seems to have an impact not only on modification of the gut microbiota, facilitating dysbiosis, but also on its recovery in patients with EDs. Methods This systematic review based on the PICO strategy searching into PubMed, EMBASE, PsychINFO, and Cochrane Library examined the literature on the role of altered microbiota in the pathogenesis and treatment of EDs. Results Sixteen studies were included, mostly regarding AN. Alpha diversity and short-chain fatty acid (SCFA) levels were lower in patients with AN, and affective symptoms and ED psychopathology seem related to changes in gut microbiota. Microbiota-derived proteins stimulated the autoimmune system, altering neuroendocrine control of mood and satiety in EDs. Microbial richness increased in AN after weight regain on fecal microbiota transplantation. Conclusions Microbiota homeostasis seems essential for a healthy communication network between gut and brain. Dysbiosis may promote intestinal inflammation, alter gut permeability, and trigger immune reactions in the hunger/satiety regulation center contributing to the pathophysiological development of EDs. A restored microbial balance may be a possible treatment target for EDs. A better and more in-depth characterization of gut microbiota and gut–brain crosstalk is required. Future studies may deepen the therapeutic and preventive role of microbiota in EDs.
Collapse
Affiliation(s)
- Elvira Anna Carbone
- Department of Health Sciences, University "Magna Graecia", Catanzaro88100, Italy.,Outpatient Service for Clinical Research and Treatment of Eating Disorders, University Hospital Mater Domini, Catanzaro88100, Italy
| | - Pasquale D'Amato
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro88100, Italy
| | - Giuseppe Vicchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende87036, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University "Magna Graecia", Catanzaro88100, Italy
| | - Cristina Segura-Garcia
- Outpatient Service for Clinical Research and Treatment of Eating Disorders, University Hospital Mater Domini, Catanzaro88100, Italy.,Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro88100, Italy
| |
Collapse
|
35
|
Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients 2020; 12:nu12123834. [PMID: 33334010 PMCID: PMC7765398 DOI: 10.3390/nu12123834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
As food addiction is being more commonly recognized within the scientific community, parallels can be drawn between it and other addictive substance use disorders, including tobacco use disorder. Given that both unhealthy diets and smoking are leading risk factors for disability and death, a greater understanding of how food addiction and tobacco use disorder overlap with one another is necessary. This narrative review aimed to highlight literature that investigated prevalence, biology, psychology, and treatment options of food addiction and tobacco use disorder. Published studies up to August 2020 and written in English were included. Using a biopsychosocial lens, each disorder was assessed together and separately, as there is emerging evidence that the two disorders can develop concurrently or sequentially within individuals. Commonalities include but are not limited to the dopaminergic neurocircuitry, gut microbiota, childhood adversity, and attachment insecurity. In addition, the authors conducted a feasibility study with the purpose of examining the association between food addiction symptoms and tobacco use disorder among individuals seeking tobacco use disorder treatment. To inform future treatment approaches, more research is necessary to identify and understand the overlap between the two disorders.
Collapse
|
36
|
Kärkkäinen O, Klåvus A, Voutilainen A, Virtanen J, Lehtonen M, Auriola S, Kauhanen J, Rysä J. Changes in Circulating Metabolome Precede Alcohol-Related Diseases in Middle-Aged Men: A Prospective Population-Based Study With a 30-Year Follow-Up. Alcohol Clin Exp Res 2020; 44:2457-2467. [PMID: 33067815 DOI: 10.1111/acer.14485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heavy alcohol use has been associated with altered circulating metabolome. We investigated whether changes in the circulating metabolome precede incident diagnoses of alcohol-related diseases. METHODS This is a prospective population-based cohort study where the participants were 42- to 60-year-old males at baseline (years 1984 to 1989). Subjects who received a diagnosis for an alcohol-related disease during the follow-up were defined as cases (n = 92, mean follow-up of 13.6 years before diagnosis). Diagnoses were obtained through linkage with national health registries. We used 2 control groups: controls who self-reported similar levels of alcohol use as compared to cases at baseline (alcohol-controls, n = 92), and controls who self-reported only light drinking at baseline (control-controls, n = 90). A nontargeted metabolomics analysis of baseline serum samples was performed. RESULTS There were significant differences between the study groups in the baseline serum levels of 64 metabolites: in amino acids (e.g., glutamine [FDR-corrected q-value = 0.0012]), glycerophospholipids (e.g., lysophosphatidylcholine 16:1 [q = 0.0008]), steroids (e.g., cortisone [q = 0.00001]), and fatty acids (e.g., palmitoleic acid [q = 0.0031]). The main finding was that after controlling for baseline levels of self-reported alcohol use and the biomarker of alcohol use, gamma-glutamyl transferase, and when compared to both alcohol-control and control-control group, the alcohol-case group had lower serum levels of asparagine (Cohen's d = -0.48 [95% CI -0.78 to -0.19] and d = -0.49 [-0.78 to -0.19], respectively) and serotonin (d = -0.45 [-0.74 to -0.15], and d = -0.46 [-0.75 to -0.16], respectively), with no difference between the two control groups (asparagine d = 0.00 [-0.29 to 0.29] and serotonin d = -0.01 [-0.30 to 0.29]). CONCLUSIONS Changes in the circulating metabolome, especially lower serum levels of asparagine and serotonin, are associated with later diagnoses of alcohol-related diseases, even after adjustment for the baseline level of alcohol use.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Ari Voutilainen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Jyrki Virtanen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| | - Jussi Kauhanen
- Institute of Public Health and Clinical Nutrition, (AK, AV, JV, JK), University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- From the, School of Pharmacy, (OK, ML, SA, JR), University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
37
|
Osna NA, Bhatia R, Thompson C, Batra SK, Kumar S, Cho Y, Szabo G, Molina PE, Weinman SA, Ganesan M, Kharbanda KK. Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol 2020; 87:63-72. [PMID: 32497558 PMCID: PMC7483997 DOI: 10.1016/j.alcohol.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This review provides a summary of the symposium titled "Role of Non-Genetic Risk Factors in Exacerbating Alcohol-Related Organ Damage", which was held at the 42nd Annual Meeting of the Research Society on Alcoholism. The goals of the symposium were to provide newer insights into the role of non-genetic factors, including specific external factors, notably infectious agents or lifestyle factors, that synergistically act to exacerbate alcohol pathogenicity to generate more dramatic downstream biological defects. This summary of the symposium will benefit junior/senior basic scientists and clinicians currently investigating/treating alcohol-induced organ pathology, as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh Bhatia
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Thompson
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sushil Kumar
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC-New Orleans, New Orleans, LA, United States
| | - Steven A Weinman
- Department of Internal Medicine and the Liver Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
38
|
Peterson VL, Richards JB, Meyer PJ, Cabrera-Rubio R, Tripi JA, King CP, Polesskaya O, Baud A, Chitre AS, Bastiaanssen TFS, Woods LS, Crispie F, Dinan TG, Cotter PD, Palmer AA, Cryan JF. Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine 2020; 55:102769. [PMID: 32403084 PMCID: PMC7218262 DOI: 10.1016/j.ebiom.2020.102769] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.
Collapse
Affiliation(s)
- Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Raul Cabrera-Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Amelie Baud
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, CA, USA; Center for Microbiome Innovation, University of California San Diego, CA, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
39
|
Abstract
Although the gut and brain are separate organs, they communicate with each other via trillions of intestinal bacteria that collectively make up one's gut microbiome. Findings from both humans and animals support a critical role of gut microbes in regulating brain function, mood, and behavior. Gut bacteria influence neural circuits that are notably affected in addiction-related behaviors. These include circuits involved in stress, reward, and motivation, with substance use influencing gut microbial abnormalities, suggesting significant gut-brain interactions in drug addiction. Given the overwhelming rates of opioid overdose deaths driven by abuse and addiction, it is essential to characterize mechanisms mediating the abuse potential of opioids. We discuss in this review the role of gut microbiota in factors that influence opioid addiction, including incentive salience, reward, tolerance, withdrawal, stress, and compromised executive function. We present clinical and preclinical evidence supporting a bidirectional relationship between gut microbiota and opioid-related behaviors by highlighting the effects of opioid use on gut bacteria, and the effects of gut bacteria on behavioral responses to opioids. Further, we discuss possible mechanisms of this gut-brain communication influencing opioid use. By clarifying the relationship between the gut microbiome and opioid-related behaviors, we improve understanding on mechanisms mediating reward-, motivation-, and stress-related behaviors and disorders, which may contribute to the development of effective, targeted therapeutic interventions in opioid dependence and addiction.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA,
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA,
- Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA,
| |
Collapse
|
40
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia" Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, "Madonna del Soccorso" General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
41
|
Zhao W, Hu Y, Li C, Li N, Zhu S, Tan X, Li M, Zhang Y, Xu Z, Ding Z, Hu L, Liu Z, Sun J. Transplantation of fecal microbiota from patients with alcoholism induces anxiety/depression behaviors and decreases brain mGluR1/PKC ε levels in mouse. Biofactors 2020; 46:38-54. [PMID: 31518024 DOI: 10.1002/biof.1567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have revealed that the gut microbiota participates in the psychiatric behavior changes in disorders associated with alcohol. But it still remains unknown whether alcoholism is involved in changes in gut microbiota and its underlying mechanism is also not clear. Here, we tested the gut microbiota of patients with alcoholism and conducted fecal microbiota transplantation (FMT) from patients with alcoholism to C57BL/6J mice whose gut microbiota had been sharply suppressed with antibiotics (ABX). Then we evaluated their alcohol preference degree, anxiety, and depression-like behaviors and social interaction behaviors, together with molecular changes in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Our data indicated that the gut microbiota of patients with alcoholism was drastically different from those of the healthy adults. The abundance of p_Firmicutes was significantly increased whereas p_Bacteroidetes was decreased. Compared to mice transplanted with fecal microbiota from healthy male adults, the mice accepting fecal microbiota from patients with alcoholism showed (a) anxiety-like and depression-like behaviors, (b) decreased social interaction behaviors, (c) spontaneous alcohol preference, and (d) decreased brain-derived neurotrophic factor (BDNF), alpha 1 subunit of GABA type A receptor (α1GABAA R) in mPFC and decreased metabotropic glutamate receptors 1 (mGluR1), protein kinase C (PKC) ε in NAc. Overall, our results suggest that fecal microbiota from patients with alcoholism did induce a status like alcohol dependence in C57BL/6J mice. The decreased expression of BDNF, α1GABAA R, and mGluR1/ PKC ε may be the underlying mechanism.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Ying Hu
- Department of Pediatrics, Jinan Zhangqiu District Hospital of TCM, Shandong, China
| | - Chuangang Li
- Department of Anesthesiology, Second Hospital of Shandong University, Shandong, China
| | - Ning Li
- Department of Anesthesiology, Second Hospital of Shandong University, Shandong, China
| | - Shaowei Zhu
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xu Tan
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Meng Li
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yue Zhang
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zheng Xu
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaoxi Ding
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| | - Lingming Hu
- Department of Psychiatry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Psychiatry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jinhao Sun
- Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
42
|
Voutilainen T, Kärkkäinen O. Changes in the Human Metabolome Associated With Alcohol Use: A Review. Alcohol Alcohol 2019; 54:225-234. [PMID: 31087088 DOI: 10.1093/alcalc/agz030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS The metabolome refers to the functional status of the cell, organ or the whole body. Metabolomic methods measure the metabolome (metabolite profile) which can be used to examine disease progression and treatment responses. Here, our aim was to review metabolomics studies examining effects of alcohol use in humans. METHODS We performed a literature search using PubMed and Web of Science for reports on changes in the human metabolite profile associated with alcohol use; we found a total of 23 articles published before end of 2018. RESULTS Most studies had investigated plasma, serum or urine samples; only four studies had examined other sample types (liver, faeces and broncho-alveolar lavage fluid). Levels of 51 metabolites were altered in two or more of the reviewed studies. Alcohol use was associated with changes in the levels of lipids and amino acids. In general, levels of fatty acids, phosphatidylcholine diacyls and steroid metabolites tended to increase, whereas those of phosphatidylcholine acyl-alkyls and hydroxysphingomyelins declined. Common alterations in circulatory levels of amino acids included decreased levels of glutamine, and increased levels of tyrosine and alanine. CONCLUSIONS More studies, especially with a longitudinal study design, or using more varied sample materials (e.g. organs or saliva), are needed to clarify alcohol-induced diseases and alterations at a target organ level. Hopefully, this will lead to the discovery of new treatments, improved recognition of individuals at high risk and identification of those subjects who would benefit most from certain treatments.
Collapse
Affiliation(s)
- Taija Voutilainen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| |
Collapse
|
43
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2577] [Impact Index Per Article: 429.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Witkiewitz K, Litten RZ, Leggio L. Advances in the science and treatment of alcohol use disorder. SCIENCE ADVANCES 2019; 5:eaax4043. [PMID: 31579824 PMCID: PMC6760932 DOI: 10.1126/sciadv.aax4043] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/28/2019] [Indexed: 05/03/2023]
Abstract
Alcohol is a major contributor to global disease and a leading cause of preventable death, causing approximately 88,000 deaths annually in the United States alone. Alcohol use disorder is one of the most common psychiatric disorders, with nearly one-third of U.S. adults experiencing alcohol use disorder at some point during their lives. Alcohol use disorder also has economic consequences, costing the United States at least $249 billion annually. Current pharmaceutical and behavioral treatments may assist patients in reducing alcohol use or facilitating alcohol abstinence. Although recent research has expanded understanding of alcohol use disorder, more research is needed to identify the neurobiological, genetic and epigenetic, psychological, social, and environmental factors most critical in the etiology and treatment of this disease. Implementation of this knowledge in clinical practice and training of health care providers is also needed to ensure appropriate diagnosis and treatment of individuals suffering from alcohol use disorder.
Collapse
Affiliation(s)
- K. Witkiewitz
- Department of Psychology and Center on Alcoholism, Substance Abuse, and Addictions, University of New Mexico, 2650 Yale Blvd. SE, Albuquerque, NM 87106, USA
| | - R. Z. Litten
- Division of Medications Development and Division of Treatment and Recovery Research, National Institute on Alcohol Abuse and Alcoholism, 6700B Rockledge Drive, Bethesda, MD 20892-6902, USA
| | - L. Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 10 Center Drive (10CRC/15330), Bethesda, MD 21224, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
- Corresponding author.
| |
Collapse
|
46
|
Zallar LJ, Beurmann S, Tunstall BJ, Fraser CM, Koob GF, Vendruscolo LF, Leggio L. Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol 2019; 31:e12663. [PMID: 30456835 DOI: 10.1111/jne.12663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone that has been implicated in the neurobiology of alcohol drinking. We have recently developed a ghrelin receptor (growth hormone secretagogue receptor; GHSR) knockout (KO) rat model, which exhibits reduced food consumption and body weight. In addition, recent preliminary work suggests that the gut-microbiome, which appears to interact with the ghrelin system, may modulate alcohol drinking. In the present study, we investigated the effects of GHSR deletion on alcohol consumption utilising GHSR KO and wild-type (WT) rats in three separate alcohol consumption paradigms: (i) operant self-administration (30-minute sessions); (ii) drinking in the dark (DID) (4-hour sessions); and (iii) intermittent access (24-hour sessions). These paradigms model varying degrees of alcohol consumption. Furthermore, we aimed to investigate the gut-microbiome composition of GHSR KO and WT rats before and after alcohol exposure. We found that the GHSR KO rats self-administered significantly less alcohol compared to WT rats in the operant paradigm, and consumed less alcohol than WT in the initial stages of the DID paradigm. No genotype differences were found in the intermittent access test. In addition, we found a significant decrease in gut-microbial diversity after alcohol exposure in both genotypes. Thus, the present results indicate that the ghrelin system may be involved in drinking patterns that result in presumably increased alcohol exposure levels. Furthermore, GHSR may constitute a potential pharmacological target for the reduction of binge-alcohol consumption. The potential functional role of the gut-microbiome in alcohol drinking, as well as interaction with the ghrelin system, is an interesting topic for further investigation.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, Maryland
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Silvia Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, Maryland
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| |
Collapse
|
47
|
Getachew B, Reyes RE, Davies DL, Tizabi Y. Moxidectin Effects on Gut Microbiota of Wistar-Kyoto Rats: Relevance to Depressive-Like Behavior. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:134-142. [PMID: 31321385 PMCID: PMC6639013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS The prevalent comorbidity between neuropsychiatric and gastrointestinal (GI) disorders is believed to be significantly influenced by gut microbiota (GM). GM may also play a substantial role in comorbidity between substance abuse (e.g. Alcohol Use Disorder, AUD) and depression. The anti-parasitic drug Moxidectin (MOX) has been reported to reduce alcohol intake in male and female mice. This effect is purported to be centrally mediated with a significant contribution linked to purinergic, P2X4 purinergic receptors. However, MOX's effects on GM in animal models of depression is not known. METHODS Adult male Wistar Kyoto (WKY) rats (5/group) were injected intraperitoneally (i.p.) once daily for 7 days with MOX (2.5mg/kg), or saline as control group. On day 8, approximately 20 h after the last MOX injection, animals were sacrificed, intestinal stools were collected and stored at -80°C DNA was extracted from the samples for 16S rRNA gene-based GM analysis using 16S Metagenomics application. RESULTS At taxa and species level, MOX affected a number of bacteria including a 30-fold increase in Bifidobacterium cholerium, a bacterium with a strong ability to degrade carbohydrates that resist digestion in the small intestine. There was a minimum of 2-fold increase in: five probiotic species of Lactobacillus, butyrate-forming Rosburia Facies and Butyrivibro proteovlasticus. In contrast, MOX depleted 11 species, including 2 species of Ruminoccus, which are positively associated with severity of irritable bowel syndrome, and 4 species of Provettela, which are closely associated with depressive-like behavior. CONCLUSION Thus, MOX enhanced probiotic species, and suppressed the opportunistic pathogens. Since overall effect of MOX appears to be promoting GM associated with mood enhancement (e.g. Bifidobacterium and Lactobacillus) and suppressing GM associated with inflammation (e.g. Ruminoccus), potential antidepressant and anti-inflammatory effects of MOX in suitable animal models should be investigated.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Rachel E. Reyes
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
48
|
A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236:1513-1530. [PMID: 30982128 PMCID: PMC6599482 DOI: 10.1007/s00213-019-05232-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.
Collapse
|
49
|
Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav 2019; 204:49-57. [DOI: 10.1016/j.physbeh.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
|
50
|
Abstract
Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut-liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.
Collapse
|