1
|
Collatuzzo G, Rashidian H, Hadji M, Naghibzadeh A, Alizadeh-Navaei R, Boffetta P, Zendehdel K. Cigarettes and waterpipe use and risk of colorectal cancer in Iran: the IROPICAN study. Eur J Cancer Prev 2025; 34:151-156. [PMID: 38870041 DOI: 10.1097/cej.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
We aimed to investigate the association between cigarettes and waterpipe use and colorectal cancer (CRC) in an Iranian population. We analyzed data from a multicenter hospital-based case-control study in Iran (IROPICAN). Data on tobacco smoking, including cigarettes, and waterpipe smoking, were collected in detail. Multivariate logistic regressions estimated the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between cigarette and waterpipe smoking and CRC, accounting for confounders including age, sex, socioeconomic status, opium use, marital status, family history of cancer, red meat, fiber, body shape at age 15 and perceived physical workload, and each other of the two exposures. The study population consisted of 3215 controls and 848 cases, including 455 colon and 393 rectum cancers. We found no association between CRC and cigarette smoking (OR, 0.8; 95% CI, 0.6-1.0) or waterpipe smoking (OR, 1.1; 95% CI, 0.9-1.5). Analysis by categories of cigarette pack-year and frequency of waterpipe smoking (head-year) did not show associations. We observed an inverse association between colon cancer and cigarette smoking (OR, 0.6; 95% CI, 0.5-0.9). There was, however, no significant association by pack-year categories. Cigarette and waterpipe smoking was not associated with CRC in the Iranian population. Further studies are needed to better understand the role of waterpipe on CRC.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hadji
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Ahmad Naghibzadeh
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences
- Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kazem Zendehdel
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lattanzi G, Perillo F, Díaz-Basabe A, Caridi B, Amoroso C, Baeri A, Cirrincione E, Ghidini M, Galassi B, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Estrogen-related differences in antitumor immunity and gut microbiome contribute to sexual dimorphism of colorectal cancer. Oncoimmunology 2024; 13:2425125. [PMID: 39548749 PMCID: PMC11572150 DOI: 10.1080/2162402x.2024.2425125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease whose development and progression varies depending on tumor location, age of patients, infiltration of immune cells within cancer lesions, and the tumor microenvironment. These pathophysiological characteristics are additionally influenced by sex-related differences. The gut microbiome plays a role in initiation and progression of CRC, and shapes anti-tumor immune responses but how responsiveness of the immune system to the intestinal microbiota may contribute to sexual dimorphism of CRC is largely unknown. We studied survival, tumor-infiltrating immune cell populations and tumor-associated microbiome of a cohort of n = 184 male and female CRC patients through high-dimensional single-cell flow cytometry and 16S rRNA gene sequencing. We functionally tested the immune system-microbiome interactions in in-vivo and in-vitro models of the disease. High-dimensional single-cell flow cytometry showed that female patients are enriched by tumor-infiltrating invariant Natural Killer T (iNKT) cells but depleted by cytotoxic T lymphocytes. The enrichment of oral pathobionts and a reduction of β-glucuronidase activity are distinctive traits characterizing the gut microbiome of female patients affected by CRC. Functional assays using a collection of human primary iNKT cell lines demonstrated that the gut microbiota of female patients functionally impairs iNKT cell anti-tumor functions interfering with the granzyme-perforin cytotoxic pathway. Our results highlight a sex-dependent functional relationship between the gut microbiome, estrogen metabolism, and the decline of cytotoxic T cell responses, contributing to the sexual dimorphism observed in CRC patients with relevant implications for precision medicine and the design of targeted therapeutic approaches addressing sex bias in cancer.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruna Caridi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elisa Cirrincione
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
5
|
Marino P, Mininni M, Deiana G, Marino G, Divella R, Bochicchio I, Giuliano A, Lapadula S, Lettini AR, Sanseverino F. Healthy Lifestyle and Cancer Risk: Modifiable Risk Factors to Prevent Cancer. Nutrients 2024; 16:800. [PMID: 38542712 PMCID: PMC10974142 DOI: 10.3390/nu16060800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer has become a serious problem worldwide, as it represents the main cause of death, and its incidence has increased over the years. A potential strategy to counter the growing spread of various forms of cancer is the adoption of prevention strategies, in particular, the use of healthy lifestyles, such as maintaining a healthy weight, following a healthy diet; being physically active; avoiding smoking, alcohol consumption, and sun exposure; and vitamin D supplementation. These modifiable risk factors are associated with this disease, contributing to its development, progression, and severity. This review evaluates the relationship between potentially modifiable risk factors and overall cancer development, specifically breast, colorectal, and prostate cancer, and highlights updated recommendations on cancer prevention. The results of numerous clinical and epidemiological studies clearly show the influence of lifestyles on the development and prevention of cancer. An incorrect diet, composed mainly of saturated fats and processed products, resulting in increased body weight, combined with physical inactivity, alcohol consumption, and smoking, has induced an increase in the incidence of all three types of cancer under study. Given the importance of adopting correct and healthy lifestyles to prevent cancer, global institutions should develop strategies and environments that encourage individuals to adopt healthy and regular behaviors.
Collapse
Affiliation(s)
- Pasquale Marino
- Unit of Oncological Gynecology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (G.D.); (F.S.)
| | - Mariangela Mininni
- Department Direzione Generale per la Salute e le Politiche della Persona, Regione Basilicata, Via Vincenzo Verrastro, 4, 85100 Potenza, Italy;
| | - Giovanni Deiana
- Unit of Oncological Gynecology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (G.D.); (F.S.)
| | - Graziella Marino
- Unit of Breast Surgery, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Potenza, Italy;
| | - Rosa Divella
- Nutritionist’s Studio at the Gravina in Puglia, C.so Giuseppe Di Vittorio, 14, 70024 Bari, Italy;
| | - Ilaria Bochicchio
- Unit of Clinical Psychology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (I.B.); (A.G.); (S.L.); (A.R.L.)
| | - Alda Giuliano
- Unit of Clinical Psychology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (I.B.); (A.G.); (S.L.); (A.R.L.)
| | - Stefania Lapadula
- Unit of Clinical Psychology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (I.B.); (A.G.); (S.L.); (A.R.L.)
| | - Alessandro Rocco Lettini
- Unit of Clinical Psychology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (I.B.); (A.G.); (S.L.); (A.R.L.)
| | - Francesca Sanseverino
- Unit of Oncological Gynecology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Via Padre Pio, 1, 85028 Potenza, Italy; (G.D.); (F.S.)
| |
Collapse
|
6
|
Zhu W, Yang L, Gao Y, Zhou Y, Shi Y, Liu K, Yu R, Shao Y, Zhang W, Wu G, He J. Clinical value of FAT1 mutations to indicate the immune response in colorectal cancer patients. Genomics 2024; 116:110808. [PMID: 38364976 DOI: 10.1016/j.ygeno.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Immunotherapy is currently approved for CRC whose tumors have high MSI-H. To find additional biomarkers for immunotherapy in CRC, targeted sequencing was performed on tumor tissues from a discovery cohort of 161 CRC patients. Validation cohorts from the cBioPortal were also used for survival and tumor cell infiltration analyses. The FAT1-mutated CRC group often co-occurred with MSI events and displayed a higher tumor mutational burden compared to the FAT1 wild-type CRC. Overall survival was higher in patients with FAT1 mutations than in patients with wild type FAT1. The altered PI3K-AKT pathway and immune pathways were enriched in the FAT1-mutated CRC. A higher infiltration rate of immune cells including CD4+ T cells, CD8+ T cells, macrophages M1 and regulatory T cells were also observed in the colorectal tumors with FAT1 mutation compared to tumors with wild type FAT1. The results showed that CRC patients with FAT1 mutations exhibited an immunotherapy-favorable profile.
Collapse
Affiliation(s)
- Wei Zhu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhou
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqian Shi
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Kaihua Liu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ruoying Yu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentong Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjun He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Papadimitriou N, Qu C, Harrison TA, Bever AM, Martin RM, Tsilidis KK, Newcomb PA, Thibodeau SN, Newton CC, Um CY, Obón-Santacana M, Moreno V, Brenner H, Mandic M, Chang-Claude J, Hoffmeister M, Pellatt AJ, Schoen RE, Harlid S, Ogino S, Ugai T, Buchanan DD, Lynch BM, Gruber SB, Cao Y, Hsu L, Huyghe JR, Lin Y, Steinfelder RS, Sun W, Van Guelpen B, Zaidi SH, Toland AE, Berndt SI, Huang WY, Aglago EK, Drew DA, French AJ, Georgeson P, Giannakis M, Hullar M, Nowak JA, Thomas CE, Le Marchand L, Cheng I, Gallinger S, Jenkins MA, Gunter MJ, Campbell PT, Peters U, Song M, Phipps AI, Murphy N. Body size and risk of colorectal cancer molecular defined subtypes and pathways: Mendelian randomization analyses. EBioMedicine 2024; 101:105010. [PMID: 38350331 PMCID: PMC10874711 DOI: 10.1016/j.ebiom.2024.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Obesity has been positively associated with most molecular subtypes of colorectal cancer (CRC); however, the magnitude and the causality of these associations is uncertain. METHODS We used Mendelian randomization (MR) to examine potential causal relationships between body size traits (body mass index [BMI], waist circumference, and body fat percentage) with risks of Jass classification types and individual subtypes of CRC (microsatellite instability [MSI] status, CpG island methylator phenotype [CIMP] status, BRAF and KRAS mutations). Summary data on tumour markers were obtained from two genetic consortia (CCFR, GECCO). FINDINGS A 1-standard deviation (SD:5.1 kg/m2) increment in BMI levels was found to increase risks of Jass type 1MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype (odds ratio [OR]: 2.14, 95% confidence interval [CI]: 1.46, 3.13; p-value = 9 × 10-5) and Jass type 2non-MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype CRC (OR: 2.20, 95% CI: 1.26, 3.86; p-value = 0.005). The magnitude of these associations was stronger compared with Jass type 4non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-wildtype CRC (p-differences: 0.03 and 0.04, respectively). A 1-SD (SD:13.4 cm) increment in waist circumference increased risk of Jass type 3non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-mutated (OR 1.73, 95% CI: 1.34, 2.25; p-value = 9 × 10-5) that was stronger compared with Jass type 4 CRC (p-difference: 0.03). A higher body fat percentage (SD:8.5%) increased risk of Jass type 1 CRC (OR: 2.59, 95% CI: 1.49, 4.48; p-value = 0.001), which was greater than Jass type 4 CRC (p-difference: 0.03). INTERPRETATION Body size was more strongly linked to the serrated (Jass types 1 and 2) and alternate (Jass type 3) pathways of colorectal carcinogenesis in comparison to the traditional pathway (Jass type 4). FUNDING Cancer Research UK, National Institute for Health Research, Medical Research Council, National Institutes of Health, National Cancer Institute, American Institute for Cancer Research, Brigham and Women's Hospital, Prevent Cancer Foundation, Victorian Cancer Agency, Swedish Research Council, Swedish Cancer Society, Region Västerbotten, Knut and Alice Wallenberg Foundation, Lion's Cancer Research Foundation, Insamlingsstiftelsen, Umeå University. Full funding details are provided in acknowledgements.
Collapse
Affiliation(s)
- Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alaina M Bever
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, UK; National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; School of Public Health, University of Washington, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona 08908, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona 08908, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marko Mandic
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew J Pellatt
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010, Australia; Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA; Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA; Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010, Australia
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meredith Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Johnathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
8
|
Karaoglan BB, Akyol C, Unal AE, Kuzu A, Savaş B, Utkan G. Relationship Between ABO Blood Group and Microsatellite Instability in Colorectal Cancer: A Retrospective Single-Center Study. J Gastrointest Cancer 2024; 55:281-286. [PMID: 37414939 DOI: 10.1007/s12029-023-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is the second most common cancer in both women and men. Microsatellite instability-high (MSI-H) CRC is a molecular subgroup and has distinct clinical and pathologic features from microsatellite stable (MSS) CRC. Studies have suggested an association between hereditary antigens in ABO blood group system and the risk of developing various cancers but the relationship between blood groups and MSI-H CRC has not been investigated. This study aimed to investigate this relationship and its possible effect on clinicopathological features in patients with CRC. METHODS This is a retrospective cross-sectional single-center study including pathology-confirmed CRC patients. Demographic and clinicopathological features, blood groups, and microsatellite status were examined among two groups. Microsatellite instability was examined by immunohistochemistry (IHC) in pathology specimen. RESULTS A total of 144 patients, 72 patients with MSI-H CRC and 72 patients with MSS CRC, were included in the study. Among all patients, median age was 61.7 ± 12.9 (range 27-89) and 57.6% were male. MSI-H and MSS groups were similar in terms of age, gender distribution, and comorbidities. Patients with MSI-H CRC had significantly common O-blood group than control group (44.4% vs 18.1%, p: 0.001). In multivariate analysis, O-blood group was 4.2 times more common in the MSI-H patient group (95% CI: 1.514-11.819, p: 0.006). Also patients with MSI-H CRC were found to have significantly more right-sided, high-grade tumors and early-stage disease. CONCLUSIONS MSI-H CRC is an important subgroup in colon cancer with different molecular and clinicopathological features. It was observed that O-blood group was 4.2 times more common in MSI-H CRC. We believe that clarifying the relationship between microsatellite instability and O-blood group and its possible genetic and epigenetic mechanisms in larger studies will enable us to better understand tumor behavior and prognosis, also affect our treatment choices of these patient groups.
Collapse
Affiliation(s)
- Beliz Bahar Karaoglan
- Department of Medical Oncology, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Cihangir Akyol
- Department of General Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ali Ekrem Unal
- Department of Surgical Oncology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ayhan Kuzu
- Department of General Surgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Berna Savaş
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Güngör Utkan
- Department of Medical Oncology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Nakano S, Yamaji T, Shiraishi K, Hidaka A, Shimazu T, Kuchiba A, Saito M, Kunishima F, Nakaza R, Kohno T, Sawada N, Inoue M, Tsugane S, Iwasaki M. Smoking and risk of colorectal cancer according to KRAS and BRAF mutation status in a Japanese prospective Study. Carcinogenesis 2023; 44:476-484. [PMID: 37352389 DOI: 10.1093/carcin/bgad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Although smoking is a major modifiable risk factor for many types of cancer, evidence for colorectal cancer is equivocal in Asian populations. Recent Western studies have proposed that the association between smoking and colorectal cancer is restricted to specific tumor molecular subtypes. However, no studies have evaluated the association according to tumor molecular subtypes in Asian populations. In a Japanese prospective population-based cohort study of 18 773 participants, we collected tumor tissues from incident colorectal cancer cases and evaluated KRAS (Kirsten rat sarcoma viral oncogene homolog) and BRAF (v-raf murine sarcoma viral oncogene homolog B) mutation status using target sequencing. Multivariable-adjusted Cox proportional hazard model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of smoking with the risk of overall colorectal cancer and its subtypes defined by KRAS and BRAF mutation status. Among 339 cases, KRAS and BRAF mutations were identified in 164 (48.4%) and 16 (4.7%) cases, respectively. The multivariable-adjusted HR for ever smoking compared with never smoking was 1.24 [95% CI: 0.93-1.66], 1.75 [1.14-2.68], 0.87 [0.59-1.29], 1.24 [0.93-1.67] and 1.22 [0.38-3.93] for overall, KRAS wild-type, KRAS-mutated, BRAF wild-type and BRAF-mutated colorectal cancer, respectively. The statistically significant heterogeneity was indicated between KRAS mutation status (Pheterogeneity = 0.01) but not between BRAF mutation status. This study is the first to demonstrate that smokers have an approximately 2-fold higher risk of KRAS wild-type colorectal cancer than never smokers in an Asian population. Our findings support that smoking is a risk factor for colorectal cancer, especially for its subtype without KRAS mutations, in Asian populations.
Collapse
Affiliation(s)
- Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihisa Hidaka
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Gastroenterology and Hepatology, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Taichi Shimazu
- Division of Behavioral Sciences, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Aya Kuchiba
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kanagawa, Japan
- Division of Biostatistical Research, Institute for Cancer Control/Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Masahiro Saito
- Department of Diagnostic Pathology, Hiraka General Hospital, Yokote, Akita, Japan
| | - Fumihito Kunishima
- Department of Diagnostic Pathology, Okinawa Prefecture Chubu Hospital, Okinawa, Japan
| | - Ryouji Nakaza
- Department of clinical laboratory, Nakagami Hospital, Okinawa, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
10
|
Cai JA, Zhang YZ, Yu ED, Ding WQ, Li ZS, Zhong L, Cai QC. Association of cigarette smoking with risk of colorectal cancer subtypes classified by gut microbiota. Tob Induc Dis 2023; 21:99. [PMID: 37529669 PMCID: PMC10377954 DOI: 10.18332/tid/168515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Both cigarette smoking and gut microbiota play important roles in colorectal carcinogenesis. We explored whether the association between smoking and colorectal cancer (CRC) risk varies by gut microbial enterotypes and how smoking-related enterotypes promote colorectal carcinogenesis. METHODS A case-control study was conducted. Fecal microbiota was determined by 16S rDNA sequencing. The cases with CRC or adenoma were subclassified by gut microbiota enterotypes. Multivariate analyses were used to test associations between smoking and the odds of colorectal neoplasm subtypes. Mann-Whitney U tests were used to find differential genera, genes, and pathways between the subtypes. RESULTS Included in the study were 130 CRC patients (type I: n=77; type II: n=53), 120 adenoma patients (type I: n=66; type II: n=54), and 130 healthy participants. Smoking increased the odds for type II tumors significantly (all p for trend <0.05) but not for type I tumors. The associations of smoking with increased odds of colorectal neoplasm significantly differed by gut microbiota enterotypes (p<0.05 for heterogeneity). An increase in carcinogenic bacteria (genus Escherichia shigella) and a decrease in probiotics (family Lachnospiraceae and Ruminococcaceae) in type II tumors may drive disease progression by upregulating oncogenic signaling pathways and inflammatory/oxidative stress response pathways, as well as protein phospholipase D1/2, cytochrome C, and prostaglandin-endoperoxide synthase 2 expression. CONCLUSIONS Smoking was associated with a higher odds of type II colorectal neoplasms but not type I tumors, supporting a potential role for the gut microbiota in mediating the association between smoking and colorectal neoplasms.
Collapse
Affiliation(s)
- Jia-An Cai
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Zhen Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Gastroenterology, 928 Hospital of PLA Joint Logistics Force, Haikou, China
| | - En-Da Yu
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Qun Ding
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Clinical Research Center for Digestive Diseases, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology and Endoscopy, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan-Cai Cai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Clinical Research Center for Digestive Diseases, Shanghai, China
| |
Collapse
|
11
|
Sahli H, Dahlbäck C, Lydrup ML, Buchwald P. Impact of previous diverticulitis on 5-year survival and recurrence rates in patients with colorectal cancer. Scand J Gastroenterol 2023; 58:1280-1285. [PMID: 37296500 DOI: 10.1080/00365521.2023.2221361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Diverticulitis and colorectal cancer (CRC) share epidemiological characteristics, but their relationship remains unknown. It is unclear if prognosis following CRC differ for patients with previous diverticulitis compared to those with sporadic cases and patients with inflammatory bowel disease or hereditary syndromes. AIM The aim was to determine 5-year survival and recurrence after colorectal cancer in patients with previous diverticulitis, inflammatory bowel disease and hereditary colorectal cancer compared to sporadic cases. METHODS Patients <75 years of age diagnosed with colorectal cancer at Skåne University Hospital Malmö, Sweden, between January 1st 2012 and December 31st 2017 were identified through the Swedish colorectal cancer registry. Data was retrieved from the Swedish colorectal cancer registry and chart review. Five-year survival and recurrence in colorectal cancer patients with previous diverticulitis were compared to sporadic cases, inflammatory bowel disease associated and hereditary colorectal cancer. RESULTS The study cohort comprised 1052 patients, 28 (2.7%) with previous diverticulitis, 26 (2.5%) IBD, 4 (1.3%) hereditary syndromes and 984 (93.5%) sporadic cases. Patients with a history of acute complicated diverticulitis had a significantly lower 5-year survival rate (61.1%) and higher recurrence rate (38.9%) compared to sporadic cases (87.5% and 18.8% respectively). CONCLUSION Patients with acute complicated diverticulitis had worse 5-year prognosis compared to sporadic cases. The results emphasize the importance of early detection of colorectal cancer in patients with acute complicated diverticulitis.
Collapse
Affiliation(s)
- Hannah Sahli
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Dahlbäck
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Marie-Louise Lydrup
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Pamela Buchwald
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
12
|
Hu S, Li Y, Zhu W, Liu J, Wei S. Global, region and national trends and age-period-cohort effects in colorectal cancer burden from 1990 to 2019, with predictions to 2039. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83245-83259. [PMID: 37340163 DOI: 10.1007/s11356-023-28223-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Nowadays, colorectal cancer (CRC) is the second leading cause of cancer deaths and contributes to a gradually increasing disease burden. We aimed to estimate the secular trends of global CRC burden, the effect of age, period, and birth cohort, and project the global burden over time. Based on the epidemiological CRC data from 1990 to 2019 in 204 countries and territories from GBD 2019, the estimated annual percentage change (EAPC), was calculated from a linear model and joinpoint regression model. We utilized an age-period-cohort model to reckon age, period, and birth cohort effects on CRC age-standardized rate. The burden of CRC was projected by conducting the BAPC model. Globally, there was a slight decline in the age-standardized DALY rate, which was more apparent in females, with high SDI regions and in Australia and Western Europe areas. Meanwhile, our model predicts a weaker increase in morbidity (EAPC of 0.37) and a speedier reduction in mortality (EAPC of -0.66) by the next 20 years. The relative risk of period for high SDI regions decreased from 1.08 (95%UI: 1.06-1.1) in 1990-1994 to 0.85 (95%UI:0.83-0.88) in 2015-2019, but worsens in low and middle SDI regions. The local drifts were more than 1 in the 30-34 and 35-39 age groups, indicating the rising tide of early-onset CRC. Given the gender and region-specific CRC, targeted efforts to reduce the prevalence of risk factors, improve screening coverage rates, and strengthen foundational medical facilities are necessary.
Collapse
Affiliation(s)
- Shuhua Hu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wenmin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jialin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
14
|
Ugai T, Haruki K, Harrison TA, Cao Y, Qu C, Chan AT, Campbell PT, Akimoto N, Berndt S, Brenner H, Buchanan DD, Chang-Claude J, Fujiyoshi K, Gallinger SJ, Gunter MJ, Hidaka A, Hoffmeister M, Hsu L, Jenkins MA, Milne RL, Moreno V, Newcomb PA, Nishihara R, Pai RK, Sakoda LC, Slattery ML, Sun W, Amitay EL, Alwers E, Thibodeau SN, Toland AE, Van Guelpen B, Woods MO, Zaidi SH, Potter JD, Giannakis M, Song M, Nowak JA, Phipps AI, Peters U, Ogino S. Molecular Characteristics of Early-Onset Colorectal Cancer According to Detailed Anatomical Locations: Comparison With Later-Onset Cases. Am J Gastroenterol 2023; 118:712-726. [PMID: 36707929 PMCID: PMC10065351 DOI: 10.14309/ajg.0000000000002171] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/16/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Early-onset colorectal cancer diagnosed before the age of 50 years has been increasing. Likely reflecting the pathogenic role of the intestinal microbiome, which gradually changes across the entire colorectal length, the prevalence of certain tumor molecular characteristics gradually changes along colorectal subsites. Understanding how colorectal tumor molecular features differ by age and tumor location is important in personalized patient management. METHODS Using 14,004 cases with colorectal cancer including 3,089 early-onset cases, we examined microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF mutations in carcinomas of the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum and compared early-onset cases with later-onset cases. RESULTS The proportions of MSI-high, CIMP-high, and BRAF -mutated early-onset tumors were lowest in the rectum (8.8%, 3.4%, and 3.5%, respectively) and highest in the ascending colon (46% MSI-high; 15% CIMP-high) or transverse colon (8.6% BRAF -mutated) (all Ptrend <0.001 across the rectum to ascending colon). Compared with later-onset tumors, early-onset tumors showed a higher prevalence of MSI-high status and a lower prevalence of CIMP-high status and BRAF mutations in most subsites. KRAS mutation prevalence was higher in the cecum compared with that in the other subsites in both early-onset and later-onset tumors ( P < 0.001). Notably, later-onset MSI-high tumors showed a continuous decrease in KRAS mutation prevalence from the rectum (36%) to ascending colon (9%; Ptrend <0.001), followed by an increase in the cecum (14%), while early-onset MSI-high cancers showed no such trend. DISCUSSION Our findings support biogeographical and pathogenic heterogeneity of colorectal carcinomas in different colorectal subsites and age groups.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Steven J. Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Efrat L. Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Amanda E. Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John’s, Canada
| | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Amanda I. Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA
| |
Collapse
|
15
|
Chludzińska-Kasperuk S, Lewko J, Sierżantowicz R, Krajewska-Kułak E, Reszeć-Giełażyn J. The Effect of Serum Leptin Concentration and Leptin Receptor Expression on Colorectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4951. [PMID: 36981858 PMCID: PMC10048899 DOI: 10.3390/ijerph20064951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The level of leptin in the blood shows a positive, strong correlation with the mass of adipose tissue. Being overweight and having metabolic disorders increase the risk of developing colorectal cancer. AIM OF THE PAPER The aim of the study was to assess the concentration of leptin in the blood serum as well as the expression of the leptin receptor in colorectal cancer cells. In addition, the effect of serum leptin concentration and leptin receptor expression on clinical and pathological parameters such as BMI, obesity, TNM, and tumor size was assessed. METHODS The study included 61 patients diagnosed with colorectal cancer and treated with surgery. RESULTS Strong leptin receptor expression and the prevalence of overweight and obesity are factors influencing the occurrence of excessive leptin concentrations. CONCLUSION Leptin may be involved in the development and progression of colorectal cancer. More research is needed to better elucidate the role of leptin in the development and progression of the disease.
Collapse
Affiliation(s)
- Sylwia Chludzińska-Kasperuk
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Primary Health Care, Medical University of Bialystok, 15-054 Bialystok, Poland
| | - Jolanta Lewko
- Department of Primary Health Care, Medical University of Bialystok, 15-054 Bialystok, Poland
| | - Regina Sierżantowicz
- Department of Surgical Nursing, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Elżbieta Krajewska-Kułak
- Department of Integrated Medical Care, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
16
|
Kansikas M, Vähätalo L, Kantelinen J, Kasela M, Putula J, Døhlen A, Paloviita P, Kärkkäinen E, Lahti N, Arnez P, Kilpinen S, Alcala-Repo B, Pylvänäinen K, Pöyhönen M, Peltomäki P, Järvinen HJ, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Mecklin JP, Nyström M. Tumor-independent Detection of Inherited Mismatch Repair Deficiency for the Diagnosis of Lynch Syndrome with High Specificity and Sensitivity. CANCER RESEARCH COMMUNICATIONS 2023; 3:361-370. [PMID: 36875157 PMCID: PMC9979712 DOI: 10.1158/2767-9764.crc-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. SIGNIFICANCE Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.
Collapse
Affiliation(s)
- Minttu Kansikas
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Vähätalo
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Kantelinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mariann Kasela
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Putula
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni Døhlen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pauliina Paloviita
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emmi Kärkkäinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Niklas Lahti
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Philippe Arnez
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sami Kilpinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kirsi Pylvänäinen
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Toni T. Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Medical Technology, University of Tampere, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Murphy N, Newton CC, Song M, Papadimitriou N, Hoffmeister M, Phipps AI, Harrison TA, Newcomb PA, Aglago EK, Berndt SI, Brenner H, Buchanan DD, Cao Y, Chan AT, Chen X, Cheng I, Chang-Claude J, Dimou N, Drew D, Farris AB, French AJ, Gallinger S, Georgeson P, Giannakis M, Giles GG, Gruber SB, Harlid S, Hsu L, Huang WY, Jenkins MA, Laskar RS, Le Marchand L, Limburg P, Lin Y, Mandic M, Nowak JA, Obón-Santacana M, Ogino S, Qu C, Sakoda LC, Schoen RE, Southey MC, Stadler ZK, Steinfelder RS, Sun W, Thibodeau SN, Toland AE, Trinh QM, Tsilidis KK, Ugai T, Van Guelpen B, Wang X, Woods MO, Zaidi SH, Gunter MJ, Peters U, Campbell PT. Body mass index and molecular subtypes of colorectal cancer. J Natl Cancer Inst 2023; 115:165-173. [PMID: 36445035 PMCID: PMC9905970 DOI: 10.1093/jnci/djac215] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obesity is an established risk factor for colorectal cancer (CRC), but the evidence for the association is inconsistent across molecular subtypes of the disease. METHODS We pooled data on body mass index (BMI), tumor microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, and Jass classification types for 11 872 CRC cases and 11 013 controls from 11 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for covariables. RESULTS Higher BMI was associated with increased CRC risk (OR per 5 kg/m2 = 1.18, 95% CI = 1.15 to 1.22). The positive association was stronger for men than women but similar across tumor subtypes defined by individual molecular markers. In analyses by Jass type, higher BMI was associated with elevated CRC risk for types 1-4 cases but not for type 5 CRC cases (considered familial-like/Lynch syndrome microsatellite instability-H, CpG island methylator phenotype-low or negative, BRAF-wild type, KRAS-wild type, OR = 1.04, 95% CI = 0.90 to 1.20). This pattern of associations for BMI and Jass types was consistent by sex and design of contributing studies (cohort or case-control). CONCLUSIONS In contrast to previous reports with fewer study participants, we found limited evidence of heterogeneity for the association between BMI and CRC risk according to molecular subtype, suggesting that obesity influences nearly all major pathways involved in colorectal carcinogenesis. The null association observed for the Jass type 5 suggests that BMI is not a risk factor for the development of CRC for individuals with Lynch syndrome.
Collapse
Affiliation(s)
- Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Christina C Newton
- Population Science Department, American Cancer Society (ACS), Atlanta, GA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alton B Farris
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ruhina S Laskar
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marko Mandic
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johnathan A Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mereia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa C Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome. Cancers (Basel) 2022; 15:cancers15010075. [PMID: 36612072 PMCID: PMC9817772 DOI: 10.3390/cancers15010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Hereditary non-polyposis colorectal cancer is also known as Lynch syndrome. Lynch syndrome is associated with pathogenetic variants in one of the mismatch repair (MMR) genes. In addition to colorectal cancer, the inefficiency of the MMR system leads to a greater predisposition to cancer of the endometrium and other cancers of the abdominal sphere. Molecular diagnosis is performed to identify pathogenetic variants in MMR genes. However, for many patients with clinically suspected Lynch syndrome, it is not possible to identify a pathogenic variant in MMR genes. Molecular diagnosis is essential for referring patients to specific surveillance to prevent the development of tumors related to Lynch syndrome. This review summarizes the main aspects of Lynch syndrome and recent advances in the field and, in particular, emphasizes the factors that can lead to the loss of expression of MMR genes.
Collapse
|
19
|
Muacevic A, Adler JR. Assessment of Pre-existing Type 2 Diabetes Mellitus Prevalence and Risk Factors Among Colorectal Cancer Patients in King Abdulaziz Medical City, Jeddah. Cureus 2022; 14:e32216. [PMID: 36479258 PMCID: PMC9721367 DOI: 10.7759/cureus.32216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and cancer are recognized as non-communicable chronic disorders which are among the top ten causes of death globally. In Saudi Arabia, the prevalence of type 2 DM (T2DM) and colorectal cancer (CRC) is alarmingly high. Both T2DM and CRC share common risk factors. In this study, we aim to assess the prevalence of pre-existing T2DM among CRC Saudi patients. METHODS In this cross-sectional study, data were collected from the medical records of 275 Saudi adult patients with CRC from 2009 to 2018 at King Abdulaziz Medical City, Jeddah (KAMC-J). RESULTS Participants had a mean age of 57.0 years, standard deviation (SD) of 13.0, and were mostly males (60.00%) and Saudi (100.0%). Participants had a mean BMI of 26.42 (7.35) kg/m2. The prevalence of pre-existing T2DM in this study was 40.80%. 15.8% of participants were overweight and obese (BMI>30), respectively. The average age of diabetics and non-diabetics was 63.6 (10.64) and 52.73 (12.43), respectively. Diabetic patients are significantly older than non-diabetic patients (p<0.001). The average BMI for diabetics was 26.96 (7.26) kg/m2, whereas the average BMI for non-diabetics was 25.93 (7.48) kg/m2. No significant differences were found between the two groups. CONCLUSION This study provides new insight into the high prevalence of pre-existing T2DM in CRC patients in Saudi Arabia. In particular, the age of diagnosis of CRC in diabetic patients was significantly higher than in non-diabetics.
Collapse
|
20
|
Wele P, Wu X, Shi H. Sex-Dependent Differences in Colorectal Cancer: With a Focus on Obesity. Cells 2022; 11:cells11223688. [PMID: 36429114 PMCID: PMC9688265 DOI: 10.3390/cells11223688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest cancer-related mortality in the world. The incident rates of CRC vary country-wise; however, population studies and data from different countries show a general increase in the CRC rate in young adults, males, and females ≥65 years. CRC incidence is affected by age, sex, environmental, dietary, hormonal, and lifestyle factors. Obesity is a known disease that is spreading rapidly throughout the world. A large body of literature indicates that, among many conditions, obesity is the increasing cause of CRC. Even though obesity is one of the known factors for CRC development, limited studies are available that explain the mechanistic link between obesity, sex hormones, and CRC development. Thus, this review summarizes the literature and aims to understand sex-dependent differences in CRC, especially in the context of obesity.
Collapse
Affiliation(s)
- Prachi Wele
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Correspondence: ; Tel.: +1-513-529-3162
| |
Collapse
|
21
|
Kim J, Lee J, Oh JH, Sohn DK, Shin A, Kim J, Chang HJ. Dietary methyl donor nutrients, DNA mismatch repair polymorphisms, and risk of colorectal cancer based on microsatellite instability status. Eur J Nutr 2022; 61:3051-3066. [PMID: 35353199 DOI: 10.1007/s00394-022-02833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is a heterogeneous disease caused by complex interplay among the diet, the environment, and genetics involving numerous molecules and pathological pathways. This study aimed to determine whether methyl donor nutrients are associated with CRC and how these associations are altered by DNA mismatch repair (MMR) genes. METHODS In total, 626 cases and 838 age- and sex-matched controls were recruited for this case-control study. A validated food frequency questionnaire was used to assess seven methyl donor nutrients (vitamin B2, niacin, B6, folate, B12, methionine, and choline). MMR polymorphisms were genotyped using an Illumina MEGA-Expanded Array. For the 626 patients, the microsatellite instability status and immunohistochemical expression of MMR proteins were analyzed. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among the methyl donor nutrients, B2, niacin, B6, folate, and methionine were inversely associated with CRC risk, while a high intake of choline increased CRC. Regarding MMR genes, three hMSH3 polymorphisms (rs32952 A > C, rs41097 A > G, and rs245404 C > G) reduced CRC risk. Regarding gene-diet interactions, a stronger interaction effect was observed in G allele carriers of hMSH3 rs41097 with high niacin intake than in AA carriers with low niacin intake (OR, 95% CI = 0.49, 0.33-0.72, P for interaction = 0.02) in subgroups of patients with distal colon cancer (P for interaction = 0.008) and MMR proficiency with microsatellite stability (P for interaction = 0.021). CONCLUSIONS Methyl donor nutrients may affect CRC risk leading to a balance in the MMR machinery.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
- Cancer Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea.
| | - Hee Jin Chang
- Division of Precision Medicine, Research Institute, and Department of Pathology, National Cancer Center Hospital, National Cancer Center, Goyang-si, 10408, Gyeonggi-do, South Korea.
| |
Collapse
|
22
|
Png CW, Chua YK, Law JH, Zhang Y, Tan KK. Alterations in co-abundant bacteriome in colorectal cancer and its persistence after surgery: a pilot study. Sci Rep 2022; 12:9829. [PMID: 35701595 PMCID: PMC9198081 DOI: 10.1038/s41598-022-14203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in the role of gut microbiome in colorectal cancer (CRC), ranging from screening to disease recurrence. Our study aims to identify microbial markers characteristic of CRC and to examine if changes in bacteriome persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for analysis by bacterial 16S rRNA gene sequencing. Bacterial richness and diversity were reduced, while pro-carcinogenic bacteria such as Bacteroides fragilis and Odoribacter splanchnicus were increased in CRC patients compared to NC group. These differences were no longer observed after surgery. Comparison between pre-op and post-op CRC showed increased abundance of probiotic bacteria after surgery. Concomitantly, bacteria associated with CRC progression were observed to have increased after surgery, implying persistent dysbiosis. In addition, functional pathway predictions based on the bacterial 16S rRNA gene data showed that various pathways were differentially enriched in CRC compared to NC. Microbiome signatures characteristic of CRC comprise altered bacterial composition. Elements of these dysbiotic signatures persists even after surgery, suggesting possible field-change in remnant non-diseased colon. Future studies should involve a larger sample size with microbiome data collected at multiple time points after surgery to examine if these dysbiotic patterns truly persist and also correlate with disease outcomes.
Collapse
Affiliation(s)
- Chin-Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong-Kang Chua
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jia-Hao Law
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Amitay EL, Niedermaier T, Alwers E, Chang-Claude J, Hoffmeister M, Brenner H. Reproductive factors and colorectal cancer risk: A Population-based case-control study. JNCI Cancer Spectr 2022; 6:6596622. [PMID: 35642982 PMCID: PMC9251386 DOI: 10.1093/jncics/pkac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Hormone-replacement therapy (HRT) is associated with lower colorectal cancer (CRC) risk among postmenopausal women. However, little is known about the effects of lifetime exposure of women to varying levels of estrogen and progesterone through reproductive factors such as parity, use of oral contraceptives (OC), breastfeeding, and menstruation on CRC risk. Methods We assessed associations between reproductive factors and CRC risk among 2650 female CRC patients aged 30+ years and 2175 matched controls in a population-based study in Germany, adjusting for potential confounders by multiple logistic regression. Results Inverse associations with CRC risk were found for numbers of pregnancies (odds ratio [OR] per pregnancy = 0.91, 95% confidence interval [CI] = 0.86 to 0.97), breastfeeding for 12 months and longer (OR = 0.74, 95% CI = 0.61 to 0.90), and use of either OC or HRT (OR = 0.75, 95% CI = 0.64 to 0.87) or both (OR = 0.58, 95% CI = 0.48 to 0.70). Similar results were found for postmenopausal women only and when adjusting for number of pregnancies and for all reproductive factors analyzed together. Breastfeeding duration of 12 months and longer was associated with lower risk of cancer only in the proximal colon (OR = 0.58, 95% CI = 0.45 to 0.74). Conclusions Several reproductive factors were associated with lower CRC risk in women, including number of pregnancies, breastfeeding duration, and use of OC and HRT. This suggests that women’s exposure to female reproductive hormones plays a key role in the difference in CRC risk between women and men and in site-specific CRC risk.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Genetic Tumor Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Jenniskens JCA, Offermans K, Simons CCJM, Samarska I, Fazzi GE, van der Meer JRM, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Energy balance-related factors and risk of colorectal cancer based on KRAS, PIK3CA, and BRAF mutations and MMR status. J Cancer Res Clin Oncol 2022; 148:2723-2742. [PMID: 35546360 PMCID: PMC9470639 DOI: 10.1007/s00432-022-04019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Introduction KRAS mutations (KRASmut), PIK3CAmut, BRAFmut, and mismatch repair deficiency (dMMR) have been associated with the Warburg-effect. We previously observed differential associations between energy balance-related factors (BMI, clothing-size, physical activity) and colorectal cancer (CRC) subtypes based on the Warburg-effect. We now investigated whether associations between energy balance-related factors and risk of CRC differ between subgroups based on mutation and MMR status. Methods Information on molecular features was available for 2349 incident CRC cases within the Netherlands Cohort Study (NLCS), with complete covariate data available for 1934 cases and 3911 subcohort members. Multivariable-adjusted Cox-regression was used to estimate associations of energy balance-related factors with risk of CRC based on individual molecular features (KRASmut; PIK3CAmut; BRAFmut; dMMR) and combinations thereof (all-wild-type + MMR-proficient (pMMR); any-mutation/dMMR). Results In men, BMI and clothing-size were positively associated with risk of colon, but not rectal cancer, regardless of molecular features subgroups; the strongest associations were observed for PIK3CAmut colon cancer. In women, however, BMI and clothing-size were only associated with risk of KRASmut colon cancer (p-heterogeneityKRASmut versus all-wild-type+pMMR = 0.008). Inverse associations of non-occupational physical activity with risk of colon cancer were strongest for any-mutation/dMMR tumors in men and women, and specifically for PIK3CAmut tumors in women. Occupational physical activity was inversely associated with both combination subgroups of colon cancer in men. Conclusion In men, associations did not vary according to molecular features. In women, a role of KRAS mutations in the etiological pathway between adiposity and colon cancer is suggested, and of PIK3CA mutations between physical activity and colon cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04019-9.
Collapse
Affiliation(s)
- Josien C A Jenniskens
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jaleesa R M van der Meer
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Therapeutic Strategies and Potential Actions of Female Sex Steroid Hormones and Their Receptors in Colon Cancer Based on Preclinical Studies. Life (Basel) 2022; 12:life12040605. [PMID: 35455096 PMCID: PMC9032023 DOI: 10.3390/life12040605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Several epidemiological studies have reported that the use of female sex steroid hormones could reduce the risk of colon cancer (CRC). This review summarizes the available data related to estradiol (E2) and progesterone (P4) single and dual treatments in CRC male and female in vitro and in vivo models, mainly from preclinical studies, alongside their potential molecular mechanisms. Most of the studies showed that E2 exogenous treatment and/or reactivation of its beta receptor (ERβ) significantly inhibited cell proliferation, induced cell cycle arrest, and promoted apoptosis by modulating several molecular pathways. Likewise, the inhibition of ERα receptors produced similar antitumorigenic actions, both in vivo and in vitro, suggesting that E2 could have dual opposing roles in CRC that are dependent on the expression profile of its nuclear receptors. The available studies on P4 are scarce, and the results revealed that in vitro and in vivo treatments with natural and synthetic progesterone were also associated with promising tumoricidal actions. Nevertheless, the combination of E2 with P4 showed enhanced anticancer activities compared with their monotherapy protocols in male–female cell lines and animals. Collectively, the studies suggested that the female sex steroid hormones could provide a novel and effective therapeutic strategy against CRC.
Collapse
|
26
|
Ugai T, Väyrynen JP, Haruki K, Akimoto N, Lau MC, Zhong R, Kishikawa J, Väyrynen SA, Zhao M, Fujiyoshi K, Dias Costa A, Borowsky J, Arima K, Guerriero JL, Fuchs CS, Zhang X, Song M, Wang M, Giannakis M, Meyerhardt JA, Nowak JA, Ogino S. Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. J Natl Cancer Inst 2022; 114:68-77. [PMID: 34264325 PMCID: PMC8755510 DOI: 10.1093/jnci/djab142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Biological evidence indicates that smoking can influence macrophage functions and polarization, thereby promoting tumor evolution. We hypothesized that the association of smoking with colorectal cancer incidence might differ by macrophage infiltrates. METHODS Using the Nurses' Health Study and the Health Professionals Follow-up Study, we examined the association of smoking with incidence of colorectal cancer subclassified by macrophage counts. Multiplexed immunofluorescence (for CD68, CD86, IRF5, MAF, and MRC1 [CD206]) combined with digital image analysis and machine learning was used to identify overall, M1-polarized, and M2-polarized macrophages in tumor. We used inverse-probability-weighted multivariable Cox proportional hazards regression models to control for potential confounders and selection bias because of tissue data availability. All statistical tests were 2-sided. RESULTS During follow-up of 131 144 participants (3 648 370 person-years), we documented 3092 incident colorectal cancer cases, including 871 cases with available macrophage data. The association of pack-years smoked with colorectal cancer incidence differed by stromal macrophage densities (Pheterogeneity = .003). Compared with never smoking, multivariable-adjusted hazard ratios (95% confidence interval) for tumors with low macrophage densities were 1.32 (0.97 to 1.79) for 1-19 pack-years, 1.31 (0.92 to 1.85) for 20-39 pack-years, and 1.74 (1.26 to 2.41) for 40 or more pack-years (Ptrend = .004). In contrast, pack-years smoked was not statistically significantly associated with the incidence of tumors having intermediate or high macrophage densities (Ptrend > .009, with an α level of .005). No statistically significant differential association was found for colorectal cancer subclassified by M1-like or M2-like macrophages. CONCLUSIONS The association of smoking with colorectal cancer incidence is stronger for tumors with lower stromal macrophage counts. Our findings suggest an interplay of smoking and macrophages in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Andressa Dias Costa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
- Genentech, South San Francisco, CA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 221 Longwood Ave, EBRC Rm 404A, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
27
|
Predicted miRNAs suppressed cell proliferation and migration via FAK/VASP axis; Systems biology approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Renman D, Gylling B, Vidman L, Bodén S, Strigård K, Palmqvist R, Harlid S, Gunnarsson U, van Guelpen B. Density of CD3 + and CD8 + Cells in the Microenvironment of Colorectal Cancer according to Prediagnostic Physical Activity. Cancer Epidemiol Biomarkers Prev 2021; 30:2317-2326. [PMID: 34607838 PMCID: PMC9398178 DOI: 10.1158/1055-9965.epi-21-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Physical activity is associated not only with a decreased risk of developing colorectal cancer but also with improved survival. One putative mechanism is the infiltration of immune cells in the tumor microenvironment. Experimental findings suggest that physical activity may mobilize immune cells to the tumor. We hypothesized that higher levels of physical activity prior to colorectal cancer diagnosis are associated with higher densities of tumor-infiltrating T-lymphocytes in colorectal cancer patients. METHODS The study setting was a northern Swedish population-based cohort, including 109,792 participants with prospectively collected health- and lifestyle-related data. For 592 participants who later developed colorectal cancer, archival tumor tissue samples were used to assess the density of CD3+ and CD8+ cytotoxic T cells by IHC. Odds ratios for associations between self-reported, prediagnostic recreational physical activity and immune cell infiltration were estimated by ordinal logistic regression. RESULTS Recreational physical activity >3 times per week was associated with a higher density of CD8+ T cells in the tumor front and center compared with participants reporting no recreational physical activity. Odds ratios were 2.77 (95% CI, 1.21-6.35) and 2.85 (95% CI, 1.28-6.33) for the tumor front and center, respectively, after adjustment for sex, age at diagnosis, and tumor stage. The risk estimates were consistent after additional adjustment for several potential confounders. For CD3, no clear associations were found. CONCLUSIONS Physical activity may promote the infiltration of CD8+ immune cells in the tumor microenvironment of colorectal cancer. IMPACT The study provides some evidence on how physical activity may alter the prognosis in colorectal cancer.
Collapse
Affiliation(s)
- David Renman
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden.,Corresponding Author: David Renman, Department of Surgical and Perioperative Sciences, Umeå University, SE-90185 Umeå, Sweden. Phone: 46-61184149; E-mail:
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Soomro FH, Razzaq A, Qaisar R, Ansar M, Kazmi T. Enhanced Recovery After Surgery: Are Benefits Demonstrated in International Studies Replicable in Pakistan? Cureus 2021; 13:e19624. [PMID: 34804754 PMCID: PMC8597665 DOI: 10.7759/cureus.19624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/14/2022] Open
Abstract
Objectives To determine the efficacy of enhanced recovery after surgery (ERAS) protocols in terms of frequency of surgical site infection (SSI) and length of hospital stay in patients undergoing colorectal surgeries for colorectal carcinoma. Study design Quasi-experimental study. Setting/Duration of study Department of Surgery, Shifa International Hospital, Islamabad, from May 7, 2019 to November 6, 2019. Methodology A total of 120 patients with colorectal carcinomas who fulfilled that sample selection criteria were studied. After randomization, patients were divided into two equal groups; one group received management under ERAS while the second group received conventional management. All patients were recorded for length of hospital stay and the development of SSIs. Data were analyzed using SPSS 26.0. Results The mean age was 42.34 ± 14.45 years, with a male majority, i.e., 72 (60%). The mean duration of in-patient stay was 3.45 ± 1.73 days with ERAS and 8.25 ± 1.58 days with conventional management (p < 0.001). A total of 28 (23.3%) SSIs developed, of which nine (7.5%) SSIs occurred with ERAS, while 19 (15.8%) occurred with traditional management (p = 0.031). Conclusion ERAS protocols have been demonstrated to be effective, cheap, and safe. There is a tangible reduction in length of hospital stay and incidence of SSIs which translates into reduced utilization of resources and financial costs. However, strict adherence to the protocol may be necessary to obtain the aforementioned benefits, which may be difficult to do in the face of professional, institutional, and personal inertia. Intensive efforts are required to make these protocols more convenient and attractive to implement, so as to facilitate conversion to this management approach.
Collapse
Affiliation(s)
- Faiza H Soomro
- General Surgery, The Dudley Group NHS Foundation Trust, Dudley, GBR
| | - Aneela Razzaq
- Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| | | | - Mehwish Ansar
- General Surgery, Pakistan Institute of Medical Sciences, Islamabad, PAK
| | - Tehreem Kazmi
- General Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| |
Collapse
|
30
|
De Marchi P, Berardinelli GN, Cavagna RDO, Pinto IA, da Silva FAF, Duval da Silva V, Santana IVV, da Silva ECA, Ferro Leal L, Reis RM. Microsatellite Instability Is Rare in the Admixed Brazilian Population of Non-Small Cell Lung Cancer: A Cohort of 526 Cases. Pathobiology 2021; 89:101-106. [PMID: 34781284 DOI: 10.1159/000520023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microsatellite instability (MSI) in non-small cell lung cancer (NSCLC) is uncommon; however, most studies refer to European and Asian populations. There are currently no data on MSI frequency in highly admixed populations, such as the one represented by Brazilian NSCLC patients. AIM This study aimed to evaluate the frequency of MSI in Brazilian NSCLC patients. METHODS We evaluated 526 patients diagnosed with NSCLC at the Barretos Cancer Hospital (Brazil). The molecular MSI evaluation was performed using a hexa-plex marker panel by polymerase chain reaction followed by fragment analysis. The mutation profile of MSI-positive cases was performed using next-generation sequencing. RESULTS Only 1 patient was MSI positive (0.19%). This patient was a female, white, and active smoker, and she was diagnosed with clinical stage IV lung adenocarcinoma at 75 years old. The molecular profile exhibited 4 Tumor Protein p53 (TP53) mutations and the absence of actionable mutations in the Epidermal Growth Factor Receptor (EGFR), Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), or V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) genes. CONCLUSIONS The frequency of MSI in Brazilian NSCLC patients is equally rare, a finding that is consistent with the current literature based on other populations such as Europeans, North Americans, and Asians.
Collapse
Affiliation(s)
- Pedro De Marchi
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil.,Oncoclinicas, Rio de Janeiro, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Icaro Alves Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Vinicius Duval da Silva
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil.,Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Laboratory of Molecular Diagnoses, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Wang X, Amitay E, Harrison TA, Banbury BL, Berndt SI, Brenner H, Buchanan DD, Campbell PT, Cao Y, Chan AT, Chang-Claude J, Gallinger SJ, Giannakis M, Giles GG, Gunter MJ, Hopper JL, Jenkins MA, Lin Y, Moreno V, Nishihara R, Newcomb PA, Ogino S, Phipps AI, Sakoda LC, Schoen RE, Slattery ML, Song M, Sun W, Thibodeau SN, Toland AE, Van Guelpen B, Woods MO, Hsu L, Hoffmeister M, Peters U. Association Between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectr 2021; 5:pkab056. [PMID: 34377935 PMCID: PMC8346704 DOI: 10.1093/jncics/pkab056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Smoking is associated with colorectal cancer (CRC) risk. Previous studies suggested this association may be restricted to certain molecular subtypes of CRC, but large-scale comprehensive analysis is lacking. Methods A total of 9789 CRC cases and 11 231 controls of European ancestry from 11 observational studies were included. We harmonized smoking variables across studies and derived sex study-specific quartiles of pack-years of smoking for analysis. Four somatic colorectal tumor markers were assessed individually and in combination, including BRAF mutation, KRAS mutation, CpG island methylator phenotype (CIMP), and microsatellite instability (MSI) status. A multinomial logistic regression analysis was used to assess the association between smoking and risk of CRC subtypes by molecular characteristics, adjusting for age, sex, and study. All statistical tests were 2-sided and adjusted for Bonferroni correction. Results Heavier smoking was associated with higher risk of CRC overall and stratified by individual markers (P trend < .001). The associations differed statistically significantly between all molecular subtypes, which was the most statistically significant for CIMP and BRAF. Compared with never-smokers, smokers in the fourth quartile of pack-years had a 90% higher risk of CIMP-positive CRC (odds ratio = 1.90, 95% confidence interval = 1.60 to 2.26) but only 35% higher risk for CIMP-negative CRC (odds ratio = 1.35, 95% confidence interval = 1.22 to 1.49; P difference = 2.1 x 10-6). The association was also stronger in tumors that were CIMP positive, MSI high, or KRAS wild type when combined (P difference < .001). Conclusion Smoking was associated with differential risk of CRC subtypes defined by molecular characteristics. Heavier smokers had particularly higher risk of CRC subtypes that were CIMP positive and MSI high in combination, suggesting that smoking may be involved in the development of colorectal tumors via the serrated pathway.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Efrat Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Pathology, Colorectal Oncogenomics Group, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Genetic Tumour Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Graham G Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shuji Ogino
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Michael O Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland & Labrador, Canada
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Nevo D, Ogino S, Wang M. Reflection on modern methods: causal inference considerations for heterogeneous disease etiology. Int J Epidemiol 2021; 50:1030-1037. [PMID: 33484125 DOI: 10.1093/ije/dyaa278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/19/2020] [Indexed: 11/12/2022] Open
Abstract
Molecular pathological epidemiology research provides information about pathogenic mechanisms. A common study goal is to evaluate whether the effects of risk factors on disease incidence vary between different disease subtypes. A popular approach to carrying out this type of research is to implement a multinomial regression in which each of the non-zero values corresponds to a bona fide disease subtype. Then, heterogeneity in the exposure effects across subtypes is examined by comparing the coefficients of the exposure between the different subtypes. In this paper, we explain why this common method potentially cannot recover causal effects, even when all confounders are measured, due to a particular type of selection bias. This bias can be explained by recognizing that the multinomial regression is equivalent to a series of logistic regressions; each compares cases of a certain subtype to the controls. We further explain how this bias arises using directed acyclic graphs and we demonstrate the potential magnitude of the bias by analysis of a hypothetical data set and by a simulation study.
Collapse
Affiliation(s)
- Daniel Nevo
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Departments of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Dai J, Nishi A, Tran N, Yamamoto Y, Dewey G, Ugai T, Ogino S. Revisiting social MPE: an integration of molecular pathological epidemiology and social science in the new era of precision medicine. Expert Rev Mol Diagn 2021; 21:869-886. [PMID: 34253130 DOI: 10.1080/14737159.2021.1952073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Molecular pathological epidemiology (MPE) is an integrative transdisciplinary area examining the relationships between various exposures and pathogenic signatures of diseases. In line with the accelerating advancements in MPE, social science and its health-related interdisciplinary areas have also developed rapidly. Accumulating evidence indicates the pathological role of social-demographic factors. We therefore initially proposed social MPE in 2015, which aims to elucidate etiological roles of social-demographic factors and address health inequalities globally. With the ubiquity of molecular diagnosis, there are ample opportunities for researchers to utilize and develop the social MPE framework. AREAS COVERED Molecular subtypes of breast cancer have been investigated rigorously for understanding its etiologies rooted from social factors. Emerging evidence indicates pathogenic heterogeneity of neurological disorders such as Alzheimer's disease. Presenting specific patterns of social-demographic factors across different molecular subtypes should be promising for advancing the screening, prevention, and treatment strategies of those heterogeneous diseases. This article rigorously reviewed literatures investigating differences of race/ethnicity and socioeconomic status across molecular subtypes of breast cancer and Alzheimer's disease to date. EXPERT OPINION With advancements of the multi-omics technologies, we foresee a blooming of social MPE studies, which can address health disparities, advance personalized molecular medicine, and enhance public health.
Collapse
Affiliation(s)
- Jin Dai
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Akihiro Nishi
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States.,California Center for Population Research, University of California, Los Angeles, CA United States
| | - Nathan Tran
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Yasumasa Yamamoto
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto Japan
| | - George Dewey
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States.,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|
34
|
Niedermaier T, Heisser T, Gies A, Guo F, Amitay EL, Hoffmeister M, Brenner H. To what extent is male excess risk of advanced colorectal neoplasms explained by known risk factors? Results from a large German screening population. Int J Cancer 2021; 149:1877-1886. [PMID: 34278571 DOI: 10.1002/ijc.33742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) incidence and prevalence of its precursors are substantially higher among males than among females in most countries but the reasons for the male excess risk are incompletely understood. We aimed to assess to what extent it is explained by known risk factors. Prevalence of advanced neoplasia (AN, ie, CRC or advanced adenoma) and CRC risk and preventive factors were ascertained among 15 985 participants of screening colonoscopy aged 55-79 years in Germany. Logistic regression was used to calculate odds ratios (ORs) for the association between male sex and AN with and without adjustment for known risk and preventive factors. In age-adjusted comparisons, men had 2-fold increased risk for AN compared to women (OR = 1.98, 95% confidence interval [CI] 1.79-2.19). After comprehensive adjustment for medical, lifestyle and dietary factors, the OR was reduced to 1.52 (95% CI 1.30-1.77), suggesting that these factors accounted for 47% of male excess risk. Male excess risk increased from proximal colon to distal colon and rectum, with age-adjusted ORs (95% CI) of 1.63 (1.38-1.91), 2.13 (1.85-2.45) and 2.36 (1.95-2.85), respectively, and with the proportion of excess risk explained by covariates being lower for AN in the rectum (26%) than for AN in the proximal (52%) or distal colon (46%). Male excess risk was somewhat lower (age-adjusted OR 1.87) and explained excess risk was smaller (36%) when men were compared to women who never used hormone replacement therapy. In conclusion, most of the male excess risk and the potential to overcome it remain to be explored by further research.
Collapse
Affiliation(s)
- Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Heisser
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Anton Gies
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
|
36
|
Tan YY, Tay GSK, Wong YJ, Li JW, Kwek ABE, Ang TL, Wang LM, Tan MTK. Clinical Features and Predictors of Dysplasia in Proximal Sessile Serrated Lesions. Clin Endosc 2021; 54:578-588. [PMID: 33915614 PMCID: PMC8357591 DOI: 10.5946/ce.2020.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
Background/Aims Proximal colorectal cancers (CRCs) account for up to half of CRCs. Sessile serrated lesions (SSLs) are precursors to CRC. Proximal location and presence of dysplasia in SSLs predict higher risks of progression to cancer. The prevalence of dysplasia in proximal SSLs (pSSLs) and clinical characteristics of dysplastic pSSLs are not well studied.
Methods Endoscopically resected colonic polyps at our center between January 2016 and December 2017 were screened for pSSLs. Data of patients with at least one pSSL were retrieved and clinicopathological features of pSSLs were analysed. pSSLs with and without dysplasia were compared for associations.
Results Ninety pSSLs were identified, 45 of which had dysplasia giving a prevalence of 50.0%. Older age (65.9 years vs. 60.1 years, p=0.034) was associated with the presence of dysplasia. Twelve pSSLs were 10 mm or larger. After adjusting for age, pSSLs ≥10 mm had an adjusted odds ratio of 5.98 (95% confidence interval, 1.21–29.6) of having dysplasia compared with smaller pSSLs.
Conclusions In our cohort of pSSLs, the prevalence of dysplasia is high at 50.0% and is associated with lesion size ≥10 mm. Endoscopic resection for all proximal serrated lesions should be en bloc to facilitate accurate histopathological examination for dysplasia as its presence warrants shorter surveillance intervals.
Collapse
Affiliation(s)
- Yi Yuan Tan
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Gary Sei Kiat Tay
- Department of Pathology, Changi General Hospital, Singapore, Singapore
| | - Yu Jun Wong
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrew Boon Eu Kwek
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lai Mun Wang
- Department of Pathology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Pathology Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore
| | - Malcolm Teck Kiang Tan
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Akimoto N, Zhao M, Ugai T, Zhong R, Lau MC, Fujiyoshi K, Kishikawa J, Haruki K, Arima K, Twombly TS, Zhang X, Giovannucci EL, Wu K, Song M, Chan AT, Cao Y, Meyerhardt JA, Ng K, Giannakis M, Väyrynen JP, Nowak JA, Ogino S. Tumor Long Interspersed Nucleotide Element-1 (LINE-1) Hypomethylation in Relation to Age of Colorectal Cancer Diagnosis and Prognosis. Cancers (Basel) 2021; 13:2016. [PMID: 33922024 PMCID: PMC8122644 DOI: 10.3390/cancers13092016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022] Open
Abstract
Evidence indicates the pathogenic role of epigenetic alterations in early-onset colorectal cancers diagnosed before age 50. However, features of colorectal cancers diagnosed at age 50-54 (hereafter referred to as "intermediate-onset") remain less known. We hypothesized that tumor long interspersed nucleotide element-1 (LINE-1) hypomethylation might be increasingly more common with decreasing age of colorectal cancer diagnosis. In 1356 colorectal cancers, including 28 early-onset and 66 intermediate-onset cases, the tumor LINE-1 methylation level measured by bisulfite-PCR-pyrosequencing (scaled 0 to 100) showed a mean of 63.6 (standard deviation (SD) 10.1). The mean tumor LINE-1 methylation level decreased with decreasing age (mean 64.7 (SD 10.4) in age ≥70, 62.8 (SD 9.4) in age 55-69, 61.0 (SD 10.2) in age 50-54, and 58.9 (SD 12.0) in age <50; p < 0.0001). In linear regression analysis, the multivariable-adjusted β coefficient (95% confidence interval (CI)) (vs. age ≥70) was -1.38 (-2.47 to -0.30) for age 55-69, -2.82 (-5.29 to -0.34) for age 50-54, and -4.54 (-8.24 to -0.85) for age <50 (Ptrend = 0.0003). Multivariable-adjusted hazard ratios (95% CI) for LINE-1 methylation levels of ≤45, 45-55, and 55-65 (vs. >65) were 2.33 (1.49-3.64), 1.39 (1.05-1.85), and 1.29 (1.02-1.63), respectively (Ptrend = 0.0005). In conclusion, tumor LINE-1 hypomethylation is increasingly more common with decreasing age of colorectal cancer diagnosis, suggesting a role of global DNA hypomethylation in colorectal cancer arising in younger adults.
Collapse
Affiliation(s)
- Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
- Department of Gastroenterology, Nippon Medical School, Graduate School of Medicine, Tokyo 1138602, Japan
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA; (E.L.G.); (K.W.)
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA; (E.L.G.); (K.W.)
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Tyler S. Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (X.Z.); (A.T.C.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA; (E.L.G.); (K.W.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (X.Z.); (A.T.C.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA; (E.L.G.); (K.W.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (X.Z.); (A.T.C.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (X.Z.); (A.T.C.)
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA;
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; (J.A.M.); (K.N.); (M.G.)
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; (J.A.M.); (K.N.); (M.G.)
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; (J.A.M.); (K.N.); (M.G.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juha P. Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; (J.A.M.); (K.N.); (M.G.)
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90220 Oulu, Finland
| | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (N.A.); (M.Z.); (T.U.); (R.Z.); (M.C.L.); (K.F.); (J.K.); (K.H.); (K.A.); (T.S.T.); (J.A.N.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA; (E.L.G.); (K.W.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA 02215, USA
| |
Collapse
|
38
|
A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel) 2021; 13:cancers13092025. [PMID: 33922197 PMCID: PMC8122718 DOI: 10.3390/cancers13092025] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
This review article contains a concise consideration of genetic and environmental risk factors for colorectal cancer. Known risk factors associated with colorectal cancer include familial and hereditary factors and lifestyle-related and ecological factors. Lifestyle factors are significant because of the potential for improving our understanding of the disease. Physical inactivity, obesity, smoking and alcohol consumption can also be addressed through therapeutic interventions. We also made efforts to systematize available literature and data on epidemiology, diagnosis, type and nature of symptoms and disease stages. Further study of colorectal cancer and progress made globally is crucial to inform future strategies in controlling the disease's burden through population-based preventative initiatives.
Collapse
|
39
|
Fang N, Ding GW, Ding H, Li J, Liu C, Lv L, Shi YJ. Research Progress of Circular RNA in Gastrointestinal Tumors. Front Oncol 2021; 11:665246. [PMID: 33937077 PMCID: PMC8082141 DOI: 10.3389/fonc.2021.665246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
circular RNA (circRNA) is a closed ring structure formed by cyclic covalent bonds connecting the 5’-end and 3’-end of pre-mRNA. circRNA is widely distributed in eukaryotic cells. Recent studies have shown that circRNA is involved in the pathogenesis and development of multiple types of diseases, including tumors. circRNA is specifically expressed in tissues. And the stability of circRNA is higher than that of linear RNA, which can play biological roles through sponge adsorption of miRNA, interaction with RNA binding protein, regulation of gene transcription, the mRNA and protein translation brake, and translation of protein and peptides. These characteristics render circRNAs as biomarkers and therapeutic targets of tumors. Gastrointestinal tumors are common malignancies worldwide, which seriously threaten human health. In this review, we summarize the generation and biological characteristics of circRNA, molecular regulation mechanism and related effects of circRNA in gastrointestinal tumors.
Collapse
Affiliation(s)
- Na Fang
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Guo-Wen Ding
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Hao Ding
- Department of Respiratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Chao Liu
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Yi-Jun Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Yang LP, Wang ZX, Zhang R, Zhou N, Wang AM, Liang W, Wang ZQ, Luo HY, Wang F, Liu JW, Liu F, Zhang XC, Liu YP, Jin Y. Association between cigarette smoking and colorectal cancer sidedness: A multi-center big-data platform-based analysis. J Transl Med 2021; 19:150. [PMID: 33858440 PMCID: PMC8048178 DOI: 10.1186/s12967-021-02815-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sidedness (right/left) of colorectal cancer (CRC) is essential for treatment. Whether carcinogenesis of tobacco varies by sidedness remains unclear. The present study aims to evaluate the sidedness tendency of cigarette smoking and to explore its impact on prognosis. METHODS In the multi-center retrospective study, data on 46 166 Chinese CRC patients were extracted from a big-data platform. Logistic regression analyses were performed to evaluate qualitative and quantitative associations between smoking and tumor sidedness. Survival analyses were conducted in metastatic CRC. RESULTS History of smoking was associated with left-sided CRC (LSCRC; Adjusted odds ratio, 1.25; 95% CI, 1.16 - 1.34; P < .001). The sidedness tendency towards LSCRC increased from non-smokers, to ex-smokers, and to current smokers (P for trend < .001). Longer duration (P for trend < .001) and larger total amount of cigarette smoking (P for trend < .001) were more associated with LSCRC, respectively. The association was confirmed in both left-sided colon cancer and rectal cancer, but was stronger for rectal cancer (P = .016). Alcoholism significantly enhanced the association by 7% (P = .027). Furthermore, prognostic advantage of metastatic LSCRC diminished among ever-smokers, with contrary survival impacts of smoking on either side of CRC. CONCLUSIONS History of smoking was associated with LSCRC in a positive dose-response relationship, and presented opposite prognostic impacts on right- and left-sided tumors. Smoking potentially plays an instrumental role in the mechanism for sidedness heterogeneity in CRC.
Collapse
Affiliation(s)
- Lu-Ping Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China
| | - Zi-Xian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266016, China
| | - A-Man Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Wei Liang
- Yiducloud Technology Ltd, Beijing, 100083, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China
| | - Ji-Wei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fang Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Xiao-Chun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266016, China.
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dong Feng Road East, Guangzhou, 510060, China.
| |
Collapse
|
41
|
Akimoto N, Ugai T, Zhong R, Hamada T, Fujiyoshi K, Giannakis M, Wu K, Cao Y, Ng K, Ogino S. Rising incidence of early-onset colorectal cancer - a call to action. Nat Rev Clin Oncol 2021; 18:230-243. [PMID: 33219329 PMCID: PMC7994182 DOI: 10.1038/s41571-020-00445-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of early-onset colorectal cancer (CRC), which occurs in individuals <50 years of age, has been increasing worldwide and particularly in high-income countries. The reasons for this increase remain unknown but plausible hypotheses include greater exposure to potential risk factors, such as a Western-style diet, obesity, physical inactivity and antibiotic use, especially during the early prenatal to adolescent periods of life. These exposures can not only cause genetic and epigenetic alterations in colorectal epithelial cells but also affect the gut microbiota and host immunity. Early-onset CRCs have differential clinical, pathological and molecular features compared with later-onset CRCs. Certain existing resources can be utilized to elucidate the aetiology of early-onset CRC and inform the development of effective prevention, early detection and therapeutic strategies; however, additional life-course cohort studies spanning childhood and young adulthood, integrated with prospective biospecimen collections, omics biomarker analyses and a molecular pathological epidemiology approach, are needed to better understand and manage this disease entity. In this Perspective, we summarize our current understanding of early-onset CRC and discuss how we should strategize future research to improve its prevention and clinical management.
Collapse
Affiliation(s)
- Naohiko Akimoto
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Nippon Medical School, Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Ugai
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rong Zhong
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Fujiyoshi
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Kurume University, Kurume, Japan
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
42
|
Xie Y, Shi L, He X, Luo Y. Gastrointestinal cancers in China, the USA, and Europe. Gastroenterol Rep (Oxf) 2021; 9:91-104. [PMID: 34026216 PMCID: PMC8128023 DOI: 10.1093/gastro/goab010] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers, including colorectal cancer, gastric cancer, and esophageal cancer, are a major medical and economic burden worldwide and have the largest number of new cancer cases and cancer deaths each year. Esophageal and gastric cancers are most common in developing countries, while colorectal cancer forms the major GI malignancy in Western countries. However, a great shift in the predominant GI-cancer type is happening in countries under economically transitioning and, at the same time, esophageal and gastric cancers are reigniting in Western countries due to the higher exposure to certain risk factors. The development of all GI cancers is highly associated with lifestyle habits and all can be detected by identified precancerous diseases. Thus, they are all suitable for cancer screening. Here, we review the epidemiological status of GI cancers in China, the USA, and Europe; the major risk factors and their distribution in these regions; and the current screening strategies.
Collapse
Affiliation(s)
- Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lishuo Shi
- Center for Clinical Research, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Bouras E, Papandreou C, Tzoulaki I, Tsilidis KK. Endogenous sex steroid hormones and colorectal cancer risk: a systematic review and meta-analysis. Discov Oncol 2021; 12:8. [PMID: 35201467 PMCID: PMC8777537 DOI: 10.1007/s12672-021-00402-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Preclinical data suggest that endogenous sex steroid hormones may be implicated in colorectal cancer (CRC) development, however, findings from epidemiological studies are conflicting. The aim of this systematic review and meta-analysis was to investigate the associations between endogenous concentrations of sex hormones and CRC risk. PubMed and Scopus were searched until June 2020 for prospective studies evaluating the association between pre-diagnostic plasma/serum concentrations of estradiol, testosterone and sex-hormone binding globulin (SHBG) and CRC risk. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated using the inverse-variance weighted random-effects model based on the DerSimonian-Laird estimator. Eight studies were included in the meta-analysis after evaluating 3,859 non-duplicate records. Four of the eight studies had a nested case-control design, one study was a case-cohort and the rest three studies were cohort studies, and they included on average 295 cases (range:48-732) and 2,105 controls. No associations were found for endogenous sex steroid hormones in men or post-menopausal women with CRC risk, with evidence for substantial heterogeneity observed among women. Findings from this meta-analysis do not support presence of associations between pre-diagnostic concentrations of testosterone, estradiol and SHBG with incident CRC risk in men and post-menopausal women.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Ioanna Tzoulaki
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
44
|
Abstract
The substantial burden of colorectal cancer and its increasing trend in young adults highlight the importance of dietary and lifestyle modifications for improved cancer prevention and survivorship. In this chapter, we review the cutting-edge evidence for the interplay between diet/lifestyle and the gut microbiota in the incidence and prognosis of colorectal cancer. We focus on factors for which there are data supporting their importance for the gut microbiota and colorectal cancer, including excess body weight, fiber, red and processed meat, and coffee. We discuss the potential precision nutrition approaches for modifying and exploiting the gut microbiota for improved cancer prevention and survivorship.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
45
|
Liu J, Huang X, Liu H, Wei C, Ru H, Qin H, Lai H, Meng Y, Wu G, Xie W, Mo X, Johnson CH, Zhang Y, Tang W. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients. J Transl Med 2021; 19:27. [PMID: 33413474 PMCID: PMC7789428 DOI: 10.1186/s12967-020-02638-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background KRAS gene is the most common type of mutation reported in colorectal cancer (CRC). KRAS mutation-mediated regulation of immunophenotype and immune pathways in CRC remains to be elucidated. Methods 535 CRC patients were used to compare the expression of immune-related genes (IRGs) and the abundance of tumor-infiltrating immune cells (TIICs) in the tumor microenvironment between KRAS-mutant and KRAS wild-type CRC patients. An independent dataset included 566 cases of CRC and an in-house RNA sequencing dataset were served as validation sets. An in-house dataset consisting of 335 CRC patients were used to analyze systemic immune and inflammatory state in the presence of KRAS mutation. An immue risk (Imm-R) model consist of IRG and TIICs for prognostic prediction in KRAS-mutant CRC patients was established and validated. Results NF-κB and T-cell receptor signaling pathways were significantly inhibited in KRAS-mutant CRC patients. Regulatory T cells (Tregs) was increased while macrophage M1 and activated CD4 memory T cell was decreased in KRAS-mutant CRC. Prognosis correlated with enhanced Tregs, macrophage M1 and activated CD4 memory T cell and was validated. Serum levels of hypersensitive C-reactive protein (hs-CRP), CRP, and IgM were significantly decreased in KRAS-mutant compared to KRAS wild-type CRC patients. An immune risk model composed of VGF, RLN3, CT45A1 and TIICs signature classified CRC patients with distinct clinical outcomes. Conclusions KRAS mutation in CRC was associated with suppressed immune pathways and immune infiltration. The aberrant immune pathways and immune cells help to understand the tumor immune microenvironments in KRAS-mutant CRC patients.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chunyin Wei
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haiming Ru
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haiquan Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongsheng Meng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Weishun Xie
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China. .,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
46
|
Campbell PT, Lin Y, Bien SA, Figueiredo JC, Harrison TA, Guinter MA, Berndt SI, Brenner H, Chan AT, Chang-Claude J, Gallinger SJ, Gapstur SM, Giles GG, Giovannucci E, Gruber SB, Gunter M, Hoffmeister M, Jacobs EJ, Jenkins MA, Le Marchand L, Li L, McLaughlin JR, Murphy N, Milne RL, Newcomb PA, Newton C, Ogino S, Potter JD, Rennert G, Rennert HS, Robinson J, Sakoda LC, Slattery ML, Song Y, White E, Woods MO, Casey G, Hsu L, Peters U. Association of Body Mass Index With Colorectal Cancer Risk by Genome-Wide Variants. J Natl Cancer Inst 2021; 113:38-47. [PMID: 32324875 PMCID: PMC7781451 DOI: 10.1093/jnci/djaa058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Body mass index (BMI) is a complex phenotype that may interact with genetic variants to influence colorectal cancer risk. METHODS We tested multiplicative statistical interactions between BMI (per 5 kg/m2) and approximately 2.7 million single nucleotide polymorphisms with colorectal cancer risk among 14 059 colorectal cancer case (53.2% women) and 14 416 control (53.8% women) participants. All analyses were stratified by sex a priori. Statistical methods included 2-step (ie, Cocktail method) and single-step (ie, case-control logistic regression and a joint 2-degree of freedom test) procedures. All statistical tests were two-sided. RESULTS Each 5 kg/m2 increase in BMI was associated with higher risks of colorectal cancer, less so for women (odds ratio [OR] = 1.14, 95% confidence intervals [CI] = 1.11 to 1.18; P = 9.75 × 10-17) than for men (OR = 1.26, 95% CI = 1.20 to 1.32; P = 2.13 × 10-24). The 2-step Cocktail method identified an interaction for women, but not men, between BMI and a SMAD7 intronic variant at 18q21.1 (rs4939827; Pobserved = .0009; Pthreshold = .005). A joint 2-degree of freedom test was consistent with this finding for women (joint P = 2.43 × 10-10). Each 5 kg/m2 increase in BMI was more strongly associated with colorectal cancer risk for women with the rs4939827-CC genotype (OR = 1.24, 95% CI = 1.16 to 1.32; P = 2.60 × 10-10) than for women with the CT (OR = 1.14, 95% CI = 1.09 to 1.19; P = 1.04 × 10-8) or TT (OR = 1.07, 95% CI = 1.01 to 1.14; P = .02) genotypes. CONCLUSION These results provide novel insights on a potential mechanism through which a SMAD7 variant, previously identified as a susceptibility locus for colorectal cancer, and BMI may influence colorectal cancer risk for women.
Collapse
Affiliation(s)
- Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Stephen B Gruber
- Center for Precision Medicine and Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Li Li
- Department of Family Medicine and Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - John R McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christina Newton
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham & Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Jennifer Robinson
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
47
|
Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol 2020; 10:607909. [PMID: 33363037 PMCID: PMC7759153 DOI: 10.3389/fonc.2020.607909] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
A higher incidence of colorectal cancer (CRC) is found in males compared to females. Young women (18-44 years) with CRC have a better survival outcome compared to men of the same age or compared to older women (over 50 years), indicating a global incidence of sexual dimorphism in CRC rates and survival. This suggests a protective role for the sex steroid hormone estrogen in CRC development. Key proliferative pathways in CRC tumorigenesis exhibit sexual dimorphism, which confer better survival in females through estrogen regulated genes and cell signaling. Estrogen regulates the activity of a class of Kv channels (KCNQ1:KCNE3), which control fundamental ion transport functions of the colon and epithelial mesenchymal transition through bi-directional interactions with the Wnt/β-catenin signalling pathway. Estrogen also modulates CRC proliferative responses in hypoxia via the novel membrane estrogen receptor GPER and HIF1A and VEGF signaling. Here we critically review recent clinical and molecular insights into sexual dimorphism of CRC biology modulated by the tumor microenvironment, estrogen, Wnt/β-catenin signalling, ion channels, and X-linked genes.
Collapse
Affiliation(s)
- Maria Abancens
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Viviana Bustos
- Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Osorno, Chile
| | - Harry Harvey
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Jean McBryan
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Brian J. Harvey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Centro de Estudios Cientificos CECs, Valdivia, Chile
| |
Collapse
|
48
|
Abstract
INTRODUCTION The aim of this study was to provide the most comprehensive and up-to-date evidence on the association between cigarette smoking and colorectal cancer (CRC) risk. METHODS We conducted a systematic review and meta-analysis of epidemiological studies on the association between cigarette smoking and CRC risk published up to September 2018. We calculated relative risk (RR) of CRC according to smoking status, intensity, duration, pack-years, and time since quitting, with a focus on molecular subtypes of CRC. RESULTS The meta-analysis summarizes the evidence from 188 original studies. Compared with never smokers, the pooled RR for CRC was 1.14 (95% confidence interval [CI] 1.10-1.18) for current smokers and 1.17 (95% CI 1.15-1.20) for former smokers. CRC risk increased linearly with smoking intensity and duration. Former smokers who had quit smoking for more than 25 years had significantly decreased risk of CRC compared with current smokers. Smoking was strongly associated with the risk of CRC, characterized by high CpG island methylator phenotype (RR 1.42; 95% CI 1.20-1.67; number of studies [n] = 4), BRAF mutation (RR 1.63; 95% CI 1.23-2.16; n = 4), or high microsatellite instability (RR 1.56; 95% CI 1.32-1.85; n = 8), but not characterized by KRAS (RR 1.04; 95% CI 0.90-1.20; n = 5) or TP53 (RR 1.13; 95% CI 0.99-1.29; n = 5) mutations. DISCUSSION Cigarette smoking increases the risk of CRC in a dose-dependent manner with intensity and duration, and quitting smoking reduces CRC risk. Smoking greatly increases the risk of CRC that develops through the microsatellite instability pathway, characterized by microsatellite instability-high, CpG island methylator phenotype positive, and BRAF mutation.
Collapse
|
49
|
Diao Z, Han Y, Chen Y, Zhang R, Li J. The clinical utility of microsatellite instability in colorectal cancer. Crit Rev Oncol Hematol 2020; 157:103171. [PMID: 33290824 DOI: 10.1016/j.critrevonc.2020.103171] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) became the spotlight after the US FDA' s approval of MSI as an indication of immunotherapy for cancer patients. Immunohistochemical detection of loss of MMR proteins and PCR amplification of specific microsatellite repeats are widely used in clinical practice. Next-generation sequencing is a promising tool for identifying MSI patients. Circulating tumour DNA provides a convenient alternative when tumour tissue is unavailable. MSI detection is an effective tool to screen for Lynch syndrome. Early-stage CRC patients with MSI generally have a better prognosis and a reduced response to chemotherapy; instead, they are more likely to respond to immunotherapy. In this review, we aimed to assess the clinical utility of MSI as a biomarker in CRC. We will provide an overview of the available methods for evaluation of the analytical validity of MSI detection and elaborate the evidence on the clinical validity of MSI in the management of CRC patients.
Collapse
Affiliation(s)
- Zhenli Diao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
50
|
The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum Genet 2020; 140:725-746. [PMID: 33180176 DOI: 10.1007/s00439-020-02235-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Metagenomic studies using next-generation sequencing technologies have revealed rich human intestinal microbiome, which likely influence host immunity and health conditions including cancer. Evidence indicates a biological link between altered microbiome and cancers in the digestive system. Escherichia coli and Bacteroides fragilis have been found to be enriched in colorectal mucosal tissues from patients with familial adenomatous polyposis that is caused by germline APC mutations. In addition, recent studies have found enrichment of certain oral bacteria, viruses, and fungi in tumor tissue and fecal specimens from patients with gastrointestinal cancer. An integrative approach is required to elucidate the role of microorganisms in the pathogenic process of gastrointestinal cancers, which develop through the accumulation of somatic genetic and epigenetic alterations in neoplastic cells, influenced by host genetic variations, immunity, microbiome, and environmental exposures. The transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to link germline genetics and environmental factors (including diet, lifestyle, and pharmacological factors) to pathologic phenotypes. The integration of microbiology into the MPE model (microbiology-MPE) can contribute to better understanding of the interactive role of environment, tumor cells, immune cells, and microbiome in various diseases. We review major clinical and experimental studies on the microbiome, and describe emerging evidence from the microbiology-MPE research in gastrointestinal cancers. Together with basic experimental research, this new research paradigm can help us to develop new prevention and treatment strategies for gastrointestinal cancers through targeting of the microbiome.
Collapse
|