1
|
Xing L, Zhang L, Zheng H, Zhang Z, Luo Y, Liu Y, Wang L. ZmmiR169q/ZmNF-YA8 is a module that homeostatically regulates primary root growth and salt tolerance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1163228. [PMID: 37457348 PMCID: PMC10344899 DOI: 10.3389/fpls.2023.1163228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
In response to salt stress, plants alter the expression of manifold gene networks, enabling them to survive and thrive in the face of adversity. As a result, the growth and development of plant roots could be drastically altered, with significant inhibition of the growth of root meristematic zones. Although it is known that root growth is primarily regulated by auxins and cytokinins, the molecular regulatory mechanism by which salt stress stunts root meristems remains obscure. In this study, we found that the ZmmiR169q/ZmNF-YA8 module regulates the growth of maize taproots in response to salt stress. Salt stress downregulates ZmmiR169q expression, allowing for significant upregulation of ZmNF-YA8, which, in turn, activates ZmERF1B, triggering the upregulation of ASA1 and ASA2, two rate-limiting enzymes in the biosynthesis of tryptophan (Trp), leading to the accumulation of auxin in the root tip, thereby inhibiting root growth. The development of the maize root is stymied as meristem cell division and meristematic zone expansion are both stifled. This study reveals the ZmmiR169q/ZmNF-YA8 module's involvement in maintaining an equilibrium in bestowing plant salt tolerance and root growth and development under salt stress, providing new insights into the molecular mechanism underlying the homeostatic regulation of plant development in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Xing
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| | - Zhuoxia Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| |
Collapse
|
2
|
Tawab F, Munir I, Nasim Z, Khan MS, Tawab S, Nasim A, Iqbal A, Ahmad MA, Ali W, Munir R, Munir M, Asim N. Identification and characterization of a novel multi-stress responsive gene in Arabidopsis. PLoS One 2020; 15:e0244030. [PMID: 33332435 PMCID: PMC7746274 DOI: 10.1371/journal.pone.0244030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
Abiotic stresses especially salinity, drought and high temperature result in considerable reduction of crop productivity. In this study, we identified AT4G18280 annotated as a glycine-rich cell wall protein-like (hereafter refer to as GRPL1) protein as a potential multistress-responsive gene. Analysis of public transcriptome data and GUS assay of pGRPL1::GUS showed a strong induction of GRPL1 under drought, salinity and heat stresses. Transgenic plants overexpressing GRPL1-3HA showed significantly higher germination, root elongation and survival rate under salt stress. Moreover, the 35S::GRPL1-3HA transgenic lines also showed higher survival rates under drought and heat stresses. GRPL1 showed similar expression patterns with Abscisic acid (ABA)-pathway genes under different growth and stress conditions, suggesting a possibility that GRPL1 might act in the ABA pathway that is further supported by the inability of ABA-deficient mutant (aba2-1) to induce GRPL1 under drought stress. Taken together, our data presents GRPL1 as a potential multi-stress responsive gene working downstream of ABA.
Collapse
Affiliation(s)
- Faiza Tawab
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Iqbal Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- * E-mail:
| | - Zeeshan Nasim
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sayyar Khan
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Saleha Tawab
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Adnan Nasim
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Aqib Iqbal
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mian Afaq Ahmad
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ali
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Maria Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Noreen Asim
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Voothuluru P, Mäkelä P, Zhu J, Yamaguchi M, Cho IJ, Oliver MJ, Simmonds J, Sharp RE. Apoplastic Hydrogen Peroxide in the Growth Zone of the Maize Primary Root. Increased Levels Differentially Modulate Root Elongation Under Well-Watered and Water-Stressed Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:392. [PMID: 32373139 PMCID: PMC7186474 DOI: 10.3389/fpls.2020.00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 05/28/2023]
Abstract
Reactive oxygen species (ROS) can act as signaling molecules involved in the acclimation of plants to various abiotic and biotic stresses. However, it is not clear how the generalized increases in ROS and downstream signaling events that occur in response to stressful conditions are coordinated to modify plant growth and development. Previous studies of maize (Zea mays L.) primary root growth under water deficit stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex, and that the rate of cell production is also decreased. It was observed that apoplastic ROS, particularly hydrogen peroxide (H2O2), increased specifically in the apical region of the growth zone under water stress, resulting at least partly from increased oxalate oxidase activity in this region. To assess the function of the increase in apoplastic H2O2 in root growth regulation, transgenic maize lines constitutively expressing a wheat oxalate oxidase were utilized in combination with kinematic growth analysis to examine effects of increased apoplastic H2O2 on the spatial pattern of cell elongation and on cell production in well-watered and water-stressed roots. Effects of H2O2 removal (via scavenger pretreatment) specifically from the apical region of the growth zone were also assessed. The results show that apoplastic H2O2 positively modulates cell production and root elongation under well-watered conditions, whereas the normal increase in apoplastic H2O2 in water-stressed roots is causally related to down-regulation of cell production and root growth inhibition. The effects on cell production were accompanied by changes in spatial profiles of cell elongation and in the length of the growth zone. However, effects on overall cell elongation, as reflected in final cell lengths, were minor. These results reveal a fundamental role of apoplastic H2O2 in regulating cell production and root elongation in both well-watered and water-stressed conditions.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Pirjo Mäkelä
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinming Zhu
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Mineo Yamaguchi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - In-Jeong Cho
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - Melvin J. Oliver
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - John Simmonds
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Robert E. Sharp
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
García G, Clemente-Moreno MJ, Díaz-Vivancos P, García M, Hernández JA. The Apoplastic and Symplastic Antioxidant System in Onion: Response to Long-Term Salt Stress. Antioxidants (Basel) 2020; 9:E67. [PMID: 31940899 PMCID: PMC7022848 DOI: 10.3390/antiox9010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
The response of apoplastic antioxidant systems in root and leaf tissues from two onion genotypes ('Texas 502', salt-sensitive and 'Granex 429', salt-resistant) in response to salinity was studied. Electrolyte leakage data indicated the membrane integrity impairing by the effect of salts, especially in 'Texas 502'. We detected superoxide dismutase (SOD) and peroxidase (POX) activity in the root and leaf apoplastic fractions from onion plants. Salinity increased SOD activity in the root symplast of 'Texas 502' and in 'Granex 429' leaves. In contrast, salinity reduced SOD activity in the leaf and root apoplastic fractions from 'Texas 502'. In 'Granex 429', salt-stress increased leaf apoplastic POX activity and symplastic catalase (CAT) activity of both organs, but a decline in root apoplastic POX from 'Texas 502' took place. Salt-stress increased monodehydroascorbate reductase (MDHAR) in root and leaf symplast and in root glutathione reductase GR, mainly in 'Granex 429', but only in this genotype, leaf dehydroascorbate reductase (DHAR) activity increased. In contrast, a decline in leaf GR was produced only in 'Texas 502'. Salinity increased leaf ASC levels, and no accumulation of dehydroascorbate (DHA) was observed in roots in both cases. These responses increased the redox state of ascorbate, especially in roots. In contrast, salinity declined reduced glutathione (GSH), but oxidised glutathione (GSSG) was accumulated in leaves, decreasing the redox state of glutathione. Salinity slightly increased root GSH concentration in the salt-tolerant genotype and was unchanged in the salt-sensitive genotype, but no accumulation of GSSG was produced, favoring the rise and/or maintenance of the redox state of the glutathione. These results suggest that the lower sensitivity to salt in 'Granex 429' could be related to a better performance of the antioxidant machinery under salinity conditions.
Collapse
Affiliation(s)
- Grisaly García
- Departamento de Ciencias Biológicas, Decanato de Agronomía, Universidad Centroccidental Lisandro Alvarado UCLA, Barquisimeto 3001, Estado Lara, Venezuela;
| | - María José Clemente-Moreno
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| | - Pedro Díaz-Vivancos
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| | - Marina García
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí. Portoviejo, Manabí 130105, Ecuador;
- Instituto de Botánica Agrícola, Facultad de Agronomía, Universidad Central de Venezuela, Av. 19 de abril, Maracay 1050, Estado Aragua, Venezuela
| | - José Antonio Hernández
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| |
Collapse
|
5
|
Sipari N, Lihavainen J, Shapiguzov A, Kangasjärvi J, Keinänen M. Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rcd1 (Radical-Induced Cell Death1). FRONTIERS IN PLANT SCIENCE 2020; 11:194. [PMID: 32180786 PMCID: PMC7059619 DOI: 10.3389/fpls.2020.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
Rcd1 (radical-induced cell death1) is an Arabidopsis thaliana mutant, which exhibits high tolerance to paraquat [methyl viologen (MV)], herbicide that interrupts photosynthetic electron transport chain causing the formation of superoxide and inhibiting NADPH production in the chloroplast. To understand the biochemical mechanisms of MV-resistance and the role of RCD1 in oxidative stress responses, we performed metabolite profiling of wild type (Col-0) and rcd1 plants in light, after MV exposure and after prolonged darkness. The function of RCD1 has been extensively studied at transcriptomic and biochemical level, but comprehensive metabolite profiling of rcd1 mutant has not been conducted until now. The mutant plants exhibited very different metabolic features from the wild type under light conditions implying enhanced glycolytic activity, altered nitrogen and nucleotide metabolism. In light conditions, superoxide production was elevated in rcd1, but no metabolic markers of oxidative stress were detected. Elevated senescence-associated metabolite marker levels in rcd1 at early developmental stage were in line with its early-senescing phenotype and possible mitochondrial dysfunction. After MV exposure, a marked decline in the levels of glycolytic and TCA cycle intermediates in Col-0 suggested severe plastidic oxidative stress and inhibition of photosynthesis and respiration, whereas in rcd1 the results indicated sustained photosynthesis and respiration and induction of energy salvaging pathways. The accumulation of oxidative stress markers in both plant lines indicated that MV-resistance in rcd1 derived from the altered regulation of cellular metabolism and not from the restricted delivery of MV into the cells or chloroplasts. Considering the evidence from metabolomic, transcriptomic and biochemical studies, we propose that RCD1 has a negative effect on reductive metabolism and rerouting of the energy production pathways. Thus, the altered, highly active reductive metabolism, energy salvaging pathways and redox transfer between cellular compartments in rcd1 could be sufficient to avoid the negative effects of MV-induced toxicity.
Collapse
Affiliation(s)
- Nina Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- *Correspondence: Nina Sipari,
| | - Jenna Lihavainen
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
6
|
Fu Y, Yang Y, Chen S, Ning N, Hu H. Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution. FRONTIERS IN PLANT SCIENCE 2019; 10:522. [PMID: 31105724 PMCID: PMC6494962 DOI: 10.3389/fpls.2019.00522] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/04/2019] [Indexed: 05/08/2023]
Abstract
High salinity is one of the major environmental stresses that plants encounter. Roots are the initial and direct organs to perceive the signal. However, how plant roots perceive and respond to salinity at the molecular and physiological levels is still poorly understood. Here, we report that IAA-CONJUGATE-RESISTANT 4 (IAR4) plays a key role in primary root growth under salt stress conditions. Mutation of IAR4 led to increased sensitivity to salt stress conditions, with strongly inhibited primary root growth and reduced survival rate in two iar4 mutant alleles. iar4 mutants accumulated greater Na+ and exhibited a greater Na+/K+ ratio under NaCl treatment. In addition, more reactive oxygen species (ROS) accumulated in the iar4 mutants due to reduced ROS scavenging. NaCl treatment greatly suppressed the expression levels of ProPIN1:PIN1-GFP, ProPIN2:PIN2-GFP, ProPIN3:PIN3-GFP, and ProDR5:GFP, and suppressed root meristem activity in iar4. GSH or auxin treatment greatly recovered the PIN expression, auxin distribution and primary root growth in the iar4 mutants, suggesting ROS is a vital mediator between salt stress and auxin response. Our data support a model in which IAR4 integrates ROS and auxin pathways to modulate primary root growth under salinity stress conditions, by regulation of PIN-mediated auxin transport.
Collapse
|
7
|
Zhang J, Zeng L, Chen S, Sun H, Ma S. Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:11-21. [PMID: 29482070 DOI: 10.1016/j.plaphy.2018.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Salinity stress can impede development and plant growth adversely. However, there is very little molecular information on NaCl resistance and volatile emissions in Lycopersicum esculentum. In order to investigate the effects of salt stress on the release of volatile compounds, we quantified and compared transcriptome changes by RNA-Seq analysis and volatile constituents with gas chromatography/mass spectrometry (GC/MS) coupled with solid-phase microextraction (SPME) after exposure to continuous salt stress. Chemical analysis by GC-MS analysis revealed that NaCl stress had changed species and quantity of volatile compounds released. In this research, 21,578 unigenes that represented 44,714 assembled unique transcripts were separated from tomato leaves exposed to NaCl stress based on de novo transcriptome assembly. The total number of differentially expressed genes was 7210 after exposure to NaCl, including 6200 down-regulated and 1208 up-regulated genes. Among these differentially expressed genes (DEGs), there were eighteen differentially expressed genes associated with volatile biosynthesis. Of the unigenes, 3454 were mapped to 131 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, mainly those are involved in RNA transport, plant-pathogen interactions, and plant hormone signal transduction. qRT-PCR analysis showed that NaCl exposure affected the expression profiles of the biosynthesis genes for eight volatile compounds (IPI, GPS, and TPS, etc.), which corresponded well with the RNA-Seq analysis and GC-MS results. Our results suggest that NaCl stress affects the emission of volatile substances from L. esculentum leaves by regulating the expression of genes that are involved in volatile organic compounds' biosynthesis.
Collapse
Affiliation(s)
- Jihong Zhang
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Li Zeng
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Shaoyang Chen
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Helong Sun
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Shuang Ma
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Seeve CM, Cho IJ, Hearne LB, Srivastava GP, Joshi T, Smith DO, Sharp RE, Oliver MJ. Water-deficit-induced changes in transcription factor expression in maize seedlings. PLANT, CELL & ENVIRONMENT 2017; 40:686-701. [PMID: 28039925 DOI: 10.1111/pce.12891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 05/15/2023]
Abstract
Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse transcription quantitative PCR (RT-qPCR) was used to examine the abundance of 618 transcripts from 536 TF genes in individual root and shoot tissues of maize seedlings grown in vermiculite under well-watered (water potential of -0.02 MPa) and water-deficit conditions (water potentials of -0.3 and -1.6 MPa). A linear mixed model identified 433 TF transcripts representing 392 genes that differed significantly in abundance in at least one treatment, including TFs that intersect growth and development and environmental stress responses. TFs were extensively differentially regulated across stressed maize seedling tissues. Hierarchical clustering revealed TFs with stress-induced increased abundance in primary root tips that likely regulate root growth responses to water deficits, possibly as part of abscisic acid and/or auxin-dependent signaling pathways. Ten of these TFs were selected for validation in nodal root tips of drought-stressed field-grown plants (late V1 to early V2 stage). Changes in abundance of these TF transcripts under a field drought were similar to those observed in the seedling system.
Collapse
Affiliation(s)
- Candace M Seeve
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - In-Jeong Cho
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO, 65211, USA
| | - Leonard B Hearne
- Statistics Department, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute and Christopher S Bond Life Science Center, Columbia, MO, 65211, USA
| | - Dante O Smith
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert E Sharp
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Melvin J Oliver
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
9
|
Peppino Margutti M, Reyna M, Meringer MV, Racagni GE, Villasuso AL. Lipid signalling mediated by PLD/PA modulates proline and H 2O 2 levels in barley seedlings exposed to short- and long-term chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:149-160. [PMID: 28214728 DOI: 10.1016/j.plaphy.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 05/05/2023]
Abstract
Phospholipase D (PLD) hydrolyses phospholipids to yield phosphatidic acid (PA) and a head group, and is involved in responses to a variety of environmental stresses, including chilling and freezing stress. Barley responses to chilling stress (induced by incubating seedlings at 4 °C) are dynamic and the duration of stress, either short (0-180 min) or long-term (24-36 h) had a significant impact on the response. We investigated the roles of PLD/PA in responses of barley (Hordeum vulgare) seedlings to short and long-term chilling stress, based on regulation of proline and reactive oxygen species (ROS) levels. Short-term chilling stress caused rapid and transient increases in PLD activity, proline level, and ROS levels in young leaves. PLD has the ability to catalyse the transphosphatidylation reaction leading to formation of phosphatidylalcohol (preferentially, to PA). Pre-treatment of seedlings with 1-butanol significantly increased proline synthesis but decreased ROS (H2O2) formation. These observations suggest that PLD is a negative regulator of proline synthesis, whereas PA/PLD promote ROS signals. Exogenous PA pre-treatment reduced the proline synthesis but enhanced H2O2 formation. Effects of long-term chilling stress on barley seedlings differed from those of short-term chilling stress. E.g., PLD activity was significantly reduced in young leaves and roots, whereas proline synthesis and ROS signals were increased in roots. Exogenous ROS application enhanced proline level while exogenous proline application reduced ROS level and modulated some effects of long-term chilling stress. Our findings suggest that PLD contributes to signalling pathways in responses to short-term chilling stress in barley seedling, through regulation of the balance between proline and ROS levels. In contrast, reduced PLD activity in the response to long-term chilling stress did not affect proline level. Increased ROS levels may reflect an antioxidant system that is affected by chilling stress and positively compensated by changes in proline level. Implications of our findings are discussed in regard to adaptation strategies of barley seedlings to low temperatures.
Collapse
Affiliation(s)
- Micaela Peppino Margutti
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Mercedes Reyna
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - María Verónica Meringer
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Graciela E Racagni
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Ana Laura Villasuso
- Dpto. de Biología Molecular, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
10
|
Jiang K, Moe-Lange J, Hennet L, Feldman LJ. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. FRONTIERS IN PLANT SCIENCE 2016; 7:81. [PMID: 26904053 PMCID: PMC4744855 DOI: 10.3389/fpls.2016.00081] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/16/2016] [Indexed: 05/04/2023]
Abstract
We report the redox status (profiles) for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays) the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem. At the point on the root axis at which cells of the proximal meristem cease division and enter the transition zone, the redox potential levels off, and remains more or less unchanged throughout the transition zone. As cells leave the transition zone and enter the zone of elongation the redox potentials become more oxidized. Treating roots with salt (50, 100, and 150 mM NaCl) results in marked changes in root meristem structure and development, and is preceded by changes in the redox profile, which flattens, and initially becomes more oxidized, with pronounced changes in the redox potentials of the root cap, the root cap initials and the quiescent center. Roots exposed to relatively mild levels of salt (<100 mM) are able to re-establish a normal, pre-salt treatment redox profile 3-6 days after exposure to salt. Coincident with the salt-associated changes in redox profiles are changes in the distribution of auxin transporters (AUX1, PIN1/2), which become more diffuse in their localization. We conclude that salt stress affects root meristem maintenance, in part, through changes in redox and auxin transport.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | | | - Lauriane Hennet
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| |
Collapse
|
11
|
Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress. PLoS One 2015; 10:e0120791. [PMID: 25822368 PMCID: PMC4379016 DOI: 10.1371/journal.pone.0120791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance. METHODOLOGY AND PRINCIPAL FINDINGS We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs) reflecting the early response to water stress (6h vs. 0h), the late response to water stress (24h vs. 0h) and the response to post water stress rehydration (30h vs. 24h). Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the 'Glutathione metabolism pathway' in response to water stress. CONCLUSIONS This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia in response to water stress, and merit further investigation.
Collapse
|
12
|
Zhang J, Duan X, Ding F, Ma H, Zhang T, Yang Y. Salinity induced the changes of root growth and antioxidative responses in two wheat cultivars. PROTOPLASMA 2014; 251:771-780. [PMID: 24318673 DOI: 10.1007/s00709-013-0579-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
This study aimed to investigate the inhibitory mechanism of root growth and to compare antioxidative responses in two wheat cultivars, drought-tolerant Ningchun and drought-sensitive Xihan, exposed to different NaCl concentrations. Ningchun exhibited lower germination rate, seedling growth, and lipid peroxidation than Xihan when exposed to salinity. The loss of cell viability was correlated with the inhibition of root growth induced by NaCl stress. Moreover, treatments with H2O2 scavenger dimethylthiourea and catalase (CAT) partly blocked salinity-induced negative effects on root growth and cell viability. Besides, the enhancement of superoxide radical and H2O2 levels, and the stimulation of CAT and diamine oxidase (DAO) as well as the inhibition of glutathione reductase (GR) were observed in two wheat roots treated with salinity. However, hydroxyl radical content increased only in Xihan roots under NaCl treatment, and the changes of soluble peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and cell-wall-bound POD activities were different in drought-tolerant Ningchun and drought-sensitive Xihan exposed to different NaCl concentrations. In conclusion, salinity might induce the loss of cell viability via a pathway associated with extracellular H2O2 generation, which was the primary reason leading to the inhibition of root growth in two wheat cultivars. Here, it was also suggested that increased H2O2 accumulation in the roots of drought-tolerant Ningchun might be due to decreased POD and GR activities as well as enhanced cell-wall-bound POD and DAO ones, while the inhibition of APX and GR as well as the stimulation of SOD and DAO was responsible for the elevation of H2O2 level in drought-sensitive Xihan roots.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Singh KL, Chaudhuri A, Kar RK. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds. PLANT SIGNALING & BEHAVIOR 2014; 9:e29278. [PMID: 25763616 PMCID: PMC4203575 DOI: 10.4161/psb.29278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Involvement of reactive oxygen species in regulation of plant growth and development is recently being demonstrated with various results depending on the experimental system and plant species. Role of superoxide and its metabolism in germination and axis growth was investigated in case of Vigna radiata seeds, a non-endospermous leguminous species having epigeal germination, by studying the effect of different reactive oxygen species (ROS) inhibitors, distribution of O2(•)- and H2O2 and ROS enzyme profile in axes. Germination percentage and axis growth were determined under treatment with ROS inhibitors and scavengers. Localization of O2(•)- and H2O2 was done using nitroblue tetrazolium (NBT) and 3,3',5,5'-tetramethyl benzidine dihydrochloride hydrate (TMB), respectively. Apoplastic level of O2(•)- was monitored by spectrophotometric analysis of bathing medium of axes. Profiles of NADPH oxidase and superoxide dismutase (SOD) were studied by in-gel assay. Germination was retarded by treatments affecting ROS level except H2O2 scavengers, while axis growth was retarded by all. Superoxide synthesis inhibitor and scavenger prevented H2O2 accumulation in axes in later phase as revealed from TMB staining. Activity of Cu/Zn SOD1 was initially high and declined thereafter. Superoxide being produced in apoplast possibly by NADPH oxidase activity is further metabolized to (•)OH via H2O2. Germination process depends possibly on (•)OH production in the axes. Post-germinative axis growth requires O2(•)- while the differentiating zone of axis (radicle) requires H2O2 for cell wall stiffening.
Collapse
|
14
|
Maksimović JJD, Zivanović BD. Quantification of the antioxidant activity in salt-stressed tissues. Methods Mol Biol 2013; 913:237-50. [PMID: 22895764 DOI: 10.1007/978-1-61779-986-0_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Biochemical methods available for the measurement of antioxidant activity in salt-stressed tissues are reviewed, outlining the most important advantages and shortcomings of the methods. Here we consider commonly used methods for measuring total antioxidant capacity and phenolic content, ABTS and Folin-Ciocalteu's procedure, respectively. Moreover, we presented assays for determination of antioxidant enzymes activities: superoxide dismutase, catalase, and ascorbate peroxidase. This choice of methods enables us to elucidate a full profile of antioxidant activities, evaluating their effectiveness against various reactive oxygen species produced during salt stress.
Collapse
|
15
|
Determination of reactive oxygen species in salt-stressed plant tissues. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 913:225-36. [PMID: 22895763 DOI: 10.1007/978-1-61779-986-0_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Reactive oxygen species (ROS) participate in signaling events that regulate ion channel activity and gene expression. However, excess ROS exert adverse effects that stem from their interaction with macromolecules. Thus, the assessment of the effects of salinity on ROS changes are central to understanding how plants respond and cope with this stress. ROS determination in salt-stressed plants poses specific challenges. On the one hand, salinity comprises osmotic and ion-specific effects which may, in turn, have different effects on ROS production. On the other hand, changes in ROS production may happen when tissues from salinized plants are subject to water potential (Ψ) changes when incubated in non-isosmotic solutions. This chapter provides detailed accounts of methods for ROS detection in tissues from salt-stressed plants and includes suggestions for avoiding artifacts when dealing with such tissues.
Collapse
|
16
|
Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC PLANT BIOLOGY 2011; 11:174. [PMID: 22136218 PMCID: PMC3268746 DOI: 10.1186/1471-2229-11-174] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 12/02/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs) with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. RESULTS Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs) increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO) test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA) and auxin crosstalk modulating lateral root formation in the tolerant NILs. CONCLUSIONS Transcriptome analysis on two pairs of NILs with a common genetic background (~97%) showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed a greater number of DEGs for cell growth, hormone biosynthesis, cellular transports, amino acid metabolism, signalling, transcription factors and carbohydrate metabolism in response to drought stress treatments. Thus, different mechanisms are achieving tolerance in the two tolerant lines.
Collapse
Affiliation(s)
- Ali Moumeni
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
- Rice Research Institute of Iran in Mazandaran, POBox 145, Postal-Code 46191-91951, Km8 Babol Rd., Amol, Mazandaran, Iran
| | - Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Kondoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Takayuki Asano
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Aeni Hosaka
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Ramiah Venuprasad
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
- Africa Rice Centre (AfricaRice), Ibadan station, c/o IITA, PmB 5320 Oyo road, Nigeria
| | - Rachid Serraj
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
- International Centre for Agricultural Research in the Dry Areas (ICARDA), POBox 5466, Aleppo, Syria
| | - Arvind Kumar
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Hei Leung
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
17
|
Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2050-6. [PMID: 21813179 DOI: 10.1016/j.ecoenv.2011.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/04/2023]
Abstract
Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCl-treated grass. Salt stress increased accumulation of Na(+) and decreased K(+)/Na(+) ratio, Mg(2+) and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
18
|
Yamaguchi M, Sharp RE. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. PLANT, CELL & ENVIRONMENT 2010; 33:590-603. [PMID: 19895398 DOI: 10.1111/j.1365-3040.2009.02064.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Progress in understanding root growth regulation and adaptation under water-stressed conditions is reviewed, with emphasis on recent advances from transcriptomic and proteomic analyses of maize and soybean primary roots. In both systems, kinematic characterization of the spatial patterns of cell expansion within the root elongation zone showed that at low water potentials, elongation rates are preferentially maintained towards the root apex but are progressively inhibited at more basal locations resulting in a shortened growth zone. This characterization provided an essential foundation for extensive research into the physiological mechanisms of growth regulation in the maize primary root at low water potentials. Recently, these studies were expanded to include transcriptomic and cell wall proteomic analyses of the maize primary root, and a proteomic analysis of total soluble proteins in the soybean primary root. This review focuses on findings related to protection from oxidative damage, the potential roles of increased apoplastic reactive oxygen species in regulation of wall extension properties and other processes, region-specific phenylpropanoid metabolism as related to accumulation of (iso)flavonoids and wall phenolics and amino acid metabolism. The results provide novel insights into the complexity and coordination of the processes involved in root growth at low water potentials.
Collapse
|
19
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|