1
|
Jones NAR, Gaffney K, Gardella G, Rowe A, Spence-Jones HC, Munson A, Houslay TM, Webster MM. A reinvestigation of cognitive styles in sticklebacks: decision success varies with behavioral type. Behav Ecol 2025; 36:arae097. [PMID: 39664074 PMCID: PMC11631196 DOI: 10.1093/beheco/arae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
The "cognitive styles" hypothesis suggests that individual differences in behavior are associated with variation in cognitive performance via underlying speed-accuracy trade-offs. While this is supported, in part, by a growing body of evidence, some studies did not find the expected relationships between behavioral type and cognitive performance. In some cases, this may reflect methodological limitations rather than the absence of a true relationship. The physical design of the testing arena and the number of choices offered in an assay can hinder our ability to detect inter-individual differences in cognitive performance. Here, we re-investigated the cognitive styles hypothesis in threespine stickleback (Gasterosteus aculeatus), adapting the maze design of a previous study which found no cost to decision success by faster (bolder) individuals. We used a similar design but increased the size of the maze and incorporated an additional choice in the form of a third maze arm. We found, in accordance with cognitive style expectations, that individuals who were consistently slower to emerge from the start chamber made fewer errors than fish that emerged faster. Activity in an open field test, however, did not show evidence of a relationship with decision success, possibly due to the low number of repeated observations per fish in this separate assay. Our results provide further empirical support for the cognitive styles hypothesis and highlight important methodological aspects to consider in studies of inter-individual differences in cognition.
Collapse
Affiliation(s)
- Nick A R Jones
- Department of Animal Physiology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Kirstin Gaffney
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Cullercoats, North Shields, NE30 4PZ, Newcastle Upon Tyne, United Kingdom
| | - Giacomo Gardella
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Annie Rowe
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Helen C Spence-Jones
- School of Liberal arts and Natural Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, United Kingdom
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-907 36, Umeå, Sweden
| | | | - Mike M Webster
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| |
Collapse
|
2
|
Johansson E, Boersma PD, Jones T, Abrahms B. Plasticity syndromes in wild vertebrates: Patterns and consequences of individual variation in plasticity across multiple behaviours. Ecol Lett 2024; 27:e14473. [PMID: 39738940 DOI: 10.1111/ele.14473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 01/02/2025]
Abstract
Behavioural plasticity is an important mechanism allowing animals to cope with changing environments. Theory has hypothesized the existence of 'plasticity syndromes'-positive correlations in plasticity across multiple behaviours within an individual-affording a generalized ability to respond to environmental change. However, the occurrence of correlated plasticities and their potential fitness consequences in natural populations remain untested. Using a 40-year dataset on free-ranging Magellanic penguins, we find evidence of both positively and negatively correlated behavioural plasticities. Plasticity did not strongly affect lifetime reproductive success, but its effect on interannual performance varied significantly by environmental context: plasticity reduced success in average oceanic conditions, increased success in anomalously productive conditions and, contrary to expectation, did not buffer against anomalously unproductive conditions. Such results highlight the complex patterns and consequences of plasticity across behaviours, individuals and environments, and the context-dependent role that correlated plasticities play in the adaptive capacity of populations to environmental change.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, USA
| | - P Dee Boersma
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, USA
| | - Timothy Jones
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
- British Antarctic Survey, High Cross, Cambridge, UK
| | - Briana Abrahms
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
LaBarge LR, Krofel M, Allen ML, Hill RA, Welch AJ, Allan ATL. Keystone individuals - linking predator traits to community ecology. Trends Ecol Evol 2024; 39:983-994. [PMID: 39068138 DOI: 10.1016/j.tree.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Individual behavioral plasticity enables animals to adjust to different scenarios. Yet, personality traits limit this flexibility, leading to consistent interindividual differences in behavior. These individual behavioral traits have the potential to govern community interactions, although testing this is difficult in complex natural systems. For large predators who often exert strong effects on ecosystem functioning, this behavioral diversity may be especially important and lead to individualized ecosystem roles. We present a framework for quantifying individual behavioral plasticity and personality traits of large wild predators, revealing the extent to which certain natural behaviors are governed by these latent traits. The outcomes will reveal how the innate characteristics of wildlife can scale up to affect community interactions.
Collapse
Affiliation(s)
- Laura R LaBarge
- Comparative Socioecology Group, Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.
| | - Miha Krofel
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maximilian L Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Russell A Hill
- Department of Anthropology, Durham University, Durham, UK; Department of Biological Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | | | | |
Collapse
|
4
|
Marsh KJ, Bearhop S, Harrison XA. Linking microbiome temporal dynamics to host ecology in the wild. Trends Microbiol 2024; 32:1060-1071. [PMID: 38797653 DOI: 10.1016/j.tim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ignoring the dynamic nature of microbial communities risks underestimating the power of microbes to impact the health of their hosts. Microbiomes are thought to be important for host fitness, yet the coarse temporal scale and population-level focus of many studies precludes the ability to investigate the importance of among-individual variation in stability and identify the ecological contexts in which this variation matters. Here we briefly summarise current knowledge of temporal dynamics in wild host-associated microbial communities. We then discuss the implications of among-individual variation in microbiota stability and suggest analytical approaches for understanding these patterns. One major requirement is for future studies to conduct individual-level longitudinal analyses, with some systems already well set up for answering these questions.
Collapse
Affiliation(s)
- Kirsty J Marsh
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| | - Stuart Bearhop
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Xavier A Harrison
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| |
Collapse
|
5
|
Godoy I, Korsten P, Perry SE. Mother of all bonds: Influences on spatial association across the lifespan in capuchins. Dev Sci 2024; 27:e13486. [PMID: 38414216 DOI: 10.1111/desc.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
In humans, being more socially integrated is associated with better physical and mental health and/or with lower mortality. This link between sociality and health may have ancient roots: sociality also predicts survival or reproduction in other mammals, such as rats, dolphins, and non-human primates. A key question, therefore, is which factors influence the degree of sociality over the life course. Longitudinal data can provide valuable insight into how environmental variability drives individual differences in sociality and associated outcomes. The first year of life-when long-lived mammals are the most reliant on others for nourishment and protection-is likely to play an important role in how individuals learn to integrate into groups. Using behavioral, demographic, and pedigree information on 376 wild capuchin monkeys (Cebus imitator) across 20 years, we address how changes in group composition influence spatial association. We further try to determine the extent to which early maternal social environments have downstream effects on sociality across the juvenile and (sub)adult stages. We find a positive effect of early maternal spatial association, where female infants whose mothers spent more time around others also later spent more time around others as juveniles and subadults. Our results also highlight the importance of kin availability and other aspects of group composition (e.g., group size) in dynamically influencing spatial association across developmental stages. We bring attention to the importance of-and difficulty in-determining the social versus genetic influences that parents have on offspring phenotypes. RESEARCH HIGHLIGHTS: Having more maternal kin (mother and siblings) is associated with spending more time near others across developmental stages in both male and female capuchins. Having more offspring as a subadult or adult female is additionally associated with spending more time near others. A mother's average sociality (time near others) is predictive of how social her daughters (but not sons) become as juveniles and subadults (a between-mother effect). Additional variation within sibling sets in this same maternal phenotype is not predictive of how social they become later relative to each other (no within-mother effect).
Collapse
Affiliation(s)
- Irene Godoy
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
| | - Peter Korsten
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Susan E Perry
- Lomas Barbudal Monkey Project, Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica
- Department of Anthropology, University of California, Los Angeles, California, USA
| |
Collapse
|
6
|
Tomotani BM, Strauß AFT, Kishkinev D, van de Haar H, Helm B. Circadian clock period length is not consistently linked to chronotype in a wild songbird. Eur J Neurosci 2024; 60:5522-5536. [PMID: 39256897 DOI: 10.1111/ejn.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Circadian clock properties vary between individuals and relate to variation in entrained timing in captivity. How this variation translates into behavioural differences in natural settings, however, is poorly understood. Here, we tested in great tits whether variation in the free-running period length (tau) under constant dim light (LL) was linked to the phase angle of the entrained rhythm ("chronotype") in captivity and in the wild, as recently indicated in our study species. We also assessed links between tau and the timing of first activity onset and offset under LL relative to the last experienced light-dark (LD) cycle. We kept 66 great tits, caught in two winters, in LL for 14 days and subsequently released them with a radio transmitter back to the wild, where their activity and body temperature rhythms were tracked for 1 to 22 days. For a subset of birds, chronotype was also recorded in the lab before release. Neither wild nor lab chronotypes were related to tau. We also found no correlation between lab and wild chronotypes. However, the first onset in LL had a positive relationship with tau, but only in males. Our results demonstrate that links between tau and phase of entrainment, postulated on theoretical grounds, may not consistently hold under natural conditions, possibly due to strong masking. This calls for more holistic research on how the many components of the circadian system interact with the environment to shape timing in the wild. Wild birds showed chronotypes in the field that were unlinked to their circadian period length tau measured in captivity. In males only, the first onset of activity after exposure to constant dim light did correlate with tau. Our study emphasises the need to investigate clocks in the real world, including a need to better understand masking.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aurelia F T Strauß
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | | - Huib van de Haar
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, AB, The Netherlands
| | - Barbara Helm
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
7
|
Jomaa FW, Laub EC, Tibbetts EA. Behavioral syndromes in paper wasps: Links between social and non-social personality in Polistes fuscatus. Curr Zool 2024; 70:659-667. [PMID: 39463692 PMCID: PMC11502155 DOI: 10.1093/cz/zoad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/23/2023] [Indexed: 10/29/2024] Open
Abstract
Although much work has focused on non-social personality traits such as activity, exploration, and neophobia, there is a growing appreciation that social personality traits play an important role in group dynamics, disease transmission, and fitness and that social personality traits may be linked to non-social personality traits. These relationships are important because behavioral syndromes, defined here as correlated behavioral phenotypes, can constrain evolutionary responses. However, the strength and direction of relationships between social and non-social personality traits remain unclear. In this project, we examine social and non-social personality traits, and the relationships between them, in the paper wasp Polistes fuscatus. With a novel assay, we identify 5 personality traits, 2 non-social (exploration and activity), and 3 social (aggression, affiliation, and antennation) personality traits. We also find that social and non-social personality traits are phenotypically linked. We find a positive correlation between aggression and activity and a negative correlation between affiliation and activity. We also find a positive correlation between exploration and activity. Our work is an important step in understanding how phenotypic linkage between social and non-social behaviors may influence behavioral evolution. As a burgeoning model system for the study of genetic and neurobiological mechanisms of social behavior, Polistes fuscatus has the potential to add to this work by exploring the causes and consequences of individual behavioral variation.
Collapse
Affiliation(s)
- Fatima W Jomaa
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - Emily C Laub
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - Elizabeth A Tibbetts
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Oliver KE, Harrison XA. Temperature and land use change are associated with Rana temporaria reproductive success and phenology. PeerJ 2024; 12:e17901. [PMID: 39224827 PMCID: PMC11368080 DOI: 10.7717/peerj.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemical pollution, land cover change, and climate change have all been established as important drivers of amphibian reproductive success and phenology. However, little is known about the relative impacts of these anthropogenic stressors, nor how they may interact to alter amphibian population dynamics. Addressing this gap in our knowledge is important, as it allows us to identify and prioritise the most needed conservation actions. Here, we use long-term datasets to investigate landscape-scale drivers of variation in the reproductive success and phenology of UK Common frog (Rana temporaria) populations. Consistent with predictions, we found that increasing mean temperatures resulted in earlier initialisation of spawning, and earlier hatching, but these relationships were not consistent across all sites. Lower temperatures were also linked to increased spawn mortality. However, temperature increases were also strongly correlated with increases in urban area, arable area, and nitrate levels in the vicinity of spawning grounds. As with spawning and hatching, there was marked spatial variation in spawn mortality trends, where some sites exhibited steady increases over time in the proportion of dead or diseased spawn. These findings support previous work linking warming temperatures to shifts in timing of amphibian breeding, but also highlight the importance of assessing the effect of land use change and pollution on wild amphibian populations. These results have implications for our understanding of the response of wild amphibian populations to climate change, and the management of human-dominated landscapes for declining wildlife populations.
Collapse
Affiliation(s)
- Kat E. Oliver
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| |
Collapse
|
9
|
Aich U, Polverino G, Yazdan Parast F, Melo GC, Tan H, Howells J, Nosrati R, Wong BBM. Long-term effects of widespread pharmaceutical pollution on trade-offs between behavioural, life-history and reproductive traits in fish. J Anim Ecol 2024. [PMID: 39188010 DOI: 10.1111/1365-2656.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/27/2024] [Indexed: 08/28/2024]
Abstract
In our rapidly changing world, understanding how species respond to shifting conditions is of paramount importance. Pharmaceutical pollutants are widespread in aquatic ecosystems globally, yet their impacts on animal behaviour, life-history and reproductive allocation remain poorly understood, especially in the context of intraspecific variation in ecologically important traits that facilitate species' adaptive capacities. We test whether a widespread pharmaceutical pollutant, fluoxetine (Prozac), disrupts the trade-off between individual-level (co)variation in behavioural, life-history and reproductive traits of freshwater fish. We exposed the progeny of wild-caught guppies (Poecilia reticulata) to three field-relevant levels of fluoxetine (mean measured concentrations: 0, 31.5 and 316 ng/L) for 5 years, across multiple generations. We used 12 independent laboratory populations and repeatedly quantified activity and risk-taking behaviour of male guppies, capturing both mean behaviours and variation within and between individuals across exposure treatments. We also measured key life-history traits (body condition, coloration and gonopodium size) and assessed post-copulatory sperm traits (sperm vitality, number and velocity) that are known to be under strong sexual selection in polyandrous species. Intraspecific (co)variation of these traits was analysed using a comprehensive, multivariate statistical approach. Fluoxetine had a dose-specific (mean) effect on the life-history and sperm trait of guppies: low pollutant exposure altered male body condition and increased gonopodium size, but reduced sperm velocity. At the individual level, fluoxetine reduced the behavioural plasticity of guppies by eroding their within-individual variation in both activity and risk-taking behaviour. Fluoxetine also altered between-individual correlations in pace-of-life syndrome traits: it triggered the emergence of correlations between behavioural and life-history traits (e.g. activity and body condition) and between life-history and sperm traits (e.g. gonopodium size and sperm vitality), but collapsed other between-individual correlations (e.g. activity and gonopodium size). Our results reveal that chronic exposure to global pollutants can affect phenotypic traits at both population and individual levels, and even alter individual-level correlations among such traits in a dose-specific manner. We discuss the need to integrate individual-level analyses and test behaviour in association with life-history and reproductive traits to fully understand how animals respond to human-induced environmental change.
Collapse
Affiliation(s)
- Upama Aich
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Giovanni Polverino
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Farin Yazdan Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Gabriela C Melo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - James Howells
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Serrano Davies E, Miguel A, Sepers B, van Oers K. Early-life diet composition affects phenotypic variation of correlated animal personality traits. Ecol Evol 2024; 14:e11567. [PMID: 39165542 PMCID: PMC11333541 DOI: 10.1002/ece3.11567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 08/22/2024] Open
Abstract
Behavioural traits are under both genetic and environmental influence during early life stages. Early environmental conditions related to the amount and type of food have been found to alter behaviour in many organisms. However, how early life diet affects the variation in and the correlation between behavioural traits is largely unknown. Using a multivariate approach, we investigated how variation in parental prey selection is related to three repeatable nestling personality traits, and explored the within and between-individual covariation between these behaviours in a wild passerine, the great tit (Parus major). Our results confirm that breath rate, docility and handling aggression (HA) in great tit nestlings are repeatable traits. Contrary to our expectation, the three nestling personality traits did not form a behavioural 'syndrome' on the phenotypic level in the study population, but we found two of three expected phenotypic correlations, mostly at the within-individual level. Moreover, we found that breath rate significantly decreased with a higher number of spiders in the diet, and docility and handling aggression were significantly and inversely related to higher numbers of noctuids and tortricids in the diets of individuals within broods. Thus, our findings suggest that provisioning quantity and quality during the early life, affects variation in behavioural phenotypes, which occurs mainly at the within-individual level.
Collapse
Affiliation(s)
- Eva Serrano Davies
- Animal Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Alba Miguel
- Animal Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Bernice Sepers
- Animal Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University and ResearchWageningenThe Netherlands
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Kees van Oers
- Animal Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
11
|
Peignier M, Ringler M, Ringler E. Odor cues rather than personality affect tadpole deposition in a neotropical poison frog. Curr Zool 2024; 70:332-342. [PMID: 39027420 PMCID: PMC7616257 DOI: 10.1093/cz/zoad042/7274628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Animals constantly need to evaluate available external and internal information to make appropriate decisions. Identifying, assessing, and acting on relevant cues in contexts such as mate choice, intra-sexual competition, and parental care is particularly important for optimizing individual reproductive success. Several factors can influence decision-making, such as external environmental cues and the animal's own internal state, yet, we have limited knowledge on how animals integrate available information. Here, we used an entire island population (57 males, 53 females, and 1,109 tadpoles) of the neotropical brilliant-thighed poison frog Allobates femoralis to investigate how 2 factors (olfactory cues and personality traits) influence the ability of males to find and use new resources for tadpole deposition. We experimentally manipulated the location of tadpole deposition sites and their associated olfactory cues, and repeatedly measured exploration and boldness in adult males. We further reconstructed tadpole deposition choices via inferred parent-offspring relationships of adult frogs and tadpoles deposited in our experimental pools using molecular parentage analysis. We found that the discovery and use of new rearing sites were heavily influenced by olfactory cues; however, we did not find an effect of the measured behavioral traits on resource discovery and use. We conclude that in highly dynamic environments such as tropical rainforests, reliable external cues likely take priority over personality traits, helping individuals to discover and make use of reproductive resources.
Collapse
Affiliation(s)
- Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210Vienna, Austria
| | - Max Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032Hinterkappelen, Switzerland
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030Vienna, Austria
- Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, 8010Graz, Austria
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210Vienna, Austria
| |
Collapse
|
12
|
Testard C, Shergold C, Acevedo-Ithier A, Hart J, Bernau A, Negron-Del Valle JE, Phillips D, Watowich MM, Sanguinetti-Scheck JI, Montague MJ, Snyder-Mackler N, Higham JP, Platt ML, Brent LJN. Ecological disturbance alters the adaptive benefits of social ties. Science 2024; 384:1330-1335. [PMID: 38900867 DOI: 10.1126/science.adk0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
Extreme weather events radically alter ecosystems. When ecological damage persists, selective pressures on individuals can change, leading to phenotypic adjustments. For group-living animals, social relationships may be a mechanism enabling adaptation to ecosystem disturbance. Yet whether such events alter selection on sociality and whether group-living animals can, as a result, adaptively change their social relationships remain untested. We leveraged 10 years of data collected on rhesus macaques before and after a category 4 hurricane caused persistent deforestation, exacerbating monkeys' exposure to intense heat. In response, macaques demonstrated persistently increased tolerance and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival after the hurricane, but not before it, revealing a shift in the adaptive function of sociality.
Collapse
Affiliation(s)
- C Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - C Shergold
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - J Hart
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - A Bernau
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - J E Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - D Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - M M Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - J I Sanguinetti-Scheck
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - M J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - N Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - J P Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - M L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - L J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Macali A, Ferretti S, Scozzafava S, Gatto E, Carere C. Different behavioral profiles between invasive and native nudibranchs: means for invasion success? Curr Zool 2024; 70:406-417. [PMID: 39035756 PMCID: PMC11256000 DOI: 10.1093/cz/zoae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
Behavior is predicted to be a primary determinant of the success of the invasion process during the early phases of colonization. Comparing invaders with sympatric native species may provide a good approach to unravel behavioral traits involved in an invasion process. In this study, we carried out an experimental simulation of the introduction and the acclimatization phase into a new environment and assessed the expression of activity, alertness, and habituation in an invasive Mediterranean population of the South African nudibranch Godiva quadricolor comparing its profiles with those of the sympatric Mediterranean native nudibranchs Cratena peregrina and Caloria quatrefagesi. Individuals of these 3 species were subjected to 3 behavioral tests: spontaneous activity, carried out in the introduction phase (immediately after sampling) and after a week of acclimatization; alert test, in which a potential threat was simulated by means of a tactile stimulus, and habituation test, in which the same alert test stimulus was repeated 5 times at 30-min intervals. The invasive G. quadricolor showed higher levels of exploration activity, thigmotaxis, alertness, and sensitization than the native species. These behavioral traits may represent pivotal drivers of the ongoing invasion process.
Collapse
Affiliation(s)
- Armando Macali
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, Tuscia University, 01016 Borgo Le Saline, Tarquinia, Italy
| | - Sara Ferretti
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, Tuscia University, 01016 Borgo Le Saline, Tarquinia, Italy
| | - Serena Scozzafava
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, Tuscia University, 01016 Borgo Le Saline, Tarquinia, Italy
| | - Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, via Luigi Borsari 46, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, Ferrara University, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Claudio Carere
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, Tuscia University, 01016 Borgo Le Saline, Tarquinia, Italy
| |
Collapse
|
14
|
Peignier M, Ringler M, Ringler E. Odor cues rather than personality affect tadpole deposition in a neotropical poison frog. Curr Zool 2024; 70:332-342. [PMID: 39035761 PMCID: PMC11255997 DOI: 10.1093/cz/zoad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/11/2023] [Indexed: 07/23/2024] Open
Abstract
Animals constantly need to evaluate available external and internal information to make appropriate decisions. Identifying, assessing, and acting on relevant cues in contexts such as mate choice, intra-sexual competition, and parental care is particularly important for optimizing individual reproductive success. Several factors can influence decision-making, such as external environmental cues and the animal's own internal state, yet, we have limited knowledge on how animals integrate available information. Here, we used an entire island population (57 males, 53 females, and 1,109 tadpoles) of the neotropical brilliant-thighed poison frog Allobates femoralis to investigate how 2 factors (olfactory cues and personality traits) influence the ability of males to find and use new resources for tadpole deposition. We experimentally manipulated the location of tadpole deposition sites and their associated olfactory cues, and repeatedly measured exploration and boldness in adult males. We further reconstructed tadpole deposition choices via inferred parent-offspring relationships of adult frogs and tadpoles deposited in our experimental pools using molecular parentage analysis. We found that the discovery and use of new rearing sites were heavily influenced by olfactory cues; however, we did not find an effect of the measured behavioral traits on resource discovery and use. We conclude that in highly dynamic environments such as tropical rainforests, reliable external cues likely take priority over personality traits, helping individuals to discover and make use of reproductive resources.
Collapse
Affiliation(s)
- Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Max Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
- Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, 8010 Graz, Austria
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
15
|
Webber QMR, Laforge MP, Bonar M, Vander Wal E. The adaptive value of density-dependent habitat specialization and social network centrality. Nat Commun 2024; 15:4423. [PMID: 38789438 PMCID: PMC11126670 DOI: 10.1038/s41467-024-48657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Density dependence is a fundamental ecological process. In particular, animal habitat selection and social behavior often affect fitness in a density-dependent manner. The Ideal Free Distribution (IFD) and niche variation hypothesis (NVH) present distinct predictions associated with Optimal Foraging Theory about how the effect of habitat selection on fitness varies with population density. Using caribou (Rangifer tarandus) in Canada as a model system, we test competing hypotheses about how habitat specialization, social behavior, and annual reproductive success (co)vary across a population density gradient. Within a behavioral reaction norm framework, we estimate repeatability, behavioral plasticity, and covariance among social behavior and habitat selection to investigate the adaptive value of sociality and habitat selection. In support of NVH, but not the IFD, we find that at high density habitat specialists had higher annual reproductive success than generalists, but were also less social than generalists, suggesting the possibility that specialists were less social to avoid competition. Our study supports niche variation as a mechanism for density-dependent habitat specialization.
Collapse
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NF, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Michel P Laforge
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Maegwin Bonar
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
| |
Collapse
|
16
|
Laitinen RAE, Nikoloski Z. Strategies to identify and dissect trade-offs in plants. Mol Ecol 2024; 33:e16780. [PMID: 36380694 DOI: 10.1111/mec.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Trade-offs between traits arise and reflect constraints imposed by the environment and physicochemical laws. Trade-off situations are expected to be highly relevant for sessile plants, which have to respond to changes in the environment to ensure survival. Despite increasing interest in determining the genetic and molecular basis of plant trade-offs, there are still gaps and differences with respect to how trade-offs are defined, how they are measured, and how their genetic architecture is dissected. The first step to fill these gaps is to establish what is meant by trade-offs. In this review we provide a classification of the existing definitions of trade-offs according to: (1) the measures used for their quantification, (2) the dependence of trade-offs on environment, and (3) experimental designed used (i.e. a single individual across different environments or a population of individuals in single or multiple environments). We then compare the approaches for quantification of trade-offs based on phenotypic, between-individual, and genetic correlations, and stress the need for developing further quantification indices particularly for trade-offs between multiple traits. Lastly, we highlight the genetic mechanisms underpinning trade-offs and experimental designs that facilitate their discovery in plants, with focus on usage of natural variability. This review also offers a perspective for future research aimed at identification of plant trade-offs, dissection of their genetic architecture, and development of strategies to overcome trade-offs, with applications in crop breeding.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
17
|
Humphreys BR, Mortelliti A. Pilfering personalities: Effects of small mammal personality on cache pilferage. J Anim Ecol 2024. [PMID: 38500218 DOI: 10.1111/1365-2656.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Small mammals such as mice and voles play a fundamental role in the ecosystem service of seed dispersal by caching seeds in small hoards that germinate under beneficial conditions. Pilferage is a critical step in this process in which animals steal seeds from other individuals' caches. Pilferers often recache stolen seeds, which are often pilfered by new individuals, who may recache again, and so on, potentially leading to compounded increased dispersal distance. However, little research has investigated intraspecific differences in pilfering frequency, despite its importance in better understanding the role of behavioural diversity in the valuable ecosystem service of seed dispersal. We conducted a field experiment in Maine (USA) investigating how intraspecific variation, including personality, influences pilferage effectiveness. Within the context of a long-term capture-mark-recapture study, we measured the unique personality of 3311 individual small mammals of 10 species over a 7-year period. For this experiment, we created artificial caches using eastern white pine (Pinus strobus) seeds monitored with trail cameras and buried antennas for individual identification. Of the 436 caches created, 83.5% were pilfered by 10 species, including deer mice ((Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi). We show how individuals differ in their ability to pilfer seeds and that these differences are driven by personality, body condition and sex. More exploratory deer mice and those with lower body condition were more likely to locate a cache, and female southern red-backed voles were more likely than males to locate caches. Also, caches were more likely to be pilfered in areas of higher small mammal abundance. Because the risk of pilferage drives decisions concerning where an animal chooses to store seeds, pilferage pressure is thought to drive the evolution of food-hoarding behaviour. Our study shows that pilferage ability varies between individuals, meaning that some individuals have a disproportionately strong influence on others' caching decisions and disproportionately contribute to compounded longer-distance seed dispersal facilitated by pilferage. Our results add to a growing body of knowledge showing that the unique personalities of individual small mammals play a critical role in forest regeneration by impacting seed dispersal.
Collapse
Affiliation(s)
- Brigit R Humphreys
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| | - Alessio Mortelliti
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
- Department of Life Science, University of Trieste, Trieste, Italy
| |
Collapse
|
18
|
Mazzamuto MV, Morandini M, Lampman W, Wauters LA, Preatoni D, Koprowski JL, Martinoli A. Use of infrared thermography to detect reactions to stressful events: does animal personality matter? Integr Zool 2024; 19:224-239. [PMID: 37248795 DOI: 10.1111/1749-4877.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The study of the relationship between animal stress and personality for free-ranging animals is limited and provides contrasting results. The perception of stressors by an individual may vary due to its personality, and certain personality traits may help individuals to better cope with them. Using non-invasive infrared thermography (IRT), we investigated the link between physiological and behavioral components expressed during an acute stress event by free-ranging Fremont's squirrels (Tamiasciurus fremonti). We expected that, during the acute stress event of being approached by the researcher, individuals that showed a fast pace-of-life syndrome (bolder, more active, and less social/more aggressive) based on an arena test would exhibit stronger sympathetic-adrenal-medullary system reactivity showing a more intense stress-induced hyperthermia (high core body temperature and low peripheral temperature) than individuals with a slow pace of life (shy, less active, and more social). We successfully employed IRT technology to images of Fremont's squirrels with identification of the individuals' body parts (eye, nose, ear, hind foot). However, we found no support for our hypothesis. Squirrels' body surface temperatures told us more about a squirrel's external environment and less about the thermal state of the body in that environment following a stressful event. Further studies need to assess how to make IRT effective and efficient in the field and improve its performance in studying the relationships between physiology and personality in wildlife.
Collapse
Affiliation(s)
- Maria Vittoria Mazzamuto
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - Marina Morandini
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
| | - William Lampman
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
| | - Lucas Armand Wauters
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - Damiano Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - John Lad Koprowski
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Wyoming, USA
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
19
|
Norin T, Rowsey LE, Houslay TM, Reeve C, Speers-Roesch B. Among-individual variation in thermal plasticity of fish metabolic rates causes profound variation in temperature-specific trait repeatability, but does not co-vary with behavioural plasticity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220488. [PMID: 38186278 PMCID: PMC10772605 DOI: 10.1098/rstb.2022.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 01/09/2024] Open
Abstract
Conspecifics of the same age and size differ consistently in the pace with which they expend energy. This among-individual variation in metabolic rate is thought to influence behavioural variation, since differences in energy requirements should motivate behaviours that facilitate energy acquisition, such as being bold or active in foraging. While there is evidence for links between metabolic rate and behaviour in constant environments, we know little about whether metabolic rate and behaviour change together when the environment changes-that is, if metabolic and behavioural plasticity co-vary. We investigated this using a fish that becomes dormant in winter and strongly reduces its activity when the environment cools, the cunner (Tautogolabrus adspersus). We found strong and predictable among-individual variation in thermal plasticity of metabolic rates, from resting to maximum levels, but no evidence for among-individual variation in thermal plasticity of movement activity, meaning that these key physiological and behavioural traits change independently when the environment changes. The strong among-individual variation in metabolic rate plasticity resulted in much higher repeatability (among-individual consistency) of metabolic rates at warm than cold temperatures, indicating that the potential for metabolic rate to evolve under selection is temperature-dependent, as repeatability can set the upper limit to heritability. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Henrik Dams Allé 202, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Thomas M. Houslay
- Centre of Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| |
Collapse
|
20
|
Cameron H, Marshall D. Estimating the relationship between fitness and metabolic rate: which rate should we use? Philos Trans R Soc Lond B Biol Sci 2024; 379:20220491. [PMID: 38186283 PMCID: PMC10772602 DOI: 10.1098/rstb.2022.0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
As physiologists seek to better understand how and why metabolism varies, they have focused on how metabolic rate covaries with fitness-that is, selection. Evolutionary biologists have developed a sophisticated framework for exploring selection, but there are particular challenges associated with estimating selection on metabolic rate owing to its allometric relationship with body mass. Most researchers estimate selection on mass and absolute metabolic rate; or selection on mass and mass-independent metabolic rate (MIMR)-the residuals generated from a nonlinear regression. These approaches are sometimes treated as synonymous: their coefficients are often interpreted in the same way. Here, we show that these approaches are not equivalent because absolute metabolic rate and MIMR are different traits. We also show that it is difficult to make sound biological inferences about selection on absolute metabolic rate because its causal relationship with mass is enigmatic. By contrast, MIMR requires less-desirable statistical practices (i.e. residuals as a predictor), but provides clearer causal pathways. Moreover, we argue that estimates of selection on MIMR have more meaningful interpretations for physiologists interested in the drivers of variation in metabolic allometry. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Dustin Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Brehm AM, Mortelliti A. Environmental heterogeneity modifies the link between personality and survival in fluctuating small mammal populations. J Anim Ecol 2024; 93:196-207. [PMID: 38102795 DOI: 10.1111/1365-2656.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Despite numerous studies examining the fitness consequences of animal personalities, predictions concerning the relationship between personality and survival are not consistent with empirical observations. Theory predicts that individuals who are risky (i.e. bold, active and aggressive) should have higher rates of mortality; however, empirical evidence shows high levels of variation in behaviour-survival relationships in wild populations. We suggest that this mismatch between predictions under theory and empirical observations results from environmental contingencies that drive heterogeneity in selection. This uncertainty may constrain any universal directional relationships between personality traits and survival. Specifically, we hypothesize that spatiotemporal fluctuations in perceived risk that arise from variability in refuge abundance and competitor density alter the relationship between personality traits and survival. In a large-scale manipulative experiment, we trapped four small mammal species in five subsequent years across six forest stands treated with different management practices in Maine, United States. Stands all occur within the same experimental forest but contain varying amounts of refuge and small mammal densities fluctuate over time and space. We quantified the effects of habitat structure and competitor density on the relationship between personality traits and survival to assess whether directional relationships differed depending on environmental contingencies. In the two most abundant species, deer mice and southern red-backed voles, risky behaviours (i.e. higher aggression and boldness) predicted apparent monthly survival probability. Mice that were more aggressive (less docile) had higher survival. Voles that were bolder (less timid) had higher survival, but in the risky forest stands only. Additionally, traits associated with stress coping and de-arousal increased survival probability in both species at high small mammal density but decreased survival at low density. In the two less abundant study species, there was no evidence for an effect of personality traits on survival. Our field experiment provides partial support for our hypothesis: that spatiotemporal fluctuations in refuge abundance and competitor density alter the relationship between personality traits and survival. Our findings also suggest that behaviours associated with stress coping and de-arousal may be subject to density-dependent selection and should be further assessed and incorporated into theory.
Collapse
Affiliation(s)
- Allison M Brehm
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, Maine, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alessio Mortelliti
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, Maine, USA
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
22
|
Maskrey DK, Killen SS, Sneddon LU, Arnold KE, Wolfenden DCC, Thomson JS. Differential metabolic responses in bold and shy sea anemones during a simulated heatwave. J Exp Biol 2024; 227:jeb244662. [PMID: 38235786 PMCID: PMC10912810 DOI: 10.1242/jeb.244662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
As climate change-induced heatwaves become more common, phenotypic plasticity at multiple levels is a key mitigation strategy by which organisms can optimise selective outcomes. In ectotherms, changes to both metabolism and behaviour can help alleviate thermal stress. Nonetheless, no study in any ectotherm has yet empirically investigated how changing temperatures affect among-individual differences in the associations between these traits. Using the beadlet anemone (Actinia equina), an intertidal species from a thermally heterogeneous environment, we investigated how individual metabolic rates, linked to morphotypic differences in A. equina, and boldness were related across changing temperatures. A crossed-over design and a temporal control were used to test the same individuals at a non-stressful temperature, 13°C, and under a simulated heatwave at 21°C. At each temperature, short-term repeated measurements of routine metabolic rate (RMR) and a single measurement of a repeatable boldness-related behaviour, immersion response time (IRT), were made. Individual differences, but not morphotypic differences, were highly predictive of metabolic plasticity, and the plasticity of RMR was associated with IRT. At 13°C, shy animals had the highest metabolic rates, while at 21°C, this relationship was reversed. Individuals that were bold at 13°C also exhibited the highest metabolic rates at 21°C. Additional metabolic challenges during heatwaves could be detrimental to fitness in bold individuals. Equally, lower metabolic rates at non-stressful temperatures could be necessary for optimal survival as heatwaves become more common. These results provide novel insight into the relationship between metabolic and behavioural plasticity, and its adaptive implications in a changing climate.
Collapse
Affiliation(s)
- Daniel K. Maskrey
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Nicholson Building, University of Liverpool, Liverpool L69 3GP, UK
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lynne U. Sneddon
- Department of Biological & Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| | - Kathryn E. Arnold
- Department of Environment and Geography, Wentworth Way, University of York, Heslington, York YO10 5NG, UK
| | - David C. C. Wolfenden
- Department of Biological & Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| | - Jack S. Thomson
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Nicholson Building, University of Liverpool, Liverpool L69 3GP, UK
| |
Collapse
|
23
|
Warrington MH, Beaulieu S, Jellicoe R, Vos S, Bennett NC, Waterman JM. Lovers, not fighters: docility influences reproductive fitness, but not survival, in male Cape ground squirrels, Xerus inauris. Behav Ecol Sociobiol 2024; 78:6. [PMID: 38187116 PMCID: PMC10766660 DOI: 10.1007/s00265-023-03421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Over their lifetime, individuals may use different behavioural strategies to maximize their fitness. Some behavioural traits may be consistent among individuals over time (i.e., 'personality' traits) resulting in an individual behavioural phenotype with different associated costs and benefits. Understanding how behavioural traits are linked to lifetime fitness requires tracking individuals over their lifetime. Here, we leverage a long-term study on a multi-year living species (maximum lifespan ~ 10 years) to examine how docility (an individual's reaction to trapping and handling) may contribute to how males are able to maximize their lifetime fitness. Cape ground squirrels are burrowing mammals that live in social groups, and although males lack physical aggression and territoriality, they vary in docility. Males face high predation risk and high reproductive competition and employ either of two reproductive tactics ('natal' or 'band') which are not associated with different docility personalities. We found that although more docile individuals sired more offspring on an annual basis, docility did not affect an individual's long-term (lifetime) reproductive output. Survival was not associated with docility or body condition, but annual survival was influenced by rainfall. Our findings suggest that although docility may represent a behavioural strategy to maximize fitness by possibly playing a role in female-male associations or female mate-choice, variations in docility within our study population is likely maintained by other environmental drivers. However, individual variations in behaviours may still contribute as part of the 'tool kit' individuals use to maximize their lifetime fitness. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-023-03421-8.
Collapse
Affiliation(s)
- Miyako H. Warrington
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Sienna Beaulieu
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Riley Jellicoe
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Sjoerd Vos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
- Graduate School of Life Sciences, University of Utrecht, Utrecht, Netherlands
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002 South Africa
| | - Jane M. Waterman
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002 South Africa
| |
Collapse
|
24
|
Haave-Audet E, Martin JGA, Wijmenga JJ, Mathot KJ. Information Gathering Is Associated with Increased Survival: A Field Experiment in Black-Capped Chickadees ( Poecile atricapillus). Am Nat 2024; 203:109-123. [PMID: 38207133 DOI: 10.1086/727509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractSampling, investing time or energy to learn about the environment, allows organisms to track changes in resource distribution and quality. The use of sampling is predicted to change as a function of energy expenditure, food availability, and starvation risk, all of which can vary both within and among individuals. We studied sampling behavior in a field study with black-capped chickadees (Poecile atricapillus) and show that individuals adjust their use of sampling as a function of ambient temperature (a proxy for energy expenditure), the presence of an alternative food source (yes or no, a proxy for risk of energy shortfall), and their interaction, as predicted by models of optimal sampling. We also observed repeatable differences in sampling. Some individuals consistently sampled more, and individuals that sampled more overall also had a higher annual survival. These results are consistent with among-individual differences in resource acquisition (e.g., food caches or dominance-related differences in priority access to feeders), shaping among-individual differences in both sampling and survival, with greater resource acquisition leading to both higher sampling and higher survival. Although this explanation requires explicit testing, it is in line with several recent studies suggesting that variation in resource acquisition is a key mechanism underlying animal personality.
Collapse
|
25
|
Hubáček J, Gvoždík L. Terrestrial amphibians respond to rapidly changing temperatures with individual plasticity of exploratory behaviour. J Therm Biol 2024; 119:103757. [PMID: 38043243 DOI: 10.1016/j.jtherbio.2023.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Terrestrial ectotherms react to acute changes in environmental temperatures by adjusting their behaviour. Evaluating the adaptive potential of these behavioural adjustments requires information on their repeatability and plasticity. We examined behavioural response (exploration) to acute temperature change in two amphibian taxa, alpine (Ichthyosaura alpestris) and smooth (Lissotriton vulgaris) newts. These responses were investigated at both population and individual levels under multiple thermal contexts (dimensions), represented by the direction and range of changing temperature and rearing thermal regimes. Population-level analyses showed species-specific, non-additive effects of direction and range of temperature change on acute thermal reaction norms for exploration, but explained only a low amount (7-23%) of total variation in exploration. In contrast, within- and among-individual variation in acute thermal reaction norm parameters explained 42-50% of total variation in the examined trait. Although immediate thermal responses varied among individuals (repeatability = 0.07 to 0.53), they were largely shaped by environmental contexts during repeated trials. We conclude that these amphibians respond to acute temperature change through individual plasticity of behavioural traits. A repeated-measures approach under multiple thermal contexts will be needed to identify the selective and plastic potential of behavioural responses used by juvenile newts and perhaps other ectotherm taxa to cope with rapidly changing environmental temperatures.
Collapse
Affiliation(s)
- Jiří Hubáček
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.
| |
Collapse
|
26
|
Monk CT, Power M, Freitas C, Harrison PM, Heupel M, Kuparinen A, Moland E, Simpfendorfer C, Villegas-Ríos D, Olsen EM. Atlantic cod individual spatial behaviour and stable isotope associations in a no-take marine reserve. J Anim Ecol 2023; 92:2333-2347. [PMID: 37843043 DOI: 10.1111/1365-2656.14014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
Collapse
Affiliation(s)
- Christopher T Monk
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Power
- Biology Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Carla Freitas
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- MARE, Marine and Environmental Sciences Center, Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Philip M Harrison
- Department of Biology and Faculty of Forestry and Environmental Management, Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Michelle Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Even Moland
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Colin Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Esben M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
27
|
Mezőfi L, Markó V, Taranyi DÁ, Markó G. Sex-specific life-history strategies among immature jumping spiders: Differences in body parameters and behavior. Curr Zool 2023; 69:535-551. [PMID: 37637309 PMCID: PMC10449423 DOI: 10.1093/cz/zoac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2023] Open
Abstract
Selection forces often generate sex-specific differences in various traits closely related to fitness. While in adult spiders (Araneae), sexes often differ in coloration, body size, antipredator, or foraging behavior, such sex-related differences are less pronounced among immatures. However, sex-specific life-history strategies may also be adaptive for immatures. Thus, we hypothesized that among spiders, immature individuals show different life-history strategies that are expressed as sex-specific differences in body parameters and behavioral features, and also in their relationships. We used immature individuals of a protandrous jumping spider, Carrhotus xanthogramma, and examined sex-related differences. The results showed that males have higher mass and larger prosoma than females. Males were more active and more risk tolerant than females. Male activity increased with time, and larger males tended to capture the prey faster than small ones, while females showed no such patterns. However, females reacted to the threatening abiotic stimuli more with the increasing number of test sessions. In both males and females, individuals with better body conditions tended to be more risk averse. Spiders showed no sex-specific differences in interindividual behavioral consistency and in intraindividual behavioral variation in the measured behavioral traits. Finally, we also found evidence for behavioral syndromes (i.e., correlation between different behaviors), where in males, only the activity correlated with the risk-taking behavior, but in females, all the measured behavioral traits were involved. The present study demonstrates that C. xanthogramma sexes follow different life-history strategies even before attaining maturity.
Collapse
Affiliation(s)
- László Mezőfi
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Viktor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Dóra Ágnes Taranyi
- Institute of Viticulture and Enology, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Gábor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| |
Collapse
|
28
|
Peignier M, Araya-Ajoy YG, Ringler M, Ringler E. Personality traits differentially affect components of reproductive success in a Neotropical poison frog. Proc Biol Sci 2023; 290:20231551. [PMID: 37727087 PMCID: PMC10509575 DOI: 10.1098/rspb.2023.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Individual reproductive success has several components, including the acquisition of mating partners, offspring production, and offspring survival until adulthood. While the effects of certain personality traits-such as boldness or aggressiveness-on single components of reproductive success are well studied, we know little about the composite and multifaceted effects behavioural traits can have on all the aspects of reproductive success. Behavioural traits positively linked to one component of reproductive success might not be beneficial for other components, and these effects may differ between sexes. We investigated the influence of boldness, aggressiveness, and exploration on the number of mating partners, mating events, and offspring surviving until adulthood in males and females of the Neotropical poison frog Allobates femoralis. Behavioural traits had different-even opposite-effects on distinct components of reproductive success in both males and females. For example, males who displayed high levels of aggressiveness and exploration (or low levels of aggressiveness and exploration) managed to attract high number of mating partners, while males with low levels of boldness, low levels of aggressiveness, and high levels of exploration had the most offspring surviving until adulthood. Our results therefore suggest correlational selection favouring particular combinations of behavioural traits.
Collapse
Affiliation(s)
- Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Yimen G. Araya-Ajoy
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Max Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
- Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, 8010 Graz, Austria
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
- Messerli Research Institute, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
29
|
Valdés A, Arnold PA, Ehrlén J. Spring temperature drives phenotypic selection on plasticity of flowering time. Proc Biol Sci 2023; 290:20230670. [PMID: 37670583 PMCID: PMC10510446 DOI: 10.1098/rspb.2023.0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions influence the optimal plastic response. Using 22 years of field observations for the perennial forest herb Lathyrus vernus, we assessed phenotypic selection on among-individual variation in reaction norms of flowering time to spring temperature, and examined if among-year variation in selection on plasticity was associated with spring temperature conditions. We found significant among-individual variation in mean flowering time and flowering time plasticity, and that plants that flowered earlier also had a more plastic flowering time. Selection favoured individuals with an earlier mean flowering time and a lower thermal plasticity of flowering time. Less plastic individuals were more strongly favoured in colder springs, indicating that spring temperature influenced optimal flowering time plasticity. Our results show how selection on plasticity can be linked to climatic conditions, and illustrate how we can understand and predict evolutionary responses of organisms to changing environmental conditions.
Collapse
Affiliation(s)
- Alicia Valdés
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Pieter A. Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Delmé C, Jackson N, Class B, Strickland K, Potvin DA, Frère CH. Adaptive significance of affiliative behaviour differs between sexes in a wild reptile population. Proc Biol Sci 2023; 290:20230805. [PMID: 37339740 PMCID: PMC10281801 DOI: 10.1098/rspb.2023.0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
In recent years, we have begun to appreciate that social behaviours might exhibit repeatable among-individual variation. Such behavioural traits may even covary and have critical evolutionary implications. Importantly, some social behaviours such as aggressiveness have been shown to provide fitness benefits, including higher reproductive success and survival. However, fitness consequences of affiliative behaviours, especially between or among sexes, can be more challenging to establish. Using a longitudinal behavioural dataset (2014-2021) collected on eastern water dragons (Intellagama lesueurii), we investigated whether various aspects of affiliative behaviour (i) were repeatable across years, (ii) covaried with each other at the among-individual level, and (iii) influenced individuals' fitness. In particular, we considered affiliative behaviours towards opposite-sex and same-sex conspecifics separately. We found that social traits were repeatable and covaried with each other similarly for both sexes. More notably, we found that male reproductive success was positively correlated with the number of female associates and the proportion of time spent with females, while females' reproductive success was not correlated with any of the measured social behaviour metrics. Overall, these findings suggest that selection may be acting differently on social behaviour of male and female eastern water dragons.
Collapse
Affiliation(s)
- C. Delmé
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - N. Jackson
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - B. Class
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - K. Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D. A. Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - C. H. Frère
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Wice EW, Saltz JB. Indirect genetic effects for social network structure in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220075. [PMID: 36802774 PMCID: PMC9939268 DOI: 10.1098/rstb.2022.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 02/21/2023] Open
Abstract
The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Eric Wesley Wice
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
32
|
Laforge MP, Webber QMR, Vander Wal E. Plasticity and repeatability in spring migration and parturition dates with implications for annual reproductive success. J Anim Ecol 2023; 92:1042-1054. [PMID: 36871141 DOI: 10.1111/1365-2656.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions. Behaviours can further be repeatable. For example, timing of behaviours and life history traits such as timing of reproduction may indicate phenotypic variation. Such variation may buffer animal populations against the consequences of variation and change. Our goal was to quantify plasticity and repeatability in migration and parturition timing in response to timing of snowmelt and green-up in a migratory herbivore (caribou, Rangifer tarandus, n = 132 ID-years) and their effect on reproductive success. We used behavioural reaction norms to quantify repeatability in timing of migration and timing of parturition in caribou and their plasticity to timing of spring events, while also quantifying phenotypic covariance between behavioural and life-history traits. Timing of migration for individual caribou was positively correlated with timing of snowmelt. The timing of parturition for individual caribou varied as a function of inter-annual variation in timing of snowmelt and green-up. Repeatability for migration timing was moderate, but low for timing of parturition. Plasticity did not affect reproductive success. We also did not detect any evidence of phenotypic covariance among any traits examined-timing of migration was not correlated with timing of parturition, and neither was there a correlation in the plasticity of these traits. Repeatability in migration timing suggests the possibility that the timing of migration in migratory herbivores could evolve if the repeatability detected in this study has a genetic or otherwise heritable basis, but observed plasticity may obviate the need for an evolutionary response. Our results also suggest that observed shifts in caribou parturition timing are due to plasticity as opposed to an evolutionary response to changing conditions. While this provides some evidence that populations may be buffered from the consequences of climate change via plasticity, a lack of repeatability in parturition timing could impede adaptation as warming increases.
Collapse
Affiliation(s)
- Michel P Laforge
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Quinn M R Webber
- Cognitive and Behavioural Ecology, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Cognitive and Behavioural Ecology, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
33
|
Xu W, Gigliotti LC, Royauté R, Sawyer H, Middleton AD. Fencing amplifies individual differences in movement with implications on survival for two migratory ungulates. J Anim Ecol 2023; 92:677-689. [PMID: 36598334 DOI: 10.1111/1365-2656.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Laura C Gigliotti
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Royauté
- French National Institute for Agriculture, Food, and Environment (INRAE), Versailles cedex, France
| | - Hall Sawyer
- Western Ecosystems Technology, Inc., Laramie, Wyoming, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
34
|
Decreasing Trends of Chinstrap Penguin Breeding Colonies in a Region of Major and Ongoing Rapid Environmental Changes Suggest Population Level Vulnerability. DIVERSITY 2023. [DOI: 10.3390/d15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The bulk of the chinstrap penguin (Pygoscelis antarcticus) global population inhabits the Antarctic Peninsula and Scotia Sea, which is a region undergoing rapid environmental changes. Consequently, regional level decreases for this species are widespread. This study aimed to evaluate the level of breeding colony changes in the Antarctic Peninsula and South Orkney Islands, which, roughly, hold 60% of the global chinstrap penguin population. The results indicated that within a period of 40 to 50 years, 62% of colonies underwent decreases, and the majority of colonies experienced decreases over 50%, which is represented by numbers in the range of 2000 to 40,000 pairs. Within three generations’ time, the whole population for the area had experienced decreases of around 30%. These levels of decrease add to the fact that the suspected causes are not likely reversible in the short- to mid-term, calling for increased concern about the conservation of this species.
Collapse
|
35
|
Newediuk L, Bath DR. Meta-analysis reveals between-population differences affect the link between glucocorticoids and population health. CONSERVATION PHYSIOLOGY 2023; 11:coad005. [PMID: 36845329 PMCID: PMC9945071 DOI: 10.1093/conphys/coad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glucocorticoids are a popular tool for monitoring health of animal populations because they can increase with environmental stressors and can indicate chronic stress. However, individual responses to stressors create variation in the glucocorticoid-fitness relationship within populations. The inconsistency in this relationship calls into question the widespread use of glucocorticoids in conservation. We investigated the sources of variation in the glucocorticoid-fitness relationship by conducting a meta-analysis across a diverse set of species exposed to conservation-relevant stressors. We first quantified the extent to which studies inferred population health from glucocorticoids without first validating the glucocorticoid-fitness relationship in their own populations. We also tested whether population-level information like life history stage, sex and species longevity influenced the relationship between glucocorticoids and fitness. Finally, we tested for a universally consistent relationship between glucocorticoids and fitness across studies. We found more than half of peer-reviewed studies published between 2008 and 2022 inferred population health solely based on glucocorticoid levels. While life history stage explained some variation in the relationship between glucocorticoids and fitness, we found no consistent relationship between them. Much of the variation in the relationship could be the result of idiosyncratic characteristics of declining populations, such as unstable demographic structure, that coincided with large amounts of variation in glucocorticoid production. We suggest that conservation biologists capitalize on this variation in glucocorticoid production by declining populations by using the variance in glucocorticoid production as an early warning for declines in population health.
Collapse
Affiliation(s)
- Levi Newediuk
- Corresponding author: Department of Biology, Memorial University, 45 Arctic Avenue, St. John's, Newfoundland A1B 3X9, Canada.
| | - Devon R Bath
- Department of Ocean Sciences, Memorial University, 0 Marine Lab Road, St. John's, Newfoundland A1C 5S7, Canada
| |
Collapse
|
36
|
Conformity and differentiation are two sides of the same coin. Trends Ecol Evol 2023; 38:545-553. [PMID: 36803986 DOI: 10.1016/j.tree.2023.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Variation between individuals is a key component of selection and hence evolutionary change. Social interactions are important drivers of variation, potentially making behaviour more similar (i.e., conform) or divergent (i.e., differentiate) between individuals. While documented across a wide range of animals, behaviours and contexts, conformity and differentiation are typically considered separately. Here, we argue that rather than independent concepts, they can be integrated onto a single scale that considers how social interactions drive changes in interindividual variance within groups: conformity reduces variance within groups while differentiation increases it. We discuss the advantages of placing conformity and differentiation at different ends of a single scale, allowing for a deeper understanding of the relationship between social interactions and interindividual variation.
Collapse
|
37
|
Montalcini CM, Toscano MJ, Gebhardt-Henrich SG, Petelle MB. Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary. Sci Rep 2023; 13:2377. [PMID: 36759525 PMCID: PMC9911743 DOI: 10.1038/s41598-023-29587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Measuring intra- and inter-individual variation in movement can bring important insights into the fundamental ecology of animals and their welfare. Although previous studies identified consistent differences in movements of laying hens within commercial aviaries, the level of consistency was not quantified, limiting our capacity to understand the importance of individual movements for welfare. We aimed to quantify the scope of intra- and inter-individual differences in movements of commercial laying hens and examined their associations with indicators of welfare at the end of production. We quantified individual differences in one composite daily movement score for 80 hens over 54 days post-transfer to a quasi-commercial aviary. Results showed consistent inter-individual differences in movement averages, explaining 44% of the variation, as well as individual variation in predictability and temporal plasticity (at the population-level, hens increased their movements for 39 days). Hens that were more predictable in their daily movements had more severe keel bone fractures at the end of production while we found no such correlation between daily movement averages (individual intercept) and welfare indicators. Our findings highlight the importance of inter-individual difference in intra-individual variation of movements to improve poultry welfare.
Collapse
Affiliation(s)
- Camille M Montalcini
- ZTHZ, Division of Animal Welfare, VPH Institute, University of Bern, 3052, Zollikofen, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Michael J Toscano
- ZTHZ, Division of Animal Welfare, VPH Institute, University of Bern, 3052, Zollikofen, Switzerland
| | | | - Matthew B Petelle
- ZTHZ, Division of Animal Welfare, VPH Institute, University of Bern, 3052, Zollikofen, Switzerland.
| |
Collapse
|
38
|
Salazar SM, Hlebowicz K, Komdeur J, Korsten P. Repeatable parental risk taking across manipulated levels of predation threat: no individual variation in plasticity. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Fisher DN. Direct and indirect phenotypic effects on sociability indicate potential to evolve. J Evol Biol 2023; 36:209-220. [PMID: 36263954 PMCID: PMC10092521 DOI: 10.1111/jeb.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023]
Abstract
The decision to leave or join a group is important as group size influences many aspects of organisms' lives and their fitness. This tendency to socialise with others, sociability, should be influenced by genes carried by focal individuals (direct genetic effects) and by genes in partner individuals (indirect genetic effects), indicating the trait's evolution could be slower or faster than expected. However, estimating these genetic parameters is difficult. Here, in a laboratory population of the cockroach Blaptica dubia, I estimate phenotypic parameters for sociability: repeatability (R) and repeatable influence (RI), that indicate whether direct and indirect genetic effects respectively are likely. I also estimate the interaction coefficient (Ψ), which quantifies how strongly a partner's trait influences the phenotype of the focal individual and is key in models for the evolution of interacting phenotypes. Focal individuals were somewhat repeatable for sociability across a 3-week period (R = 0.080), and partners also had marginally consistent effects on focal sociability (RI = 0.053). The interaction coefficient was non-zero, although in opposite sign for the sexes; males preferred to associate with larger individuals (Ψmale = -0.129), while females preferred to associate with smaller individuals (Ψfemale = 0.071). Individual sociability was consistent between dyadic trials and in social networks of groups. These results provide phenotypic evidence that direct and indirect genetic effects have limited influence on sociability, with perhaps most evolutionary potential stemming from heritable effects of the body mass of partners. Sex-specific interaction coefficients may produce sexual conflict and the evolution of sexual dimorphism in social behaviour.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
40
|
Prentice PM, Houslay TM, Wilson AJ. Exploiting animal personality to reduce chronic stress in captive fish populations. Front Vet Sci 2022; 9:1046205. [PMID: 36590805 PMCID: PMC9794626 DOI: 10.3389/fvets.2022.1046205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress is a major source of welfare problems in many captive populations, including fishes. While we have long known that chronic stress effects arise from maladaptive expression of acute stress response pathways, predicting where and when problems will arise is difficult. Here we highlight how insights from animal personality research could be useful in this regard. Since behavior is the first line of organismal defense when challenged by a stressor, assays of shy-bold type personality variation can provide information about individual stress response that is expected to predict susceptibility to chronic stress. Moreover, recent demonstrations that among-individual differences in stress-related physiology and behaviors are underpinned by genetic factors means that selection on behavioral biomarkers could offer a route to genetic improvement of welfare outcomes in captive fish stocks. Here we review the evidence in support of this proposition, identify remaining empirical gaps in our understanding, and set out appropriate criteria to guide development of biomarkers. The article is largely prospective: fundamental research into fish personality shows how behavioral biomarkers could be used to achieve welfare gains in captive fish populations. However, translating potential to actual gains will require an interdisciplinary approach that integrates the expertise and viewpoints of researchers working across animal behavior, genetics, and welfare science.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Thomas M. Houslay
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,*Correspondence: Alastair J. Wilson
| |
Collapse
|
41
|
Background matching explains repeatable individual variation in the defence strategies of a stick insect. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Brand JA, Naimo AC, Michelangeli M, Martin JM, Sih A, Wong BBM, Chapple DG. Social context mediates the expression of a personality trait in a gregarious lizard. Oecologia 2022; 200:359-369. [PMID: 36173475 PMCID: PMC9675666 DOI: 10.1007/s00442-022-05269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
The social environment is a key factor that influences behavioural traits across a wide array of species. Yet, when investigating individual differences in behaviour, studies tend to measure animals in isolation from other conspecifics-even in social species. Surprisingly, whether behavioural traits measured in isolation are predictive of individual-level behaviour when in social groups is still poorly understood. Here, we repeatedly measured risk-taking behaviour (i.e. boldness; 741 total trials) in both the presence and absence of conspecifics in a social lizard, the delicate skink (Lampropholis delicata). Further, we manipulated food availability during group trials to test whether the effect of the social environment on risk-taking behaviour was mediated by competition over resources. Using 105 lizards collected from three independent populations, we found that individual risk-taking behaviour was repeatable when measured in either social isolation or within groups both with and without food resources available. However, lizards that were bolder during individual trials were not also bolder when in groups, regardless of resource availability. This was largely driven by individual differences in social behavioural plasticity, whereby individual skinks responded differently to the presence of conspecifics. Together, this resulted in a rank order change of individual behavioural types across the social conditions. Our results highlight the importance of the social environment in mediating animal personality traits across varying levels of resource availability. Further, these findings suggest that behavioural traits when measured in isolation, may not reflect individual variation in behaviour when measured in more ecologically realistic social groups.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| | - Annalise C Naimo
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Godin JGJ, Le Roy A, Burns AL, Seebacher F, Ward AJ. Pace-of-life syndrome: linking personality, metabolism and colour ornamentation in male guppies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours. Sci Rep 2022; 12:19425. [PMID: 36371532 PMCID: PMC9653382 DOI: 10.1038/s41598-022-24076-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Farm animal personality traits are of interest since they can help predict individual variation in behaviour and productivity. However, personality traits are currently inferred using behavioural tests which are impractical outside of research settings. To meet the definition of a personality trait, between-individual differences in related behaviours must be temporally as well as contextually stable. In this study, we used data collected by computerised milk feeders from 76 calves over two contexts, pair housing and group housing, to test if between-individual differences in feeding rate and meal frequency meet the definition for a personality trait. Results show that between-individual differences in feeding rate and meal frequency were related, and, for each behaviour, between-individual differences were positively and significantly correlated across contexts. In addition, feeding rate and meal frequency were positively and significantly associated with weight gain. Together, these results indicate the existence of a personality trait which positions high meal frequency, fast drinking, fast growing calves at one end and low meal frequency, slow drinking, and slow growing calves at the other. Our results suggest that data already available on commercial farms could be harnessed to establish a personality trait.
Collapse
|
45
|
Warrington MH, Beaulieu S, Vos S, Jellicoe R, Bennett NC, Waterman JM. Personalities are not associated with different reproductive tactics in male Cape ground squirrels, Xerus inauris. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Rödel HG, Jardim V, Rangassamy M, Jaravel L, Jacquet D, Monclús R, Féron C, Costantini D. Early life parameters and personality affect oxidative status during adulthood in an altricial rodent. Physiol Rep 2022; 10:e15427. [PMID: 36200138 PMCID: PMC9535260 DOI: 10.14814/phy2.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023] Open
Abstract
It is increasingly recognized that alterations of the cellular oxidative status might be an important cost underlying challenging early life conditions. For example, an increased litter size can impose challenges as the offspring will face increased competition for maternal resources. Within a litter, individuals with relatively higher starting mass typically show higher growth rates, which can lead to increased oxidative damage. We investigated the long-term consequences of these early life parameters on the oxidative status in mature mound-building mice (Mus spicilegus). Individual differences in the animals' exploration tendency were assessed by repeated open field and novel object tests. We predicted less exploratory phenotypes, which typically show a higher stress responsiveness, to be particularly susceptible to possible effects of these early life parameters on oxidative status. We quantified oxidative damage of DNA (8-hydroxy-2'-deoxyguanosine levels, 8-OHdG) and proteins (protein carbonyl content, PCC), and activities of the antioxidants catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) in liver and skeletal muscle tissue. 8-OHdG levels were positively associated with CAT and SOD in both tissues, indicating that increased oxidative DNA damage was associated with an upregulation of antioxidant production. Hepatic DNA damage after maturity was increased in animals from larger litters. In less exploratory animals, DNA damage and the activity of CAT and SOD in the muscle were increased, but only in individuals with higher relative starting mass (measured on postnatal day 9). This interaction may be explained by the typically higher adrenocortical activity in less exploratory phenotypes and by the higher growth in relatively heavier pups, two factors known to increase oxidative stress. These findings contribute to enlightening the complex interplay between early life conditions, personality, and oxidative status.
Collapse
Affiliation(s)
- Heiko G. Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - Veridiana Jardim
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
- Laboratory of Ethology, Ecology and Evolution of Social Insects, Department of Experimental PsychologyUniversity of Sao PauloSão PauloBrazil
| | - Marylin Rangassamy
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - Ludivine Jaravel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - Daphné Jacquet
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - Raquel Monclús
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - Christophe Féron
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC)Université Sorbonne Paris NordVilletaneuseFrance
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA)Muséum National d'Histoire Naturelle, CNRS, CP32ParisFrance
| |
Collapse
|
47
|
Palmer C, Jimenez C, Bassey G, Ruiz E, Villalobos Cubero T, Chavarria Diaz MM, Harrison XA, Puschendorf R. Cold water and harmful algal blooms linked to coral reef collapse in the Eastern Tropical Pacific. PeerJ 2022; 10:e14081. [PMID: 36193424 PMCID: PMC9526400 DOI: 10.7717/peerj.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background With conventional coral reef conservation methods proving ineffective against intensifying climate change, efforts have focussed on augmenting coral tolerance to warmer water-the primary driver of coral declines. We document coral cover and composition in relation to sea surface temperature (SST) over 25-years, of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific. Methods Using reef survey data and sea surface temperature (SST) dating back over 25-years, we document coral cover and composition of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific in relation to thermal highs and lows. Results A ubiquitous and catastrophic coral die-off event occurred in 2009, driven by SST minima and likely by the presence of extreme harmful algal blooms. Coral cover was dramatically reduced and coral composition shifted from dominant branching Pocillopora to massive Pavona, Porites, and Gardineroseris. The lack of coral recovery in the decade since indicates a breach in ecosystem tipping-point and highlights a need for resilience-based management (RBM) and restoration. We propose a locally tailored and globally scalable approach to coral reef declines that is founded in RBM and informed by coral health dynamics.
Collapse
Affiliation(s)
- Caroline Palmer
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom,Seeking Survivors, Yelverton, Devon, United Kingdom
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Nicosia, Cyprus,Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
| | | | - Eleazar Ruiz
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Jose, Costa Rica
| | | | | | - Xavier A. Harrison
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom
| |
Collapse
|
48
|
Similarity of locomotor personality trait within parents improves their reproduction in the common vole (Microtus arvalis) under laboratory conditions. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Amin B, Jennings DJ, Norman A, Ryan A, Ioannidis V, Magee A, Haughey HA, Haigh A, Ciuti S. Neonate personality affects early-life resource acquisition in a large social mammal. Behav Ecol 2022; 33:1025-1035. [PMID: 36382227 PMCID: PMC9664924 DOI: 10.1093/beheco/arac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Although it is widely acknowledged that animal personality plays a key role in ecology, current debate focuses on the exact role of personality in mediating life-history trade-offs. Crucial for our understanding is the relationship between personality and resource acquisition, which is poorly understood, especially during early stages of development. Here we studied how among-individual differences in behavior develop over the first 6 months of life, and their potential association with resource acquisition in a free-ranging population of fallow deer (Dama dama). We related neonate physiological (heart rate) and behavioral (latency to leave at release) anti-predator responses to human handling to the proportion of time fawns spent scanning during their first summer and autumn of life. We then investigated whether there was a trade-off between scanning time and foraging time in these juveniles, and how it developed over their first 6 months of life. We found that neonates with longer latencies at capture (i.e., risk-takers) spent less time scanning their environment, but that this relationship was only present when fawns were 3-6 months old during autumn, and not when fawns were only 1-2 months old during summer. We also found that time spent scanning was negatively related to time spent foraging and that this relationship became stronger over time, as fawns gradually switch from a nutrition rich (milk) to a nutrition poor (grass) diet. Our results highlight a potential mechanistic pathway in which neonate personality may drive differences in early-life resource acquisition of a large social mammal.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Alison Norman
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew Ryan
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Vasiliki Ioannidis
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alice Magee
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Hayley-Anne Haughey
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Amin B, Verbeek L, Haigh A, Griffin LL, Ciuti S. Risk-taking neonates do not pay a survival cost in a free-ranging large mammal, the fallow deer ( Dama dama). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220578. [PMID: 36147938 PMCID: PMC9490327 DOI: 10.1098/rsos.220578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 05/10/2023]
Abstract
Recent debate has focused on whether variation in personality primarily reflects variation in resource allocation or resource acquisition of individuals. These two mechanisms predict different relationships between personality and survival. If personality mainly reflects variation in resource allocation, then bold (i.e. risk-taking) individuals are expected to live shorter lives, whereas the opposite pattern is expected with resource acquisition. Here we studied the relationship between neonate personality and early-life survival in 269 juveniles of a population of fallow deer (Dama dama). We found that bolder individuals paid no apparent survival cost. Interestingly, among-individual differences in the physiological response at capture (heart rates, which covary with the behavioural response, i.e. latency to leave) were linked to survival, where individuals with lower heart rates when handled by humans had a higher probability of early-life survival. This suggests that bolder individuals may be of higher state than their shyer counterparts. As the first study linking neonate personality to survival in a free-ranging mammal, we provide novel insights into drivers behind early-life individual variation.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura Verbeek
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L. Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|