1
|
Kwon S, Safer J, Nguyen DT, Hoksza D, May P, Arbesfeld JA, Rubin AF, Campbell AJ, Burgin A, Iqbal S. Genomics 2 Proteins portal: a resource and discovery tool for linking genetic screening outputs to protein sequences and structures. Nat Methods 2024; 21:1947-1957. [PMID: 39294369 PMCID: PMC11466821 DOI: 10.1038/s41592-024-02409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Recent advances in AI-based methods have revolutionized the field of structural biology. Concomitantly, high-throughput sequencing and functional genomics have generated genetic variants at an unprecedented scale. However, efficient tools and resources are needed to link disparate data types-to 'map' variants onto protein structures, to better understand how the variation causes disease, and thereby design therapeutics. Here we present the Genomics 2 Proteins portal ( https://g2p.broadinstitute.org/ ): a human proteome-wide resource that maps 20,076,998 genetic variants onto 42,413 protein sequences and 77,923 structures, with a comprehensive set of structural and functional features. Additionally, the Genomics 2 Proteins portal allows users to interactively upload protein residue-wise annotations (for example, variants and scores) as well as the protein structure beyond databases to establish the connection between genomics to proteins. The portal serves as an easy-to-use discovery tool for researchers and scientists to hypothesize the structure-function relationship between natural or synthetic variations and their molecular phenotypes.
Collapse
Affiliation(s)
- Seulki Kwon
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jordan Safer
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Duyen T Nguyen
- PATTERN, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Hoksza
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jeremy A Arbesfeld
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alan F Rubin
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alex Burgin
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Data Sciences, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
2
|
Waman VP, Ashford P, Lam SD, Sen N, Abbasian M, Woodridge L, Goldtzvik Y, Bordin N, Wu J, Sillitoe I, Orengo CA. Predicting human and viral protein variants affecting COVID-19 susceptibility and repurposing therapeutics. Sci Rep 2024; 14:14208. [PMID: 38902252 PMCID: PMC11190248 DOI: 10.1038/s41598-024-61541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
Collapse
Affiliation(s)
- Vaishali P Waman
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Neeladri Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Mahnaz Abbasian
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Laurel Woodridge
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yonathan Goldtzvik
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Jiaxin Wu
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Veltra D, Marinakis NM, Kotsios I, Delaporta P, Kekou K, Kosma K, Traeger-Synodinos J, Sofocleous C. Lethal Complications and Complex Genotypes in Shwachman Diamond Syndrome: Report of a Family with Recurrent Neonatal Deaths and a Case-Based Brief Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2024; 11:705. [PMID: 38929284 PMCID: PMC11201973 DOI: 10.3390/children11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Kotsios
- Neonatal Intensive Care Unit, “Hippocration” General Hospital, 54642 Thessaloniki, Greece
| | - Polyxeni Delaporta
- Thalassemia Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| |
Collapse
|
4
|
Veltra D, Theodorou V, Katsalouli M, Vorgia P, Niotakis G, Tsaprouni T, Pons R, Kosma K, Kampouraki A, Tsoutsou I, Makrythanasis P, Kekou K, Traeger-Synodinos J, Sofocleous C. SCN1A Channels a Wide Range of Epileptic Phenotypes: Report of Novel and Known Variants with Variable Presentations. Int J Mol Sci 2024; 25:5644. [PMID: 38891831 PMCID: PMC11171476 DOI: 10.3390/ijms25115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
SCN1A, the gene encoding for the Nav1.1 channel, exhibits dominant interneuron-specific expression, whereby variants disrupting the channel's function affect the initiation and propagation of action potentials and neuronal excitability causing various types of epilepsy. Dravet syndrome (DS), the first described clinical presentation of SCN1A channelopathy, is characterized by severe myoclonic epilepsy in infancy (SMEI). Variants' characteristics and other genetic or epigenetic factors lead to extreme clinical heterogeneity, ranging from non-epileptic conditions to developmental and epileptic encephalopathy (DEE). This current study reports on findings from 343 patients referred by physicians in hospitals and tertiary care centers in Greece between 2017 and 2023. Positive family history for specific neurologic disorders was disclosed in 89 cases and the one common clinical feature was the onset of seizures, at a mean age of 17 months (range from birth to 15 years old). Most patients were specifically referred for SCN1A investigation (Sanger Sequencing and MLPA) and only five for next generation sequencing. Twenty-six SCN1A variants were detected, including nine novel causative variants (c.4567A>Τ, c.5564C>A, c.2176+2T>C, c.3646G>C, c.4331C>A, c.1130_1131delGAinsAC, c.1574_1580delCTGAGGA, c.4620A>G and c.5462A>C), and are herein presented, along with subsequent genotype-phenotype associations. The identification of novel variants complements SCN1A databases extending our expertise on genetic counseling and patient and family management including gene-based personalized interventions.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece
| | - Virginia Theodorou
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Marina Katsalouli
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Pelagia Vorgia
- Agrifood and Life Sciences Institute, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Georgios Niotakis
- Pediatric Neurology Department, Venizelion Hospital, 71409 Heraklion, Greece;
| | | | - Roser Pons
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece;
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Afroditi Kampouraki
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Irene Tsoutsou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Department of Genetic Medicine and Development, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| |
Collapse
|
5
|
Striedner Y, Arbeithuber B, Moura S, Nowak E, Reinhardt R, Muresan L, Salazar R, Ebner T, Tiemann-Boege I. Exploring the Micro-Mosaic Landscape of FGFR3 Mutations in the Ageing Male Germline and Their Potential Implications in Meiotic Differentiation. Genes (Basel) 2024; 15:191. [PMID: 38397181 PMCID: PMC10888257 DOI: 10.3390/genes15020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Advanced paternal age increases the risk of transmitting de novo germline mutations, particularly missense mutations activating the receptor tyrosine kinase (RTK) signalling pathway, as exemplified by the FGFR3 mutation, which is linked to achondroplasia (ACH). This risk is attributed to the expansion of spermatogonial stem cells carrying the mutation, forming sub-clonal clusters in the ageing testis, thereby increasing the frequency of mutant sperm and the number of affected offspring from older fathers. While prior studies proposed a correlation between sub-clonal cluster expansion in the testis and elevated mutant sperm production in older donors, limited data exist on the universality of this phenomenon. Our study addresses this gap by examining the testis-expansion patterns, as well as the increases in mutations in sperm for two FGFR3 variants-c.1138G>A (p.G380R) and c.1948A>G (p.K650E)-which are associated with ACH or thanatophoric dysplasia (TDII), respectively. Unlike the ACH mutation, which showed sub-clonal expansion events in an aged testis and a significant increase in mutant sperm with the donor's age, as also reported in other studies, the TDII mutation showed focal mutation pockets in the testis but exhibited reduced transmission into sperm and no significant age-related increase. The mechanism behind this divergence remains unclear, suggesting potential pleiotropic effects of aberrant RTK signalling in the male germline, possibly hindering differentiation requiring meiosis. This study provides further insights into the transmission risks of micro-mosaics associated with advanced paternal age in the male germline.
Collapse
Affiliation(s)
- Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Elisabeth Nowak
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Ronja Reinhardt
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 2EL, UK;
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria;
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (Y.S.); (B.A.); (E.N.); (R.R.)
| |
Collapse
|
6
|
Yavuz BR, Arici MK, Demirel HC, Tsai CJ, Jang H, Nussinov R, Tuncbag N. Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome. NPJ Genom Med 2023; 8:37. [PMID: 37925498 PMCID: PMC10625621 DOI: 10.1038/s41525-023-00377-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
Collapse
Affiliation(s)
- Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey.
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
7
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. Endocrinology 2023; 164:bqad159. [PMID: 37897495 PMCID: PMC10651073 DOI: 10.1210/endocr/bqad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Matthew D McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Robert A Beckman
- Department of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
8
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554116. [PMID: 37662291 PMCID: PMC10473676 DOI: 10.1101/2023.08.21.554116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN
| | | | - Matthew D. McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Robert A. Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
9
|
Saffari A, Lau T, Tajsharghi H, Karimiani EG, Kariminejad A, Efthymiou S, Zifarelli G, Sultan T, Toosi MB, Sedighzadeh S, Siu VM, Ortigoza-Escobar JD, AlShamsi AM, Ibrahim S, Al-Sannaa NA, Al-Hertani W, Sandra W, Tarnopolsky M, Alavi S, Li C, Day-Salvatore DL, Martínez-González MJ, Levandoski KM, Bedoukian E, Madan-Khetarpal S, Idleburg MJ, Menezes MJ, Siddharth A, Platzer K, Oppermann H, Smitka M, Collins F, Lek M, Shahrooei M, Ghavideldarestani M, Herman I, Rendu J, Faure J, Baker J, Bhambhani V, Calderwood L, Akhondian J, Imannezhad S, Mirzadeh HS, Hashemi N, Doosti M, Safi M, Ahangari N, Torbati PN, Abedini S, Salpietro V, Gulec EY, Eshaghian S, Ghazavi M, Pascher MT, Vogel M, Abicht A, Moutton S, Bruel AL, Rieubland C, Gallati S, Strom TM, Lochmüller H, Mohammadi MH, Alvi JR, Zackai EH, Keena BA, Skraban CM, Berger SI, Andrew EH, Rahimian E, Morrow MM, Wentzensen IM, Millan F, Henderson LB, Dafsari HS, Jungbluth H, Gomez-Ospina N, McRae A, Peter M, Veltra D, Marinakis NM, Sofocleous C, Ashrafzadeh F, Pehlivan D, Lemke JR, Melki J, Benezit A, Bauer P, Weis D, Lupski JR, Senderek J, Christodoulou J, Chung WK, Goodchild R, Offiah AC, Moreno-De-Luca A, Suri M, Ebrahimi-Fakhari D, Houlden H, Maroofian R. The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders. Brain 2023; 146:3273-3288. [PMID: 36757831 PMCID: PMC10393417 DOI: 10.1093/brain/awad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tracy Lau
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Homa Tajsharghi
- School of Health Sciences, Division of Biomedicine, University of Skovde, Skovde, Sweden
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Tipu Sultan
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- KaryoGen, Isfahan, Iran
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Aisha M AlShamsi
- Genetic Division, Pediatrics Department, Tawam Hospital, Al Ain, UAE
| | - Shahnaz Ibrahim
- Department of pediatrics and child Health, Aga Khan University, Karachi, Pakistan
| | | | - Walla Al-Hertani
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Whalen Sandra
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Mark Tarnopolsky
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Chumei Li
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debra-Lynn Day-Salvatore
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | | | - Kristin M Levandoski
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Suneeta Madan-Khetarpal
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michaela J Idleburg
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minal Juliet Menezes
- Department of Anaesthesia, the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Aishwarya Siddharth
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Smitka
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Felicity Collins
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohmmad Shahrooei
- Medical Laboratory of Dr. Shahrooei, Tehran, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Division of Pediatric Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Julien Faure
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Janice Baker
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Vikas Bhambhani
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Laurel Calderwood
- Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Sadat Mirzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Mojtaba Safi
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Innovative medical research centre, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | | | - Soheila Abedini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Elif Yilmaz Gulec
- Istanbul Medeniyet University Medical School, Department of Medical Genetics, Istanbul, Turkey
| | | | - Mohammadreza Ghazavi
- Department of Pediatric Neurology, Imam Hossein Children's Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael T Pascher
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marina Vogel
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Medizinisch Genetisches Zentrum, Munich, German
| | - Sébastien Moutton
- Multidisciplinary Center for Prenatal Diagnosis, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - Ange-Line Bruel
- Équipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Claudine Rieubland
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | | | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Beth A Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Seth I Berger
- Children's National Research Institute, Washington DC, USA
| | - Erin H Andrew
- Children's National Research Institute, Washington DC, USA
| | | | | | | | | | | | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing and CECAD, Cologne, Germany
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | | | - Anne McRae
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Merlene Peter
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, 94276, Paris, France
| | - Audrey Benezit
- Neurologie et réanimation pédiatrique, Hôpital Raymond Poincaré, APHP, Garches, France
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, Johann Kepler University, Linz, Austria
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Senderek
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - John Christodoulou
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Melbourne and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University New York, NY, USA
| | - Rose Goodchild
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Laboratory for Dystonia Research, Leuven, Belgium
| | - Amaka C Offiah
- Department of Oncology & Metabolism, University of Sheffield, UK
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, MA, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
Zöllner J, Finer S, Linton KJ, van Heel DA, Williamson C, Dixon PH. Rare variant contribution to cholestatic liver disease in a South Asian population in the United Kingdom. Sci Rep 2023; 13:8120. [PMID: 37208429 PMCID: PMC10199085 DOI: 10.1038/s41598-023-33391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
This study assessed the contribution of five genes previously known to be involved in cholestatic liver disease in British Bangladeshi and Pakistani people. Five genes (ABCB4, ABCB11, ATP8B1, NR1H4, TJP2) were interrogated by exome sequencing data of 5236 volunteers. Included were non-synonymous or loss of function (LoF) variants with a minor allele frequency < 5%. Variants were filtered, and annotated to perform rare variant burden analysis, protein structure, and modelling analysis in-silico. Out of 314 non-synonymous variants, 180 fulfilled the inclusion criteria and were mostly heterozygous unless specified. 90 were novel and of those variants, 22 were considered likely pathogenic and 9 pathogenic. We identified variants in volunteers with gallstone disease (n = 31), intrahepatic cholestasis of pregnancy (ICP, n = 16), cholangiocarcinoma and cirrhosis (n = 2). Fourteen novel LoF variants were identified: 7 frameshift, 5 introduction of premature stop codon and 2 splice acceptor variants. The rare variant burden was significantly increased in ABCB11. Protein modelling demonstrated variants that appeared to likely cause significant structural alterations. This study highlights the significant genetic burden contributing to cholestatic liver disease. Novel likely pathogenic and pathogenic variants were identified addressing the underrepresentation of diverse ancestry groups in genomic research.
Collapse
Affiliation(s)
| | - Sarah Finer
- Institute for Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kenneth J Linton
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
11
|
Saffari A, Kellner M, Jordan C, Rosengarten H, Mo A, Zhang B, Strelko O, Neuser S, Davis MY, Yoshikura N, Futamura N, Takeuchi T, Nabatame S, Ishiura H, Tsuji S, Aldeen HS, Cali E, Rocca C, Houlden H, Efthymiou S, Assmann B, Yoon G, Trombetta BA, Kivisäkk P, Eichler F, Nan H, Takiyama Y, Tessa A, Santorelli FM, Sahin M, Blackstone C, Yang E, Schüle R, Ebrahimi-Fakhari D. The clinical and molecular spectrum of ZFYVE26-associated hereditary spastic paraplegia: SPG15. Brain 2023; 146:2003-2015. [PMID: 36315648 PMCID: PMC10411936 DOI: 10.1093/brain/awac391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Kellner
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Catherine Jordan
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Helena Rosengarten
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisa Mo
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Strelko
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Y Davis
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Neurology, VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Nobuaki Yoshikura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, Ohara, Sanda, Japan
| | - Tomoya Takeuchi
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Aichi, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Birgit Assmann
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Grace Yoon
- Divisions of Clinical and Metabolic Genetics and Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Bianca A Trombetta
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Iqbal S, Brünger T, Pérez-Palma E, Macnee M, Brunklaus A, Daly MJ, Campbell AJ, Hoksza D, May P, Lal D. Delineation of functionally essential protein regions for 242 neurodevelopmental genes. Brain 2023; 146:519-533. [PMID: 36256779 PMCID: PMC9924913 DOI: 10.1093/brain/awac381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.
Collapse
Affiliation(s)
- Sumaiya Iqbal
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, 7610658 Las Condes, Santiago de Chile, Chile
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G12 8QQ, UK
- School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland (FIMM), Centre of Excellence in Complex Disease Genetics, University of Helsinki, 00100 Helsinki, Finland
| | - Arthur J Campbell
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Hoksza
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, 110 00 Staré Město, Czechia, Czech Republic
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Teufel LU, van der Made CI, Klück V, Simons A, Hoischen A, Vernimmen V, Joosten LAB, Arts RJW. Effect of exogenous IL-37 on immune cells from a patient carrying a potential IL37 loss-of-function variant: A case study. Cytokine 2023; 162:156102. [PMID: 36476991 DOI: 10.1016/j.cyto.2022.156102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant.
Collapse
Affiliation(s)
- Lisa U Teufel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Caspar I van der Made
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Viola Klück
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annet Simons
- Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vivian Vernimmen
- Department of Genetics, Maastricht UMC+, Maastricht, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Strada Victor Babes 8, 400000 Cluj-Napoca, Romania
| | - Rob J W Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Jaouadi H, Theron A, Norscini G, Avierinos JF, Zaffran S. Genetic and phenotypic continuum of HOXA genes: A case with double HOXA9/HOXA13 mutations. Mol Med Rep 2023; 27:59. [PMID: 36734258 PMCID: PMC9936258 DOI: 10.3892/mmr.2023.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023] Open
Abstract
The HOXA genes cluster plays a key role in embryologic development. Mutations in HOXA genes have been linked to different human phenotypes, including developmental delay, limb anomalies, and urogenital malformations. The present study reported a clinical and genetic investigation of a female patient with polymalformative syndrome including left arm agenesis, bicornuate uterus and bicuspid aortic valve. Using whole exome sequencing, two heterozygous missense variants were identified. Of these, one was a novel variant in the HOXA13 gene [p.(Tyr290Ser)] and the second a heterozygous variant in the HOXA9 gene [p.(Ala102Pro)]. To the best of our knowledge, this is the first association of HOXA9/HOXA13 point mutations linked to a syndromic case. In conclusion, the present study suggested that the phenotypic spectrum of vertebral anomalies, anal atresia, cardiac defects, tracheo‑esophageal fistula, renal anomalies and limb abnormalities/hand‑foot‑genital syndrome may be attributable to the combination of different HOXA variants, particularly in patients with a severe clinical presentation. The current report contributed as well to the molecular understanding of HOXA genes‑related phenotypes via the identification of novel variant and genes associations.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics, U1251, National Institute of Health and Medical Research (INSERM), School of Medicine, Aix Marseille University, 13005 Marseille, France
| | - Alexis Theron
- Marseille Medical Genetics, U1251, National Institute of Health and Medical Research (INSERM), School of Medicine, Aix Marseille University, 13005 Marseille, France,Department of Cardiac Surgery, La Timone Hospital, 13005 Marseille, France
| | - Giulia Norscini
- Department of Cardiology, Public Assistance-Hospitals of Marseille, La Timone Hospital, 13005 Marseille, France
| | - Jean-François Avierinos
- Marseille Medical Genetics, U1251, National Institute of Health and Medical Research (INSERM), School of Medicine, Aix Marseille University, 13005 Marseille, France,Department of Cardiology, Public Assistance-Hospitals of Marseille, La Timone Hospital, 13005 Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics, U1251, National Institute of Health and Medical Research (INSERM), School of Medicine, Aix Marseille University, 13005 Marseille, France,Correspondence to: Dr Stéphane Zaffran, Marseille Medical Genetics, U1251, National Institute of Health and Medical Research (INSERM), School of Medicine, Aix Marseille University, 27 Bd Jean Moulin, 13005 Marseille, France, E-mail:
| |
Collapse
|
15
|
Saini N, Das Bhowmik A, Yareeda S, Venkatapuram V, Jabeen SA, Tallapaka K, Dalal A, Aggarwal S. Muscle spasms as presenting feature of Nivelon-Nivelon-Mabile syndrome. Am J Med Genet A 2023; 191:238-248. [PMID: 36271814 DOI: 10.1002/ajmg.a.63000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Hedgehog acyltransferase gene (HHAT)-associated Nivelon-Nivelon-Mabile syndrome (NNMS) is a rare genetic disorder of multiple system involvement with microcephaly, central nervous system malformations, skeletal dysplasia, and 46,XY sex reversal. Other variable and inconsistent features reported in this disorder are muscle spasms, facial dysmorphism, prenatal onset growth restriction, microphthalmia, and holoprosencephaly. This is the sixth postnatal reported patient with biallelic variants in HHAT gene, who presented with microcephaly, short stature, muscle hypertrophy, muscle spasms, and facial dysmorphism. The most prominent and presenting finding in this patient were muscle hypertrophy and muscle spasms which had a clinical response to phenytoin and acetazolamide treatment. Our report emphasizes the phenotypic variability of NNMS and further reiterates muscle spasms as an important clinical manifestation of this extremely rare condition.
Collapse
Affiliation(s)
- Neelam Saini
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Aneek Das Bhowmik
- Diagnostics Services (NGS), AIC - Centre for Cellular & Molecular Biology (AIC-CCMB), CCMB Annexe II, Hyderabad, India
| | - Sireesha Yareeda
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | - Shaik Afshan Jabeen
- Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Karthik Tallapaka
- Diagnostics Services (NGS), AIC - Centre for Cellular & Molecular Biology (AIC-CCMB), CCMB Annexe II, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| |
Collapse
|
16
|
Veltra D, Kosma K, Papavasiliou A, Tilemis FN, Traeger-Synodinos J, Sofocleous C. A novel pathogenic ATP6V1B2 variant: Widening the genotypic spectrum of the epileptic neurodevelopmental phenotype. Am J Med Genet A 2022; 188:3563-3566. [PMID: 36135319 DOI: 10.1002/ajmg.a.62971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
ATP6V1B2 pathogenic variants are linked with variable phenotypes, such as dominant deafness-onychodystrophy syndrome (DDOD), autosomal dominant Zimmermann-Laband syndrome type 2 (ZLS2), and some cases of DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [ID], and seizures). Epilepsy was first linked to ATP6V1B2, when the p.(Glu374Gln) missense variant was detected in a patient with ID and seizures, but without characteristic features of DDOD or ZLS2 syndromes. We herein report a novel pathogenic ATP6V1B2:p.Glu374Gly variant detected in an adult patient with ID and myoclonic-atonic seizures. The (re)occurrence of different variants affecting the same highly conserved hydrophilic glutamic acid on position 374 of the V-proton ATPase subunit B, indicates a potential novel pathogenic hotspot and a critical role for the specific residue in the development of epilepsy. ATP6V1B2 gene defects should be considered when analyzing patients with epilepsy, even in the absence of most cardinal features of DDOD, DOORS, or ZLS such as deafness, onychodystrophy, and osteodystrophy.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | | | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece.,Research University Institute for the Study of Genetic and Malignant Disease of Childhood, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, "St. Sophia's" Children's Hospital, Athens, Greece.,Research University Institute for the Study of Genetic and Malignant Disease of Childhood, "St. Sophia's" Children's Hospital, Athens, Greece
| |
Collapse
|
17
|
Tichkule S, Myung Y, Naung MT, Ansell BRE, Guy AJ, Srivastava N, Mehra S, Cacciò SM, Mueller I, Barry AE, van Oosterhout C, Pope B, Ascher DB, Jex AR. VIVID: a web application for variant interpretation and visualisation in multidimensional analyses. Mol Biol Evol 2022; 39:6697981. [PMID: 36103257 PMCID: PMC9514033 DOI: 10.1093/molbev/msac196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Department of Medical Biology, University of Melbourne , Melbourne , Australia
| | - Yoochan Myung
- Systems and Computational Biology, Bio21 Institute, University of Melbourne , Melbourne , Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes , Melbourne , Australia
| | - Myo T Naung
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Department of Medical Biology, University of Melbourne , Melbourne , Australia
| | - Brendan R E Ansell
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Andrew J Guy
- School of Science, RMIT University , Melbourne , Australia
| | - Namrata Srivastava
- Department of Data Science and AI, Monash University , Melbourne , Australia
| | - Somya Mehra
- Life Sciences Discipline, Burnet Institute , Melbourne , Australia
| | - Simone M Cacciò
- Department of Infectious Disease, Istituto Superiore di Sanità , Rome , Italy
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute , Melbourne , Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University , Geelong , Australia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park , Norwich , UK
| | - Bernard Pope
- Melbourne Bioinformatics, University of Melbourne , Melbourne , Australia
- Australian BioCommons , Sydney , Australia
- Department of Clinical Pathology, University of Melbourne , Melbourne , Australia
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne , Melbourne , Australia
| | - David B Ascher
- Systems and Computational Biology, Bio21 Institute, University of Melbourne , Melbourne , Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes , Melbourne , Australia
| | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Melbourne , Australia
| |
Collapse
|
18
|
Genetic association and Mendelian randomization for hypothyroidism highlight immune molecular mechanisms. iScience 2022; 25:104992. [PMID: 36093044 PMCID: PMC9460554 DOI: 10.1016/j.isci.2022.104992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
We carried out a genome-wide association analysis including 51,194 cases of hypothyroidism and 443,383 controls. In total, 139 risk loci were associated to hypothyroidism with genes involved in lymphocyte function. Candidate genes associated with hypothyroidism were identified by using molecular quantitative trait loci, colocalization, and enhancer-promoter chromatin looping. Mendelian randomization (MR) identified 42 blood expressed genes and circulating proteins as candidate causal molecules in hypothyroidism. Drug-gene interaction analysis provided evidence that immune checkpoint and tyrosine kinase inhibitors used in cancer therapy increase the risk of hypothyroidism. Hence, integrative mapping and MR support that expression of genes and proteins enriched in lymphocyte function are associated with the risk of hypothyroidism and provide genetic evidence for drug-induced hypothyroidism and identify actionable potential drug targets. GWAS for hypothyroidism identified 139 risk loci including 76 novel associations GWAS was enriched in pathways related to lymphocyte function In total, 28 potentially deleterious missense variants were identified Mendelian randomization and colocalization identified 61 blood causal candidate genes
Collapse
|
19
|
Alecu JE, Ohmi Y, Bhuiyan RH, Inamori KI, Nitta T, Saffari A, Jumo H, Ziegler M, Melo de Gusmao C, Sharma N, Ohno S, Manabe N, Yamaguchi Y, Kambe M, Furukawa K, Sahin M, Inokuchi JI, Furakawa K, Ebrahimi-Fakhari D. Functional validation of novel variants in B4GALNT1 associated with early-onset complex hereditary spastic paraplegia with impaired ganglioside synthesis. Am J Med Genet A 2022; 188:2590-2598. [PMID: 35775650 PMCID: PMC9378512 DOI: 10.1002/ajmg.a.62880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/01/2022] [Accepted: 05/22/2022] [Indexed: 01/24/2023]
Abstract
Childhood-onset forms of hereditary spastic paraplegia are ultra-rare diseases and often present with complex features. Next-generation-sequencing allows for an accurate diagnosis in many cases but the interpretation of novel variants remains challenging, particularly for missense mutations. Where sufficient knowledge of the protein function and/or downstream pathways exists, functional studies in patient-derived cells can aid the interpretation of molecular findings. We here illustrate the case of a 13-year-old female who presented with global developmental delay and later mild intellectual disability, progressive spastic diplegia, spastic-ataxic gait, dysarthria, urinary urgency, and loss of deep tendon reflexes of the lower extremities. Exome sequencing showed a novel splice-site variant in trans with a novel missense variant in B4GALNT1 [NM_001478.5: c.532-1G>C/c.1556G>C (p.Arg519Pro)]. Functional studies in patient-derived fibroblasts and cell models of GM2 synthase deficiency confirmed a loss of B4GALNT1 function with no synthesis of GM2 and other downstream gangliosides. Collectively these results established the diagnosis of B4GALNT1-associated HSP (SPG26). Our approach illustrates the importance of careful phenotyping and functional characterization of novel gene variants, particularly in the setting of ultra-rare diseases, and expands the clinical and molecular spectrum of SPG26, a disorder of complex ganglioside biosynthesis.
Collapse
Affiliation(s)
- Julian E. Alecu
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Medical Technology, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Biochemistry and Molecular Biology, University of Chittagong Faculty of Biological Sciences, Chittagong, Bangladesh
| | - Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Afshin Saffari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hellen Jumo
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Melo de Gusmao
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nutan Sharma
- Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan
| | - Koichi Furakawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Caswell RC, Gunning AC, Owens MM, Ellard S, Wright CF. Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory. Genome Med 2022; 14:77. [PMID: 35869530 PMCID: PMC9308257 DOI: 10.1186/s13073-022-01082-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The widespread clinical application of genome-wide sequencing has resulted in many new diagnoses for rare genetic conditions, but testing regularly identifies variants of uncertain significance (VUS). The remarkable rise in the amount of genomic data has been paralleled by a rise in the number of protein structures that are now publicly available, which may have clinical utility for the interpretation of missense and in-frame insertions or deletions. METHODS Within a UK National Health Service genomic medicine diagnostic laboratory, we investigated the number of VUS over a 5-year period that were evaluated using protein structural analysis and how often this analysis aided variant classification. RESULTS We found 99 novel missense and in-frame variants across 67 genes that were initially classified as VUS by our diagnostic laboratory using standard variant classification guidelines and for which further analysis of protein structure was requested. Evidence from protein structural analysis was used in the re-assessment of 64 variants, of which 47 were subsequently reclassified as pathogenic or likely pathogenic and 17 remained as VUS. We identified several case studies where protein structural analysis aided variant interpretation by predicting disease mechanisms that were consistent with the observed phenotypes, including loss-of-function through thermodynamic destabilisation or disruption of ligand binding, and gain-of-function through de-repression or escape from proteasomal degradation. CONCLUSIONS We have shown that using in silico protein structural analysis can aid classification of VUS and give insights into the mechanisms of pathogenicity. Based on our experience, we propose a generic evidence-based workflow for incorporating protein structural information into diagnostic practice to facilitate variant classification.
Collapse
Affiliation(s)
- Richard C Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK.
| | - Adam C Gunning
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK
| | - Martina M Owens
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK.
| |
Collapse
|
21
|
Mekala VR, Chang JG, Ng KL. Analysis of Novel Variants Associated with Three Human Ovarian Cancer Cell Lines. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220224105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Identification of mutations is of great significance in cancer research, as it can contribute to development of therapeutic strategies and prevention of cancer formation. Ovarian cancer is one of the leading cancer-related causes of death in Taiwan. Accumulation of genetic mutations can lead to cancer.
Objective:
We utilized whole-exome sequencing to explore cancer-associated missense variants in three human ovarian cancer cell lines derived from Taiwanese patients.
Methods:
We use (i) cell line whole-exome sequencing data, (ii) 188 patients’ whole-exome sequencing data, and (iii) use of in vitro experiments to verify predicted variant results. We establish an effective analysis workflow for discovery of novel ovarian cancer variants, comprising three steps: (i) use of public databases and in-house hospital data to select novel variants (ii) investigation of protein structural stability caused by genetic mutations, and (iii) use of in vitro experiments to verify predictions.
Results:
Our study enumerated 296 novel variants by imposing specific criteria and using sophisticated bioinformatics tools for further analysis. Eleven and 54 missense novel variants associated with cancerous and non-cancerous genes, respectively, were identified. We show that 13 missense mutations affect the stability of protein 3D structure, while 11 disease-causing novel variants were confirmed by PCR sequencing. Among these, ten variants were predicted to be pathogenic, while the pathogenicity of one was uncertain.
Conclusion:
We confirm that novel variant genes play a crucial role in ovarian cancer patients, with 11 novel variants that may promote progression and development of ovarian cancer.
Collapse
Affiliation(s)
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University, Taiwan
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taiwan
- Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taiwan
| |
Collapse
|
22
|
Mäkitie RE, Toiviainen-Salo S, Kaitila I, Mäkitie O. A Novel Osteochondrodysplasia With Empty Sella Associates With a TBX2 Variant. Front Endocrinol (Lausanne) 2022; 13:845889. [PMID: 35311234 PMCID: PMC8927981 DOI: 10.3389/fendo.2022.845889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal dysplasias comprise a heterogenous group of developmental disorders of skeletal and cartilaginous tissues. Several different forms have been described and the full spectrum of their clinical manifestations and underlying genetic causes are still incompletely understood. We report a three-generation Finnish family with an unusual, autosomal dominant form of osteochondrodysplasia and an empty sella. Affected individuals (age range 24-44 years) exhibit unusual codfish-shaped vertebrae, severe early-onset and debilitating osteoarthritis and an empty sella without endocrine abnormalities. Clinical characteristics also include mild dysmorphic features, reduced sitting height ratio, and obesity. Whole-exome sequencing excluded known skeletal dysplasias and identified a novel heterozygous missense mutation c.899C>T (p.Thr300Met) in TBX2, confirmed by Sanger sequencing. TBX2 is important for development of the skeleton and the brain and three prior reports have described variations in TBX2 in patients portraying a complex phenotype with vertebral anomalies, craniofacial dysmorphism and endocrine dysfunctions. Our mutation lies near a previously reported disease-causing variant and is predicted pathogenic with deleterious effects on protein function. Our findings expand the current spectrum of skeletal dysplasias, support the association of TBX2 mutations with skeletal dysplasia and suggest a role for TBX2 in development of the spinal and craniofacial structures and the pituitary gland.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- *Correspondence: Riikka E. Mäkitie,
| | - Sanna Toiviainen-Salo
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Medical Imaging Center, Pediatric Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Kaitila
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Shirota M, Kinoshita K. Current status and future perspectives of the evaluation of missense variants by using three-dimensional structures of proteins. Biophys Physicobiol 2022; 19:e190023. [PMID: 36071878 PMCID: PMC9402263 DOI: 10.2142/biophysico.bppb-v19.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022] Open
|
24
|
Wayhelova M, Vallova V, Broz P, Mikulasova A, Loubalova D, Filkova H, Smetana J, Drabova K, Gaillyova R, Kuglik P. Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development. J Hum Genet 2021; 67:209-214. [PMID: 34819662 DOI: 10.1038/s10038-021-00988-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Pathogenic sequence variant in the GNAI1 gene were recently introduced as a cause of novel syndrome with a manifestation of variable developmental delay and autistic features. In our study, we report a case of monozygotic twins with severe intellectual disability and motor delay and developmental dysphasia. Both probands and their parents were examined using multi-step molecular diagnostic algorithm including whole-exome sequencing (WES), resulting in the identification of a novel, de novo pathogenic sequence variant in the GNAI1 gene, NM_002069.6:c.815 A>G, p.(Asp272Gly) in probands. Using WES we also verified the microarray findings of a familial 8q24.23q24.3 duplication and heterozygous 5q13.2 deletion, not associated with clinical symptoms in probands. Our results confirmed the role of the GNAI1 gene in the pathogenesis of syndromic neurodevelopmental disorders. They support trio- or quatro-based WES as a suitable molecular diagnostics method for the simultaneous detection of clinically relevant sequence variants and CNVs in individuals with neurodevelopmental disorders and rare diseases.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic. .,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic.
| | - Vladimira Vallova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Petr Broz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech Republic
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dominika Loubalova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Filkova
- Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Smetana
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Klara Drabova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Kuglik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
25
|
Nagirnaja L, Mørup N, Nielsen JE, Stakaitis R, Golubickaite I, Oud MS, Winge SB, Carvalho F, Aston KI, Khani F, van der Heijden GW, Marques CJ, Skakkebaek NE, Rajpert-De Meyts E, Schlegel PN, Jørgensen N, Veltman JA, Lopes AM, Conrad DF, Almstrup K. Variant PNLDC1, Defective piRNA Processing, and Azoospermia. N Engl J Med 2021; 385:707-719. [PMID: 34347949 PMCID: PMC7615015 DOI: 10.1056/nejmoa2028973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are short (21 to 35 nucleotides in length) and noncoding and are found almost exclusively in germ cells, where they regulate aberrant expression of transposable elements and postmeiotic gene expression. Critical to the processing of piRNAs is the protein poly(A)-specific RNase-like domain containing 1 (PNLDC1), which trims their 3' ends and, when disrupted in mice, causes azoospermia and male infertility. METHODS We performed exome sequencing on DNA samples from 924 men who had received a diagnosis of nonobstructive azoospermia. Testicular-biopsy samples were analyzed by means of histologic and immunohistochemical tests, in situ hybridization, reverse-transcriptase-quantitative-polymerase-chain-reaction assay, and small-RNA sequencing. RESULTS Four unrelated men of Middle Eastern descent who had nonobstructive azoospermia were found to carry mutations in PNLDC1: the first patient had a biallelic stop-gain mutation, p.R452Ter (rs200629089; minor allele frequency, 0.00004); the second, a novel biallelic missense variant, p.P84S; the third, two compound heterozygous mutations consisting of p.M259T (rs141903829; minor allele frequency, 0.0007) and p.L35PfsTer3 (rs754159168; minor allele frequency, 0.00004); and the fourth, a novel biallelic canonical splice acceptor site variant, c.607-2A→T. Testicular histologic findings consistently showed error-prone meiosis and spermatogenic arrest with round spermatids of type Sa as the most advanced population of germ cells. Gene and protein expression of PNLDC1, as well as the piRNA-processing proteins PIWIL1, PIWIL4, MYBL1, and TDRKH, were greatly diminished in cells of the testes. Furthermore, the length distribution of piRNAs and the number of pachytene piRNAs was significantly altered in men carrying PNLDC1 mutations. CONCLUSIONS Our results suggest a direct mechanistic effect of faulty piRNA processing on meiosis and spermatogenesis in men, ultimately leading to male infertility. (Funded by Innovation Fund Denmark and others.).
Collapse
Affiliation(s)
- Liina Nagirnaja
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Nina Mørup
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - John E Nielsen
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Rytis Stakaitis
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Ieva Golubickaite
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Manon S Oud
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Sofia B Winge
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Filipa Carvalho
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Kenneth I Aston
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Francesca Khani
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Godfried W van der Heijden
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - C Joana Marques
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Niels E Skakkebaek
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Ewa Rajpert-De Meyts
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Peter N Schlegel
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Niels Jørgensen
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Joris A Veltman
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Alexandra M Lopes
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Donald F Conrad
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| | - Kristian Almstrup
- From the Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton (L.N., D.F.C.); the Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland (D.F.C.); the Department of Growth and Reproduction (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.) and the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (N.M., J.E.N., R.S., I.G., S.B.W., N.E.S., E.R.-D.M., N.J., K.A.), Rigshospitalet, and the Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences (K.A.), University of Copenhagen, Copenhagen; the Laboratory of Molecular Neurooncology, Neuroscience Institute (R.S.), and the Institute of Biology Systems and Genetic Research (I.G.), Lithuanian University of Health Sciences, Kaunas, Lithuania; the Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior (M.S.O., G.W.H.), and the Department of Obstetrics and Gynecology (G.W.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (F.C., C.J.M.), Instituto de Investigação e Inovação em Saúde, Universidade do Porto (F.C., C.J.M., A.M.L.), and the Institute of Molecular Pathology and Immunology of the University of Porto (A.M.L.) - all in Porto, Portugal; the Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City (K.I.A.); the Departments of Pathology and Laboratory Medicine (F.K.) and Urology (P.N.S.), Weill Cornell Medicine, New York; and the Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (J.A.V.)
| |
Collapse
|
26
|
Lin TY, Chang YC, Hsiao YJ, Chien Y, Jheng YC, Wu JR, Ching LJ, Hwang DK, Hsu CC, Lin TC, Chou YB, Huang YM, Chen SJ, Yang YP, Tsai PH. Identification of Novel Genomic-Variant Patterns of OR56A5, OR52L1, and CTSD in Retinitis Pigmentosa Patients by Whole-Exome Sequencing. Int J Mol Sci 2021; 22:ijms22115594. [PMID: 34070492 PMCID: PMC8198027 DOI: 10.3390/ijms22115594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are rare but highly heterogeneous genetic disorders that affect individuals and families worldwide. However, given its wide variability, its analysis of the driver genes for over 50% of the cases remains unexplored. The present study aims to identify novel driver genes, disease-causing variants, and retinitis pigmentosa (RP)-associated pathways. Using family-based whole-exome sequencing (WES) to identify putative RP-causing rare variants, we identified a total of five potentially pathogenic variants located in genes OR56A5, OR52L1, CTSD, PRF1, KBTBD13, and ATP2B4. Of the variants present in all affected individuals, genes OR56A5, OR52L1, CTSD, KBTBD13, and ATP2B4 present as missense mutations, while PRF1 and CTSD present as frameshift variants. Sanger sequencing confirmed the presence of the novel pathogenic variant PRF1 (c.124_128del) that has not been reported previously. More causal-effect or evidence-based studies will be required to elucidate the precise roles of these SNPs in the RP pathogenesis. Taken together, our findings may allow us to explore the risk variants based on the sequencing data and upgrade the existing variant annotation database in Taiwan. It may help detect specific eye diseases such as retinitis pigmentosa in East Asia.
Collapse
Affiliation(s)
- Ting-Yi Lin
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yu-Jer Hsiao
- College of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yi-Ming Huang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Critical Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| |
Collapse
|
27
|
Abstract
Age is a common risk factor in many diseases, but the molecular basis for this relationship is elusive. In this study we identified 4 disease clusters from 116 diseases in the UK Biobank data, defined by their age-of-onset profiles, and found that diseases with the same onset profile are genetically more similar, suggesting a common etiology. This similarity was not explained by disease categories, co-occurrences or disease cause-effect relationships. Two of the four disease clusters had an increased risk of occurrence from age 20 and 40 years respectively. They both showed an association with known aging-related genes, yet differed in functional enrichment and evolutionary profiles. Moreover, they both had age-related expression and methylation changes. We also tested mutation accumulation and antagonistic pleiotropy theories of aging and found support for both.
Collapse
|
28
|
ADDRESS: A Database of Disease-associated Human Variants Incorporating Protein Structure and Folding Stabilities. J Mol Biol 2021; 433:166840. [PMID: 33539887 DOI: 10.1016/j.jmb.2021.166840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
Numerous human diseases are caused by mutations in genomic sequences. Since amino acid changes affect protein function through mechanisms often predictable from protein structure, the integration of structural and sequence data enables us to estimate with greater accuracy whether and how a given mutation will lead to disease. Publicly available annotated databases enable hypothesis assessment and benchmarking of prediction tools. However, the results are often presented as summary statistics or black box predictors, without providing full descriptive information. We developed a new semi-manually curated human variant database presenting information on the protein contact-map, sequence-to-structure mapping, amino acid identity change, and stability prediction for the popular UniProt database. We found that the profiles of pathogenic and benign missense polymorphisms can be effectively deduced using decision trees and comparative analyses based on the presented dataset. The database is made publicly available through https://zhanglab.ccmb.med.umich.edu/ADDRESS.
Collapse
|
29
|
Palafox MF, Desai HS, Arboleda VA, Backus KM. From chemoproteomic-detected amino acids to genomic coordinates: insights into precise multi-omic data integration. Mol Syst Biol 2021; 17:e9840. [PMID: 33599394 PMCID: PMC7890448 DOI: 10.15252/msb.20209840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
The integration of proteomic, transcriptomic, and genetic variant annotation data will improve our understanding of genotype-phenotype associations. Due, in part, to challenges associated with accurate inter-database mapping, such multi-omic studies have not extended to chemoproteomics, a method that measures the intrinsic reactivity and potential "druggability" of nucleophilic amino acid side chains. Here, we evaluated mapping approaches to match chemoproteomic-detected cysteine and lysine residues with their genetic coordinates. Our analysis revealed that database update cycles and reliance on stable identifiers can lead to pervasive misidentification of labeled residues. Enabled by this examination of mapping strategies, we then integrated our chemoproteomics data with computational methods for predicting genetic variant pathogenicity, which revealed that codons of highly reactive cysteines are enriched for genetic variants that are predicted to be more deleterious and allowed us to identify and functionally characterize a new damaging residue in the cysteine protease caspase-8. Our study provides a roadmap for more precise inter-database mapping and points to untapped opportunities to improve the predictive power of pathogenicity scores and to advance prioritization of putative druggable sites.
Collapse
Affiliation(s)
- Maria F Palafox
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | - Heta S Desai
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
| | - Valerie A Arboleda
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUCLALos AngelesCAUSA
| | - Keriann M Backus
- Department of Biological ChemistryDavid Geffen School of MedicineUCLALos AngelesCAUSA
- Molecular Biology InstituteUCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUCLALos AngelesCAUSA
- Department of Chemistry and BiochemistryCollege of Arts and SciencesUCLALos AngelesCAUSA
- DOE Institute for Genomics and ProteomicsUCLALos AngelesCAUSA
| |
Collapse
|
30
|
Iqbal S, Hoksza D, Pérez-Palma E, May P, Jespersen JB, Ahmed SS, Rifat ZT, Heyne HO, Rahman MS, Cottrell JR, Wagner FF, Daly MJ, Campbell AJ, Lal D. MISCAST: MIssense variant to protein StruCture Analysis web SuiTe. Nucleic Acids Res 2020; 48:W132-W139. [PMID: 32402084 PMCID: PMC7319582 DOI: 10.1093/nar/gkaa361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.
Collapse
Affiliation(s)
- Sumaiya Iqbal
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Hoksza
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jakob B Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Shehab S Ahmed
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Zaara T Rifat
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Henrike O Heyne
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00100 Helsinki, Finland
| | - M Sohel Rahman
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Florence F Wagner
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00100 Helsinki, Finland
| | - Arthur J Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, Bartoli M, Puppo F, Gorokhova S. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat 2020; 41:1797-1810. [PMID: 32668095 DOI: 10.1002/humu.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.
Collapse
Affiliation(s)
- Eugénie Dionnet
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Aurélia Defour
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nathalie Da Silva
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Alexandra Salvi
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nicolas Lévy
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Martin Krahn
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Marc Bartoli
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Francesca Puppo
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Svetlana Gorokhova
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| |
Collapse
|
32
|
Sanchis-Juan A, Hasenahuer MA, Baker JA, McTague A, Barwick K, Kurian MA, Duarte ST, Carss KJ, Thornton J, Raymond FL. Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate. Mol Genet Genomic Med 2020; 8:e1106. [PMID: 32347641 PMCID: PMC7336760 DOI: 10.1002/mgg3.1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cys‐loop receptors control neuronal excitability in the brain and their dysfunction results in numerous neurological disorders. Recently, six missense variants in GABRA2, a member of this family, have been associated with early infantile epileptic encephalopathy (EIEE). We identified a novel de novo missense variant in GABRA2 in a patient with EIEE and performed protein structural analysis of the seven variants. Methods The novel variant was identified by trio whole‐genome sequencing. We performed protein structural analysis of the seven variants, and compared them to previously reported pathogenic mutations at equivalent positions in other Cys‐loop receptors. Additionally, we studied the distribution of disease‐associated variants in the transmembrane helices of these proteins. Results The seven variants are in the transmembrane domain, either close to the desensitization gate, the activation gate, or in inter‐subunit interfaces. Six of them have pathogenic mutations at equivalent positions in other Cys‐loop receptors, emphasizing the importance of these residues. Also, pathogenic mutations are more common in the pore‐lining helix, consistent with this region being highly constrained for variation in control populations. Conclusion Our study reports a novel pathogenic variant in GABRA2, characterizes the regions where pathogenic mutations are in the transmembrane helices, and underscores the value of considering sequence, evolutionary, and structural information as a strategy for variant interpretation of novel missense mutations.
Collapse
Affiliation(s)
- Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Marcia A Hasenahuer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James A Baker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katy Barwick
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sofia T Duarte
- Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | - Keren J Carss
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Lee IH, Negron JA, Hernandez-Ferrer C, Alvarez WJ, Mandl KD, Kong SW. The Clinical Genome and Ancestry Report: An interactive web application for prioritizing clinically implicated variants from genome sequencing data with ancestry composition. Hum Mutat 2020; 41:387-396. [PMID: 31691385 PMCID: PMC7180092 DOI: 10.1002/humu.23942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022]
Abstract
Genome sequencing is positioned as a routine clinical work-up for diverse clinical conditions. A commonly used approach to highlight candidate variants with potential clinical implication is to search over locus- and gene-centric knowledge databases. Most web-based applications allow a federated query across diverse databases for a single variant; however, sifting through a large number of genomic variants with combination of filtering criteria is a substantial challenge. Here we describe the Clinical Genome and Ancestry Report (CGAR), an interactive web application developed to follow clinical interpretation workflows by organizing variants into seven categories: (1) reported disease-associated variants, (2) rare- and high-impact variants in putative disease-associated genes, (3) secondary findings that the American College of Medical Genetics and Genomics recommends reporting back to patients, (4) actionable pharmacogenomic variants, (5) focused reports for candidate genes, (6) de novo variant candidates for trio analysis, and (7) germline and somatic variants implicated in cancer risk, diagnosis, treatment and prognosis. For each variant, a comprehensive list of external links to variant-centric and phenotype databases are provided. Furthermore, genotype-derived ancestral composition is used to highlight allele frequencies from a matched population since some disease-associated variants show a wide variation between populations. CGAR is an open-source software and is available at https://tom.tch.harvard.edu/apps/cgar/.
Collapse
Affiliation(s)
- In-Hee Lee
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
| | - Jose A. Negron
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
| | | | | | - Kenneth D. Mandl
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Laskowski RA, Stephenson JD, Sillitoe I, Orengo CA, Thornton JM. VarSite: Disease variants and protein structure. Protein Sci 2020; 29:111-119. [PMID: 31606900 PMCID: PMC6933866 DOI: 10.1002/pro.3746] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
VarSite is a web server mapping known disease-associated variants from UniProt and ClinVar, together with natural variants from gnomAD, onto protein 3D structures in the Protein Data Bank. The analyses are primarily image-based and provide both an overview for each human protein, as well as a report for any specific variant of interest. The information can be useful in assessing whether a given variant might be pathogenic or benign. The structural annotations for each position in the protein include protein secondary structure, interactions with ligand, metal, DNA/RNA, or other protein, and various measures of a given variant's possible impact on the protein's function. The 3D locations of the disease-associated variants can be viewed interactively via the 3dmol.js JavaScript viewer, as well as in RasMol and PyMOL. Users can search for specific variants, or sets of variants, by providing the DNA coordinates of the base change(s) of interest. Additionally, various agglomerative analyses are given, such as the mapping of disease and natural variants onto specific Pfam or CATH domains. The server is freely accessible to all at: https://www.ebi.ac.uk/thornton-srv/databases/VarSite.
Collapse
Affiliation(s)
- Roman A. Laskowski
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - James D. Stephenson
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
| | - Ian Sillitoe
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Christine A. Orengo
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Janet M. Thornton
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| |
Collapse
|