1
|
Lassola S, Giani M, Bellani G. Noninvasive Respiratory Support in Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:849-861. [PMID: 39443002 DOI: 10.1016/j.ccm.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Noninvasive respiratory supports have been successfully used as an alternative to endotracheal intubation especially in patients with a milder degree of hypoxemia. In patients with acute respiratory distress syndrome (ARDS), the main goals of noninvasive oxygenation strategies are to improve oxygenation, unload the respiratory muscles, and relieve dyspnea. On the other hand, recent studies have suggested that spontaneous breathing could represent an additional mechanism of lung injury, especially in the more severe forms. The aim of this review is to describe the role of different noninvasive respiratory supports in ARDS, to optimize its use in clinical practice.
Collapse
Affiliation(s)
- Sergio Lassola
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Largo Medaglie d'Oro 9, Trento 38122, Italy
| | - Marco Giani
- Department of Medicine and Surgery, University of Milano-Bicocca, Ateneo Nuovo Square, 1, Milan, Milan 20126, Italy; Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Via Giovanbattista Pergolesi 33, Monza, Lombardia 20900, Italy
| | - Giacomo Bellani
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Largo Medaglie d'Oro 9, Trento 38122, Italy; Interdepartmental Center for Medical Sciences (CISMED), University of Trento, Trento, Italy.
| |
Collapse
|
2
|
Zuarth Gonzalez JD, Mottinelli M, McCurdy CR, de Lartigue G, McMahon LR, Wilkerson JL. Mitragynine and morphine produce dose-dependent bimodal action on food but not water intake in rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R568-R579. [PMID: 39250542 DOI: 10.1152/ajpregu.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Kratom (Mitragyna speciosa), containing the primary alkaloid mitragynine, has emerged as an alternative self-treatment for opioid use disorder. Mitragynine binds numerous receptor types, including opioid receptors, which are known to modulate food consumption. However, the ability of acute mitragynine to modulate food consumption remains unknown. The current study assessed the effects of acute mitragynine or morphine administration on unconditioned food and water intake in 16 Sprague-Dawley rats. Food and water intake changes were monitored in response to morphine, mitragynine (1.78-56 mg/kg ip), saline, or vehicle controls for 12 h, starting at the onset of the dark cycle. Naltrexone pretreatment was used to examine pharmacological specificity. Both morphine and mitragynine demonstrated a biphasic food intake dose-effect, with low doses (5.6 mg/kg) increasing and high doses (56 mg/kg) decreasing food intake. All morphine doses reduced water intake; however, only the highest dose of mitragynine (56 mg/kg) reduced water intake. Naltrexone attenuated both stimulatory and inhibitory effects of morphine on food intake, but only the stimulatory effect of mitragynine. In conclusion, low doses of mitragynine stimulate food intake via opioid-related pathways, while high doses likely recruit other targets.NEW & NOTEWORTHY This study reveals that morphine and the kratom alkaloid mitragynine produce dose-dependent effects on feeding in rats. Low doses stimulate food intake via opioid pathways, while high doses decrease consumption through nonopioid mechanisms. Morphine potently suppresses water intake at all doses, whereas only high doses of mitragynine reduce drinking. These findings provide novel insights into the complex opioid and nonopioid mechanisms underlying the effects of mitragynine on ingestive behaviors.
Collapse
Affiliation(s)
- Julio D Zuarth Gonzalez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| |
Collapse
|
3
|
Castellví-Font A, Goligher EC, Dianti J. Lung and Diaphragm Protection During Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:863-875. [PMID: 39443003 DOI: 10.1016/j.ccm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Patients with acute respiratory distress syndrome often require mechanical ventilation to maintain adequate gas exchange and to reduce the workload of the respiratory muscles. Although lifesaving, positive pressure mechanical ventilation can potentially injure the lungs and diaphragm, further worsening patient outcomes. While the effect of mechanical ventilation on the risk of developing lung injury is widely appreciated, its potentially deleterious effects on the diaphragm have only recently come to be considered by the broader intensive care unit community. Importantly, both ventilator-induced lung injury and ventilator-induced diaphragm dysfunction are associated with worse patient-centered outcomes.
Collapse
Affiliation(s)
- Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona, Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Passeig Marítim de la Barceloneta 25-29, Ciutat Vella, 08003, Barcelona, Spain; Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada; University Health Network/Sinai Health System, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Toronto General Hospital Research Institute, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada; Department of Physiology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Jose Dianti
- Critical Care Medicine Department, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Av. E. Galván 4102, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Boersma R, Bakker JT, de Vries M, Raveling T, Slebos DJ, Wijkstra PJ, Hartman JE, Duiverman ML. Defining a phenotype of severe COPD patients who develop chronic hypercapnia. Respir Med 2024; 234:107850. [PMID: 39488255 DOI: 10.1016/j.rmed.2024.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Chronic hypercapnia, defined by elevated blood CO2 levels, is a serious complication most prevalent in severe COPD. It negatively impacts quality of life, increases hospitalization rates, and elevates mortality risks. However, not all severe COPD patients develop chronic hypercapnia, and its underlying mechanisms remain unclear. Identifying clinical and pathophysiological predictors of hypercapnia is essential for tailored treatment strategies. This study investigates the relationship between hypercapnia and patient characteristics, lung function, and CT scan features to identify potential therapeutic targets. METHODS This cross-sectional study included 1526 COPD patients from three cohorts: a standard care cohort and two research cohorts (NCT04023409; NCT03053973). Data collected included demographic and clinical information, blood gases, lung function (FEV1, FVC, TLC, RV, DLCOc), and high-resolution CT scans (lung volumes, air trapping, emphysema scores, airway wall thickness (Pi10), and diaphragm indices). RESULTS Hypercapnia prevalence increased with COPD severity. Hypercapnic patients were older, more likely to smoke, and had more comorbidities. They exhibited lower FEV1 and FVC, and higher RV/TLC ratios, with CT scans showing lower emphysema scores and greater Pi10. Multivariate analysis identified lower PaO2, FEV1% predicted, and emphysema scores, along with higher RV/TLC ratios and NT-proBNP levels, as independent predictors of PaCO2, collectively explaining 46.3 % of the variance. CONCLUSION COPD patients with chronic hypercapnia are characterized by higher smoking rates, lower PaO2 levels, poorer lung function, less emphysema, and increased airway pathology. These findings underscore the multifactorial nature of hypercapnia in COPD, highlighting the need for personalized therapeutic strategies targeting these factors to improve outcomes.
Collapse
Affiliation(s)
- Renzo Boersma
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Jens T Bakker
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Tim Raveling
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Peter J Wijkstra
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jorine E Hartman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Marieke L Duiverman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| |
Collapse
|
5
|
Ciatti JL, Vázquez-Guardado A, Brings VE, Park J, Ruyle B, Ober RA, McLuckie AJ, Talcott MR, Carter EA, Burrell AR, Sponenburg RA, Trueb J, Gupta P, Kim J, Avila R, Seong M, Slivicki RA, Kaplan MA, Villalpando-Hernandez B, Massaly N, Montana MC, Pet M, Huang Y, Morón JA, Gereau RW, Rogers JA. An autonomous implantable device for the prevention of death from opioid overdose. SCIENCE ADVANCES 2024; 10:eadr3567. [PMID: 39441938 PMCID: PMC11498215 DOI: 10.1126/sciadv.adr3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, now a leading cause of mortality among young people aged 18 to 45 years. At overdose levels, opioid-induced respiratory depression becomes fatal without the administration of naloxone within minutes. Currently, overdose survival relies on bystander intervention, requiring a nearby person to find the overdosed individual and have immediate access to naloxone to administer. To circumvent the bystander requirement, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose while simultaneously contacting first responders. We present three Naloximeter platforms, for fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that can broadly benefit a susceptible population recovering from opioid use disorder.
Collapse
Affiliation(s)
- Joanna L. Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Victoria E. Brings
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jihun Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Rebecca A. Ober
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia J. McLuckie
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Michael R. Talcott
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily A. Carter
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Amy R. Burrell
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Rebecca A. Sponenburg
- Chemistry of Life Processes Institute (Quantitative Bio-element Imaging Center), Northwestern University, Evanston, IL 60208, USA
| | - Jacob Trueb
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Prashant Gupta
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Minho Seong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melanie A. Kaplan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bryan Villalpando-Hernandez
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael C. Montana
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell Pet
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Ruyle BC, Masud S, Kesaraju R, Tahirkheli M, Modh J, Roth C, Angulo-Lopera S, Lintz T, Higginbotham JA, Massaly N, Moron JA. Peripheral opioid receptor antagonism alleviates fentanyl-induced cardiorespiratory depression and is devoid of aversive effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613257. [PMID: 39345613 PMCID: PMC11429738 DOI: 10.1101/2024.09.16.613257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Millions of Americans suffering from Opioid Use Disorders (OUD) face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl-induced respiratory depression has proved to be challenging due to both its high potency and lipophilicity. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a comparable degree as naloxone (NLX), indicating substantial involvement of peripheral MORs during OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit biphasic patterns of activity following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MOR, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX. Significance Statement In this study, we compare the central versus peripheral components underlying fentanyl-induced cardiorespiratory depression to prevent overdose deaths. Our data indicate that these effects are, at least partially, due to the activation of mu opioid receptors present in peripheral sites. These findings provide insight into peripheral contributions to fentanyl-induced overdoses and could potentially lead to the development of treatments selectively targeting the peripheral system, sparing individuals from the CNS-driven acute opioid withdrawal generally observed with the use of naloxone.
Collapse
|
7
|
Canfield JR, Sprague JE. In vivo pharmacokinetic, pharmacodynamic and brain concentration comparison of fentanyl and para-fluorofentanyl in rats. Arch Toxicol 2024:10.1007/s00204-024-03887-z. [PMID: 39419833 DOI: 10.1007/s00204-024-03887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In 2022, para-fluorofentanyl (pFF) rose to the 6th most reported drug and the most reported fentanyl analog in the United States according to the Drug Enforcement Administration (DEA). pFF differs from fentanyl by the addition of a single fluorine group. To date, pFF has not been extensively evaluated in vivo and is frequently seen in combination with fentanyl. In the present study, the pharmacodynamic (PD) and pharmacokinetic (PK) properties and brain region-specific concentrations of pFF were evaluated in male Sprague-Dawley rats and compared to fentanyl. A 300 μg/kg subcutaneous dose of fentanyl or pFF was administered to assess PD and PK parameters as well as brain region concentrations. PD parameters were evaluated via a tail flick test to evaluate analgesia and core body temperature to measure hypothermia, a surrogate marker of overall opioid toxicity. Fentanyl and pFF were found to be equally active at the tested dose in terms of tail flick response with both compounds producing an analgesic response that lasted up to 240 min post-drug treatment. pFF induced a significantly greater hypothermic effect compared to fentanyl with a maximum temperature decrease of -5.6 ℃. Plasma PK parameters (T1/2, AUC, etc.) did not differ between fentanyl and pFF. However, pFF concentrations in the medulla, hippocampus, frontal cortex and striatum were more than two times the fentanyl concentrations. The increase in brain concentrations and greater hypothermic effect suggests that pFF is potentially more dangerous than fentanyl.
Collapse
Affiliation(s)
- Jeremy R Canfield
- Bowling Green State University, The Ohio Attorney General's Center for the Future of Forensic Science, 116 Life Science Building, Bowling Green, OH, 43403, USA
| | - Jon E Sprague
- Bowling Green State University, The Ohio Attorney General's Center for the Future of Forensic Science, 116 Life Science Building, Bowling Green, OH, 43403, USA.
| |
Collapse
|
8
|
Wang S, Li Y, Chen F, Liu HC, Pan L, Shangguan W. Comparison of the ED50 of Ciprofol Combined With or Without Fentanyl for Laryngeal Mask Airway Insertion in Children: A Prospective, Randomized, Open-Label, Dose-Response Trial. Drug Des Devel Ther 2024; 18:4471-4480. [PMID: 39391355 PMCID: PMC11464411 DOI: 10.2147/dddt.s466603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose This study aimed to estimate the effect of different doses of fentanyl on the median effective dose (ED50) of ciprofol for attenuating the airway and motor response to laryngeal mask airway (LMA) insertion response in healthy children. Patients and Methods 90 healthy preschool patients undergoing inguinal hernia repair surgery were randomly assigned to one of three groups: C0 (ciprofol+saline), C1 (ciprofol + fentanyl 1µg/kg), C2 (ciprofol + fentanyl 2µg/kg). Anesthesia was induced with either prepared fentanyl or saline, followed by ciprofol. The dose of ciprofol for each patient was determined using the up-and-down sequential study design. The primary outcome was the ED50 of ciprofol required for smooth LMA insertion in the three groups. Additionally, the time to loss of consciousness and any perioperative adverse events were recorded. Results Compared with the C0 group, the ED50 (95% confidence interval) of ciprofol in the C1 and C2 groups were significantly lower (1.81 [1.73-1.90]mg/kg versus 0.67 [0.64-0.71]mg/kg and 0.48 [0.42-0.54] mg/kg, respectively; P<0.05). Additionally, the ED50 of ciprofol in the C2 group was lower than that in the C1 group (0.42 [0.42-0.54] mg/kg vs 0.67 [0.64-0.71]mg/kg; P<0.05). Furthermore, the time to loss of consciousness in the C1 and C2 groups decreased by 60% and 53%, respectively, compared to the C0 group. There were no significant differences in the incidence of drug-related hypotension after anesthesia induction among the three groups. No adverse events of hypoxia, bradycardia, or injection pain were observed in any groups. Conclusion In healthy, non-obese Chinese children undergoing elective inguinal hernia repair surgery, fentanyl 1 µg/kg and 2 µg/kg before ciprofol injection significantly reduced the ED50 of ciprofol for attenuating LMA response, with minimal occurrence of severe side effects.
Collapse
Affiliation(s)
- Sicong Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Fang Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Hua-Cheng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Lezhou Pan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Wangning Shangguan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology of Ministry of Education, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
9
|
Carron M, Tamburini E, Linassi F, Pettenuzzo T, Boscolo A, Navalesi P. Efficacy of nonopioid analgesics and adjuvants in multimodal analgesia for reducing postoperative opioid consumption and complications in obesity: a systematic review and network meta-analysis. Br J Anaesth 2024:S0007-0912(24)00475-6. [PMID: 39366846 DOI: 10.1016/j.bja.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Managing postoperative pain in patients with obesity is challenging. Although multimodal analgesia has proved effective for pain relief, the specific impacts of different nonopioid i.v. analgesics and adjuvants on these patients are not well-defined. This study aims to assess the effectiveness of nonsteroidal antiinflammatory drugs, paracetamol, ketamine, α-2 adrenergic receptor agonists, lidocaine, magnesium, and oral gabapentinoids in reducing perioperative opioid consumption and, secondarily, in mitigating the occurrence of general and postoperative pulmonary complications (POPCs), nausea, vomiting, PACU length of stay (LOS), and hospital LOS among surgical patients with obesity. METHODS A systematic review and network meta-analysis was performed. PubMed, Scopus, Web of Science, CINAHL, and EMBASE were searched. Only English-language RCTs investigating the use of nonopioid analgesics and adjuvants in adult surgical patients with obesity were included. The quality of evidence and certainty were assessed using the RoB 2 tool and GRADE framework, respectively. RESULTS In total, 37 RCTs involving 3602 patients were included in the quantitative analysis. Compared with placebo/no intervention or a comparator, dexmedetomidine, ketamine, lidocaine, magnesium, and gabapentin significantly reduced postoperative opioid consumption after surgery. Ketamine/esketamine also significantly reduced POPCs. Ibuprofen, dexmedetomidine, and lidocaine significantly reduced postoperative nausea, whereas dexmedetomidine, either alone or combined with pregabalin, and lidocaine reduced postoperative vomiting. Dexmedetomidine significantly reduced PACU LOS, whereas both paracetamol and lidocaine reduced hospital LOS. CONCLUSIONS Intravenous nonopioid analgesics and adjuvants are crucial in multimodal anaesthesia, reducing opioid consumption and enhancing postoperative care in adult surgical patients with obesity. SYSTEMATIC REVIEW PROTOCOL CRD42023399373 (PROSPERO).
Collapse
Affiliation(s)
- Michele Carron
- Department of Medicine - DIMED, Section of Anaesthesiology and Intensive Care, University of Padova, Padova, Italy; Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padova, Italy.
| | - Enrico Tamburini
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padova, Italy
| | - Federico Linassi
- Department of Anaesthesia and Intensive Care, Ca' Foncello Treviso Regional Hospital, Treviso, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Pettenuzzo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padova, Italy
| | - Annalisa Boscolo
- Department of Medicine - DIMED, Section of Anaesthesiology and Intensive Care, University of Padova, Padova, Italy; Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padova, Italy; Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padova, Italy
| | - Paolo Navalesi
- Department of Medicine - DIMED, Section of Anaesthesiology and Intensive Care, University of Padova, Padova, Italy; Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padova, Italy
| |
Collapse
|
10
|
Farney RJ, Johnson KB, Ermer SC, Orr JA, Egan TD, Morris AH, Brewer LM. Quantified Ataxic Breathing Can Detect Opioid-Induced Respiratory Depression Earlier in Normal Volunteers Infused with Remifentanil. Anesth Analg 2024:00000539-990000000-00922. [PMID: 39178322 DOI: 10.1213/ane.0000000000007124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
BACKGROUND Ataxic breathing (AB) is a well-known manifestation of opioid effects in animals and humans, but is not routinely included in monitoring for opioid-induced respiratory depression (OIRD). We quantified AB in normal volunteers receiving increasing doses of remifentanil. We used a support vector machine (SVM) learning approach with features derived from a modified Poincaré plot. We tested the hypothesis that AB may be found when bradypnea and reduced mental status are not present. METHODS Twenty-six healthy volunteers (13 female) received escalating target effect-site concentrations of remifentanil with a low baseline dose of propofol to simulate typical breathing patterns in drowsy patients who had received parenteral opioids. We derived respiratory rate (RR) from respiratory inductance plethysmography, mental alertness from the Modified Observer's Assessment of Alertness/Sedation Scale (MOAA/S), and AB severity on a 0 to 4 scale (categories ranging from none to severe) from the SVM. The primary outcome measure was sensitivity and specificity for AB to detect OIRD. RESULTS All respiratory measurements were obtained from unperturbed subjects during steady state in 121 assessments with complete data. The sensitivity of AB for detecting OIRD by the conventional method was 92% and specificity was 28%. As expected, 69 (72%) of the instances not diagnosed as OIRD using conventional measures were observed to have at least moderate AB. CONCLUSIONS AB was frequently present in the absence of traditionally detected OIRD as defined by reduced mental alertness (MOAA/S score of <4) and bradypnea (RR <8 breaths/min). These results justify the need for future trials to explore replicability with other opioids and clinical utility of AB as an add-on measure in recognizing OIRD.
Collapse
Affiliation(s)
- Robert J Farney
- From the Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ken B Johnson
- Department of Anesthesia, University of Utah, Salt Lake City, Utah
| | - Sean C Ermer
- Department of Anesthesia, University of Utah, Salt Lake City, Utah
| | - Joseph A Orr
- Department of Anesthesia, University of Utah, Salt Lake City, Utah
| | - Talmage D Egan
- Department of Anesthesia, University of Utah, Salt Lake City, Utah
| | - Alan H Morris
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Lara M Brewer
- Department of Anesthesia, University of Utah, Salt Lake City, Utah
| |
Collapse
|
11
|
Javaheri S, Randerath WJ, Safwan Badr M, Javaheri S. Medication-induced central sleep apnea: a unifying concept. Sleep 2024; 47:zsae038. [PMID: 38334297 DOI: 10.1093/sleep/zsae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Medication-induced central sleep apnea (CSA) is one of the eight categories of causes of CSA but in the absence of awareness and careful history may be misclassified as primary CSA. While opioids are a well-known cause of respiratory depression and CSA, non-opioid medications including sodium oxybate, baclofen, valproic acid, gabapentin, and ticagrelor are less well-recognized. Opioids-induced respiratory depression and CSA are mediated primarily by µ-opioid receptors, which are abundant in the pontomedullary centers involved in breathing. The non-opioid medications, sodium oxybate, baclofen, valproic acid, and gabapentin, act upon brainstem gamma-aminobutyric acid (GABA) receptors, which co-colonize with µ-opioid receptors and mediate CSA. The pattern of ataxic breathing associated with these medications is like that induced by opioids on polysomnogram. Finally, ticagrelor also causes periodic breathing and CSA by increasing central chemosensitivity and ventilatory response to carbon dioxide. Given the potential consequences of CSA and the association between some of these medications with mortality, it is critical to recognize these adverse drug reactions, particularly because discontinuation of the offending agents has been shown to eliminate CSA.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Adjunct Professor of Medicine, Division of Cardiology, The Ohio State University, Columbus, Ohio, USA
- Emeritus Professor of Medicine, Division of Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winfried J Randerath
- Professor and Head Physician, Institute of Pneumology, University of Cologne, Bethanien Hospital, Solingen, Germany
| | - M Safwan Badr
- Professor and Chair, Department of Internal Medicine, Wayne State University School of Medicine Detroit, Staff Physician, John D. Dingell VA Medical Center, MI, USA
| | - Sogol Javaheri
- Assistant Professor of Sleep Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Guo X, Akanda N, Fiorino G, Nimbalkar S, Long CJ, Colón A, Patel A, Tighe PJ, Hickman JJ. Human IPSC-Derived PreBötC-Like Neurons and Development of an Opiate Overdose and Recovery Model. Adv Biol (Weinh) 2024; 8:e2300276. [PMID: 37675827 PMCID: PMC10921423 DOI: 10.1002/adbi.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Opioid overdose is the leading cause of drug overdose lethality, posing an urgent need for investigation. The key brain region for inspiratory rhythm regulation and opioid-induced respiratory depression (OIRD) is the preBötzinger Complex (preBötC) and current knowledge has mainly been obtained from animal systems. This study aims to establish a protocol to generate human preBötC neurons from induced pluripotent cells (iPSCs) and develop an opioid overdose and recovery model utilizing these iPSC-preBötC neurons. A de novo protocol to differentiate preBötC-like neurons from human iPSCs is established. These neurons express essential preBötC markers analyzed by immunocytochemistry and demonstrate expected electrophysiological responses to preBötC modulators analyzed by patch clamp electrophysiology. The correlation of the specific biomarkers and function analysis strongly suggests a preBötC-like phenotype. Moreover, the dose-dependent inhibition of these neurons' activity is demonstrated for four different opioids with identified IC50's comparable to the literature. Inhibition is rescued by naloxone in a concentration-dependent manner. This iPSC-preBötC mimic is crucial for investigating OIRD and combating the overdose crisis and a first step for the integration of a functional overdose model into microphysiological systems.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Gabriella Fiorino
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Siddharth Nimbalkar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Long
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Alisha Colón
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Patrick J Tighe
- College of Medicine, Department of Anesthesiology, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| |
Collapse
|
13
|
Choi S, Noya MR, Kiyatkin EA. Oxygen fluctuations in the brain and periphery induced by intravenous fentanyl: effects of dose and drug experience. J Neurophysiol 2024; 132:322-334. [PMID: 38863429 PMCID: PMC11427041 DOI: 10.1152/jn.00177.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Fentanyl is the leading contributor to drug overdose deaths in the United States. Its potency, rapid onset of action, and lack of effective reversal treatment make the drug much more lethal than other opioids. Although it is understood that fentanyl is dangerous at higher doses, the literature surrounding fentanyl's physiological effects remains contradictory at lower doses. To explore this discrepancy, we designed a study incorporating electrochemical assessment of oxygen in the brain (nucleus accumbens) and subcutaneous space, multisite thermorecording (brain, skin, muscle), and locomotor activity at varying doses of fentanyl (1.0, 3.0, 10, 30, and 90 µg/kg) in rats. In the nucleus accumbens, lower doses of fentanyl (3.0 and 10 µg/kg) led to an increase in oxygen levels while higher doses (30 and 90 µg/kg) led to a biphasic pattern, with an initial dose-dependent decrease followed by an increase. In the subcutaneous space, oxygen decreases started to appear at relatively lower doses (>3 µg/kg), had shorter onset latencies, and were stronger and prolonged. In the temperature experiment, lower doses of fentanyl (1.0, 3.0, and 10 µg/kg) led to an increase in brain, skin, and muscle temperatures, while higher doses (30 and 90 µg/kg) resulted in a dose-dependent biphasic temperature change, with an increase followed by a prolonged decrease. We also compared oxygen and temperature responses induced by fentanyl over six consecutive days and found no evidence of tolerance in both parameters. In conclusion, we report that fentanyl's effects are highly dose-dependent, drawing attention to the importance of better characterization to adequately respond in emergent cases of illicit fentanyl misuse.NEW & NOTEWORTHY By using electrochemical oxygen sensors in freely moving rats, we show that intravenous fentanyl induces opposite changes in brain oxygen at varying doses, increasing at lower doses (<10 µg/kg) and inducing a biphasic response, decrease followed by increase, at higher doses (>10-90 µg/kg). In contrast, fentanyl-induced dose-dependent oxygen decreases in the subcutaneous space. We consider the mechanisms underlying distinct oxygen responses in the brain and periphery and discuss naloxone's role in alleviating fentanyl-induced brain hypoxia.
Collapse
Affiliation(s)
- Shinbe Choi
- Behavioral Neuroscience BranchNational Institute on Drug Abuse-Intramural Research Program, National Insitutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States
| | - Michael R Noya
- Behavioral Neuroscience BranchNational Institute on Drug Abuse-Intramural Research Program, National Insitutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States
| | - Eugene A Kiyatkin
- Behavioral Neuroscience BranchNational Institute on Drug Abuse-Intramural Research Program, National Insitutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Foster K, Anholm JD, Foster G, Thapamagar S, Subedi P. Effects of Naltrexone on Sleep Quality and Periodic Breathing at High Altitude. High Alt Med Biol 2024. [PMID: 38966963 DOI: 10.1089/ham.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Foster, Katharine, James D. Anholm, Gary Foster, Suman Thapamagar, and Prajan Subedi. Effects of naltrexone on sleep quality and periodic breathing at high altitude. High Alt Med Biol. 00:000-000, 2024. Objective: This study examined the effects of naltrexone on breathing and sleep at high altitude. Mu-opioid receptor (MOR) agonists have a depressive effect on respiration. Naltrexone is known to block the MOR. We hypothesized that MOR blockade with naltrexone would result in higher nocturnal oxygen saturations, fewer apneas, and improved sleep at high altitude. Methods: This double-blind, placebo-controlled, crossover study included nine healthy volunteers (four females, five males) aged 27.9 (4.6) (mean [standard deviation]) years. Two overnight trips spaced at least 2 weeks apart took participants from Loma Linda, CA (355 m) to the Barcroft Laboratory, CA (3,810 m) for each arm. Participants ingested either 50 mg naltrexone or matching placebo at bedtime. Sleep metrics were recorded using an ambulatory physiological sleep monitor (APSM). Subjective data were measured with the Groningen Sleep Quality Scale, Stanford Sleepiness Scale, and the 2018 Lake Louise Score (LLS) for acute mountain sickness (AMS). Results: Mean overnight SpO2 was lower after taking naltrexone, 81% (6) versus 83% (4) (mean difference 1.9% [2.1, 95% confidence interval or CI = 0.1-3.6, p = 0.040]). The lowest overnight SpO2 (nadir) was lower on naltrexone 70% (6) versus 74% (4) (dif. 4.6% [4.3], CI = 1.0-8.2, p = 0.020). Total sleep time and total apnea-hypopnea index were unchanged. Subjective sleep quality was significantly worse on naltrexone measured via the Groningen Sleep Quality Scale (p = 0.033) and Stanford Sleepiness Scale (p = 0.038). AMS measured via LLS was significantly worse while taking naltrexone (p = 0.025). Conclusion: Contrary to our hypothesis, this study demonstrated a significant decrease in nocturnal oxygen saturation, worse sleep quality, and AMS scores. Further characterization of the MOR's effects on sleep and AMS is needed to evaluate potential exacerbating mechanisms for AMS and poor sleep quality at altitude.
Collapse
Affiliation(s)
- Katharine Foster
- Department of Emergency Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - James D Anholm
- Pulmonary & Critical Care, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Gary Foster
- Cardiology, St. Charles Health System, Bend, Oregon, USA
| | - Suman Thapamagar
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
- Riverside University Healthcare System Medical Center, Moreno Valley, California, USA
| | - Prajan Subedi
- Pulmonary & Critical Care, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
15
|
Ciatti JL, Vazquez-Guardado A, Brings VE, Park J, Ruyle B, Ober RA, McLuckie AJ, Talcott MR, Carter EA, Burrell AR, Sponenburg RA, Trueb J, Gupta P, Kim J, Avila R, Seong M, Slivicki RA, Kaplan MA, Villalpando-Hernandez B, Massaly N, Montana MC, Pet M, Huang Y, Morón JA, Gereau RW, Rogers JA. An Autonomous Implantable Device for the Prevention of Death from Opioid Overdose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600919. [PMID: 39005313 PMCID: PMC11244915 DOI: 10.1101/2024.06.27.600919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.
Collapse
|
16
|
Kaye AD, Dufrene K, Cooley J, Walker M, Shah S, Hollander A, Shekoohi S, Robinson CL. Neuropsychiatric Effects Associated with Opioid-Based Management for Palliative Care Patients. Curr Pain Headache Rep 2024; 28:587-594. [PMID: 38564124 DOI: 10.1007/s11916-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The abundance of opioids administered in the palliative care setting that was once considered a standard of care is at present necessitating that providers evaluate patients for unintentional and deleterious symptomology related to aberrant opioid use and addiction. Polypharmacy with opioids is dynamic in affecting patients neurologically, and increased amounts of prescriptions have had inimical effects, not only for the individual, but also for their families and healthcare providers. The purpose of this review is to widen the perspective of opioid consequences and bring awareness to the numerous neuropsychiatric effects associated with the most commonly prescribed opioids for patients receiving palliative care. RECENT FINDINGS Numerous clinical and research studies have found evidence in support for increased incidence of opioid usage and abuse as well as undesirable neurological outcomes. The most common and concerning effects of opioid usage in this setting are delirium and problematic drug-related behavioral changes such as deceitful behavior towards family and physicians, anger outbursts, overtaking of medications, and early prescription refill requests. Other neuropsychiatric effects detailed by recent studies include drug-seeking behavior, tolerance, dependence, addictive disorder, anxiety, substance use disorder, emotional distress, continuation of opioids to avoid opioid withdrawal syndrome, depression, and suicidal ideation. Opioid usage has detrimental and confounding effects that have been overlooked for many years by palliative care providers and patients receiving palliative care. It is necessary, even lifesaving, to be cognizant of potential neuropsychiatric effects that opioids can have on an individual, especially for those under palliative care. By having an increased understanding and awareness of potential opioid neuropsychiatric effects, patient quality of life can be improved, healthcare system costs can be decreased, and patient outcomes can be met and exceeded.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Louisiana State University Health Sciences Center at Shreveport, Toxicology, and Neurosciences, Shreveport, LA, 71103, USA
| | - Kylie Dufrene
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Jada Cooley
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Madeline Walker
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shivam Shah
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Alex Hollander
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
17
|
Baird A, White SA, Das R, Tatum N, Bisgaard EK. Whole body physiology model to simulate respiratory depression of fentanyl and associated naloxone reversal. COMMUNICATIONS MEDICINE 2024; 4:114. [PMID: 38866911 PMCID: PMC11169242 DOI: 10.1038/s43856-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Opioid use in the United States and abroad is an endemic part of society with yearly increases in overdose rates and deaths. In response, the use of the safe and effective reversal agent, naloxone, is being fielded and used by emergency medical technicians at a greater rate. There is evidence that repeated dosing of a naloxone nasal spray is becoming more common. Despite this we lack repeated dosing guidelines as a function of the amount of opiate the patient has taken. METHODS To measure repeat dosing guidelines, we construct a whole-body model of the pharmacokinetics and dynamics of an opiate, fentanyl on respiratory depression. We then construct a model of nasal deposition and administration of naloxone to investigate repeat dosing requirements for large overdose scenarios. We run a single patient through multiple goal directed resuscitation protocols and measure total naloxone administered. RESULTS Here we show that naloxone is highly effective at reversing the respiratory symptoms of the patient and recommend dosing requirements as a function of the fentanyl amount administered. We show that for increasing doses of fentanyl, naloxone requirements also increase. The rescue dose displays a nonlinear response to the initial opioid dose. This nonlinear response is largely logistic with three distinct phases: onset, rapid acceleration, and a plateau period for doses above 1.2 mg. CONCLUSIONS This paper investigates the total naloxone dose needed to properly reverse respiratory depression associated with fentanyl overdose. We show that the current guidelines for a rescue dose may be much lower than required.
Collapse
Affiliation(s)
- Austin Baird
- University of Washington Department of Surgery, Division of Healthcare Simulation Sciences, Seattle, WA, USA.
| | - Steven A White
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Rishi Das
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Nathan Tatum
- Applied Research Associated Southeast Division, Raleigh, NC, USA
| | - Erika K Bisgaard
- University of Washington Department of Surgery, Division of Trauma, Burn, and Critical Care Surgery, Seattle, WA, USA
| |
Collapse
|
18
|
Yang H, Liu Z, Liu F, Wu H, Huang X, Huang R, Saw PE, Cao M. TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation. Int J Nanomedicine 2024; 19:4759-4777. [PMID: 38828199 PMCID: PMC11141738 DOI: 10.2147/ijn.s453608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhongqi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Fan Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| | - Haixuan Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Xiaoyan Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Rong Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Phei Er Saw
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| |
Collapse
|
19
|
Papoff P, Caresta E, D’Agostino B, Midulla F, Petrarca L, Giannini L, Pisani F, Montecchia F. Expiratory braking defines the breathing patterns of asphyxiated neonates during therapeutic hypothermia. Front Pediatr 2024; 12:1383689. [PMID: 38832000 PMCID: PMC11146197 DOI: 10.3389/fped.2024.1383689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Although neonatal breathing patterns vary after perinatal asphyxia, whether they change during therapeutic hypothermia (TH) remains unclear. We characterized breathing patterns in infants during TH for hypoxic-ischemic encephalopathy (HIE) and normothermia after rewarming. Methods In seventeen spontaneously breathing infants receiving TH for HIE and in three who did not receive TH, we analyzed respiratory flow and esophageal pressure tracings for respiratory timing variables, pulmonary mechanics and respiratory effort. Breaths were classified as braked (inspiratory:expiratory ratio ≥1.5) and unbraked (<1.5). Results According to the expiratory flow shape braked breaths were chategorized into early peak expiratory flow, late peak expiratory flow, slow flow, and post-inspiratory hold flow (PiHF). The most braked breaths had lower rates, larger tidal volume but lower minute ventilation, inspiratory airway resistance and respiratory effort, except for the PiHF, which had higher resistance and respiratory effort. The braked pattern predominated during TH, but not during normothermia or in the uncooled infants. Conclusions We speculate that during TH for HIE low respiratory rates favor neonatal braked breathing to preserve lung volume. Given the generally low respiratory effort, it seems reasonable to leave spontaneous breathing unassisted. However, if the PiHF pattern predominates, ventilatory support may be required.
Collapse
Affiliation(s)
- Paola Papoff
- Pediatric Intensive Care Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Elena Caresta
- Pediatric Intensive Care Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Benedetto D’Agostino
- Pediatric Intensive Care Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Fabio Midulla
- Pediatric Emergency Care, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Pediatric Emergency Care, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Luigi Giannini
- Pediatric Neurology, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Montecchia
- Medical Engineering Laboratory, Department of Civil Engineering and Computer Science, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
20
|
Ververi C, Galletto M, Massano M, Alladio E, Vincenti M, Salomone A. Method development for the quantification of nine nitazene analogs and brorphine in Dried Blood Spots utilizing liquid chromatography - tandem mass spectrometry. J Pharm Biomed Anal 2024; 241:115975. [PMID: 38280237 DOI: 10.1016/j.jpba.2024.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
The detection of nitazenes in biological fluids is increasingly needed as they are repeatedly reported in intoxication and overdose cases. A simple method for the quantification of low levels of nine nitazene analogs and brorphine in Dried Blood Spots (DBS) was developed and validated. 10 μL of spiked whole blood is deposited on a Capitainer®B card and allowed to dry. The spot is punched out, and extracted with 500 μL methanol:acetonitrile (3:1 v/v) added with 1.5 μL of fentanyl-D5 as the internal standard. After stirring, sonication, and centrifugation of the vial, the solvent is dried under nitrogen, the extract is reconstituted in 30 μL methanol, and 1 μL is injected into a UHPLC-MS/MS instrument. The method validation showed linear calibration in the 1-50 ng/mL range, LOD values ranging between 0.3 ng/mL (isotonitazene) and 0.5 ng/mL (brorphine), average CV% and bias% within 15 % and 10 % for all compounds, respectively. The matrix effect due to blood and filter paper components was within 85-115 % while recovery was between 15-20 %. Stability tests against time and temperature showed no significant variations for storage periods up to 28 days. Room temperature proved to represent the best samples storage conditions. UHPLC-MS/MS proved capable to reliably identify all target analytes at low concentration even in small specimen volumes, as those obtained from DBS cards, which in turn confirmed to be effective and sustainable micro-sampling devices. This procedure improves the efficiency of toxicological testing and provides an innovative approach for the identification of the nitazene class of illicit compounds.
Collapse
Affiliation(s)
| | | | - Marta Massano
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Marco Vincenti
- Department of Chemistry, University of Turin, Turin, Italy; Centro Regionale Antidoping, Orbassano, Turin, Italy
| | - Alberto Salomone
- Department of Chemistry, University of Turin, Turin, Italy; Centro Regionale Antidoping, Orbassano, Turin, Italy
| |
Collapse
|
21
|
Buss P, Miller M, Fuller A, Haw A, Thulson E, Olea-Popelka F, Meyer L. Effects of Butorphanol on Respiration in White Rhinoceros (Ceratotherium simum) Immobilized with Etorphine-Azaperone. J Wildl Dis 2024; 60:388-400. [PMID: 38268196 DOI: 10.7589/jwd-d-23-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/26/2024]
Abstract
This article reports on respiratory function in white rhinoceros (Ceratotherium simum) immobilized with etorphine-azaperone and the changes induced by butorphanol administration as part of a multifaceted crossover study that also investigated the effects of etorphine or etorphine-butorphanol treatments. Six male white rhinoceros underwent two immobilizations by using 1) etorphine-azaperone and 2) etorphine-azaperone-butorphanol. Starting 10 min after recumbency, arterial blood gases, limb muscle tremors, expired minute ventilation, and respiratory rate were evaluated at 5-min intervals for 25 min. Alveolar to arterial oxygen gradient, expected respiratory minute volume, oxygen consumption, and carbon dioxide production were calculated. Etorphine-azaperone administration resulted in hypoxemia and hypercapnia, with increases in alveolar to arterial oxygen gradient, oxygen consumption, and carbon dioxide production, and a decrease in expired minute ventilation. Muscle tremors were also observed. Intravenous butorphanol administration in etorphine-azaperone-immobilized white rhinoceros resulted in less hypoxemia and hypercapnia; a decrease in oxygen consumption, carbon dioxide production, and expired minute ventilation; and no change in the alveolar to arterial oxygen gradient and rate of breathing. We show that the immobilization of white rhinoceros with etorphine-azaperone results in hypoxemia and hypercapnia and that the subsequent intravenous administration of butorphanol improves both arterial blood oxygen and carbon dioxide partial pressures.
Collapse
Affiliation(s)
- Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Private Bag X402, Skukuza 1350, South Africa
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 29 Princess of Wales Terrace, Private Bag 3, 2050, Parktown, South Africa
- Department of Paraclinical Sciences and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Soutpan Road, Wildlife Hub Building, Private Bag X04, Onderstepoort 0110, South Africa
| | - Michele Miller
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 29 Princess of Wales Terrace, Private Bag 3, 2050, Parktown, South Africa
- Department of Paraclinical Sciences and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Soutpan Road, Wildlife Hub Building, Private Bag X04, Onderstepoort 0110, South Africa
| | - Anna Haw
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 29 Princess of Wales Terrace, Private Bag 3, 2050, Parktown, South Africa
| | - Emily Thulson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, 300 W. Drake Road, Fort Collins, Colorado 80523, USA
| | - Francisco Olea-Popelka
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Dental Sciences Building Room 4044, Western University, 1151 Richmond Street, London, Ontario N6A5C1, Canada
| | - Leith Meyer
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 29 Princess of Wales Terrace, Private Bag 3, 2050, Parktown, South Africa
- Department of Paraclinical Sciences and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Soutpan Road, Wildlife Hub Building, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
22
|
Pattullo GG. Naloxone for Opioid Overdose: Comment. Anesthesiology 2024; 140:856. [PMID: 38335034 DOI: 10.1097/aln.0000000000004870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- Gavin G Pattullo
- North Shore Private Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Jia Z, Wei X, Chen N, Xu X, Zhao G, Fu X, Wang H, Goldring MB, Goldring SR, Wang D. Thermoresponsive Polymeric Hydromorphone Prodrug Provides Sustained Local Analgesia without Apparent Adverse Effects. Mol Pharm 2024; 21:1838-1847. [PMID: 38413029 PMCID: PMC11210938 DOI: 10.1021/acs.molpharmaceut.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral μ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Xin Fu
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Hanjun Wang
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA
| | | | - Steven R. Goldring
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Hospital for Special Surgery, New York, NY, 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Department of Orthopaedic and Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5640, USA
| |
Collapse
|
24
|
van Amsterdam J, van den Brink W. Explaining the high mortality among opioid-cocaine co-users compared to opioid-only users. A systematic review. J Addict Dis 2024:1-11. [PMID: 38504419 DOI: 10.1080/10550887.2024.2331522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
RATIONALE The opioid crisis in North America has recently seen a fourth wave, which is dominated by drug-related deaths due to the combined use of illicitly manufactured fentanyl [IMF] and stimulants such as cocaine and methamphetamine. OBJECTIVES A systematic review addressing the question why drug users combine opioids and stimulants and why the combination results in such a high overdose mortality: from specific and dangerous pharmacokinetic or pharmacodynamic interactions or from accidental poisoning? RESULTS Motives for the combined use include a more intensive high or rush when used at the same time, and some users have the unfounded and dangerous belief that co-use of stimulants will counteract opioid-induced respiratory depression. Overdose deaths due to combined (intravenous) use of opioids and stimulants are not likely to be caused by specific pharmacokinetic or pharmacodynamic interactions between the two drugs and it is unlikely that the main cause of overdose deaths is due to accidental poisoning. CONCLUSION The unexpectedly high overdose rates in this population could not be attributed to accidental overdosing or pharmacokinetic/pharmacodynamic interactions. The most likely explanation for the high rate of drug-related deaths in opioid-cocaine co-users is careless overdosing with either cocaine, opioid(s) or both, probably facilitated by the high level of preexisting impulsivity in these co-users and a further acute increase in impulsivity following cocaine use. The primary corollary is that cocaine users should avoid IMF use in the same time window. In addition, IMF users should refrain from cocaine use to avoid impulsive IMF overdosing.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Department of Psychiatry, Amsterdam UMC, Location Academic Medical Center, Amsterdam Neuroscience, Research Program Compulsivity, Impulsivity & Attention, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam UMC, Location Academic Medical Center, Amsterdam Neuroscience, Research Program Compulsivity, Impulsivity & Attention, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Zheng J, Huang Y, He J, Zhou H, Liu T, Huang J, Shi M, Zhao Y, Fang W, Yang Y, Zhang L. Trends in pain undertreatment among lung cancer patients at the EOL: Analysis of urban city medical insurance data in China. Thorac Cancer 2024; 15:693-701. [PMID: 38316629 PMCID: PMC10961226 DOI: 10.1111/1759-7714.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Cancer-related pain is one of the common priority symptoms in advanced lung cancer patients at the end-of-life (EOL). Alleviating pain is undoubtedly a critical component of palliative care in lung cancer. Our study was initiated to examined trends in opioid prescription-level outcomes as potential indicators of undertreated pain in China. METHODS This study used data on 1330 patients diagnosed with lung cancer of urban city medical insurance in China who died between 2014 and 2017. Opioid prescription-level outcomes were determined by annual trends of the proportion of patients filling an opioid prescription, the total dose of opioids filled by decedents, and morphine milligram equivalents per day (MMED) at the EOL (defined as the 60 days before death). We further analyzed monthly changes in the number of opioid prescriptions filled, MMED, and mean daily dose of opioids per prescription (MDDP) of the last 60 days of life by year at death and age, respectively. RESULTS A total of 959 patients with exact dates of death were included, with 432 cases (45.06%; 95% CI: 44.36%-45.77%) receiving at least one opioid prescription at the EOL. The declining trends were shown in the proportion of patients filling any opioid prescription, the total dose of opioids filled by decedents and MMED, with an annual decrease of 0.341% (p = 0.01), 104.23 mg (p = 0.011) and 2.84 mg (p = 0.014), respectively. Within the 31-60 days to the 0-30 days of life, the MMED declined 6.08 mg (95% CI: -7.14 to -5.03; p = 0.000351), while the number of opioid prescriptions rose 0.66 (95% CI: 0.160-1.16; p = 0.025). Like the MMED, the MDDP fell 4.11 mg (95% CI: -5.86 to -2.37; p = 0.005) within the last month before death compared to the previous month. CONCLUSION Terminal lung cancer populations in urban China have experienced reduced access to opioids at the EOL. The clinicians did not prescribe a satisfactory dose of opioids per prescription, while the patients suffered increasing pain in the last 30 days of life. Sufficient opioid analgesic administration should be advocated for lung cancer patients during the EOL period.
Collapse
Affiliation(s)
- Jiani Zheng
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Yihua Huang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Junyi He
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Huaqiang Zhou
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Tingting Liu
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Jie Huang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Mengting Shi
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Yuanyuan Zhao
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Wenfeng Fang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Yunpeng Yang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| | - Li Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangzhouPeople's Republic of China
| |
Collapse
|
26
|
Hiranita T, Ho NP, France CP. Comparison of the µ -opioid receptor antagonists methocinnamox (MCAM) and naloxone to reverse and prevent the ventilatory depressant effects of fentanyl, carfentanil, 3-methylfentanyl, and heroin in male rats. J Pharmacol Exp Ther 2024; 391:JPET-AR-2023-002032. [PMID: 38409115 PMCID: PMC11413922 DOI: 10.1124/jpet.123.002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/21/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
The number of opioid overdose deaths has increased significantly over the past decade. The life-threatening effect of opioids is hypoventilation that can be reversed by the µ-opioid receptor (MOR) antagonist naloxone; however, because of the very short duration of action of naloxone, re-emergence of MOR agonist-induced hypoventilation can occur, requiring additional doses of naloxone. The MOR antagonist methocinnamox (MCAM) antagonizes hypoventilation by the non-morphinan fentanyl and the morphinan heroin in laboratory animals with an unusually long duration of action. Whole-body plethysmography was used to compare the potency and effectiveness of MCAM and naloxone for preventing and reversing hypoventilation by fentanyl, heroin, and the ultra-potent and longer-acting fentanyl analogs carfentanil and 3-methylfentanyl in male rats breathing normal air. Sessions comprised a 45-minute habituation period followed by intravenous (i.v.) administration of saline or an acute dose of MOR agonist. The rank order of potency to decrease ventilation was 3-methylfentanyl > carfentanil > fentanyl > heroin. MCAM (0.0001-0.1 mg/kg) and naloxone (0.0001-0.01 mg/kg) dose-dependently reversed hypoventilation by 3-methylfentanyl (0.01 mg/kg), carfentanil (0.01 mg/kg), fentanyl (0.1 mg/kg), or heroin (3.2 mg/kg). For prevention studies, MCAM, naloxone, or vehicle was administered i.v. 22, 46, or 70 hours prior to a MOR agonist. When administered 22 hours earlier, MCAM (0.1-1.0 mg/kg) but not naloxone (1.0 mg/kg) prevented hypoventilation by each MOR agonist. This study demonstrates the effectiveness of MCAM to reverse and prevent hypoventilation by MOR agonists including ultra-potent fentanyl analogs that have a long duration of action. Significance Statement The number of opioid overdose deaths increased over the past decade despite the availability of antagonists that can prevent and reverse the effects of opioids. This study demonstrates the effectiveness and long duration of action of the µ-opioid receptor (MOR) antagonist methocinnamox (MCAM) for reversing and preventing hypoventilation by MOR agonists including ultra-potent fentanyl analogs. These results provide support for the notion that MCAM has the potential to positively impact the ongoing opioid crisis by reversing and preventing opioid overdose.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacology, UT Health San Antonio, United States
| | - Nicholas P Ho
- Pharmacodynamics, University of Florida College of Pharmacy, United States
| | - Charles P France
- Department of Pharmacology, University of Texas Health Science Center, United States
| |
Collapse
|
27
|
Song D, Crouse B, Vigliaturo J, Wu MM, Heimisdottir D, Kassick AJ, Averick SE, Raleigh MD, Pravetoni M. Multivalent Vaccination Strategies Protect against Exposure to Polydrug Opioid and Stimulant Mixtures in Mice and Rats. ACS Pharmacol Transl Sci 2024; 7:363-374. [PMID: 38357285 PMCID: PMC10863445 DOI: 10.1021/acsptsci.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Illicit drug mixtures containing opioids and stimulants have been responsible for the majority of fatal drug overdoses among occasional users, and those with either opioid use disorder (OUD) or substance use disorder (SUD). As a complementary strategy to current pharmacotherapies, active immunization with conjugate vaccines has been proposed as a viable intervention to treat OUD as well as other SUD for which there are either limited or no treatment options. Vaccination against opioids and stimulants could help address the limitations of current medications (e.g., patient access, compliance, misuse liability, and safety) by providing an additional tool to prevent drug misuse and/or overdoses. However, more research is needed to fully understand the potential benefits and limitations of using vaccines to treat SUD and overdose and to inform us on how to deploy this strategy in the field. Previous reports have shown promise by combining two vaccines into bivalent vaccine formulations to concurrently target multiple drugs. Here, multiple individual candidate monovalent vaccines were incrementally combined in multivalent vaccine formulations to simultaneously target fentanyl, carfentanil, oxycodone, heroin, methamphetamine, and their analogs or metabolites. Bi-, tri-, and quadrivalent vaccine formulations induced the formation of independent serum antibody responses against their respective opioid targets and selectively attenuated the distribution of each individual drug to the brain in mice and rats. Results indicate that a single injection of an admixed multivalent vaccine formulation may be more effective than coinjecting multiple monovalent vaccines at multiple sites. Finally, adding a methamphetamine conjugate vaccine to an quadrivalent opioid vaccine in a pentavalent formulation did not interfere with the production of effective antiopioid IgG antibodies. Multivalent vaccines could provide multifaceted, yet selective, protection against polydrug use and exposure.
Collapse
Affiliation(s)
- Daihyun Song
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- School
of Veterinary Population Medicine, University
of Minnesota, St. Paul, Minnesota 55455, United States
| | - Jennifer Vigliaturo
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Mariah M. Wu
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- School
of Veterinary Population Medicine, University
of Minnesota, St. Paul, Minnesota 55455, United States
| | - Dagny Heimisdottir
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew J. Kassick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah E. Averick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience
Institute, Allegheny Health Network, Allegheny
General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Michael D. Raleigh
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Marco Pravetoni
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
- University
of Washington Center for Medication Development for Substance Use
Disorders; Garvey Institute for Brain Solutions, Seattle,Washington 98195, United States
| |
Collapse
|
28
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Hiranita T, Ho NP, France CP. Ventilatory Effects of Fentanyl, Heroin, and d-Methamphetamine, Alone and in Mixtures in Male Rats Breathing Normal Air . J Pharmacol Exp Ther 2024; 388:244-256. [PMID: 37739803 PMCID: PMC10801789 DOI: 10.1124/jpet.123.001653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
The number of drug overdoses and deaths has increased significantly over the past decade and co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures, particularly methamphetamine, are not well characterized. Two structurally different drugs with agonist properties at µ-opioid receptors (MOR), fentanyl and heroin, and d-methamphetamine, alone and in mixtures, were assessed for their effects on ventilation in rats breathing normal air. Whole-body phethysmography chambers were equipped with a tower and swivel allowing infusions to indwelling intravenous catheters. After a 45-minute habituation period, saline, fentanyl, heroin, or d-methamphetamine, alone and in mixtures, was administered. Five minutes later, the opioid receptor antagonist naloxone or vehicle was injected. Fentanyl (0.0032-0.1 mg/kg) and heroin (0.32-3.2 mg/kg) decreased ventilation [frequency (f) and tidal volume (VT)] in a dose-related manner whereas d-methamphetamine (0.1-3.2 mg/kg) increased f to >400% of control and decreased VT to <60% of control, overall increasing minute volume (product of f and VT) to >240% of control. When combined, d-methamphetamine (0.1-3.2 mg/kg) attenuated the ventilatory depressant effects of fentanyl (0.1 mg/kg) and heroin (3.2 mg/kg). d-Methamphetamine did not alter the potency of naloxone to reverse the ventilatory depressant effects of fentanyl or heroin. These studies demonstrate that d-methamphetamine can attenuate the ventilatory depressant effects of moderate doses of opioid receptor agonists while not altering the potency of naloxone to reverse opioid hypoventilation. SIGNIFICANCE STATEMENT: Co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures are not well characterized. This study reports that 1) d-methamphetamine attenuates the ventilatory depressant effects of moderate doses of two structurally different opioid receptor agonists, fentanyl and heroin, and 2) d-methamphetamine does not alter potency or effectiveness of naloxone to reverse the ventilatory depressant effects of these opioid receptor agonists.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacology (T.H., N.P.H., C.P.F.), Department of Psychiatry (C.P.F.), and Addiction Research, Treatment & Training Center of Excellence (T.H., N.P.H., C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nicholas P Ho
- Department of Pharmacology (T.H., N.P.H., C.P.F.), Department of Psychiatry (C.P.F.), and Addiction Research, Treatment & Training Center of Excellence (T.H., N.P.H., C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Charles P France
- Department of Pharmacology (T.H., N.P.H., C.P.F.), Department of Psychiatry (C.P.F.), and Addiction Research, Treatment & Training Center of Excellence (T.H., N.P.H., C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
30
|
Kiyatkin EA, Choi S. Brain oxygen responses induced by opioids: focus on heroin, fentanyl, and their adulterants. Front Psychiatry 2024; 15:1354722. [PMID: 38299188 PMCID: PMC10828032 DOI: 10.3389/fpsyt.2024.1354722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Opioids are important tools for pain management, but abuse can result in serious health complications. Of these complications, respiratory depression that leads to brain hypoxia is the most dangerous, resulting in coma and death. Although all opioids at large doses induce brain hypoxia, danger is magnified with synthetic opioids such as fentanyl and structurally similar analogs. These drugs are highly potent, act rapidly, and are often not effectively treated by naloxone, the standard of care for opioid-induced respiratory depression. The goal of this review paper is to present and discuss brain oxygen responses induced by opioids, focusing on heroin and fentanyl. In contrast to studying drug-induced changes in respiratory activity, we used chronically implanted oxygen sensors coupled with high-speed amperometry to directly evaluate physiological and drug-induced fluctuations in brain oxygen levels in awake, freely moving rats. First, we provide an overview of brain oxygen responses to physiological stimuli and discuss the mechanisms regulating oxygen entry into brain tissue. Next, we present data on brain oxygen responses induced by heroin and fentanyl and review underlying mechanisms. These data allowed us to compare the effects of these drugs on brain oxygen in terms of their potency, time-dependent response pattern, and potentially lethal effect at high doses. Then, we present the interactive effects of opioids during polysubstance use (alcohol, ketamine, xylazine) on brain oxygenation. Finally, we consider factors that affect the therapeutic potential of naloxone, focusing on dosage, timing of drug delivery, and contamination of opioids by other neuroactive drugs. The latter issue is considered chiefly with respect to xylazine, which strongly potentiates the hypoxic effects of heroin and fentanyl. Although this work was done in rats, the data are human relevant and will aid in addressing the alarming rise in lethality associated with opioid misuse.
Collapse
Affiliation(s)
- Eugene A. Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, United States
| | | |
Collapse
|
31
|
Li M, Pagare PP, Ma H, St Onge CM, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Molecular Pharmacology Profiling of Phenylfentanil and Its Analogues to Understand the Putative Involvement of an Adrenergic Mechanism in Fentanyl-Induced Respiratory Depression. J Med Chem 2024; 67:603-619. [PMID: 38156970 DOI: 10.1021/acs.jmedchem.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
While there are approved therapeutics to treat opioid overdoses, the need for treatments to reverse overdoses due to ultrapotent fentanyls remains unmet. This may be due in part to an adrenergic mechanism of fentanyls in addition to their stereotypical mu-opioid receptor (MOR) effects. Herein, we report our efforts to further understanding of the functions these distinct mechanisms impart. Employing the known MOR neutral antagonist phenylfentanil as a lead, 17 analogues were designed based on the concept of isosteric replacement. To probe mechanisms of action, these analogues were pharmacologically evaluated in vitro and in vivo, while in silico modeling studies were also conducted on phenylfentanil. While it did not indicate MOR involvement in vivo, phenylfentanil yielded respiratory minute volumes similar to those caused by fentanyl. Taken together with molecular modeling studies, these results indicated that respiratory effects of fentanyls may also correlate to inhibition of both α1A- and α1B-adrenergic receptors.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
32
|
Haak F, Nocera F, Merlo L, Dursunoglu B, Däster S, Angehrn FV, Steinemann DC. Omission of perioperative morphine reduces postoperative pain in proctological interventions: a single-center analysis. Updates Surg 2024; 76:155-161. [PMID: 37668891 PMCID: PMC10806230 DOI: 10.1007/s13304-023-01640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
There is an increase in outpatient procedures and this trend will continue in the future. For hemorrhoidectomy, it is the standard of treatment in many health care systems. Perioperative management including adequate pain control is of paramount importance to ensure successful ambulatory surgery. This study investigates the role and effect of morphine compared to short-acting opiates applied before, during, or after proctological interventions and with focus on hemorrhoidectomy. A retrospective analysis of a prospective database was conducted comparing two populations. The control cohort received morphine (Yes-Mô) intra- and postoperatively, while the intervention group did not receive morphine (No-Mô) between January 2018 and January 2020. Both cohorts were balanced by propensity score matching. The outcomes were postoperative pain measured by numeric ratings scale (NRS) one hour postoperatively, pain 24 h postoperatively, success rate of outpatient management, and complication rate including postoperative nausea and vomiting as well as urinary retention. The intervention population comprised 54 patients and the control group contained 79 patients. One hour after surgery, patients in No-Mô reported lower NRS (1.44 ± 1.41) compared to Yes-Mô (2.48 ± 2.30) (p = 0.029). However, there was no difference in NRS 24 h postoperatively (No-Mô: 1.61 ± 1.41 vs Yes-Mô: 1.63 ± 1.72; p = 0.738). 100% of No-Mô was managed as outpatients while only 50% of Yes-Mô was dismissed on the day of the operation (p = < 0.001). There was no difference in postoperative complications (including postoperative nausea and vomiting (PONV) and urinary retention) between the two groups (PONV No-Mô 7.4% vs Yes-Mô 5.6%, p = 1.0 and urinary retention No-Mô 3.7% vs Yes-Mô 7.4%, p = 0.679). No-Mô received an oral morphine equivalent of 227.25 ± 140.35 mg intraoperatively and 11.02 ± 18.02 mg postoperatively. Yes-Mô received 263.17 ± 153.60 mg intraoperatively and 15.97 ± 14.17 mg postoperatively. The difference in received morphine equivalent between the groups was not significant after matching for the intraoperative (p = 0.212) and postoperative (p = 0.119) received equivalent. Omission of perioperative morphine is a viable but yet not understood method for reducing postoperative pain. Omission of morphine leads to a lower use of total morphine equivalent to attain satisfactory analgesia. The reduction of the overall opiate load and using opiates with a very short half-life potentially leads to a reduction of side effects like sedation. This in turn promotes discharge of the patient on the day of surgery. Omission of morphine is safe and does not increase postoperative complications.
Collapse
Affiliation(s)
- Fabian Haak
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Fabio Nocera
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Lorena Merlo
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Belma Dursunoglu
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Silvio Däster
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Fiorenzo V Angehrn
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland
| | - Daniel C Steinemann
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Postfach, 4002, Basel, Switzerland.
- Medical Faculty, University of Basel, Basel, Switzerland.
| |
Collapse
|
33
|
Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C. The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System. Curr Neuropharmacol 2024; 22:217-240. [PMID: 37563812 PMCID: PMC10788885 DOI: 10.2174/1570159x21666230810110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 02/28/2023] [Indexed: 08/12/2023] Open
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
Collapse
Affiliation(s)
- Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Singh S, Sri Krishna V, Cherian Ambooken G, Peter DK. Nalbuphine: an underrecognized battlefield analgesic and its utilization in combat care and peripheral areas. Med J Armed Forces India 2024; 80:41-45. [PMID: 38239600 PMCID: PMC10793233 DOI: 10.1016/j.mjafi.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 01/22/2024] Open
Abstract
Battlefield injuries result in acute and severe uncontrolled pain, which can be reduced with the early use of analgesia. Apart from pain, battlefield injuries may also cause significant morbidity and a prolonged period of absence from active duty. Traditionally available opioids are known to cause various undesirable side effects such as respiratory depression that may worsen the condition of an already injured combatant. Nalbuphine is an opioid agonist-antagonist and has been increasingly used for postoperative analgesia over the last decade. In India, it is the only opioid analgesic that does not come under the Controlled Substances Act at the time of this publication. In today's world, where nalbuphine is being recommended for acute pain worldwide, its use in the Indian combat scenario needs to be conceptualized at the medical officer level (primary caregiver). This conceptualization will be discussed in detail in this review article.
Collapse
Affiliation(s)
- Shalendra Singh
- Senior Advisor (Anaesthesia & Neuro Anaesthesia), Command Hospital (Northern Command), Udhampur, India
| | | | | | - Deepu K. Peter
- Graded Specialist (Respiratory Medicine), Command Hospital (Northern Command), Udhampur, India
| |
Collapse
|
35
|
Coviello C, Sivam SK. Considerations for Functional Nasal Surgery in the Obstructive Sleep Apnea Population. Facial Plast Surg 2023; 39:642-647. [PMID: 37328151 DOI: 10.1055/a-2111-9255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) and nasal obstruction are common in the general population and frequently treated by otolaryngologists and facial plastic surgeons. Understanding the appropriate pre-, peri-, and postoperative management of OSA patients undergoing functional nasal surgery is important. OSA patients should be appropriately counseled in the preoperative period on their increased anesthetic risk. In OSA patients who are continuous positive airway pressure (CPAP) intolerant, the role of drug-induced sleep endoscopy should be discussed with the patient, and depending on the surgeon's practice may prompt referral to a sleep specialist. Should multilevel airway surgery be indicated, it can safely be performed in most OSA patients. Surgeons should communicate with the anesthesiologist regarding an airway plan given this patient population's higher propensity for having a difficult airway. Given their increased risk of postoperative respiratory depression, extended recovery time should be given to these patients and the use of opioids as well as sedatives should be minimized. During surgery, one can consider using local nerve blocks to reduce postoperative pain and analgesic use. After surgery, clinicians can consider opioid alternatives such as nonsteroidal anti-inflammatory agents. Neuropathic agents, such as gabapentin, require further research in their indications for managing postoperative pain. CPAP is typically held for a period of time after functional rhinoplasty. The decision on when to restart CPAP should be individualized to the patient based on their comorbidities, OSA severity, and surgical maneuvers performed. More research would provide further guidance in this patient population to shape more specific recommendations regarding their perioperative and intraoperative course.
Collapse
Affiliation(s)
- Caitlin Coviello
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Sunthosh Kumar Sivam
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
36
|
Cavallo D, Kelly E, Henderson G, Abdala Sheikh AP. Comparison of the effects of fentanyls and other μ opioid receptor agonists on the electrical activity of respiratory muscles in the rat. Front Pharmacol 2023; 14:1277248. [PMID: 38074147 PMCID: PMC10710149 DOI: 10.3389/fphar.2023.1277248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 03/21/2024] Open
Abstract
Introduction: Deaths due to overdose of fentanyls result primarily from depression of respiration. These potent opioids can also produce muscle rigidity in the diaphragm and the chest muscles, a phenomenon known as Wooden Chest Syndrome, which further limits ventilation. Methods: We have compared the depression of ventilation by fentanyl and morphine by directly measuring their ability to induce muscle rigidity using EMG recording from diaphragm and external and internal intercostal muscles, in the rat working heart-brainstem preparation. Results: At equipotent bradypnea-inducing concentrations fentanyl produced a greater increase in expiratory EMG amplitude than morphine in all three muscles examined. In order to understand whether this effect of fentanyl was a unique property of the phenylpiperidine chemical structure, or due to fentanyl's high agonist intrinsic efficacy or its lipophilicity, we compared a variety of agonists with different properties at concentrations that were equipotent at producing bradypnea. We compared carfentanil and alfentanil (phenylpiperidines with relatively high efficacy and high to medium lipophilicity, respectively), norbuprenorphine (orvinolmorphinan with high efficacy and lipophilicity) and levorphanol (morphinan with relatively low efficacy and high lipophilicity). Discussion: We observed that, agonists with higher intrinsic efficacy were more likely to increase expiratory EMG amplitude (i.e., produce chest rigidity) than agonists with lower efficacy. Whereas lipophilicity and chemical structure did not appear to correlate with the ability to induce chest rigidity.
Collapse
Affiliation(s)
| | | | | | - Ana Paula Abdala Sheikh
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Maharjan S, Kertesz SG, Bhattacharya K, Markland A, McGwin G, Yang Y, Bentley JP, Ramachandran S. Coprescribing of opioids and psychotropic medications among Medicare-enrolled older adults on long-term opioid therapy. J Am Pharm Assoc (2003) 2023; 63:1753-1760.e5. [PMID: 37633452 DOI: 10.1016/j.japh.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Pressures to reduce opioid prescribing have potential to incentivize coprescribing of opioids (at lower dose) with psychotropic medications. Evidence concerning the extent of the problem is lacking. This study assessed trends in coprescribing and characterized coprescribing patterns among Medicare-enrolled older adults with chronic noncancer pain (CNCP) receiving long-term opioid therapy (LTOT). METHODS A cohort study was conducted using 2012-2018 5% National Medicare claims data. Eligible beneficiaries were continuously enrolled and had no claims for cancer diagnoses or hospice use, and ≥ 2 claims with diagnoses for CNCP conditions within a 30-day period in the 12 months before the index date (LTOT initiation). Coprescribing was defined as an overlap between opioids and any class of psychotropic medication (antidepressants, benzodiazepines, antipsychotics, anticonvulsants, muscle relaxants, and nonbenzodiazepine hypnotics) based on their prescription fill dates and days of supply in a given year. The occurrence of coprescribing, coprescribing intensity, and number of days of overlap with psychotropic medications were calculated for each calendar year. RESULTS The eligible study population of individuals on LTOT ranged from 2038 in 2013 to 1751 in 2018. The occurrence of coprescribing among eligible beneficiaries decreased from 73.41% in 2013 to 70.81% in 2015 and then increased slightly to 71.22% in 2018. Among eligible beneficiaries with at least one overlap day, the coprescribing intensity with any class of psychotropic medications showed minimal variation throughout the study period: 74.73% in 2013 and 72.67% in 2018. Across all the years, the coprescribing intensity was found to be highest with antidepressants (2013, 49.90%; 2018, 50.33%) followed by benzodiazepines (2013, 25.42%; 2018, 19.95%). CONCLUSION Coprescribing was common among older adults with CNCP who initiated LTOT but did not rise substantially in the period studied. Future research should investigate drivers behind coprescribing and safety of various patterns of use.
Collapse
|
38
|
Baldo BA. Neonatal opioid toxicity: opioid withdrawal (abstinence) syndrome with emphasis on pharmacogenomics and respiratory depression. Arch Toxicol 2023; 97:2575-2585. [PMID: 37537419 DOI: 10.1007/s00204-023-03563-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The increasing use of opioids in pregnant women has led to an alarming rise in the number of cases of neonates with drug-induced withdrawal symptoms known as neonatal opioid withdrawal syndrome (NOWS). NOWS is a toxic heterogeneous condition with many neurologic, autonomic, and gastrointestinal symptoms including poor feeding, irritability, tachycardia, hypertension, respiratory defects, tremors, hyperthermia, and weight loss. Paradoxically, for the management of NOWS, low doses of morphine, methadone, or buprenorphine are administered. NOWS is a polygenic disorder supported by studies of genomic variation in opioid-related genes. Single-nucleotide polymorphisms (SNPs) in CYP2B6 are associated with variations in NOWS infant responses to methadone and SNPs in the OPRM1, ABCB1, and COMT genes are associated with need for treatment and length of hospital stay. Epigenetic gene changes showing higher methylation levels in infants and mothers have been associated with more pharmacologic treatment in the case of newborns, and for mothers, longer infant hospital stays. Respiratory disturbances associated with NOWS are not well characterized. Little is known about the effects of opioids on developing neonatal respiratory control and respiratory distress (RD), a potential problem for survival of the neonate. In a rat model to test the effect of maternal opioids on the developing respiratory network and neonatal breathing, maternal-derived methadone increased apneas and lessened RD in neonates at postnatal (P) days P0 and P1. From P3, breathing normalized with age suggesting reorganization of respiratory rhythm-generating circuits at a time when the preBötC becomes the dominant inspiratory rhythm generator. In medullary slices containing the preBötC, maternal opioid treatment plus exposure to exogenous opioids showed respiratory activity was maintained in younger but not older neonates. Thus, maternal opioids blunt centrally controlled respiratory frequency responses to exogenous opioids in an age-dependent manner. In the absence of maternal opioid treatment, exogenous opioids abolished burst frequencies at all ages. Prenatal opioid exposure in children stunts growth rate and development while studies of behavior and cognitive ability reveal poor performances. In adults, high rates of attention deficit disorder, hyperactivity, substance abuse, and poor performances in intelligence and memory tests have been reported.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia.
- Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
39
|
Hateruma Y, Nozaki-Taguchi N, Son K, Tarao K, Kawakami S, Sato Y, Isono S. Assessments of perioperative respiratory pattern with non-contact vital sign monitor in children undergoing minor surgery: a prospective observational study. J Anesth 2023; 37:714-725. [PMID: 37584687 DOI: 10.1007/s00540-023-03223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Nurses routinely assess respiration of hospitalized children; however, respiratory rate measurements are technically difficult due to rapid and small chest wall movements. The aim of this study is to reveal the respiratory status of small children undergoing minor surgery with load cells placed under the bed legs, and to test the hypothesis that respiratory rate (primary variable) is slower immediately after arrival to the ward and recovers in 2 h. METHODS Continuous recordings of the load cell signals were performed and stable respiratory waves within the 10 discriminative perioperative timepoints were used for respiratory rate measurements. Apnea frequencies were calculated at pre and postoperative nights and 2 h immediately after returning to the ward after surgery. RESULTS Continuous recordings of the load cell signals were successfully performed in 18 children (13 to 119 months). Respiratory waves were appraisable for more than 70% of nighttime period and 40% of immediate postoperative period. There were no statistically significant differences of respiratory rate in any timepoint comparisons (p = 0.448), thereby not supporting the study hypothesis. Respiratory rates changed more than 5 breaths per minute postoperatively in 5 out of 18 children (28%) while doses of fentanyl alone did not explain the changes. Apnea frequencies significantly decreased 2 h immediately after returning to the ward and during the operative night compared to the preoperative night. CONCLUSION Respiratory signal extracted from load cell sensors under the bed legs successfully revealed various postoperative respiratory pattern change in small children undergoing minor surgery. CLINICAL TRAIL REGISTRATION UMIN (University Hospital Information Network) Clinical Registry: UMIN000045579 ( https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000052039 ).
Collapse
Affiliation(s)
- Yuki Hateruma
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana-Cho, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Natsuko Nozaki-Taguchi
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kyongsuk Son
- Department of Anesthesiology, Chiba University Hospital, Chiba, Japan
| | - Kentaroh Tarao
- Department of Anesthesiology, Chiba University Hospital, Chiba, Japan
| | | | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Shiroh Isono
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity That Reverses Carfentanil-Induced Respiratory Depression. ACS Chem Neurosci 2023; 14:2849-2856. [PMID: 37534714 PMCID: PMC10791143 DOI: 10.1021/acschemneuro.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short-acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored to synthetic opioids and help prevent post-treatment renarcotization. The ultrapotent analog carfentanil is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display, producing C10-S66K. This monoclonal antibody displays high affinity to carfentanil, fentanyl, and other analogs and reversed carfentanil-induced respiratory depression. Additionally, X-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, La Jolla, CA
92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
- Worm Institute for Research and Medicine (WIRM), The
Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
41
|
Nerurkar A, Nguyen T, Wang S, Bhatt U, Li K, Li Y, Ding P, Seidl FJ, Holan M, Lee J, Widjaja T, Wei ZL, Sadlowski C, Sperandio D, McGee LR, Youngblood B, Schwartz N, Gehlert D, Medina JC. Novel series of tunable µOR modulators with enhanced brain penetration for the treatment of opioid use disorder, pain and neuropsychiatric indications. Bioorg Med Chem Lett 2023; 92:129405. [PMID: 37414346 PMCID: PMC10529836 DOI: 10.1016/j.bmcl.2023.129405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Structural optimization of a previously reported agonist of µOR, PZM21 is described resulting in the discovery of a novel series of amides with at least 4-folds enhanced CNS penetration in rat. Furthermore, these efforts yielded compounds with varying levels of efficacy on the receptor ranging from high efficacy agonists such as compound 20 to antagonists, such as 24. The correlation between in vitro activation of µOR and relative activity in models of analgesia for these compounds is discussed. The compelling results obtained in these studies demonstrate the potential utility of these newly discovered compounds in the treatment of pain and opioid use disorder.
Collapse
Affiliation(s)
- Alok Nerurkar
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Thomas Nguyen
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Sheldon Wang
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Ulhas Bhatt
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Kevin Li
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Yihong Li
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Pingyu Ding
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Frederick J Seidl
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Martin Holan
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - John Lee
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Tien Widjaja
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Zhi-Liang Wei
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Corinne Sadlowski
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - David Sperandio
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Lawrence R McGee
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | | | - Neil Schwartz
- Epiodyne, 953 Indiana St. San Francisco, CA 94107, USA
| | | | - Julio C Medina
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
42
|
Alorfi NM. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int J Gen Med 2023; 16:3247-3256. [PMID: 37546242 PMCID: PMC10402723 DOI: 10.2147/ijgm.s419239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023] Open
Abstract
Background Pain management is a critical aspect of healthcare, aimed at alleviating discomfort and improving the quality of life for individuals experiencing acute or chronic pain. Pharmacological methods constitute a primary approach to pain management, including a diverse array of drugs that work through different mechanisms. Aim Identifying medications commonly employed in pain management, focusing on their mechanism of actions, uses, efficacy and pharmacological applications. Methods The methodology involved a systematic search of scientific literature using various databases, including PubMed, Scopus, and Google Scholar. Relevant articles published between 2000 and 2023 were screened for inclusion. The selected studies encompassed original research, review articles, therapeutic guidelines and randomized controlled trials. Results The findings of this review suggest that a multimodal approach combining various analgesics can enhance pain relief while minimizing adverse effects. It emphasizes the importance of assessing pain intensity, determining the underlying etiology, and utilizing evidence-based guidelines to optimize pain management outcomes. Conclusion Pharmacological methods of pain management are an essential component of pain management strategies to achieve optimal pain relief while minimizing adverse effects. The article concludes with a discussion on emerging trends and future directions in pharmacological pain management, including novel drug targets and advances in drug delivery systems.
Collapse
Affiliation(s)
- Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
43
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity that Reverses Carfentanil-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547721. [PMID: 37461607 PMCID: PMC10349930 DOI: 10.1101/2023.07.04.547721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored for synthetic opioids and that can help prevent post-treatment renarcotization. The ultrapotent analog carfentanil, is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display. This antibody, C10-S66K, displays high affinity to carfentanil, fentanyl, and other analogs, and reversed carfentanil-induced respiratory depression. Additionally, x-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
44
|
Choi S, Irwin MR, Kiyatkin EA. Xylazine effects on opioid-induced brain hypoxia. Psychopharmacology (Berl) 2023; 240:1561-1571. [PMID: 37340247 PMCID: PMC10775769 DOI: 10.1007/s00213-023-06390-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
RATIONALE Xylazine has emerged in recent years as an adulterant in an increasing number of opioid-positive overdose deaths in the United States. Although its exact role in opioid-induced overdose deaths is largely unknown, xylazine is known to depress vital functions and cause hypotension, bradycardia, hypothermia, and respiratory depression. OBJECTIVES In this study, we examined the brain-specific hypothermic and hypoxic effects of xylazine and its mixtures with fentanyl and heroin in freely moving rats. RESULTS In the temperature experiment, we found that intravenous xylazine at low, human-relevant doses (0.33, 1.0, 3.0 mg/kg) dose-dependently decreases locomotor activity and induces modest but prolonged brain and body hypothermia. In the electrochemical experiment, we found that xylazine at the same doses dose-dependently decreases nucleus accumbens oxygenation. In contrast to relatively weak and prolonged decreases induced by xylazine, intravenous fentanyl (20 μg/kg) and heroin (600 μg/kg) induce stronger biphasic brain oxygen responses, with the initial rapid and strong decrease, resulting from respiratory depression, followed by a slower, more prolonged increase reflecting a post-hypoxic compensatory phase, with fentanyl acting much quicker than heroin. The xylazine-fentanyl mixture eliminated the hyperoxic phase of oxygen response and prolonged brain hypoxia, suggesting xylazine-induced attenuation of the brain's compensatory mechanisms to counteract brain hypoxia. The xylazine-heroin mixture strongly potentiated the initial oxygen decrease, and the pattern lacked the hyperoxic portion of the biphasic oxygen response, suggesting more robust and prolonged brain hypoxia. CONCLUSIONS These findings suggest that xylazine exacerbates the life-threatening effects of opioids, proposing worsened brain hypoxia as the mechanism contributing to xylazine-positive opioid-overdose deaths.
Collapse
Affiliation(s)
- Shinbe Choi
- Behavioral Neuroscience Branch, National Institute On Drug Abuse Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Matthew R Irwin
- Behavioral Neuroscience Branch, National Institute On Drug Abuse Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute On Drug Abuse Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA.
| |
Collapse
|
45
|
Cutuli SL, Grieco DL, Michi T, Cesarano M, Rosà T, Pintaudi G, Menga LS, Ruggiero E, Giammatteo V, Bello G, De Pascale G, Antonelli M. Personalized Respiratory Support in ARDS: A Physiology-to-Bedside Review. J Clin Med 2023; 12:4176. [PMID: 37445211 PMCID: PMC10342961 DOI: 10.3390/jcm12134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of disability and mortality worldwide, and while no specific etiologic interventions have been shown to improve outcomes, noninvasive and invasive respiratory support strategies are life-saving interventions that allow time for lung recovery. However, the inappropriate management of these strategies, which neglects the unique features of respiratory, lung, and chest wall mechanics may result in disease progression, such as patient self-inflicted lung injury during spontaneous breathing or by ventilator-induced lung injury during invasive mechanical ventilation. ARDS characteristics are highly heterogeneous; therefore, a physiology-based approach is strongly advocated to titrate the delivery and management of respiratory support strategies to match patient characteristics and needs to limit ARDS progression. Several tools have been implemented in clinical practice to aid the clinician in identifying the ARDS sub-phenotypes based on physiological peculiarities (inspiratory effort, respiratory mechanics, and recruitability), thus allowing for the appropriate application of personalized supportive care. In this narrative review, we provide an overview of noninvasive and invasive respiratory support strategies, as well as discuss how identifying ARDS sub-phenotypes in daily practice can help clinicians to deliver personalized respiratory support and potentially improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Pintaudi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Salvatore Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (T.M.); (M.C.); (T.R.); (G.P.); (L.S.M.); (E.R.); (V.G.); (G.B.); (M.A.)
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
46
|
Curay CM, Irwin MR, Kiyatkin EA. The pattern of brain oxygen response induced by intravenous fentanyl limits the time window of therapeutic efficacy of naloxone. Neuropharmacology 2023; 231:109507. [PMID: 36940812 PMCID: PMC10123544 DOI: 10.1016/j.neuropharm.2023.109507] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Opioids induce respiratory depression resulting in coma or even death during overdose. Naloxone, an opioid antagonist, is the gold standard reversal agent for opioid intoxication, but this treatment is often less successful for fentanyl. While low dosing is thought to be a factor limiting naloxone's efficacy, the timing between fentanyl exposure and initiation of naloxone treatment may be another important factor. Here, we used oxygen sensors coupled with amperometry to examine the pattern of oxygen responses in the brain and periphery induced by intravenous fentanyl in freely moving rats. At both doses (20 and 60 μg/kg), fentanyl induced a biphasic brain oxygen response-a rapid, strong, and relatively transient decrease (8-12 min) followed by a weaker and prolonged increase. In contrast, fentanyl induced stronger and more prolonged monophasic oxygen decreases in the periphery. When administered before fentanyl, intravenous naloxone (0.2 mg/kg) fully blocked the hypoxic effects of moderate-dose fentanyl in both the brain and periphery. However, when injected 10 min after fentanyl, when most of hypoxia had already ceased, naloxone had minimal effect on central and peripheral oxygen levels, but at a higher dose, it strongly attenuated hypoxic effects in the periphery with only a transient brain oxygen increase associated with behavioral awakening. Therefore, due to the rapid, strong but transient nature of fentanyl-induced brain hypoxia, the time window when naloxone can attenuate this effect is relatively short. This timing limitation is critical, making naloxone most effective when used quickly and less effective when used during the post-hypoxic comatose state after brain hypoxia has already ceased and harm for neural cells already done.
Collapse
Affiliation(s)
- Carlos M Curay
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Matthew R Irwin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Irwin MR, Curay CM, Choi S, Kiyatkin EA. Basic metabolic and vascular effects of ketamine and its interaction with fentanyl. Neuropharmacology 2023; 228:109465. [PMID: 36801400 PMCID: PMC10006345 DOI: 10.1016/j.neuropharm.2023.109465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Ketamine is a short-acting general anesthetic with hallucinogenic, analgesic, and amnestic properties. In addition to its anesthetic use, ketamine is commonly abused in rave settings. While safe when used by medical professionals, uncontrolled recreational use of ketamine is dangerous, especially when mixed with other sedative drugs, including alcohol, benzodiazepines, and opioid drugs. Since synergistic antinociceptive interactions between opioids and ketamine were demonstrated in both preclinical and clinical studies, such an interaction could exist for the hypoxic effects of opioid drugs. Here, we focused on the basic physiological effects of ketamine as a recreational drug and its possible interactions with fentanyl-a highly potent opioid that induces strong respiratory depression and robust brain hypoxia. By using multi-site thermorecording in freely-moving rats, we showed that intravenous ketamine at a range of human relevant doses (3, 9, 27 mg/kg) dose-dependently increases locomotor activity and brain temperature, as assessed in the nucleus accumbens (NAc). By determining temperature differentials between the brain, temporal muscle, and skin, we showed that the brain hyperthermic effect of ketamine results from increased intracerebral heat production, an index of metabolic neural activation, and decreased heat loss due to peripheral vasoconstriction. By using oxygen sensors coupled with high-speed amperometry we showed that ketamine at the same doses increases NAc oxygen levels. Finally, co-administration of ketamine with intravenous fentanyl results in modest enhancement of fentanyl-induced brain hypoxia also enhancing the post-hypoxic oxygen increase. Therefore, in contrast to fentanyl, ketamine increases brain oxygenation but potentiates brain hypoxia induced by fentanyl.
Collapse
Affiliation(s)
- Matthew R Irwin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Carlos M Curay
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Shinbe Choi
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, 21224, USA.
| |
Collapse
|
48
|
Villavicencio A, Taha HB, Burneikiene S. Does the combination of intrathecal fentanyl and morphine improve clinical outcomes in patients undergoing lumbar fusions? Neurosurg Rev 2023; 46:97. [PMID: 37106209 DOI: 10.1007/s10143-023-02011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Intrathecal morphine (ITM) has been widely effective in improving postoperative outcomes in patients undergoing a multitude of surgeries, including lumbar spine fusion. A major limitation of ITM administration is the increase in the incidence of respiratory depression in a dose-dependent manner. One way to bypass this is to use a more potent opioid with a shorter half-life, such as fentanyl. This is a retrospective analysis of patients who underwent one- or two-level transforaminal lumbar interbody fusions. The patients received one of two interventions: 0.2mg intrathecal duramorph/morphine (ITM group; n=70), 0.2mg duramorph + 50 mcg fentanyl (ITM + fentanyl group; n=68) and the control group (n=102). Primary outcomes included postoperative pain (Visual Analog Scale) and opioid intake (MED - morphine equivalent dosage, mg) for postoperative days (POD) 1- 4. Secondary outcomes included opioid-related side effects. One-way analyses of variance and follow-up post-hoc Tukey's honest significant difference statistical tests were used to measure treatment effects. Significantly lower POD1 pain scores for both the ITM and ITM + fentanyl groups vs. control were detected, with no difference between the ITM vs. ITM + fentanyl groups. Similar results were found for POD1 MED intake. A multivariate regression analysis controlling for confounding variables did not attenuate the differences seen in POD1 pain scores while revealing that only the ITM + fentanyl predicted a decrease in POD1 MED intake. No differences were seen for postoperative opioid-related side effects. Our study provides support for supplementing a low dose of both intrathecal morphine and fentanyl to improve postoperative outcomes.
Collapse
Affiliation(s)
- Alan Villavicencio
- Boulder Neurosurgical and Spine Associates, Boulder, CO, USA
- Justin Parker Neurological Institute, 4743 Arapahoe Avenue, Suite 202, Boulder, CO, 80303, USA
| | - Hash Brown Taha
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sigita Burneikiene
- Justin Parker Neurological Institute, 4743 Arapahoe Avenue, Suite 202, Boulder, CO, 80303, USA.
| |
Collapse
|
49
|
Linschmann O, Uguz DU, Romanski B, Baarlink I, Gunaratne P, Leonhardt S, Walter M, Lueken M. A Portable Multi-Modal Cushion for Continuous Monitoring of a Driver's Vital Signs. SENSORS (BASEL, SWITZERLAND) 2023; 23:4002. [PMID: 37112341 PMCID: PMC10144144 DOI: 10.3390/s23084002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems such as heart attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing population. In this paper, a portable cushion with four sensor units with multiple measurement modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic induction measurement and seismocardiography are performed with the embedded sensors. The device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27) and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases. The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the driver, since heart rate variability and breathing rate variability can be captured. They are also useful for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The data are publicly available in the UnoVis dataset.
Collapse
Affiliation(s)
- Onno Linschmann
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Durmus Umutcan Uguz
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Bianca Romanski
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Immo Baarlink
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Pujitha Gunaratne
- Toyota Collaborative Safety Research Center, Toyota Motors Corporation, Ann Arbor, MI 48105, USA
| | - Steffen Leonhardt
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Marian Walter
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| | - Markus Lueken
- Medical Information Technology, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
50
|
Adams TJ, Aljohani DM, Forget P. Perioperative opioids: a narrative review contextualising new avenues to improve prescribing. Br J Anaesth 2023; 130:709-718. [PMID: 37059626 DOI: 10.1016/j.bja.2023.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 04/16/2023] Open
Abstract
Opioids have dominated the management of perioperative pain in recent decades with higher doses than ever before used in some circumstances. Through the expanding use of opioids, growing research has highlighted their associated side-effects and the intertwined phenomena of acute withdrawal syndrome, opioid tolerance, and opioid-induced hyperalgesia. With multiple clinical guidelines now endorsing multimodal analgesia, a diverse array of opioid-sparing agents emerges and has been studied to variable degrees, including techniques of opioid-free anaesthesia. It remains unclear to what extent such methods should be adopted, yet current evidence does suggest dependence on opioids as the primary perioperative analgesic might not meet the principles of 'rational prescribing' as described by Maxwell. In this narrative review we describe how, using current evidence, a patient-centred rational-prescribing approach can be applied to opioids in the perioperative period. To contextualise this approach, we discuss the historical adoption of opioids in anaesthesia, our growing understanding of associated side-effects and emerging strategies of opioid-sparing and opioid-free anaesthesia. We discuss avenues and challenges for improving opioid prescribing to limit persistent postoperative opioid use and how these may be incorporated into a rational-prescribing approach.
Collapse
Affiliation(s)
- Tobias J Adams
- Department of Anaesthesia, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK; Pain AND Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, Aberdeen, UK.
| | - Dalia Mohammed Aljohani
- Pain AND Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, Aberdeen, UK; Epidemiology Group, Institute of Applied Health Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, Aberdeen, UK; Department of Anesthesia Technology, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Patrice Forget
- Department of Anaesthesia, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK; Pain AND Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ESAIC) Research Group, Aberdeen, UK; Epidemiology Group, Institute of Applied Health Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, Aberdeen, UK
| |
Collapse
|