1
|
Slart RHJA, Martinez-Lucio TS, Boersma HH, Borra RH, Cornelissen B, Dierckx RAJO, Dobrolinska M, Doorduin J, Erba PA, Glaudemans AWJM, Giacobbo BL, Luurtsema G, Noordzij W, van Sluis J, Tsoumpas C, Lammertsma AA. [ 15O]H 2O PET: Potential or Essential for Molecular Imaging? Semin Nucl Med 2024; 54:761-773. [PMID: 37640631 DOI: 10.1053/j.semnuclmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice. The article highlights the potential of water PET in molecular imaging and suggests its prospective role in becoming an essential tool for the 21st century precision medicine in different domains ranging from preclinical to clinical research and practice. The recent technical advances in high-sensitivity PET imaging can play a key accelerating role in empowering this technique, though there are still several challenges to overcome.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - T Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald H Borra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Cornelissen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paola A Erba
- Department of Medicine and Surgery, University of Milan Bicocca, and Nuclear Medicine Unit ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Lu Q, Zhu Z, Zhang H, Gan C, Shan A, Gao M, Sun H, Cao X, Yuan Y, Tracy JI, Zhang Q, Zhang K. Shared and distinct cortical morphometric alterations in five neuropsychiatric symptoms of Parkinson's disease. Transl Psychiatry 2024; 14:347. [PMID: 39214962 PMCID: PMC11364691 DOI: 10.1038/s41398-024-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropsychiatric symptoms (including anxiety, depression, apathy, impulse-compulsive behaviors and hallucinations) are among the most common non-motor features of Parkinson's disease. Whether these symptoms should be considered as a direct consequence of the pathophysiologic mechanisms of Parkinson's disease is controversial. Morphometric similarity network analysis and epicenter mapping approach were performed on T1-weighted images of 505 patients with Parkinson's disease and 167 age- and sex-matched healthy participants from Parkinson's Progression Markers Initiative database to reveal the commonalities and specificities of distinct neuropsychiatric symptoms. Abnormal cortical co-alteration pattern in patients with neuropsychiatric symptoms was in somatomotor, vision and frontoparietal regions, with epicenters in somatomotor regions. Apathy, impulse-compulsive behaviors and hallucinations shares structural abnormalities in somatomotor and vision regions, with epicenters in somatomotor regions. In contrast, the cortical abnormalities and epicenters of anxiety and depression were prominent in the default mode network regions. By embedding each symptom within their co-alteration space, we observed a cluster composed of apathy, impulse-compulsive behaviors and hallucinations, while anxiety and depression remained separate. Our findings indicate different structural mechanisms underlie the occurrence and progression of different neuropsychiatric symptoms. Based upon these results, we propose that apathy, impulse-compulsive behaviors and hallucinations are directly related to damage of motor circuit, while anxiety and depression may be the combination effects of primary pathophysiology of Parkinson's disease and psychosocial causes.
Collapse
Affiliation(s)
- Qianling Lu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuang Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joseph I Tracy
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qirui Zhang
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
4
|
Manes JL, Bullock L, Meier AM, Turner RS, Richardson RM, Guenther FH. A neurocomputational view of the effects of Parkinson's disease on speech production. Front Hum Neurosci 2024; 18:1383714. [PMID: 38812472 PMCID: PMC11133703 DOI: 10.3389/fnhum.2024.1383714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Latané Bullock
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrew M. Meier
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
5
|
Radlicka-Borysewska A, Jabłońska J, Lenarczyk M, Szumiec Ł, Harda Z, Bagińska M, Barut J, Pera J, Kreiner G, Wójcik DK, Rodriguez Parkitna J. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1375265. [PMID: 38745938 PMCID: PMC11091341 DOI: 10.3389/fnins.2024.1375265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Judyta Jabłońska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Michał Lenarczyk
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Daniel K. Wójcik
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Li KY, Pickett KA, Fu HW, Chen RS. Proprioceptive and olfactory deficits in individuals with Parkinson disease and mild cognitive impairment. Acta Neurol Belg 2024; 124:419-430. [PMID: 37962784 DOI: 10.1007/s13760-023-02420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Individuals with neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer's (AD) disease often present with perceptual impairments at an early clinical stage. Therefore, early identification and quantification of these impairments could facilitate diagnosis and early intervention. OBJECTIVES This study aimed to compare proprioceptive and olfactory sensitivities in individuals diagnosed with PD and mild cognitive impairment (MCI). METHODS Proprioception in the forearm and olfactory function were measured in neurotypical older adults, individuals with PD, and individuals with MCI. Position and passive motion senses were assessed using a passive motion apparatus. The traditional Chinese version of the University of Pennsylvania smell identification test (UPSIT-TC) and the smell threshold test (STT) were used to identify and discriminate smell, respectively. RESULTS Position sense threshold between the groups differed significantly (p < 0.001), with the PD (p < 0.001) and MCI (p = 0.004) groups showing significantly higher than the control group. The control group had significantly higher mean UPSIT-TC scores than the PD (p < 0.001) and MCI (p = 0.006) groups. The control group had a significantly lower mean STT threshold than the PD and MCI groups (p < 0.001 and p = 0.008, respectively). UPSIT-TC scores significantly correlated with disease progression in PD (r = - 0.50, p = 0.008) and MCI (r = 0.44, p = 0.04). CONCLUSIONS Proprioceptive and olfactory sensitivities were reduced in individuals with PD and MCI, and these deficits were related to disease severity. These findings support previous findings indicating that perceptual loss may be a potential biomarker for diagnosing and monitoring disease progression in individuals with neurodegenerative diseases.
Collapse
Affiliation(s)
- Kuan-Yi Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kristen A Pickett
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hsuan-Wei Fu
- Department of Rehabilitation, Kuang Tien General Hospital, Taichung, Taiwan
| | - Rou-Shayn Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Münchau A, Klein C, Beste C. Rethinking Movement Disorders. Mov Disord 2024; 39:472-484. [PMID: 38196315 DOI: 10.1002/mds.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
At present, clinical practice and research in movement disorders (MDs) focus on the "normalization" of altered movements. In this review, rather than concentrating on problems and burdens people with MDs undoubtedly have, we highlight their hidden potentials. Starting with current definitions of Parkinson's disease (PD), dystonia, chorea, and tics, we outline that solely conceiving these phenomena as signs of dysfunction falls short of their complex nature comprising both problems and potentials. Such potentials can be traced and understood in light of well-established cognitive neuroscience frameworks, particularly ideomotor principles, and their influential modern derivatives. Using these frameworks, the wealth of data on altered perception-action integration in the different MDs can be explained and systematized using the mechanism-oriented concept of perception-action binding. According to this concept, MDs can be understood as phenomena requiring and fostering flexible modifications of perception-action associations. Consequently, although conceived as being caught in a (trough) state of deficits, given their high flexibility, people with MDs also have high potential to switch to (adaptive) peak activity that can be conceptualized as hidden potentials. Currently, clinical practice and research in MDs are concerned with deficits and thus the "deep and wide troughs," whereas "scattered narrow peaks" reflecting hidden potentials are neglected. To better delineate and utilize the latter to alleviate the burden of affected people, and destigmatize their conditions, we suggest some measures, including computational modeling combined with neurophysiological methods and tailored treatment. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Heß T, Themann P, Oehlwein C, Milani TL. Does Impaired Plantar Cutaneous Vibration Perception Contribute to Axial Motor Symptoms in Parkinson's Disease? Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation. Brain Sci 2023; 13:1681. [PMID: 38137129 PMCID: PMC10742284 DOI: 10.3390/brainsci13121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE To investigate whether impaired plantar cutaneous vibration perception contributes to axial motor symptoms in Parkinson's disease (PD) and whether anti-parkinsonian medication and subthalamic nucleus deep brain stimulation (STN-DBS) show different effects. METHODS Three groups were evaluated: PD patients in the medication "on" state (PD-MED), PD patients in the medication "on" state and additionally "on" STN-DBS (PD-MED-DBS), as well as healthy subjects (HS) as reference. Motor performance was analyzed using a pressure distribution platform. Plantar cutaneous vibration perception thresholds (VPT) were investigated using a customized vibration exciter at 30 Hz. RESULTS Motor performance of PD-MED and PD-MED-DBS was characterized by greater postural sway, smaller limits of stability ranges, and slower gait due to shorter strides, fewer steps per minute, and broader stride widths compared to HS. Comparing patient groups, PD-MED-DBS showed better overall motor performance than PD-MED, particularly for the functional limits of stability and gait. VPTs were significantly higher for PD-MED compared to those of HS, which suggests impaired plantar cutaneous vibration perception in PD. However, PD-MED-DBS showed less impaired cutaneous vibration perception than PD-MED. CONCLUSIONS PD patients suffer from poor motor performance compared to healthy subjects. Anti-parkinsonian medication in tandem with STN-DBS seems to be superior for normalizing axial motor symptoms compared to medication alone. Plantar cutaneous vibration perception is impaired in PD patients, whereas anti-parkinsonian medication together with STN-DBS is superior for normalizing tactile cutaneous perception compared to medication alone. Consequently, based on our results and the findings of the literature, impaired plantar cutaneous vibration perception might contribute to axial motor symptoms in PD.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Peter Themann
- Department of Neurology and Parkinson, Clinic at Tharandter Forest, 09633 Halsbruecke, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L. Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
9
|
Permezel F, Alty J, Harding IH, Thyagarajan D. Brain Networks Involved in Sensory Perception in Parkinson's Disease: A Scoping Review. Brain Sci 2023; 13:1552. [PMID: 38002513 PMCID: PMC10669548 DOI: 10.3390/brainsci13111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's Disease (PD) has historically been considered a disorder of motor dysfunction. However, a growing number of studies have demonstrated sensory abnormalities in PD across the modalities of proprioceptive, tactile, visual, auditory and temporal perception. A better understanding of these may inform future drug and neuromodulation therapy. We analysed these studies using a scoping review. In total, 101 studies comprising 2853 human participants (88 studies) and 125 animals (13 studies), published between 1982 and 2022, were included. These highlighted the importance of the basal ganglia in sensory perception across all modalities, with an additional role for the integration of multiple simultaneous sensation types. Numerous studies concluded that sensory abnormalities in PD result from increased noise in the basal ganglia and increased neuronal receptive field size. There is evidence that sensory changes in PD and impaired sensorimotor integration may contribute to motor abnormalities.
Collapse
Affiliation(s)
- Fiona Permezel
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart 7001, Australia;
| | - Ian H. Harding
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| | - Dominic Thyagarajan
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| |
Collapse
|
10
|
Asci F, Falletti M, Zampogna A, Patera M, Hallett M, Rothwell J, Suppa A. Rigidity in Parkinson's disease: evidence from biomechanical and neurophysiological measures. Brain 2023; 146:3705-3718. [PMID: 37018058 PMCID: PMC10681667 DOI: 10.1093/brain/awad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
Although rigidity is a cardinal motor sign in patients with Parkinson's disease (PD), the instrumental measurement of this clinical phenomenon is largely lacking, and its pathophysiological underpinning remains still unclear. Further advances in the field would require innovative methodological approaches able to measure parkinsonian rigidity objectively, discriminate the different biomechanical sources of muscle tone (neural or visco-elastic components), and finally clarify the contribution to 'objective rigidity' exerted by neurophysiological responses, which have previously been associated with this clinical sign (i.e. the long-latency stretch-induced reflex). Twenty patients with PD (67.3 ± 6.9 years) and 25 age- and sex-matched controls (66.9 ± 7.4 years) were recruited. Rigidity was measured clinically and through a robotic device. Participants underwent robot-assisted wrist extensions at seven different angular velocities randomly applied, when ON therapy. For each value of angular velocity, several biomechanical (i.e. elastic, viscous and neural components) and neurophysiological measures (i.e. short and long-latency reflex and shortening reaction) were synchronously assessed and correlated with the clinical score of rigidity (i.e. Unified Parkinson's Disease Rating Scale-part III, subitems for the upper limb). The biomechanical investigation allowed us to measure 'objective rigidity' in PD and estimate the neuronal source of this phenomenon. In patients, 'objective rigidity' progressively increased along with the rise of angular velocities during robot-assisted wrist extensions. The neurophysiological examination disclosed increased long-latency reflexes, but not short-latency reflexes nor shortening reaction, in PD compared with control subjects. Long-latency reflexes progressively increased according to angular velocities only in patients with PD. Lastly, specific biomechanical and neurophysiological abnormalities correlated with the clinical score of rigidity. 'Objective rigidity' in PD correlates with velocity-dependent abnormal neuronal activity. The observations overall (i.e. the velocity-dependent feature of biomechanical and neurophysiological measures of objective rigidity) would point to a putative subcortical network responsible for 'objective rigidity' in PD, which requires further investigation.
Collapse
Affiliation(s)
- Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed Institute, 86077 Pozzilli (IS), Italy
| | - Marco Falletti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Patera
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - John Rothwell
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed Institute, 86077 Pozzilli (IS), Italy
| |
Collapse
|
11
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
12
|
de la Torre-Martinez R, Ketzef M, Silberberg G. Ongoing movement controls sensory integration in the dorsolateral striatum. Nat Commun 2023; 14:1004. [PMID: 36813791 PMCID: PMC9947004 DOI: 10.1038/s41467-023-36648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The dorsolateral striatum (DLS) receives excitatory inputs from both sensory and motor cortical regions. In the neocortex, sensory responses are affected by motor activity, however, it is not known whether such sensorimotor interactions occur in the striatum and how they are shaped by dopamine. To determine the impact of motor activity on striatal sensory processing, we performed in vivo whole-cell recordings in the DLS of awake mice during the presentation of tactile stimuli. Striatal medium spiny neurons (MSNs) were activated by both whisker stimulation and spontaneous whisking, however, their responses to whisker deflection during ongoing whisking were attenuated. Dopamine depletion reduced the representation of whisking in direct-pathway MSNs, but not in those of the indirect-pathway. Furthermore, dopamine depletion impaired the discrimination between ipsilateral and contralateral sensory stimulation in both direct and indirect pathway MSNs. Our results show that whisking affects sensory responses in DLS and that striatal representation of both processes is dopamine- and cell type-dependent.
Collapse
Affiliation(s)
| | - Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Alonso-Juarez M, Fekete R, Baizabal-Carvallo JF. Objective and self-perceived lower limb weakness in Parkinson's disease. Ther Adv Neurol Disord 2022; 15:17562864221136903. [PMID: 36389280 PMCID: PMC9647295 DOI: 10.1177/17562864221136903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lower limb weakness is a long-recognized symptom in patients with Parkinson's disease (PD), described by James Parkinson in his seminal report on 'paralysis agitans'. However, little is known on the frequency, clinical correlations, and association with objective decrease in muscle strength in such patients. OBJECTIVE The objective of this study was to assess the frequency of objective and perceived lower limb weakness in patients with PD. METHODS We studied 90 consecutive patients with PD and 52 age-matched controls. We recorded clinical and demographic variables, as well as perceived weakness and allied abnormal lower limb sensations, including 'heavy legs', 'fatigued legs', and 'pain'. Symptoms consistent with restless legs syndrome were not considered. Lower limb strength was determined in both legs by means of the Medical Research Council scale, dynamometric (leg flexion) and weighting machine (leg pressure) measures. RESULTS Weakness and allied abnormal lower limb sensations were reported in 69% of patients with PD and 21% of healthy controls. Patients with PD had decreased leg pressure compared with healthy controls (p = 0.002). Among patients with PD, an association between perceived leg weakness (and allied sensations) and gait freezing (p = 0.001) was observed in the multivariate regression analysis; however, these variables only explained 30.4% of the variance. Moreover, PD patients with and without abnormal lower limb sensations had similar muscle strength by objective measurements. CONCLUSION Perceived lower limb weakness and allied abnormal sensations are common in patients with PD. However, there is a dissociation between perceived weakness and objective muscle strength in the lower limbs. These abnormal sensations were mostly related to gait freezing but a causal association is questionable.
Collapse
Affiliation(s)
| | | | - José Fidel Baizabal-Carvallo
- Department of Sciences and Engineering,
University of Guanajuato, Ave León 428, Jardines del Moral, C.P. 37320 León,
Guanajuato, México
| |
Collapse
|
14
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
15
|
Möller M, Möser CV, Weiß U, Niederberger E. The Role of AlphαSynuclein in Mouse Models of Acute, Inflammatory and Neuropathic Pain. Cells 2022; 11:cells11121967. [PMID: 35741096 PMCID: PMC9221919 DOI: 10.3390/cells11121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
(1) AlphαSynuclein (αSyn) is a synaptic protein which is expressed in the nervous system and has been linked to neurodegenerative diseases, in particular Parkinson’s disease (PD). Symptoms of PD are mainly due to overexpression and aggregation of αSyn and include pain. However, the interconnection of αSyn and pain has not been clarified so far. (2) We investigated the potential effects of a αSyn knock-out on the nociceptive behaviour in mouse models of acute, inflammatory and neuropathic pain. Furthermore, we assessed the impact of αSyn deletion on pain-related cellular and molecular mechanisms in the spinal cord in these models. (3) Our results showed a reduction of acute cold nociception in αSyn knock-out mice while responses to acute heat and mechanical noxious stimulation were similar in wild type and knock-out mice. Inflammatory nociception was not affected by αSyn knock-out which is also mirrored by unaltered inflammatory gene expression. In contrast, in the SNI model of neuropathic pain, αSyn knock-out mice showed decreased mechanical allodynia as compared to wild type mice. This effect was associated with reduced proinflammatory mechanisms and suppressed activation of MAP kinase signalling in the spinal cord while endogenous antinociceptive mechanisms are not inhibited. (4) Our data indicate that αSyn plays a role in neuropathy and its inhibition might be useful to ameliorate pain symptoms after nerve injury.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Christine V. Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Ulrike Weiß
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-7616; Fax: +49-69-6301-7636
| |
Collapse
|
16
|
Delussi M, Sciruicchio V, Taurisano P, Morgante F, Salvatore E, Ferrara IP, Clemente L, Sorbera C, de Tommaso M. Lower Prevalence of Chronic Pain in Manifest Huntington's Disease: A Pilot Observational Study. Brain Sci 2022; 12:676. [PMID: 35625062 PMCID: PMC9139182 DOI: 10.3390/brainsci12050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is a minor problem compared with other Huntington Disease (HD) symptoms. Nevertheless, in HD it is poorly recognized and underestimated. So far, no study evaluated the presence of chronic pain in HD. The aim of this pilot study was to evaluate the presence and features of chronic pain in a cohort of HD gene carriers. An observational cross-sectional study was conducted in a cohort of HD gene carriers compared to not gene carriers (n.134 HD subjects, n.74 not gene mutation carriers). A specific pain interview, alongside a neurological, cognitive and behavioural examination, was performed in order to classify the type of pain, subjective intensity. A significant prevalence of "no Pain" in HD was found, which tended to increase with HD progression and a reduced frequency of pain in the last 3 months. A clear difference was found between manifest and premanifest HD in terms of intensity of pain, which did not change significantly with HD progression; however, a tendency emerges to a progressive reduction. No significant group difference was present in analgesic use, type and the site of pain. These findings could support a lower prevalence of chronic pain in manifest HD. Prevalence and intensity of chronic pain seem directly influenced by the process of neurodegeneration rather than by an incorrect cognitive and emotional functioning.
Collapse
Affiliation(s)
- Marianna Delussi
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Vittorio Sciruicchio
- Children Epilepsy and EEG Center, PO, San Paolo ASL (Azienda Sanitaria Locale), 70019 Bari, Italy;
| | - Paolo Taurisano
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK;
- Department of Experimental and Clinical Medicine, University of Messina, 98951 Messina, Italy
| | - Elena Salvatore
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Isabella Pia Ferrara
- AOU Federico II, Department of Advanced Biomedical Sciences, Università di Napoli, 80138 Napoli, Italy; (E.S.); (I.P.F.)
| | - Livio Clemente
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| | - Chiara Sorbera
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy;
| | - Marina de Tommaso
- AOU Policlinico, Applied Neurophysiology and Pain Unit, Basic Medical Sciences, Neurosciences and Sense Organs Department, Aldo Moro University, 70124 Bari, Italy; (P.T.); (L.C.); (M.d.T.)
| |
Collapse
|
17
|
Flouty O, Yamamoto K, Germann J, Harmsen IE, Jung HH, Cheyuo C, Zemmar A, Milano V, Sarica C, Lozano AM. Idiopathic Parkinson's disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis. J Neurosurg 2022; 137:1821-1830. [PMID: 35535836 DOI: 10.3171/2022.2.jns212561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Pain is the most common nonmotor symptom of Parkinson's disease (PD) and is often undertreated. Deep brain stimulation (DBS) effectively mitigates the motor symptoms of this multisystem neurodegenerative disease; however, its therapeutic effect on nonmotor symptoms, especially pain, remains inconclusive. While there is a critical need to help this large PD patient population, guidelines for managing this significant disease burden are absent. Herein, the authors systematically reviewed the literature and conducted a meta-analysis to study the influence of traditional (subthalamic nucleus [STN] and globus pallidus internus [GPi]) DBS on chronic pain in patients with PD. METHODS The authors performed a systematic review of the literature and a meta-analysis following PRISMA guidelines. Risk of bias was assessed using the levels of evidence established by the Oxford Centre for Evidence-Based Medicine. Inclusion criteria were articles written in English, published in a peer-reviewed scholarly journal, and about studies conducting an intervention for PD-related pain in no fewer than 5 subjects. RESULTS Twenty-six studies were identified and included in this meta-analysis. Significant interstudy heterogeneity was detected (Cochran's Q test p < 0.05), supporting the use of the random-effects model. The random-effects model estimated the effect size of DBS for the treatment of idiopathic pain as 1.31 (95% CI 0.84-1.79). The DBS-on intervention improved pain scores by 40% as compared to the control state (preoperative baseline or DBS off). CONCLUSIONS The results indicated that traditional STN and GPi DBS can have a favorable impact on pain control and improve pain scores by 40% from baseline in PD patients experiencing chronic pain. Further trials are needed to identify the subtype of PD patients whose pain benefits from DBS and to identify the mechanisms by which DBS improves pain in PD patients.
Collapse
Affiliation(s)
- Oliver Flouty
- 1Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Kazuaki Yamamoto
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Irene E Harmsen
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Hyun Ho Jung
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,3Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cletus Cheyuo
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ajmal Zemmar
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,4Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky; and.,5Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Henan University School of Medicine, Zhengzhou, China
| | - Vanessa Milano
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- 2Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Valkonen K, Mäkelä JP, Airaksinen K, Nurminen J, Kivisaari R, Renvall H, Pekkonen E. Deep brain stimulation of subthalamic nucleus modulates cortical auditory processing in advanced Parkinson’s Disease. PLoS One 2022; 17:e0264333. [PMID: 35202426 PMCID: PMC8870490 DOI: 10.1371/journal.pone.0264333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) has proven its clinical efficacy in Parkinson’s disease (PD), but its exact mechanisms and cortical effects continue to be unclear. Subthalamic (STN) DBS acutely modifies auditory evoked responses, but its long-term effect on auditory cortical processing remains ambiguous. We studied with magnetoencephalography the effect of long-term STN DBS on auditory processing in patients with advanced PD. DBS resulted in significantly increased contra-ipsilateral auditory response latency difference at ~100 ms after stimulus onset compared with preoperative state. The effect is likely due to normalization of neuronal asynchrony in the auditory pathways. The present results indicate that STN DBS in advanced PD patients has long-lasting effects on cortical areas outside those confined to motor processing. Whole-head magnetoencephalography provides a feasible tool to study motor and non-motor neural networks in PD, and to track possible changes related to cortical reorganization or plasticity induced by DBS.
Collapse
Affiliation(s)
- Kati Valkonen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Jyrki P. Mäkelä
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Katja Airaksinen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jussi Nurminen
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Renvall
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- * E-mail:
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Ba F, Sang TT, He W, Fatehi J, Mostofi E, Zheng B. Stereopsis and Eye Movement Abnormalities in Parkinson’s Disease and Their Clinical Implications. Front Aging Neurosci 2022; 14:783773. [PMID: 35211005 PMCID: PMC8861359 DOI: 10.3389/fnagi.2022.783773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background Parkinson’s disease (PD) is not exclusively a motor disorder. Among non-motor features, patients with PD possess sensory visual dysfunctions. Depth perception and oculomotor deficits can significantly impact patients’ motor performance. Stereopsis and eye behavioral study using 3D stimuli may help determine their implications in disease status. Objective The objective of this study is to investigate stereopsis and eye movement abnormalities in PD with reliable tools and their correlation with indicators of PD severity. We hypothesize that patients with PD exhibit different eye behaviors and that these differences may correlate to the severity of motor symptoms and cognitive status. Methods Control and PD participants were first evaluated for visual acuity, visual field, contrast acuity, and stereo perception with 2D and Titmus stereotests, followed by the assessment with a 3D active shutter system. Eye movement behaviors were assessed by a Tobii X2-60 eye tracker. Results Screening visual tests did not reveal any differences between the PD and control groups. With the 3D active shutter system, the PD group demonstrated significantly worse stereopsis. The preserved cognitive function was correlated to a more intact stereo function. Patients with PD had longer visual response times, with a higher number of fixations and bigger saccade amplitude, suggesting fixation stabilization difficulties. Such changes showed a positive correlation with the severity of motor symptoms and a negative correlation with normal cognitive status. Conclusion We assessed stereopsis with a 3D active shutter system and oculomotor behaviors with the Tobii eye tracker. Patients with PD exhibit poorer stereopsis and impaired oculomotor behaviors during response time. These deficits were correlated with PD motor and cognitive status. The visual parameters may potentially serve as the clinical biomarkers for PD.
Collapse
Affiliation(s)
- Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| | - Tina T. Sang
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Wenjing He
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jaleh Fatehi
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Emanuel Mostofi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bin Zheng
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Oikonomou KD, Donzis EJ, Bui MTN, Cepeda C, Levine MS. Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington's disease. J Neurophysiol 2021; 126:1159-1171. [PMID: 34469694 DOI: 10.1152/jn.00181.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that predominantly affects striatal medium-sized spiny neurons and cortical pyramidal neurons (CPNs). It has been proposed that perturbations in Ca2+ homeostasis could play a role in CPN alterations. To test this hypothesis, we used the R6/2 mouse model of juvenile HD at different stages of disease progression; presymptomatic, early symptomatic, and late symptomatic. We combined whole-cell patch-clamp recordings of layer 2/3 CPNs with two-photon laser scanning microscopy to image somatic and dendritic Ca2+ transients associated with evoked action potentials (APs). We found that the amplitude of AP-induced Ca2+ transients recorded at the somata of CPNs was significantly reduced in presymptomatic and late symptomatic R6/2 mice compared with wild-type (WT) littermates. However, reduced amplitudes were compensated by increases in decay times, so that Ca2+ transient areas were similar between genotypes. AP-induced Ca2+ transients in CPN proximal dendrites were variable and differences did not reach statistical significance, except for reduced areas in the late symptomatic group. In late symptomatic mice, a specific store-operated Ca2+ channel antagonist, EVP4593, reduced somatic Ca2+ transient amplitude similarly in WT and R6/2 CPNs. In contrast, dantrolene, a ryanodine receptor (RyR) antagonist, and nifedipine, an L-type Ca2+ channel blocker, significantly reduced both somatic Ca2+ transient amplitude and area in R6/2 but not WT CPNs. These findings demonstrate that perturbations of Ca2+ homeostasis and compensation occur in CPNs before and after the onset of overt symptoms, and suggest RyRs and L-type Ca2+ channels as potential targets for therapeutic intervention.NEW & NOTEWORTHY We used two-photon microscopy to examine calcium influx induced by action potentials in cortical pyramidal neurons from a mouse model of Huntington's disease (HD), the R6/2. The amplitude of somatic calcium transients was reduced in R6/2 mice compared with controls. This reduction was compensated by increased decay times, which could lead to reduced calcium buffering capacity. L-type calcium channel and ryanodine receptor blockers reduced calcium transient area in HD neurons, suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Katerina D Oikonomou
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Elissa J Donzis
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Minh T N Bui
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Sprenger GP, Roos RAC, van Zwet E, Reijntjes RH, Achterberg WP, de Bot ST. The prevalence of pain in Huntington's disease in a large worldwide cohort. Parkinsonism Relat Disord 2021; 89:73-78. [PMID: 34243026 DOI: 10.1016/j.parkreldis.2021.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Pain could be an unknown non-motor symptom in Huntington's Disease (HD). The aim is therefore, to study the prevalence of pain interference, painful conditions and analgesic use across the different stages of HD and compare these levels to non-HD gene mutation carriers. METHODS A cross-sectional analysis of the Enroll-HD study was conducted in premanifest, manifest HD gene mutation carriers (n = 3989 and n = 7,485, respectively) and in non-HD gene mutation carriers (n = 3719). To investigate group differences, multivariable logistic regression analysis was performed with pairwise comparisons. RESULTS In the HD mutation carriers, the overall prevalence of pain interference was 34% (95% CI 31%-35%), of painful conditions 17% (95% CI 15%-19%) and analgesic use 13% (95% CI 11%-15%). Compared to non-mutation carriers, the prevalence of pain interference was significantly higher in the middle stage of HD (33% [95% CI 31%-35%] vs 42% [95% CI 39%-45%], P = 0,02), whereas the prevalence of painful conditions was significant lower in the late and middle stage of HD (17% [95% CI 16%-18%] vs 12% [95% CI 10%-14%], 15% [95% CI 13%-17%], P < 0,01]. No significant group difference was present in analgesic use. CONCLUSIONS The prevalence of pain interference increases as HD progresses, however, the prevalence of painful conditions and analgesics do not increase accordingly. Further studies are necessary to investigate the aetiology of pain in HD and the risk for undertreatment of pain.
Collapse
Affiliation(s)
- Gregory P Sprenger
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Amstelring, Huntington Center, Amsterdam, the Netherlands.
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert H Reijntjes
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wilco P Achterberg
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands; Topaz Huntington Center Overduin, Katwijk, the Netherlands
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Altered Sensory Representations in Parkinsonian Cortical and Basal Ganglia Networks. Neuroscience 2021; 466:10-25. [PMID: 33965505 DOI: 10.1016/j.neuroscience.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022]
Abstract
In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.
Collapse
|
23
|
De Groote E, Bockstael A, Botteldooren D, Santens P, De Letter M. Evaluation of multi-feature auditory deviance detection in Parkinson's disease: a mismatch negativity study. J Neural Transm (Vienna) 2021; 128:645-657. [PMID: 33895941 DOI: 10.1007/s00702-021-02341-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Behavioral studies on auditory deviance detection in patients with Parkinson's disease (PD) have reported contradictory results. The primary aim of this study was to investigate auditory deviance detection of multiple auditory features in patients with PD by means of objective and reliable electroencephalographic (EEG) measurements. Twelve patients with early-stage PD and twelve age- and gender-matched healthy controls (HCs) were included in this study. Patients with PD participated without their regular dopaminergic medication. All subjects underwent an audiometric screening and performed a passive multi-feature mismatch negativity (MMN) paradigm. Repeated-measures analysis of variance (ANOVA) demonstrated no significant differences between patients with PD and HCs regarding MMN mean amplitude and latency for frequency, duration and gap deviants. Nevertheless, a trend towards increased MMN mean amplitude and latency was found in response to intensity deviants in patients with PD compared to HCs. Increased intensity MMN amplitude may indicate that more neural resources are allocated to the processing of intensity deviances in patients with PD compared to HCs. The interpretation of this intensity-specific MMN alteration is further discussed in the context of a compensatory mechanism for auditory intensity processing and involuntary attention switching in PD.
Collapse
Affiliation(s)
- Evelien De Groote
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Annelies Bockstael
- Department of Information Technology, WAVES Research Group, Ghent University, Technologiepark Zwijnaarde 126, 9052, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology, WAVES Research Group, Ghent University, Technologiepark Zwijnaarde 126, 9052, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
24
|
Santarnecchi E, Egiziano E, D'Arista S, Gardi C, Romanella SM, Mencarelli L, Rossi S, Reda M, Rossi A. Mindfulness-based stress reduction training modulates striatal and cerebellar connectivity. J Neurosci Res 2021; 99:1236-1252. [PMID: 33634892 DOI: 10.1002/jnr.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a "mind-wandering" and a "meditation" state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eutizio Egiziano
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Sicilia D'Arista
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara M Romanella
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Lucia Mencarelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Simone Rossi
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - Mario Reda
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| |
Collapse
|
25
|
De Keyser K, De Letter M, Santens P, Talsma D, Botteldooren D, Bockstael A. Neurophysiological investigation of auditory intensity dependence in patients with Parkinson's disease. J Neural Transm (Vienna) 2021; 128:345-356. [PMID: 33515333 DOI: 10.1007/s00702-021-02305-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
There is accumulating evidence for auditory dysfunctions in patients with Parkinson's disease (PD). Moreover, a possible relationship has been suggested between altered auditory intensity processing and the hypophonic speech characteristics in PD. Nonetheless, further insight into the neurophysiological correlates of auditory intensity processing in patients with PD is needed primarily. In the present study, high-density EEG recordings were used to investigate intensity dependence of auditory evoked potentials (IDAEPs) in 14 patients with PD and 14 age- and gender-matched healthy control participants (HCs). Patients with PD were evaluated in both the on- and off-medication states. HCs were also evaluated twice. Significantly increased IDAEP of the N1/P2 was demonstrated in patients with PD evaluated in the on-medication state compared to HCs. Distinctive results were found for the N1 and P2 component. Regarding the N1 component, no differences in latency or amplitude were shown between patients with PD and HCs regardless of the medication state. In contrast, increased P2 amplitude was demonstrated in patients with PD evaluated in the on-medication state compared to the off-medication state and HCs. In addition to a dopaminergic deficiency, deficits in serotonergic neurotransmission in PD were shown based on increased IDAEP. Due to specific alterations of the N1-P2 complex, the current results suggest deficiencies in early-attentive inhibitory processing of auditory input in PD. This interpretation is consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic neurotransmission in auditory gating.
Collapse
Affiliation(s)
- Kim De Keyser
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Durk Talsma
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000, Ghent, Belgium
| | - Dick Botteldooren
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Annelies Bockstael
- Department of Information Technology (INTEC), Acoustics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| |
Collapse
|
26
|
Klatt‐Schreiner K, Valek L, Kang J, Khlebtovsky A, Trautmann S, Hahnefeld L, Schreiber Y, Gurke R, Thomas D, Wilken‐Schmitz A, Wicker S, Auburger G, Geisslinger G, Lötsch J, Pfeilschifter W, Djaldetti R, Tegeder I. High Glucosylceramides and Low Anandamide Contribute to Sensory Loss and Pain in Parkinson's Disease. Mov Disord 2020; 35:1822-1833. [DOI: 10.1002/mds.28186] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Lucie Valek
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Jun‐Suk Kang
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Alexander Khlebtovsky
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Sandra Trautmann
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | | | - Robert Gurke
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Annett Wilken‐Schmitz
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Sabine Wicker
- Occupational Health Service Goethe‐University Hospital Frankfurt Germany
| | - Georg Auburger
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | | | - Ruth Djaldetti
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| |
Collapse
|
27
|
Wearable haptic anklets for gait and freezing improvement in Parkinson’s disease: a proof-of-concept study. Neurol Sci 2020; 41:3643-3651. [DOI: 10.1007/s10072-020-04485-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
|
28
|
Donzis EJ, Estrada-Sánchez AM, Indersmitten T, Oikonomou K, Tran CH, Wang C, Latifi S, Golshani P, Cepeda C, Levine MS. Cortical Network Dynamics Is Altered in Mouse Models of Huntington's Disease. Cereb Cortex 2020; 30:2372-2388. [PMID: 31761935 PMCID: PMC7174987 DOI: 10.1093/cercor/bhz245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric disturbances. Although evidence indicates that projections from motor cortical areas play a key role in the development of dysfunctional striatal activity and motor phenotype, little is known about the changes in cortical microcircuits and their role in the development of the HD phenotype. Here we used two-photon laser-scanning microscopy to evaluate network dynamics of motor cortical neurons in layers II/III in behaving transgenic R6/2 and knock-in Q175+/- mice. Symptomatic R6/2 mice displayed increased motion manifested by a significantly greater number of motion epochs, whereas symptomatic Q175 mice displayed decreased motion. In both models, calcium transients in symptomatic mice displayed reduced amplitude, suggesting decreased bursting activity. Changes in frequency were genotype- and time-dependent; for R6/2 mice, the frequency was reduced during both motion and nonmotion, whereas in symptomatic Q175 mice, the reduction only occurred during nonmotion. In presymptomatic Q175 mice, frequency was increased during both behavioral states. Interneuronal correlation coefficients were generally decreased in both models, suggesting disrupted interneuronal communication in HD cerebral cortex. These results indicate similar and contrasting effects of the HD mutation on cortical ensemble activity depending on mouse model and disease stage.
Collapse
Affiliation(s)
- Elissa J Donzis
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Ana María Estrada-Sánchez
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Tim Indersmitten
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Katerina Oikonomou
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Conny H Tran
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Catherine Wang
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Shahrzad Latifi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior
| |
Collapse
|
29
|
Darbin O, Hatanaka N, Takara S, Kaneko N, Chiken S, Naritoku D, Martino A, Nambu A. Parkinsonism Differently Affects the Single Neuronal Activity in the Primary and Supplementary Motor Areas in Monkeys: An Investigation in Linear and Nonlinear Domains. Int J Neural Syst 2020; 30:2050010. [PMID: 32019380 DOI: 10.1142/s0129065720500100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The changes in neuronal firing activity in the primary motor cortex (M1) and supplementary motor area (SMA) were compared in monkeys rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The neuronal dynamic was characterized using mathematical tools defined in different frameworks (rate, oscillations or complex patterns). Then, and for each cortical area, multivariate and discriminate analyses were further performed on these features to identify those important to differentiate between the normal and the pathological neuronal activity. Our results show a different order in the importance of the features to discriminate the pathological state in each cortical area which suggests that the M1 and the SMA exhibit dissimilarities in their neuronal alterations induced by parkinsonism. Our findings highlight the need for multiple mathematical frameworks to best characterize the pathological neuronal activity related to parkinsonism. Future translational studies are warranted to investigate the causal relationships between cortical region-specificities, dominant pathological hallmarks and symptoms.
Collapse
Affiliation(s)
- Olivier Darbin
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Nobuhiko Hatanaka
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Sayuki Takara
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Nobuya Kaneko
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Dean Naritoku
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Anthony Martino
- Department of Neurology, University South Alabama, 307 University Blvd, Mobile, AL 36688, USA
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
30
|
Richardson KC, Sussman JE. Intensity Resolution in Individuals With Parkinson's Disease: Sensory and Auditory Memory Limitations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3564-3581. [PMID: 31513750 DOI: 10.1044/2019_jslhr-h-18-0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose The purpose of the current study was to examine sensory and auditory memory limitations on intensity resolution in individuals with Parkinson's disease as compared to healthy older and younger adults. Method Nineteen individuals with Parkinson's disease, 10 healthy age- and hearing-matched adults, and 10 healthy young adults were studied. The listeners participated in 2 intensity discrimination tasks: a lower memory load 4IAX task (sensory limitations) and a higher memory load ABX task (auditory memory limitations). Intensity resolution was examined across groups and tasks using a bias-free measurement of signal detectability known as d' (d-prime). Listeners also participated in a loudness scaling task where they were instructed to rate the loudness level of each signal intensity along the experimental continuum using a computerized 150-mm visual analog scale. Results Intensity discrimination sensitivity (d') was significantly poorer in the 4IAX and ABX conditions for the individuals with Parkinson's disease, as compared to the older and younger controls. Furthermore, a significant age-related difference was identified for the loudness scaling condition. The younger controls rated most stimuli along the experimental continuum significantly louder as compared to the older controls and the individuals with Parkinson's disease. Conclusions The present discrimination data suggest sensory and auditory memory limitations may contribute to the intensity resolution issues associated with Parkinson's disease. Age-related differences in loudness scaling will be reviewed.
Collapse
Affiliation(s)
- Kelly C Richardson
- Department of Communication Disorders, University of Massachusetts Amherst
| | - Joan E Sussman
- Department of Communicative Disorders & Sciences, University at Buffalo, NY
| |
Collapse
|
31
|
Mori L, Putzolu M, Bonassi G, Galeoto G, Mezzarobba S, Trompetto C, Avanzino L, Marchese R, Abbruzzese G, Pelosin E. Haptic perception of verticality correlates with postural and balance deficits in patients with Parkinson's disease. Parkinsonism Relat Disord 2019; 66:45-50. [DOI: 10.1016/j.parkreldis.2019.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/30/2019] [Accepted: 06/30/2019] [Indexed: 01/09/2023]
|
32
|
Dincher A, Schwarz M, Wydra G. Analysis of the Effects of Whole-Body Vibration in Parkinson Disease - Systematic Review and Meta-Analysis. PM R 2019; 11:640-653. [PMID: 30689308 DOI: 10.1002/pmrj.12094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Because of discrepant published results, there is a need to systematically analyze the literature that has evaluated the effectiveness of harmonic whole-body vibration (WBV) and randomized WBV in patients with Parkinson disease (PD). OBJECTIVE To evaluate the effectiveness of harmonic versus randomized WBV on motor symptoms, balance, gait, and mobility in people with PD. TYPE: Meta-analysis. LITERATURE SURVEY Established databases PubMed, EMBASE, CINAHL, Cochrane, Trip, and PEDro; library of the Saarland University; and electronic library of journals, including publications from 1960 to November 2017, were scanned by using "Parkinson" and "vibration" as combined search terms. METHODOLOGY First, data were extracted from the full-text version, including number of participants, severity of disease, medication status, study design, use of vibration treatment, duration of study, number of treatment sessions and trials per session, vibration frequency and amplitude, duration of trials and rest periods, and pre- and posttest data. Qualitative analysis was performed by using the PEDro score. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to verify the efficacy of harmonic versus randomized WBV on mobility, balance, gait, and motor symptoms. SYNTHESIS From 244 publications found in online databases, 17 eligible studies fulfilled eligibility criteria and were further analyzed qualitatively. Out of those, 7 studies attained moderate to high quality (mean PEDro score 4.6 points, SD 2.9) and were then further analyzed quantitatively. A large variation, between no effects (SMD = 0.06, 95% CI = -0.78 to 0.90) and weak effects (SMD = 0.46, 95% CI = -0.51 to 1.43), was found for motor symptoms, balance, gait, and mobility. CONCLUSIONS There is no clear evidence of a PD symptom-reducing effect (motor symptoms, balance, gait, and mobility) of WBV compared with respective control conditions. Only a few studies found significant group differences for mobility and motor symptoms. Therefore, the overall effects of vibration therapy on PD remain somewhat inconsistent. Further high-quality studies should determine the efficacy of harmonic versus randomized WBV. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Andrea Dincher
- Sportwissenschaftliches Institut der Universität des Saarlandes (Institute of Sports Sciences of Saarland University), Saarbrücken, Germany
| | - Markus Schwarz
- Sportwissenschaftliches Institut der Universität des Saarlandes (Institute of Sports Sciences of Saarland University), Saarbrücken, Germany
| | - Georg Wydra
- Sportwissenschaftliches Institut der Universität des Saarlandes (Institute of Sports Sciences of Saarland University), Saarbrücken, Germany
| |
Collapse
|
33
|
Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V. Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease. Front Hum Neurosci 2019; 13:111. [PMID: 31024277 PMCID: PMC6463734 DOI: 10.3389/fnhum.2019.00111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's Disease (PD) is a prototypical basal ganglia disorder. Nigrostriatal dopaminergic denervation leads to progressive dysfunction of the cortico-basal ganglia-thalamo-cortical sensorimotor loops, causing the classical motor symptoms. Although the basal ganglia do not receive direct sensory input, they are important for sensorimotor integration. Therefore, the basal ganglia dysfunction in PD may profoundly affect sensory-motor interaction in the cortex. Cortical sensorimotor integration can be probed with transcranial magnetic stimulation (TMS) using a well-established conditioning-test paradigm, called short-latency afferent inhibition (SAI). SAI probes the fast-inhibitory effect of a conditioning peripheral electrical stimulus on the motor response evoked by a TMS test pulse given to the contralateral primary motor cortex (M1). Since SAI occurs at latencies that match the peaks of early cortical somatosensory potentials, the cortical circuitry generating SAI may play an important role in rapid online adjustments of cortical motor output to changes in somatosensory inputs. Here we review the existing studies that have used SAI to examine how PD affects fast cortical sensory-motor integration. Studies of SAI in PD have yielded variable results, showing reduced, normal or even enhanced levels of SAI. This variability may be attributed to the fact that the strength of SAI is influenced by several factors, such as differences in dopaminergic treatment or the clinical phenotype of PD. Inter-individual differences in the expression of SAI has been shown to scale with individual motor impairment as revealed by UPDRS motor score and thus, may reflect the magnitude of dopaminergic neurodegeneration. The magnitude of SAI has also been linked to cognitive dysfunction, and it has been suggested that SAI also reflects cholinergic denervation at the cortical level. Together, the results indicate that SAI is a useful marker of disease-related alterations in fast cortical sensory-motor integration driven by subcortical changes in the dopaminergic and cholinergic system. Since a multitude of neurobiological factors contribute to the magnitude of inhibition, any mechanistic interpretation of SAI changes in PD needs to consider the group characteristics in terms of phenotypical spectrum, disease stage, and medication.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
34
|
Vikene K, Skeie GO, Specht K. Abnormal phasic activity in saliency network, motor areas, and basal ganglia in Parkinson's disease during rhythm perception. Hum Brain Mapp 2018; 40:916-927. [PMID: 30375107 PMCID: PMC6587836 DOI: 10.1002/hbm.24421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Behavioral studies indicate that persons with Parkinson's disease have complexity dependent problems with the discrimination of auditory rhythms. Furthermore, neuroimaging studies show that rhythm processing activates many brain areas that overlap with areas affected by Parkinson's disease (PD). This study sought to investigate the neural correlates of rhythm processing in PD and healthy controls, with a particular focus on rhythmic complexity. We further aimed to investigate differences in brain activation during initial phases of rhythm processing. Functional magnetic resonance imaging was used to scan 15 persons with Parkinson's disease and 15 healthy controls while they listened to musical rhythms with two different levels of complexity. Rhythmic complexity had no significant effect on brain activations, but patients and controls showed differences in areas related to temporal auditory processing, notably bilateral planum temporale and inferior parietal lobule. We found indications of a particular sequential or phasic activation pattern of brain activity, where activity in caudate nucleus in the basal ganglia was time‐displaced by activation in the saliency network—comprised of anterior cingulate cortex and bilateral anterior insula—and cortical and subcortical motor areas, during the initial phases of listening to rhythms. We relate our findings to core PD pathology, and discuss the overall, rhythm processing related hyperactivity in PD as a possible dysfunction in specific basal ganglia mechanisms, and the phasic activation pattern in PD as a reflection of a lack of preparatory activation of task‐relevant brain networks for rhythm processing in PD.
Collapse
Affiliation(s)
- Kjetil Vikene
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Geir-Olve Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Education, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
35
|
Avanzino L, Fiorio M, Conte A. Actual and Illusory Perception in Parkinson's Disease and Dystonia: A Narrative Review. Front Neurol 2018; 9:584. [PMID: 30079051 PMCID: PMC6062595 DOI: 10.3389/fneur.2018.00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sensory information is continuously processed so as to allow behavior to be adjusted according to environmental changes. Before sensory information reaches the cortex, a number of subcortical neural structures select the relevant information to send to be consciously processed. In recent decades, several studies have shown that the pathophysiological mechanisms underlying movement disorders such as Parkinson's disease (PD) and dystonia involve sensory processing abnormalities related to proprioceptive and tactile information. These abnormalities emerge from psychophysical testing, mainly temporal discrimination, as well as from experimental paradigms based on bodily illusions. Although the link between proprioception and movement may be unequivocal, how temporal tactile information abnormalities and bodily illusions relate to motor disturbances in PD and dystonia is still a matter of debate. This review considers the role of altered sensory processing in the pathophysiology of movement disorders, focusing on how sensory alteration patterns differ between PD and dystonia. We also discuss the evidence available and the potential for developing new therapeutic strategies based on the manipulation of multi-sensory information and bodily illusions in patients with these movement disorders.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
36
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
37
|
Niccolini F, Pagano G, Fusar-Poli P, Wood A, Mrzljak L, Sampaio C, Politis M. Striatal molecular alterations in HD gene carriers: a systematic review and meta-analysis of PET studies. J Neurol Neurosurg Psychiatry 2018; 89:185-196. [PMID: 28889093 DOI: 10.1136/jnnp-2017-316633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND Over the past years, positron emission tomography (PET) imaging studies have investigated striatal molecular changes in premanifest and manifest Huntington's disease (HD) gene expansion carriers (HDGECs), but they have yielded inconsistent results. OBJECTIVE To systematically examine the evidence of striatal molecular alterations in manifest and premanifest HDGECs as measured by PET imaging studies. METHODS MEDLINE, ISI Web of Science, Cochrane Library and Scopus databases were searched for articles published until 7 June 2017 that included PET studies in manifest and premanifest HDGECs. Meta-analyses were conducted with random effect models, and heterogeneity was addressed with I2 index, controlling for publication bias and quality of study. The primary outcome was the standardised mean difference (SMD) of PET uptakes in the whole striatum, caudate and putamen in manifest and premanifest HDGECs compared with healthy controls (HCs). RESULTS Twenty-four out of 63 PET studies in premanifest (n=158) and manifest (n=191) HDGECs and HCs (n=333) were included in the meta-analysis. Premanifest and manifest HDGECs showed significant decreases in dopamine D2 receptors in caudate (SMD=-1.233, 95% CI -1.753 to -0.713, p<0.0001; SMD=-5.792, 95% CI -7.695 to -3.890, p<0.0001) and putamen (SMD=-1.479, 95% CI -1.965 to -0.992, p<0.0001; SMD=-5.053, 95% CI -6.558 to -3.549, p<0.0001), in glucose metabolism in caudate (SMD=-0.758, 95% CI -1.139 to -0.376, p<0.0001; SMD=-3.738, 95% CI -4.880 to -2.597, p<0.0001) and putamen (SMD=-2.462, 95% CI -4.208 to -0.717, p=0.006; SMD=-1.650, 95% CI -2.842 to -0.458, p<0.001) and in striatal PDE10A binding (SMD=-1.663, 95% CI -2.603 to -0.723, p=0.001; SMD=-2.445, 95% CI -3.371 to -1.519, p<0.001). CONCLUSIONS PET imaging has the potential to detect striatal molecular changes even at the early premanifest stage of HD, which are relevant to the neuropathological mechanisms underlying the development of the disease.
Collapse
Affiliation(s)
- Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Andrew Wood
- CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | | | | | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
38
|
Baez S, Pino M, Berrío M, Santamaría-García H, Sedeño L, García AM, Fittipaldi S, Ibáñez A. Corticostriatal signatures of schadenfreude: evidence from Huntington's disease. J Neurol Neurosurg Psychiatry 2018; 89:112-116. [PMID: 28765320 DOI: 10.1136/jnnp-2017-316055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/08/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Schadenfreude-pleasure at others' misfortunes-is a multidetermined social emotion which involves reward processing, mentalising and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of this experience, suggesting a role of striatal degeneration in such impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced schadenfreude. Here, we assessed whether grey matter (GM) atrophy in patients with HD correlates with ratings of schadenfreude. First, we compared the performance of 20 patients with HD and 23 controls on an experimental task designed to trigger schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. While both groups showed similar ratings of envy, patients with HD reported lower schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalising network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in schadenfreude, while offering novel evidence about their neural correlates.
Collapse
Affiliation(s)
- Sandra Baez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Deparment of Psychology, Universidad de los Andes, Bogotá, Colombia.,Grupo de Investigación Cerebro y Cognición Social, Bogotá, Colombia.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mariana Pino
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Mildred Berrío
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Hernando Santamaría-García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Grupo de Investigación Cerebro y Cognición Social, Bogotá, Colombia.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Sol Fittipaldi
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, Australia
| |
Collapse
|
39
|
Abstract
Parkinson disease (PD) is a complex, multisystem disorder with both neurologic and systemic nonmotor manifestations. It is neurodegenerative in nature in which disordered balance, gait, and falls are universal problems that can be present at initial diagnosis, and which progress over time. Freezing of gait is a particularly debilitating feature of PD that becomes more prevalent over time with disease progression, being present in approximately 7% after 2 years of disease and 28% after 5 years. Approximately 60% of people with PD fall each year, with around 70% of fallers falling recurrently, and some recurrent fallers falling multiple times per week. Many risk factors for falls in people with PD have been identified; these include a history of falls, freezing of gait, and abnormalities in measures of balance, leg muscle strength, mobility, cognition, and fear of falling. Therapies for improving physical function and mobility include levodopa, cholinesterase inhibitors, methylphenidate, deep-brain stimulation, cuing for freezing of gait, and exercise. This chapter reviews the clinical, pathologic, and physiologic correlates of gait disturbance and falls in PD, as well as the evidence for medical and nonmedical interventions.
Collapse
Affiliation(s)
- Samuel D Kim
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Natalie E Allen
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Colleen G Canning
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Campbell JC, Chin-Sang ID, Bendena WG. A Caenorhabditis elegans Nutritional-status Based Copper Aversion Assay. J Vis Exp 2017:55939. [PMID: 28784963 PMCID: PMC5612601 DOI: 10.3791/55939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To ensure survival, organisms must be capable of avoiding unfavorable habitats while ensuring a consistent food source. Caenorhabditis elegans alter their locomotory patterns upon detection of diverse environmental stimuli and can modulate their suite of behavioral responses in response to starvation conditions. Nematodes typically exhibit a decreased aversive response when removed from a food source for over 30 min. Observation of behavioral changes in response to a changing nutritional status can provide insight into the mechanisms that regulate the transition from a well-fed to starved state. We have developed an assay that measures a nematode's ability to cross an aversive barrier (i.e. copper) then reach a food source over a prolonged period of time. This protocol builds upon previous work by integrating multiple variables in a manner that allows for continued data collection as the organisms shift towards an increasingly starved condition. Moreover, this assay permits an increased sample size so that larger populations of nematodes can be simultaneously evaluated. Organisms defective for the ability to detect or respond to copper immediately cross the chemical barrier, while wild type nematodes are initially repelled. As wild type worms are increasingly starved, they begin to cross the barrier and reach the food source. We designed this assay to evaluate a mutant that is incapable of responding to diverse environmental cues, including food sensation or detection of aversive chemicals. When evaluated via this protocol, the defective organisms immediately crossed the barrier, but were also incapable of detecting a food source. Hence, these mutants repeatedly cross the chemical barrier despite temporarily reaching a food source. This assay can straightforwardly test populations of worms to evaluate potential pathway defects related to aversion and starvation.
Collapse
Affiliation(s)
| | | | - William G Bendena
- Department of Biology, Queen's University; Centre for Neuroscience, Queen's University
| |
Collapse
|
41
|
Lozeron P, Poujois A, Meppiel E, Masmoudi S, Magnan TP, Vicaut E, Houdart E, Guichard JP, Trocello JM, Woimant F, Kubis N. Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia. J Neural Transm (Vienna) 2017; 124:1161-1170. [PMID: 28689295 DOI: 10.1007/s00702-017-1756-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.
Collapse
Affiliation(s)
- Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75475, Paris, France.,INSERM UMR965, 75475, Paris, France
| | - Aurélia Poujois
- Service de Neurologie, AP-HP, Hôpital Lariboisière, Paris, France.,Centre de référence national de la maladie de Wilson, Hôpital Lariboisière, Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75010, Paris, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75010, Paris, France
| | - Thierry Peron Magnan
- Centre de référence national de la maladie de Wilson, Hôpital Lariboisière, Paris, France
| | - Eric Vicaut
- Université Paris Diderot, Sorbonne Paris Cité, 75475, Paris, France.,Unité de Recherche Clinique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Emmanuel Houdart
- Université Paris Diderot, Sorbonne Paris Cité, 75475, Paris, France.,Service de Neuroradiologie, AP-HP, Hôpital Lariboisière, Paris, France
| | | | - Jean-Marc Trocello
- Service de Neurologie, AP-HP, Hôpital Lariboisière, Paris, France.,Centre de référence national de la maladie de Wilson, Hôpital Lariboisière, Paris, France
| | - France Woimant
- Service de Neurologie, AP-HP, Hôpital Lariboisière, Paris, France.,Centre de référence national de la maladie de Wilson, Hôpital Lariboisière, Paris, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, 2, rue Ambroise Paré, 75010, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, 75475, Paris, France. .,INSERM UMR965, 75475, Paris, France.
| |
Collapse
|
42
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
43
|
The Effect of Dopaminergic Medication on Joint Kinematics during Haptic Movements in Individuals with Parkinson's Disease. Behav Neurol 2017; 2017:2358386. [PMID: 28496293 PMCID: PMC5414587 DOI: 10.1155/2017/2358386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 11/17/2022] Open
Abstract
This study examined whether altered joint angular motion during haptic exploration could account for a decline in haptic sensitivity in individuals with PD by analyzing joint position data during haptic exploration of a curved contour. Each participant's hand was passively moved by a robotic arm along the edges of a virtual box (5 cm × 15 cm) with a curved left wall. After each trial, participants indicated whether the contour was curved or straight. Visual, auditory, and tactile cues were occluded, and an electrogoniometer recorded shoulder and elbow joint angles during each trial. The PD group in the OFF state had a higher mean detection threshold (4.67 m−1) than the control group (3.06 m−1). Individuals with PD in the OFF state also had a significantly greater magnitude of shoulder abduction than those in the ON state (p = 0.003) and a smaller magnitude of elbow flexion than those in the ON state or compared to the control group (both p < 0.001). These findings suggest that individuals with PD employ joint configurations that may contribute to haptic insensitivity. Dopamine replacement therapy improved joint configurations during haptic exploration in patients with PD, suggesting a role for dopaminergic dysfunction in PD-related haptic insensitivity.
Collapse
|
44
|
Sridharan KS, Højlund A, Johnsen EL, Sunde NA, Johansen LG, Beniczky S, Østergaard K. Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease. Clin Neurophysiol 2017; 128:1327-1336. [PMID: 28570866 DOI: 10.1016/j.clinph.2017.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) and dopaminergic medication effectively alleviate the motor symptoms in Parkinson's disease (PD) patients, but their effects on the sensory symptoms of PD are still not well understood. To explore early somatosensory processing in PD, we recorded magnetoencephalography (MEG) from thirteen DBS-treated PD patients and ten healthy controls during median nerve stimulation. METHODS PD patients were measured during DBS-treated, untreated and dopaminergic-medicated states. We focused on early cortical somatosensory processing as indexed by N20m, induced gamma augmentation (31-45Hz and 55-100Hz) and induced beta suppression (13-30Hz). PD patients' motor symptoms were assessed by UPDRS-III. RESULTS Using Bayesian statistics, we found positive evidence for differentiated effects of treatments on the induced gamma augmentation (31-45Hz) with highest gamma in the dopaminergic-medicated state and lowest in the DBS-treated and untreated states. In contrast, UPDRS-III scores showed beneficial effects of both DBS and dopaminergic medication on the patients' motor symptoms. Furthermore, treatments did not affect the amplitude of N20m. CONCLUSIONS Our results suggest differentiated effects of DBS and dopaminergic medication on cortical somatosensory processing in PD patients despite consistent ameliorating effects of both treatments on PD motor symptoms. SIGNIFICANCE The differentiated effect suggests differences in the effect mechanisms of the two treatments.
Collapse
Affiliation(s)
- Kousik Sarathy Sridharan
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark.
| | - Andreas Højlund
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Erik Lisbjerg Johnsen
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | - Niels Aagaard Sunde
- Department of Neurosurgery, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark
| | | | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Department of Clinical Neurophysiology, Danish Epilepsy Center, Kolonivej 1, 4293 Dianalund, Denmark
| | - Karen Østergaard
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
45
|
Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron 2017; 94:855-865.e5. [DOI: 10.1016/j.neuron.2017.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
|
46
|
Mirallave A, Morales M, Cabib C, Muñoz EJ, Santacruz P, Gasull X, Valls-Sole J. Sensory processing in Huntington's disease. Clin Neurophysiol 2017; 128:689-696. [PMID: 28315610 DOI: 10.1016/j.clinph.2017.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE An intriguing electrophysiological feature of patients with Huntington's disease (HD) is the delayed latency and decreased amplitude of somatosensory long-latency evoked potentials (LLeps). We investigated whether such dysfunction was associated with delayed conscious perception of the sensory stimulus. METHODS Sixteen HD patients and 16 control subjects faced a computer screen showing the Libet's clock (Libet et al., 1983). In Rest trials, subjects had to memorize the position of the clock handle at perception of either electrical or thermal stimuli (AW). In React, additionally, they were asked to make a fist with their right hand, in a simple reaction time task (SRT). LLseps were recorded from Cz in both conditions. RESULTS LLeps negative peak latency (N2) and SRT were abnormally delayed in patients in all conditions. AW was only abnormally prolonged in the React condition but the time difference between AW and the negative peak of the LLeps was not different in the two groups. There was a significant negative correlation between SRT and AW or LLeps amplitude in patients but not in healthy subjects. CONCLUSION Our HD patients did not show abnormalities in conscious perception of sensory stimuli but their LLeps abnormalities were more marked when they had to react. This is compatible with failure to detect stimulus salience rather than with a cognitive defect. SIGNIFICANCE HD patients at early stages of the disease have preserved subjective perception of sensation but faulty sensorimotor integration.
Collapse
Affiliation(s)
- Ana Mirallave
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain; Center for Neural Science (CNS), New York University (NYU), USA.
| | - Merche Morales
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Christopher Cabib
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Esteban J Muñoz
- Movement Disorders Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Xavier Gasull
- Neurophysiology Lab, Department of Physiological Sciences I, Medical School, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Josep Valls-Sole
- EMG Unit, Neurology Department, Hospital Clinic, Facultat de Medicina, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| |
Collapse
|
47
|
Kim A, Darakjian N, Finley JM. Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson's disease. J Neuroeng Rehabil 2017; 14:16. [PMID: 28222783 PMCID: PMC5320768 DOI: 10.1186/s12984-017-0225-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 02/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virtual reality (VR) has recently been explored as a tool for neurorehabilitation to enable individuals with Parkinson's disease (PD) to practice challenging skills in a safe environment. Current technological advances have enabled the use of affordable, fully immersive head-mounted displays (HMDs) for potential therapeutic applications. However, while previous studies have used HMDs in individuals with PD, these were only used for short bouts of walking. Clinical applications of VR for gait training would likely involve an extended exposure to the virtual environment, which has the potential to cause individuals with PD to experience simulator-related adverse effects due to their age or pathology. Thus, our objective was to evaluate the safety of using an HMD for longer bouts of walking in fully immersive VR for older adults and individuals with PD. METHODS Thirty-three participants (11 healthy young, 11 healthy older adults, and 11 individuals with PD) were recruited for this study. Participants walked for 20 min while viewing a virtual city scene through an HMD (Oculus Rift DK2). Safety was evaluated using the mini-BESTest, measures of center of pressure (CoP) excursion, and questionnaires addressing symptoms of simulator sickness (SSQ) and measures of stress and arousal. RESULTS Most participants successfully completed all trials without any discomfort. There were no significant changes for any of our groups in symptoms of simulator sickness or measures of static and dynamic balance after exposure to the virtual environment. Surprisingly, measures of stress decreased in all groups while the PD group also increased the level of arousal after exposure. CONCLUSIONS Older adults and individuals with PD were able to successfully use immersive VR during walking without adverse effects. This provides systematic evidence supporting the safety of immersive VR for gait training in these populations.
Collapse
Affiliation(s)
- Aram Kim
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar St, CHP 155, Los Angeles, CA 90033 USA
| | - Nora Darakjian
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar St, CHP 155, Los Angeles, CA 90033 USA
| | - James M. Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar St, CHP 155, Los Angeles, CA 90033 USA
| |
Collapse
|
48
|
Petschow C, Scheef L, Paus S, Zimmermann N, Schild HH, Klockgether T, Boecker H. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study. PLoS One 2016; 11:e0164607. [PMID: 27776130 PMCID: PMC5077078 DOI: 10.1371/journal.pone.0164607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Christine Petschow
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Sebastian Paus
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Hans H. Schild
- Department of Radiology, University of Bonn, Bonn, Germany
| | | | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
49
|
Pitts T, Hegland KW, Sapienza CM, Bolser DC, Davenport PW. Alterations in oropharyngeal sensory evoked potentials (PSEP) with Parkinson's disease. Respir Physiol Neurobiol 2016; 229:11-6. [PMID: 27090350 PMCID: PMC4888769 DOI: 10.1016/j.resp.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Movement of a food bolus from the oral cavity into the oropharynx activates pharyngeal sensory mechanoreceptors. Using electroencephalography, somatosensory cortical-evoked potentials resulting from oropharyngeal mechanical stimulation (PSEP) have been studied in young healthy individuals. However, limited information is known about changes in processing of oropharyngeal afferent signals with Parkinson's disease (PD). To determine if sensory changes occurred with a mechanical stimulus (air-puff) to the oropharynx, two stimuli (S1-first; S2-s) were delivered 500ms apart. Seven healthy older adults (HOA; 3 male and 4 female; 72.2±6.9 years of age), and thirteen persons diagnosed with idiopathic Parkinson's disease (PD; 11 male and 2 female; 67.2±8.9 years of age) participated. Results demonstrated PSEP P1, N1, and P2 component peaks were identified in all participants, and the N2 peak was present in 17/20 participants. Additionally, the PD participants had a decreased N2 latency and gated the P1, P2, and N2 responses (S2/S1 under 0.6). Compared to the HOAs, the PD participants had greater evidence of gating the P1 and N2 component peaks. These results suggest that persons with PD experience changes in sensory processing of mechanical stimulation of the pharynx to a greater degree than age-matched controls. In conclusion, the altered processing of sensory feedback from the pharynx may contribute to disordered swallow in patients with PD.
Collapse
Affiliation(s)
- Teresa Pitts
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery University of Louisville, Louisville, KY, United States.
| | - Karen Wheeler Hegland
- Department of Speech, Language, and Hearing Sciences University of Florida, Gainesville, FL, United States
| | - Christine M Sapienza
- Brooks Rehabilitation College of Healthcare Sciences Jacksonville University, Jacksonville, FL, United States
| | - Donald C Bolser
- Department of Physiological Sciences University of Florida, Gainesville, FL, United States
| | - Paul W Davenport
- Department of Physiological Sciences University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Huang X, Chen X, Yan N, Jones JA, Wang EQ, Chen L, Guo Z, Li W, Liu P, Liu H. The impact of parkinson's disease on the cortical mechanisms that support auditory-motor integration for voice control. Hum Brain Mapp 2016; 37:4248-4261. [PMID: 27400999 DOI: 10.1002/hbm.23306] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/09/2022] Open
Abstract
Several studies have shown sensorimotor deficits in speech processing in individuals with idiopathic Parkinson's disease (PD). The underlying neural mechanisms, however, remain poorly understood. In the present event-related potential (ERP) study, 18 individuals with PD and 18 healthy controls were exposed to frequency-altered feedback (FAF) while producing a sustained vowel and listening to the playback of their own voice. Behavioral results revealed that individuals with PD produced significantly larger vocal compensation for pitch feedback errors than healthy controls, and exhibited a significant positive correlation between the magnitude of their vocal responses and the variability of their unaltered vocal pitch. At the cortical level, larger P2 responses were observed for individuals with PD compared with healthy controls during active vocalization due to left-lateralized enhanced activity in the superior and inferior frontal gyrus, premotor cortex, inferior parietal lobule, and superior temporal gyrus. These two groups did not differ, however, when they passively listened to the playback of their own voice. Individuals with PD also exhibited larger P2 responses during active vocalization when compared with passive listening due to enhanced activity in the inferior frontal gyrus, precental gyrus, postcentral gyrus, and middle temporal gyrus. This enhancement effect, however, was not observed for healthy controls. These findings provide neural evidence for the abnormal auditory-vocal integration for voice control in individuals with PD, which may be caused by their deficits in the detection and correction of errors in voice auditory feedback. Hum Brain Mapp 37:4248-4261, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiyan Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, N2L 3C5, Waterloo, Ontario, Canada
| | - Emily Q Wang
- Department of Communication Disorders and Sciences, RUSH University Medical Center, 1653 West Congress Parkway, 203 SENN, Chicago, Illinois, 60612
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiqiang Guo
- Department of Biomedical Engineering School of Engineering, Sun Yat-Sen University, Guangzhou, China, 510006
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China, 510080
| |
Collapse
|