1
|
Zhang Y, Zhou Y, Guan H, Yu M. Exploring PLA2R and HLA in membranous nephropathy: A narrative review of pathogenic mechanisms and emerging therapeutic potentials. Int J Biol Macromol 2024; 280:136200. [PMID: 39366594 DOI: 10.1016/j.ijbiomac.2024.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Membranous Nephropathy (MN), a non-inflammatory autoimmune glomerulopathy, is a prominent cause of nephrotic syndrome, predominantly affecting Caucasian adults. It is characterized by significant thickening of the glomerular basement membrane, a direct result of immune complex deposition. Fundamental to its pathogenesis are the Phospholipase A2 receptor (PLA2R) and Human Leukocyte Antigens (HLA), which play crucial and interconnected roles. Specifically, PLA2R serves as the primary antigen, while HLA molecules facilitate MN-specific immune responses, thereby providing key insights into the disease's etiology. This study critically examines the roles of PLA2R and HLA in MN, with a particular focus on the antigenic epitopes of PLA2R. Given MN's complex nature, personalized therapeutic interventions are essential. Accordingly, targeting immunogenic epitopes has emerged as a transformative approach, aimed at modulating specific immune responses without disrupting overall immune function. Numerous studies and clinical trials have been advancing the application of these epitopes in therapeutic strategies. Nevertheless, challenges such as identifying effective epitopes, enhancing epitope-specific responses, and optimizing therapeutic dosing remain. This narrative review addresses these challenges in depth, offering a comprehensive insight into the pathology and emerging treatment strategies for MN.
Collapse
Affiliation(s)
- Yang Zhang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Yanyan Zhou
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Huibo Guan
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Miao Yu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Roy P, Sidney J, Lindestam Arlehamn CS, Phillips E, Mallal S, Suthahar SSA, Billitti M, Rubiro P, Marrama D, Drago F, Vallejo J, Suryawanshi V, Orecchioni M, Makings J, Kim PJ, McNamara CA, Peters B, Sette A, Ley K. Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circ Res 2022; 131:258-276. [PMID: 35766025 PMCID: PMC9536649 DOI: 10.1161/circresaha.122.321116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Sujit Silas Armstrong Suthahar
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Monica Billitti
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Fabrizio Drago
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Jenifer Vallejo
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Vasantika Suryawanshi
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Marco Orecchioni
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Jeffrey Makings
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul J. Kim
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus Ley
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Salvador F, Deramoudt L, Leprêtre F, Figeac M, Guerrier T, Boucher J, Bas M, Journiac N, Peters A, Mars LT, Zéphir H. A Spontaneous Model of Experimental Autoimmune Encephalomyelitis Provides Evidence of MOG-Specific B Cell Recruitment and Clonal Expansion. Front Immunol 2022; 13:755900. [PMID: 35185870 PMCID: PMC8850296 DOI: 10.3389/fimmu.2022.755900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
The key role of B cells in the pathophysiology of multiple sclerosis (MS) is supported by the presence of oligoclonal bands in the cerebrospinal fluid, by the association of meningeal ectopic B cell follicles with demyelination, axonal loss and reduction of astrocytes, as well as by the high efficacy of B lymphocyte depletion in controlling inflammatory parameters of MS. Here, we use a spontaneous model of experimental autoimmune encephalomyelitis (EAE) to study the clonality of the B cell response targeting myelin oligodendrocyte glycoprotein (MOG). In particular, 94% of SJL/j mice expressing an I-As: MOG92-106 specific transgenic T cell receptor (TCR1640) spontaneously develop a chronic paralytic EAE between the age of 60-500 days. The immune response is triggered by the microbiota in the gut-associated lymphoid tissue, while there is evidence that the maturation of the autoimmune demyelinating response might occur in the cervical lymph nodes owing to local brain drainage. Using MOG-protein-tetramers we tracked the autoantigen-specific B cells and localized their enrichment to the cervical lymph nodes and among the brain immune infiltrate. MOG-specific IgG1 antibodies were detected in the serum of diseased TCR1640 mice and proved pathogenic upon adoptive transfer into disease-prone recipients. The ontogeny of the MOG-specific humoral response preceded disease onset coherent with their contribution to EAE initiation. This humoral response was, however, not sufficient for disease induction as MOG-antibodies could be detected at the age of 69 days in a model with an average age of onset of 197 days. To assess the MOG-specific B cell repertoire we FACS-sorted MOG-tetramer binding cells and clonally expand them in vitro to sequence the paratopes of the IgG heavy chain and kappa light chains. Despite the fragility of clonally expanding MOG-tetramer binding effector B cells, our results indicate the selection of a common CDR-3 clonotype among the Igk light chains derived from both disease-free and diseased TCR1640 mice. Our study demonstrates the pre-clinical mobilization of the MOG-specific B cell response within the brain-draining cervical lymph nodes, and reiterates that MOG antibodies are a poor biomarker of disease onset and progression.
Collapse
Affiliation(s)
- Florent Salvador
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Laure Deramoudt
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Frédéric Leprêtre
- UMS2014-US51, Genomics and Structural Platform, Lille University, Lille, France
| | - Martin Figeac
- UMS2014-US51, Genomics and Structural Platform, Lille University, Lille, France
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286, INFINITE-Institute for Translational Research in Inflammation, Lille, France
| | - Julie Boucher
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Mathilde Bas
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Nathalie Journiac
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian University (LMU), Martinsried, Germany
| | - Lennart T Mars
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France
| | - Hélène Zéphir
- Univ. Lille, Inserm, CHU Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), UMR-S1172, Lille Neuroscience & Cognition, LICEND, FHU Imminent, Lille, France.,Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian University (LMU), Martinsried, Germany.,CRC-SEP of Lille, CHU of Lille, Lille, France
| |
Collapse
|
7
|
Docampo MJ, Lutterotti A, Sospedra M, Martin R. Mechanistic and Biomarker Studies to Demonstrate Immune Tolerance in Multiple Sclerosis. Front Immunol 2022; 12:787498. [PMID: 35069562 PMCID: PMC8766750 DOI: 10.3389/fimmu.2021.787498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
The induction of specific immunological tolerance represents an important therapeutic goal for multiple sclerosis and other autoimmune diseases. Sound knowledge of the target antigens, the underlying pathomechanisms of the disease and the presumed mechanisms of action of the respective tolerance-inducing approach are essential for successful translation. Furthermore, suitable tools and assays to evaluate the induction of immune tolerance are key aspects for the development of such treatments. However, investigation of the mechanisms of action underlying tolerance induction poses several challenges. The optimization of sensitive, robust methods which allow the assessment of low frequency autoreactive T cells and the long-term reduction or change of their responses, the detection of regulatory cell populations and their immune mediators, as well as the validation of specific biomarkers indicating reduction of inflammation and damage, are needed to develop tolerance-inducing approaches successfully to patients. This short review focuses on how to demonstrate mechanistic proof-of-concept in antigen-specific tolerance-inducing therapies in MS.
Collapse
Affiliation(s)
| | | | | | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Xu Q, Liu S, Zhang P, Wang Z, Chang X, Liu Y, Yan J, He R, Luo X, Zou LY, Chu X, Guo Y, Huang S, Fu X, Huang Y. Characteristics of Anti-Contactin1 Antibody-Associated Autoimmune Nodopathies With Concomitant Membranous Nephropathy. Front Immunol 2021; 12:759187. [PMID: 34675937 PMCID: PMC8523937 DOI: 10.3389/fimmu.2021.759187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background The concurrence of anti-contactin 1 (CNTN1) antibody-associated chronic inflammatory demyelinating polyneuropathy (CIDP) and membranous nephropathy (MN) has previously been reported in the literature. CIDP with autoantibodies against paranodal proteins are defined as autoimmune nodopathies (AN) in the latest research. In view of the unclear relationship between CIDP and MN, we performed a case study and literature review to investigate the clinical characteristics of anti-CNTN antibody-associated AN with MN. Methods We detected antibodies against NF155, NF186, CNTN1, CNTN2, CASPR1 and PLA2R in blood samples of a patient with clinically manifested MN and concomitant peripheral neuropathy via double immunofluorescence staining and conducted a quantitative measurement of anti-PLA2R IgG antibodies via enzyme-linked immunosorbent assay (ELISA). Case reports of anti-CNTN1 antibody-associated AN, anti-CNTN1 antibody-associated AN with MN, and CIDP with MN were retrieved through a literature search for a comparative analysis of clinical characteristics. The cases were grouped according to the chronological order of CIDP and MN onset for the comparison of clinical characteristics. Results A 57-year-old man with anti-PLA2R positive MN was admitted to the hospital due to limb numbness, weakness, and proprioceptive sensory disorder. He was diagnosed with anti-CNTN1 antibody-associated AN and recovered well after immunotherapy. Our literature search returned 22 cases of CIDP with MN that occurred before, after, or concurrently with CIDP. Good responses were achieved with early single-agent or combination immunotherapy, but eight out of the 22 patients with CIDP and concomitant MN ultimately developed different motor sequelae. Five patients had anti-CNTN1 antibody-associated AN with MN. Among these patients, males accounted for the majority of cases (male:female=4:1), the mean age at onset was late (60.2 ± 15.7 years, range 43–78 years), and 40% had acute to subacute onset. Clinical manifestations included sensory-motor neuropathy, sensory ataxia caused by proprioceptive impairment, and elevated cerebrospinal fluid protein levels. Conclusion The age at onset of CIDP with MN was earlier than that of anti-CNTN1 antibody-associated AN. MN may occur before, after or concurrently with CIDP. The early detection and isotyping of anti-CNTN1 and anti-PLA2R antibodies and the monitoring of isotype switching may be essential for suspected CIDP patients.
Collapse
Affiliation(s)
- Qianhui Xu
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shuhu Liu
- Department of Research and Development, Guangzhou Weimi Bio-Tech Co., Ltd, Guangzhou, China
| | - Peng Zhang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhen Wang
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xin Chang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yulu Liu
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jiahe Yan
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Ruirong He
- Department of Psychiatry, Third Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Liang-Yu Zou
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaofan Chu
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuejun Fu
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Ying Huang
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
9
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
10
|
Lutterotti A, Hayward-Koennecke H, Sospedra M, Martin R. Antigen-Specific Immune Tolerance in Multiple Sclerosis-Promising Approaches and How to Bring Them to Patients. Front Immunol 2021; 12:640935. [PMID: 33828551 PMCID: PMC8019937 DOI: 10.3389/fimmu.2021.640935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
Antigen-specific tolerance induction aims at treating multiple sclerosis (MS) at the root of its pathogenesis and has the prospect of personalization. Several promising tolerization approaches using different technologies and modes of action have already advanced to clinical testing. The prerequisites for successful tolerance induction include the knowledge of target antigens, core pathomechanisms, and how to pursue a clinical development path that is distinct from conventional drug development. Key aspects including patient selection, outcome measures, demonstrating the mechanisms of action as well as the positioning in the rapidly growing spectrum of MS treatments have to be considered to bring this therapy to patients.
Collapse
Affiliation(s)
- Andreas Lutterotti
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Helen Hayward-Koennecke
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Griffin JD, Huayamares SG, Walston TR, Song JY, Shao M, Sedlacek AR, Diaz DL, Chakravarti AR, Berkland CJ. Brain Homogenate Decoys for Antigen-Specific Cell Amplification. ACS APPLIED BIO MATERIALS 2021; 4:387-391. [DOI: 10.1021/acsabm.0c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Sebastian G. Huayamares
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Towne R. Walston
- School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jimmy Y. Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Michael Shao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Alexander R. Sedlacek
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deanna L. Diaz
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aparna R. Chakravarti
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory J. Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Derdelinckx J, Nkansah I, Ooms N, Van Bruggen L, Emonds MP, Daniëls L, Reynders T, Willekens B, Cras P, Berneman ZN, Cools N. HLA Class II Genotype Does Not Affect the Myelin Responsiveness of Multiple Sclerosis Patients. Cells 2020; 9:cells9122703. [PMID: 33348629 PMCID: PMC7766454 DOI: 10.3390/cells9122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background: When aiming to restore myelin tolerance using antigen-specific treatment approaches in MS, the wide variety of myelin-derived antigens towards which immune responses are targeted in multiple sclerosis (MS) patients needs to be taken into account. Uncertainty remains as to whether the myelin reactivity pattern of a specific MS patient can be predicted based upon the human leukocyte antigen (HLA) class II haplotype of the patient. Methods: In this study, we analyzed the reactivity towards myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) peptides using direct interferon (IFN)-γ enzyme-linked immune absorbent spot (ELISPOT). Next, the HLA class II haplotype profile was determined by next-generation sequencing. In doing so, we aimed to evaluate the possible association between the precursor frequency of myelin-reactive T cells and the HLA haplotype. Results: Reactivity towards any of the analyzed peptides could be demonstrated in 65.0% (13/20) of MS patients and in 60.0% (6/10) of healthy controls. At least one of the MS risk alleles HLA-DRB1*15:01, HLA-DQA1*01:02 and HLA-DQB1*06:02 was found in 70.0% (14/20) of patients and in 20.0% (2/10) of healthy controls. No difference in the presence of a myelin-specific response, nor in the frequency of myelin peptide-reactive precursor cells could be detected among carriers and non-carriers of these risk alleles. Conclusion: No association between HLA haplotype and myelin reactivity profile was present in our study population. This complicates the development of antigen-specific treatment approaches and implies the need for multi-epitope targeting in an HLA-unrestricted manner to fully address the wide variation in myelin responses and HLA profiles in a heterogeneous group of MS patients.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
- Correspondence: ; Tel.: +32-3-821-3584; Fax: +32-3-825-1148
| | - Irene Nkansah
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Naomi Ooms
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Laura Van Bruggen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, 2650 Mechelen, Belgium; (M.-P.E.); (L.D.)
| | - Liesbeth Daniëls
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, 2650 Mechelen, Belgium; (M.-P.E.); (L.D.)
| | - Tatjana Reynders
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
| | - Barbara Willekens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium; (T.R.); (P.C.)
- Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.N.); (N.O.); (L.V.B.); (B.W.); (Z.N.B.); (N.C.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
13
|
Wildner G, Diedrichs-Möhring M. Molecular Mimicry and Uveitis. Front Immunol 2020; 11:580636. [PMID: 33193382 PMCID: PMC7658003 DOI: 10.3389/fimmu.2020.580636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Molecular or antigenic mimicry is a term for the similarity of different antigens, which can be confused by the immune system. Antigen recognition by antibodies and T cell receptors is specific, but not restricted to a single antigen. Both types of receptors specifically recognize antigens and are expressed with a very high but still restricted variability compared to the number of different antigens they potentially could bind. T cell receptors only can bind to antigen peptides presented on certain self-MHC-molecules by screening only some amino acid side chains on both the presented peptides and the MHC molecule. The other amino acids of the peptide are not directly perceived by the T cell, offering the opportunity for a single T cell to recognize a variety of different antigens with the same receptor, which significantly increases the immune repertoire. The immune system is usually tolerant to autoantigens, especially to those of immune privileged sites, like the eye. Therefore, autoimmune diseases targeting these organs were hard to explain, unless a T cell is activated by an environmental peptide (e.g. pathogen) that is similar, but not necessarily identical with an autoantigen. Here we describe antigenic mimicry of retinal autoantigens with a variety of non-ocular antigens resulting in the induction of intraocular inflammation. T cells that are activated by mimotopes outside of the eye can pass the blood-retina barrier and enter ocular tissues. When reactivated in the eye by crossreaction with autoantigens they induce uveitis by recruiting inflammatory cells.
Collapse
Affiliation(s)
- Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
14
|
Antibody signatures in patients with histopathologically defined multiple sclerosis patterns. Acta Neuropathol 2020; 139:547-564. [PMID: 31950335 PMCID: PMC7035238 DOI: 10.1007/s00401-019-02120-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Early active multiple sclerosis (MS) lesions can be classified histologically into three main immunopathological patterns of demyelination (patterns I–III), which suggest pathogenic heterogeneity and may predict therapy response. Patterns I and II show signs of immune-mediated demyelination, but only pattern II is associated with antibody/complement deposition. In pattern III lesions, which include Baló’s concentric sclerosis, primary oligodendrocyte damage was proposed. Serum antibody reactivities could reflect disease pathogenesis and thus distinguish histopathologically defined MS patterns. We established a customized microarray with more than 700 peptides that represent human and viral antigens potentially relevant for inflammatory demyelinating CNS diseases, and tested sera from 66 patients (pattern I n = 12; II n = 29; III n = 25, including 8 with Baló’s), healthy controls, patients with Sjögren’s syndrome and stroke patients. Cell-based assays were performed for aquaporin 1 (AQP1) and AQP4 antibody detection. No single peptide showed differential binding among study cohorts. Because antibodies can react with different peptides from one protein, we also analyzed groups of peptides. Patients with pattern II showed significantly higher reactivities to Nogo-A peptides as compared to patterns I (p = 0.02) and III (p = 0.02). Pattern III patients showed higher reactivities to AQP1 (compared to pattern I p = 0.002, pattern II p = 0.001) and varicella zoster virus (VZV, compared to pattern II p = 0.05). In patients with Baló’s, AQP1 reactivity was also significantly higher compared to patients without Baló’s (p = 0.04), and the former revealed distinct antibody signatures. Histologically, Baló’s patients showed loss of AQP1 and AQP4 in demyelinating lesions, but no antibodies binding conformational AQP1 or AQP4 were detected. In summary, higher reactivities to Nogo-A peptides in pattern II patients could be relevant for enhanced axonal repair and remyelination. Higher reactivities to AQP1 peptides in pattern III patients and its subgroup of Baló’s patients possibly reflect astrocytic damage. Finally, latent VZV infection may cause peripheral immune activation.
Collapse
|
15
|
Derdelinckx J, Mansilla MJ, De Laere M, Lee WP, Navarro-Barriuso J, Wens I, Nkansah I, Daans J, De Reu H, Jolanta Keliris A, Van Audekerke J, Vanreusel V, Pieters Z, Van der Linden A, Verhoye M, Molenberghs G, Hens N, Goossens H, Willekens B, Cras P, Ponsaerts P, Berneman ZN, Martínez-Cáceres EM, Cools N. Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. J Neuroinflammation 2019; 16:167. [PMID: 31416452 PMCID: PMC6696692 DOI: 10.1186/s12974-019-1541-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Background Although effective in reducing relapse rate and delaying progression, current therapies for multiple sclerosis (MS) do not completely halt disease progression. T cell autoimmunity to myelin antigens is considered one of the main mechanisms driving MS. It is characterized by autoreactivity to disease-initiating myelin antigen epitope(s), followed by a cascade of epitope spreading, which are both strongly patient-dependent. Targeting a variety of MS-associated antigens by myelin antigen-presenting tolerogenic dendritic cells (tolDC) is a promising treatment strategy to re-establish tolerance in MS. Electroporation with mRNA encoding myelin proteins is an innovative technique to load tolDC with the full spectrum of naturally processed myelin-derived epitopes. Methods In this study, we generated murine tolDC presenting myelin oligodendrocyte glycoprotein (MOG) using mRNA electroporation and we assessed the efficacy of MOG mRNA-electroporated tolDC to dampen pathogenic T cell responses in experimental autoimmune encephalomyelitis (EAE). For this, MOG35–55-immunized C57BL/6 mice were injected intravenously at days 13, 17, and 21 post-disease induction with 1α,25-dihydroxyvitamin D3-treated tolDC electroporated with MOG-encoding mRNA. Mice were scored daily for signs of paralysis. At day 25, myelin reactivity was evaluated following restimulation of splenocytes with myelin-derived epitopes. Ex vivo magnetic resonance imaging (MRI) was performed to assess spinal cord inflammatory lesion load. Results Treatment of MOG35–55-immunized C57BL/6 mice with MOG mRNA-electroporated or MOG35–55-pulsed tolDC led to a stabilization of the EAE clinical score from the first administration onwards, whereas it worsened in mice treated with non-antigen-loaded tolDC or with vehicle only. In addition, MOG35–55-specific pro-inflammatory pathogenic T cell responses and myelin antigen epitope spreading were inhibited in the peripheral immune system of tolDC-treated mice. Finally, magnetic resonance imaging analysis of hyperintense spots along the spinal cord was in line with the clinical score. Conclusions Electroporation with mRNA is an efficient and versatile tool to generate myelin-presenting tolDC that are capable to stabilize the clinical score in EAE. These results pave the way for further research into mRNA-electroporated tolDC treatment as a patient-tailored therapy for MS. Electronic supplementary material The online version of this article (10.1186/s12974-019-1541-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium. .,Division of Neurology, Antwerp University Hospital, Edegem, Belgium.
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Wai-Ping Lee
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Inez Wens
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Irene Nkansah
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | | | | | | | - Zoë Pieters
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | | | - Geert Molenberghs
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,L-BioStat, I-BioStat, KU Leuven, Leuven, Belgium
| | - Niel Hens
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp, Belgium
| | - Barbara Willekens
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eva María Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VaxInfectio), University of Antwerp, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
16
|
Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, Lundin KE, Qiao SW, Sollid LM. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest 2018; 128:2642-2650. [PMID: 29757191 DOI: 10.1172/jci98819] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer-sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -β genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to decades apart, were examined. Persistence of the same clonotypes was seen in both compartments over decades, with up to 53% overlap between samples obtained 16 to 28 years apart. Further, we observed that the recall response following oral gluten challenge was dominated by preexisting CD4+ T cell clonotypes. Public features were frequent among gluten-specific T cells, as 10% of TCR-α, TCR-β, or paired TCR-αβ amino acid sequences of total 1813 TCRs generated from 17 patients were observed in 2 or more patients. In established celiac disease, the T cell clonotypes that recognize gluten are persistent for decades, making up fixed repertoires that prevalently exhibit public features. These T cells represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Louise F Risnes
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | | | - Shiva Dahal-Koirala
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Geir K Sandve
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Vikas K Sarna
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Knut Ea Lundin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| |
Collapse
|
17
|
Didona D, Di Zenzo G. Humoral Epitope Spreading in Autoimmune Bullous Diseases. Front Immunol 2018; 9:779. [PMID: 29719538 PMCID: PMC5913575 DOI: 10.3389/fimmu.2018.00779] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune blistering diseases are characterized by autoantibodies against structural adhesion proteins of the skin and mucous membranes. Extensive characterization of their autoantibody targets has improved understanding of pathogenesis and laid the basis for the study of antigens/epitopes diversification, a process termed epitope spreading (ES). In this review, we have reported and discussed ES phenomena in autoimmune bullous diseases and underlined their functional role in disease pathogenesis. A functional ES has been proposed: (1) in bullous pemphigoid patients and correlates with the initial phase of the disease, (2) in pemphigus vulgaris patients with mucosal involvement during the clinical transition to a mucocutaneous form, (3) in endemic pemphigus foliaceus, underlining its role in disease pathogenesis, and (4) in numerous cases of disease transition associated with an intermolecular diversification of immune response. All these findings could give useful information to better understand autoimmune disease pathogenesis and to design antigen/epitope specific therapeutic approaches.
Collapse
Affiliation(s)
- Dario Didona
- Clinic for Dermatology and Allergology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
18
|
Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S, Reinhard L, Koch-Nolte F, Stahl RAK, Tomas NM. The Most N-Terminal Region of THSD7A Is the Predominant Target for Autoimmunity in THSD7A-Associated Membranous Nephropathy. J Am Soc Nephrol 2018; 29:1536-1548. [PMID: 29555830 DOI: 10.1681/asn.2017070805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) has been identified as a pathogenic autoantigen in membranous nephropathy (MN). However, the THSD7A epitopes targeted by patient autoantibodies are unknown.Methods We performed an in silico analysis of the THSD7A multidomain structure, expressed the folded domains in HEK293 cells, and tested for domain reactivity with 31 serum samples from patients with THSD7A-associated MN using Western and native blotting. Immunogenicity of the antigen domains was further investigated by cDNA immunization of rabbits and mice.Results We characterized the extracellular topology of THSD7A as a tandem string of 21 thrombospondin type 1 domains. Overall, 28 serum samples (90%) recognized multiple epitope domains along the molecule. Detailed epitope mapping revealed that the complex consisting of the first and second N-terminal domains (amino acids 48-192) was recognized by 27 of 31 patient serum samples (87%). Serum recognizing one or two epitope domains showed lower anti-THSD7A antibody levels than serum recognizing three or more epitope domains. During follow-up, a loss of epitope recognition was observed in seven of 16 patients, and it was accompanied by decreasing antibody levels and remission of proteinuria. In four of 16 patients, epitope recognition patterns changed during follow-up. Notably, immunization experiments in rabbits and mice revealed that induced antibodies, like patient autoantibodies, preferentially bound to the most N-terminal domains of THSD7A.Conclusions Our data show that the immune response in THSD7A-associated MN is polyreactive and that autoantibodies predominantly target the most N-terminal part of THSD7A.
Collapse
Affiliation(s)
| | | | - Anna M Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
19
|
Weiner LP, Kachuck NJ, Gilmore W, Lund B. Immunological aspects of secondary progressive multiple sclerosis. Mult Scler 2017. [DOI: 10.1177/1352458502008001166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- LP Weiner
- USC Keck School of Medicine, Department of Neurology, 1975 Zonal Avenue, KAM 410, Los
Angeles, CA 90033, USA
| | - NJ Kachuck
- USC Keck School of Medicine, Department of Neurology, 1975 Zonal Avenue, KAM 410, Los
Angeles, CA 90033, USA
| | - W. Gilmore
- USC Keck School of Medicine, Department of Neurology, 1975 Zonal Avenue, KAM 410, Los
Angeles, CA 90033, USA
| | - B. Lund
- USC Keck School of Medicine, Department of Neurology, 1975 Zonal Avenue, KAM 410, Los
Angeles, CA 90033, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
21
|
A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data. Sci Rep 2017; 7:5338. [PMID: 28706301 PMCID: PMC5509648 DOI: 10.1038/s41598-017-04439-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/16/2017] [Indexed: 01/03/2023] Open
Abstract
Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an algorithm customized to computationally extract disease-associated motifs from next-generation-sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-search graph-theory approach to discover novel motifs in patient data. We apply the Haystack Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high throughput sequencing data and could be generalized to other datasets.
Collapse
|
22
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
23
|
Challa DK, Mi W, Lo ST, Ober RJ, Ward ES. Antigen dynamics govern the induction of CD4 + T cell tolerance during autoimmunity. J Autoimmun 2016; 72:84-94. [DOI: 10.1016/j.jaut.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022]
|
24
|
Ramadan A, Lucca LE, Carrié N, Desbois S, Axisa PP, Hayder M, Bauer J, Liblau RS, Mars LT. In situ expansion of T cells that recognize distinct self-antigens sustains autoimmunity in the CNS. Brain 2016; 139:1433-46. [PMID: 27000832 DOI: 10.1093/brain/aww032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Polyspecific T cells recognizing multiple distinct self-antigens have been identified in multiple sclerosis and other organ-specific autoimmune diseases, but their pathophysiological relevance remains undetermined. Using a mouse model of multiple sclerosis, we show that autoimmune encephalomyelitis induction is strictly dependent on reactivation of pathogenic T cells by a peptide (35-55) derived from myelin oligodendrocyte glycoprotein (MOG). This disease-inducing response wanes after onset. Strikingly, the progression of disease is driven by the in situ activation and expansion of a minority of MOG35-55-specific T cells that also recognize neurofilament-medium (NF-M)15-35, an intermediate filament protein expressed in neurons. This mobilization of bispecific T cells is critical for disease progression as adoptive transfer of NF-M15-35/MOG35-55 bispecific T cell lines caused full-blown disease in wild-type but not NF-M-deficient recipients. Moreover, specific tolerance through injection of NF-M15-35 peptide at the peak of disease halted experimental autoimmune encephalomyelitis progression. Our findings highlight the importance of polyspecific autoreactive T cells in the aggravation and perpetuation of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Liliana E Lucca
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Nadège Carrié
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Sabine Desbois
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Pierre-Paul Axisa
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Myriam Hayder
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Jan Bauer
- Center for Brain Research, Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
| | - Roland S Liblau
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| | - Lennart T Mars
- INSERM UMR1043, Toulouse, F-31300, France CNRS, U5282, Toulouse, F-31300, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France INSERM UMR995, LIRIC, F-59000 Lille, France Université de Lille, centre d'excellence LICEND and FHU IMMINeNT, F-59000 Lille, France
| |
Collapse
|
25
|
Lossius A, Johansen JN, Vartdal F, Holmøy T. High-throughput sequencing of immune repertoires in multiple sclerosis. Ann Clin Transl Neurol 2016; 3:295-306. [PMID: 27081660 PMCID: PMC4818741 DOI: 10.1002/acn3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022] Open
Abstract
T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T‐ and B‐cell receptors. The antigen receptors are highly polymorphic due to recombination (T‐ and B‐cell receptors) and mutation (B‐cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T‐ and B‐cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T‐ and B‐cell receptor repertoires using earlier methodological approaches, and we focus on how high‐throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jorunn N Johansen
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway
| | - Frode Vartdal
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine University of Oslo Oslo Norway; Department of Neurology Akershus University Hospital Lørenskog Norway
| |
Collapse
|
26
|
Salou M, Nicol B, Garcia A, Laplaud DA. Involvement of CD8(+) T Cells in Multiple Sclerosis. Front Immunol 2015; 6:604. [PMID: 26635816 PMCID: PMC4659893 DOI: 10.3389/fimmu.2015.00604] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by focal demyelination patches associated with inflammatory infiltrates containing T lymphocytes. For decades, CD4(+) T cells have been recognized as playing a major role in the disease, especially in animal models, which has led to the development of several therapies. However, interest has recently developed in the involvement of CD8(+) T cells in MS following the analysis of infiltrating T cells in human brain lesions. A broad range of evidence now suggests that the pathological role of this T cell subset in MS may have been underestimated. In this review, we summarize the literature implicating CD8(+) T cells in the pathophysiology of MS. We present data from studies in the fields of genetics, anatomopathology and immunology, mainly in humans but also in animal models of MS. Altogether, this strongly suggests that CD8(+) T cells may be major effectors in the disease process, and that the development of treatments specifically targeting this subset would be germane.
Collapse
Affiliation(s)
- Marion Salou
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Bryan Nicol
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Alexandra Garcia
- UMR 1064, INSERM , Nantes , France ; ITUN, Nantes Hospital , Nantes , France
| | - David-Axel Laplaud
- UMR 1064, INSERM , Nantes , France ; Department of Neurology, Nantes Hospital , Nantes , France ; Centre d'Investigation Clinique, INSERM 004 , Nantes , France
| |
Collapse
|
27
|
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, Pogorelyy MV, Nazarov VI, Zvyagin IV, Kirgizova VI, Kirgizov KI, Skorobogatova EV, Chudakov DM. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput Biol 2015; 11:e1004503. [PMID: 26606115 PMCID: PMC4659587 DOI: 10.1371/journal.pcbi.1004503] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.
Collapse
Affiliation(s)
- Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy V. Bagaev
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
| | - Maria A. Turchaninova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy A. Bolotin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V. Britanova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ekaterina V. Putintseva
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Vadim I. Nazarov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
28
|
Seitz-Polski B, Dolla G, Payré C, Girard CA, Polidori J, Zorzi K, Birgy-Barelli E, Jullien P, Courivaud C, Krummel T, Benzaken S, Bernard G, Burtey S, Mariat C, Esnault VLM, Lambeau G. Epitope Spreading of Autoantibody Response to PLA2R Associates with Poor Prognosis in Membranous Nephropathy. J Am Soc Nephrol 2015; 27:1517-33. [PMID: 26567246 DOI: 10.1681/asn.2014111061] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/06/2015] [Indexed: 12/16/2022] Open
Abstract
The phospholipase A2 receptor (PLA2R1) is the major autoantigen in idiopathic membranous nephropathy. However, the value of anti-PLA2R1 antibody titers in predicting patient outcomes is unknown. Here, we screened serum samples from 50 patients positive for PLA2R1 for immunoreactivity against a series of PLA2R1 deletion mutants covering the extracellular domains. We identified reactive epitopes in the cysteine-rich (CysR), C-type lectin domain 1 (CTLD1), and C-type lectin domain 7 (CTLD7) domains and confirmed the reactivity with soluble forms of each domain. We then used ELISAs to stratify 69 patients positive for PLA2R1 by serum reactivity to one or more of these domains: CysR (n=23), CysRC1 (n=14), and CysRC1C7 (n=32). Median ELISA titers measured using the full-length PLA2R1 antigens were not statistically different between subgroups. Patients with anti-CysR-restricted activity were younger (P=0.008), had less nephrotic range proteinuria (P=0.02), and exhibited a higher rate of spontaneous remission (P=0.03) and lower rates of renal failure progression (P=0.002) and ESRD (P=0.01) during follow-up. Overall, 31 of 69 patients had poor renal prognosis (urinary protein/creatinine ratio >4 g/g or eGFR<45 ml/min per 1.73 m(2) at end of follow-up). High anti-PLA2R1 activity and epitope spreading beyond the CysR epitope were independent risk factors of poor renal prognosis in multivariable Cox regression analysis. Epitope spreading during follow-up associated with disease worsening (n=3), whereas reverse spreading from a CysRC1C7 profile back to a CysR profile associated with favorable outcome (n=1). We conclude that analysis of the PLA2R1 epitope profile and spreading is a powerful tool for monitoring disease severity and stratifying patients by renal prognosis.
Collapse
Affiliation(s)
- Barbara Seitz-Polski
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France; Service de Néphrologie, CHU de Nice, Université de Nice-Sophia Antipolis, France; Laboratoire d'Immunologie
| | - Guillaume Dolla
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France
| | - Christine Payré
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France
| | - Christophe A Girard
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France
| | - Joel Polidori
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France
| | - Kevin Zorzi
- Centre de Recherche Clinique, CHU de Nice, Université de Nice-Sophia Antipolis, France
| | - Eléonore Birgy-Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France
| | - Perrine Jullien
- Service de Néphrologie Dialyse Transplantation Rénale, CHU Hôpital Nord, Saint-Etienne, and Université de Saint-Etienne PRES Université de Lyon, Saint-Etienne, France
| | - Cécile Courivaud
- Service de Néphrologie Dialyse Transplantation Rénale, CHU de Besançon, France
| | - Thierry Krummel
- Service de Néphrologie et dialyse, CHU de Strasbourg, Strasbourg, France; and
| | | | | | - Stéphane Burtey
- Service de Néphrologie Dialyse Transplantation Rénale, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France et UMR S1076, Université Aix-Marseille, France
| | - Christophe Mariat
- Service de Néphrologie Dialyse Transplantation Rénale, CHU Hôpital Nord, Saint-Etienne, and Université de Saint-Etienne PRES Université de Lyon, Saint-Etienne, France
| | - Vincent L M Esnault
- Service de Néphrologie, CHU de Nice, Université de Nice-Sophia Antipolis, France
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice-Sophia Antipolis, Valbonne Sophia-Antipolis, France;
| |
Collapse
|
29
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
30
|
Nicholas RS, Kostadima V, Hanspal M, Wakerley BR, Sergeant R, Decuypere S, Malik O, Boyton RJ, Altmann DM. MS in South Asians in England: early disease onset and novel pattern of myelin autoimmunity. BMC Neurol 2015; 15:72. [PMID: 25935418 PMCID: PMC4429974 DOI: 10.1186/s12883-015-0324-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies describe a latitude gradient for increased MS prevalence and a preponderance of disease in Caucasian individuals. However, individuals from other ethnic backgrounds and low-risk regions can acquire a raised risk through migration. Nearly a fifth of the London population is of Asian/Asian-British origin and a significant proportion of referrals are from this group. METHODS We investigated whether there were differences in timing, presentation, severity, and immunology of disease (with respect to CD4 myelin epitope recognition) between individuals in London with MS who were either of S. Asian or Caucasian origin. Individuals of S. Asian origin with MS were compared with healthy S. Asian controls, individuals with MS and of Caucasian origin and Caucasian controls. RESULTS Age at MS onset is significantly lower in the S. Asian group, attributable to earlier onset specifically in UK-born individuals, though clinical presentation is similar. Analysis of CD4 autoimmunity to myelin antigens shows disease in S. Asian individuals to encompass recognition of novel epitopes; immunity to MBP116-130 in S. Asian individuals was highly disease-specific. CONCLUSIONS These findings emphasize the need to define disease profiles across ethnicities and identify environmental triggers conferring acquired risk. Such findings must inform choices for immunotherapeutic interventions suitable for all, across ethnicities.
Collapse
Affiliation(s)
- Richard S Nicholas
- Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK.
| | - Vassiliki Kostadima
- Department of Medicine, Imperial College, Du Cane Road, London, W12 0NN, UK. .,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK.
| | - Maya Hanspal
- Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK.
| | - Benjamin R Wakerley
- Department of Medicine, Imperial College, Du Cane Road, London, W12 0NN, UK. .,Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Ruhena Sergeant
- H & I Laboratory, Hammersmith Hospital Imperial College NHS trust, Du Cane Road, W12 0HS, London, UK.
| | - Saskia Decuypere
- Telethon Kids Institute, PO Box 855, West Perth, Western Australia, Australia.
| | - Omar Malik
- Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK.
| | - Rosemary J Boyton
- Department of Medicine, Imperial College, Du Cane Road, London, W12 0NN, UK.
| | - Daniel M Altmann
- Department of Medicine, Imperial College, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
31
|
Sinha S, Crawford MP, Ortega SB, Karandikar NJ. Multiparameter Flow Cytometric Assays to Quantify Effector and Regulatory T-Cell Function in Multiple Sclerosis. JOURNAL OF MULTIPLE SCLEROSIS 2015; 2:1000130. [PMID: 26137595 PMCID: PMC4484619 DOI: 10.4172/2376-0389.1000130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The immune system plays a major pathological and regulatory role in multiple sclerosis (MS) and, therefore, is a focus of extensive research. Animal models of MS have been crucial in understanding the pathological processes in MS and developing certain treatments, however, all crucial aspects of the human disease may not be appropriately modeled. With the exception of detecting oligoclonal bands and IgG synthesis in cerebrospinal fluids of MS patients, there has not been major progress in the development of immunologic tests that can be used for diagnosis of MS. Further, due to the lack of validated immune assays, routine monitoring of the immune system following therapy initiation is not a part of standard patient care in MS. This is critical since immunomodulatory therapies used for MS treatment are not benign and, more importantly, there is a considerable variation in clinical responses in MS patients initiating such therapies. Flow cytometry is a powerful tool that can be used for studying both the phenotype and function of immune cells. The studies described here will demonstrate how flow cytometry can be used to apply current knowledge about the MS immune system to develop a diagnostic laboratory test for the immunologic monitoring of this disease. Importantly, we will also show that the multiparameter flow cytometry based assay developed by us can also be implemented for the immunologic evaluation of therapeutic success in MS patients.
Collapse
|
32
|
Quintana FJ, Patel B, Yeste A, Nyirenda M, Kenison J, Rahbari R, Fetco D, Hussain M, O'Mahony J, Magalhaes S, McGowan M, Johnson T, Rajasekharan S, Narayanan S, Arnold DL, Weiner HL, Banwell B, Bar-Or A. Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology 2014; 83:2219-26. [PMID: 25381299 DOI: 10.1212/wnl.0000000000001066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES For most adults with initial clinical presentation of multiple sclerosis (MS), biological disease was likely initiated many years prior. Pediatric-onset MS provides an opportunity to study early disease processes. METHODS Using antigen microarrays, including CNS-related proteins, lipids, and other autoantigens, we studied early immunologic events involved in clinical onset of pediatric MS. Serum samples were collected at the time of incident acquired CNS demyelinating syndromes (ADS) in children who, in subsequent prospective follow-up, were ascertained to have either pediatric MS (ADS-MS) or a monophasic illness (ADS-mono). Samples were obtained both at the time of ADS presentation and 3 months into follow-up. We used an initial training set of samples to implicate antibody signatures associated with each group, and then a test set. An additional set of follow-up samples (stability set) was used as a form of internal validation. RESULTS Children with ADS-MS tended to have distinguishable serum antibody patterns both at the time of ADS presentation and 3 months into follow-up. At the time of ADS, serum samples from patients with ADS-MS or ADS-mono reacted against similar numbers of CNS antigens, although CNS antigens implicated in adult MS were more often targeted in children with ADS-MS. The follow-up ADS-MS samples reacted against a broader panel of CNS antigens, while corresponding ADS-mono samples exhibited a contraction of the initial antibody response. CONCLUSIONS Our findings in this prospective cohort of pediatric-onset CNS demyelinating diseases point to an active process of epitope spreading during early stages of MS, not seen in monophasic CNS inflammatory conditions.
Collapse
Affiliation(s)
- Francisco J Quintana
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Bonny Patel
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Ada Yeste
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Mukanthu Nyirenda
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Jessica Kenison
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Roya Rahbari
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Dumitru Fetco
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Mohammad Hussain
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Julia O'Mahony
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Sandra Magalhaes
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Melissa McGowan
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Trina Johnson
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Sathy Rajasekharan
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Sridar Narayanan
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Douglas L Arnold
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Howard L Weiner
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Brenda Banwell
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA
| | - Amit Bar-Or
- From the Center for Neurologic Diseases (F.J.Q., B.P., A.Y., J.K., R.R., M.H., H.L.W.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Neuroimmunology Unit (M.N., S.M., A.B.-O.) and the McConnell Brain Imaging Centre (D.F., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal; Hospital for Sick Children (J.O., M.M., B.B.) and the Institute of Health Policy, Management, and Evaluation (J.O.), University of Toronto; Experimental Therapeutics Program (T.J., S.R., A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and The Children's Hospital of Philadelphia (B.B.), PA.
| | | |
Collapse
|
33
|
Schwab N, Schneider-Hohendorf T, Wiendl H. Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int Immunol 2014; 27:47-53. [PMID: 25326459 DOI: 10.1093/intimm/dxu096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a disorder of putative autoimmune origin, where immune cells invade the central nervous system and cause damage by attacking the myelin sheath of nerve cells. The blockade of the integrin very late antigen-4 (VLA-4) with the monoclonal antibody natalizumab has become the most effective therapy against MS since its approval in 2004. It is assumed that the inhibition of VLA-4-mediated immune cell adhesion to the endothelium of the blood-brain barrier (BBB) alleviates pathogenic processes of MS and, therefore, reduces disease severity and burden. Not all approaches to treat additional immune-mediated disorders (e.g. Rasmussen encephalitis and neuromyelitis optica) with natalizumab have been successful, but allowed researchers to gain additional insight into mechanisms of specific immune cell subsets' migration through the BBB in the human system. While the long-term efficacy and general tolerability of natalizumab in MS are clear, the over 400 cases of natalizumab-associated progressive multifocal leukoencephalopathy (PML) have been of great concern and methods of risk stratification in patients have become a major area of research. Modern risk stratification includes established factors such as treatment duration, previous immune-suppressive therapy, and anti-John Cunningham virus (JCV) antibody seropositivity, but also experimental factors such as anti-JCV antibody titers and levels of L-selectin. Today, anti-VLA-4 therapy is reserved for patients with highly active relapsing-remitting MS and patients are monitored closely for early signs of potential PML.
Collapse
Affiliation(s)
- Nicholas Schwab
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
34
|
Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev 2014; 255:197-209. [PMID: 23947356 DOI: 10.1111/imr.12091] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
35
|
Agius M, Meng X, Chin P, Grinspan A, Hashmonay R. Fingolimod therapy in early multiple sclerosis: an efficacy analysis of the TRANSFORMS and FREEDOMS studies by time since first symptom. CNS Neurosci Ther 2014; 20:446-51. [PMID: 24684973 DOI: 10.1111/cns.12235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 02/03/2023] Open
Abstract
AIMS The phase 3 TRANSFORMS and FREEDOMS studies established the efficacy of fingolimod in reducing multiple sclerosis (MS) relapses and magnetic resonance imaging lesions compared with intramuscular (IM) interferon (IFN) β-1a and placebo over 12 and 24 months, respectively. METHODS To investigate the efficacy of fingolimod at the approved 0.5 mg dose in patients early in the MS disease course, post hoc subgroup analyses of TRANSFORMS (n = 272) and FREEDOMS (n = 217) data were conducted in patients who experienced their first MS symptom <3 years before randomization. RESULTS Fingolimod 0.5 mg reduced annualized relapse rate by 73.4% (P = 0.0002) versus IFNβ-1a IM and by 67.4% (P < 0.0001) versus placebo in patients with <3 years since first symptom; respective reductions were 45.4% and 51.4% in subgroups of patients with ≥3 years since first symptom. For patients with <3 years since their first symptom, significantly fewer new/newly enlarged T2 lesions were observed with fingolimod versus IFNβ-1a IM (mean number, 1.94 vs. 2.95; P = 0.036) or placebo (4.1 vs. 10.7; P < 0.001); the mean number of gadolinium-enhancing T1 lesions was significantly reduced versus placebo (0.3 vs. 1.1; P < 0.001). CONCLUSION Fingolimod 0.5 mg is highly effective in reducing relapses and MRI activity in patients early in the MS disease course.
Collapse
Affiliation(s)
- Mark Agius
- Department of Neurology, University of California Davis, Davis, CA, USA; Veteran's Affairs Northern California Health Care System, Mather, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Trager N, Smith A, Wallace Iv G, Azuma M, Inoue J, Beeson C, Haque A, Banik NL. Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 2014; 130:268-79. [PMID: 24447070 DOI: 10.1111/jnc.12659] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) pathology is marked by the massive infiltration of myelin-specific T cells into the CNS. Hallmarks of T helper (Th) cells during active disease are pro-inflammatory Th1/Th17 cells that predominate over immunoregulatory Th2/Treg cells. Neurodegeneration, a major factor in progressive MS, is often overlooked when considering drug prescription. Here, we show that oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two pronged effect via anti-inflammation and protection against neurodegeneration. We also show that SNJ-1945 treatment down-regulates Th1/Th17 inflammatory responses, and promotes regulatory T cells (Tregs) and myeloid-derived suppressor cells in vivo, which are known to have the capacity to suppress helper as well as cytotoxic T cell functions. Through analysis of spinal cord samples, we show a reduction in calpain expression, decreased infiltration of inflammatory cells, and signs of inhibition of neurodegeneration. We also show a marked reduction in neuronal cell death in spinal cord (SC) sections. These results suggest that calpain inhibition attenuates experimental autoimmune encephalomyelitis pathology by reducing both inflammation and neurodegeneration, and could be used in clinical settings to augment the efficacy of standard immunomodulatory agents used to treat MS. Multiple sclerosis (MS) pathology is marked by inflammation and infiltration of myelin-specific T cells into the central nervous system. Inflammation leads to neurodegeneration in progressive MS which also leads to epitope spreading, feedback looping to more inflammation. Calpain can play a role in both arms of the disease. Here, oral dosing with SNJ-1945, a novel water-soluble calpain inhibitor, reduces experimental autoimmune encephalomyelitis clinical scores in vivo and has a two-pronged effect via anti-inflammation and protection against neurodegeneration.
Collapse
Affiliation(s)
- Nicole Trager
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lutterotti A, Yousef S, Sputtek A, Stürner KH, Stellmann JP, Breiden P, Reinhardt S, Schulze C, Bester M, Heesen C, Schippling S, Miller SD, Sospedra M, Martin R. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med 2014; 5:188ra75. [PMID: 23740901 DOI: 10.1126/scitranslmed.3006168] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) is a devastating inflammatory disease of the brain and spinal cord that is thought to result from an autoimmune attack directed against antigens in the central nervous system. The aim of this first-in-man trial was to assess the feasibility, safety, and tolerability of a tolerization regimen in MS patients that uses a single infusion of autologous peripheral blood mononuclear cells chemically coupled with seven myelin peptides (MOG1-20, MOG35-55, MBP13-32, MBP83-99, MBP111-129, MBP146-170, and PLP139-154). An open-label, single-center, dose-escalation study was performed in seven relapsing-remitting and two secondary progressive MS patients who were off-treatment for standard therapies. All patients had to show T cell reactivity against at least one of the myelin peptides used in the trial. Neurological, magnetic resonance imaging, laboratory, and immunological examinations were performed to assess the safety, tolerability, and in vivo mechanisms of action of this regimen. Administration of antigen-coupled cells was feasible, had a favorable safety profile, and was well tolerated in MS patients. Patients receiving the higher doses (>1 × 10(9)) of peptide-coupled cells had a decrease in antigen-specific T cell responses after peptide-coupled cell therapy. In summary, this first-in-man clinical trial of autologous peptide-coupled cells in MS patients establishes the feasibility and indicates good tolerability and safety of this therapeutic approach.
Collapse
Affiliation(s)
- Andreas Lutterotti
- Institute for Neuroimmunology and Clinical MS Research, Center for Molecular Neurobiology, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schreiner B, Bailey SL, Miller SD. T-cell response dynamics in animal models of multiple sclerosis: implications for immunotherapies. Expert Rev Clin Immunol 2014; 3:57-72. [DOI: 10.1586/1744666x.3.1.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Lutterotti A, Martin R. Antigen-specific tolerization approaches in multiple sclerosis. Expert Opin Investig Drugs 2013; 23:9-20. [PMID: 24151958 DOI: 10.1517/13543784.2014.844788] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Inhibition of self-reactive T cells through induction of antigen-specific immune tolerance holds the promise of effective treatment of autoimmune pathology with few side effects and preservation of normal immune functions. In multiple sclerosis (MS) several approaches have been tested already in clinical trials or are currently ongoing with the aim to inhibit myelin-reactive immune responses. AREAS COVERED This article provides an overview of the recent and ongoing strategies to inhibit specific immune responses in MS, including different applications of myelin peptide-based approaches, T-cell vaccination, DNA vaccination and antigen-coupled cells. EXPERT OPINION Despite difficulties in translation of antigen-specific therapies in MS, novel approaches have the potential to effectively induce immune tolerance and ameliorate the disease. To improve efficacy of treatments, future trials should include patients in the early phases of the disease, when the autoimmune response is predominant and immune reactivity still focused. The target antigens are not fully defined yet, and robust immunomonitoring assays should developed to provide mechanistic proof of concept in parallel to showing efficacy with respect to inhibiting inflammatory disease activity in the central nervous system (CNS).
Collapse
Affiliation(s)
- Andreas Lutterotti
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck , Austria
| | | |
Collapse
|
40
|
Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor. J Neuroimmunol 2013; 263:20-7. [PMID: 23911075 DOI: 10.1016/j.jneuroim.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 01/08/2023]
Abstract
Previously, bifunctional peptide inhibitors (BPI) with a single antigenic peptide have been shown to suppress experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. In this study, a multivalent BPI (MVBMOG/PLP) with two antigenic peptides derived from myelin oligodendrocyte glycoprotein (MOG38-50) and myelin proteolipid protein (PLP139-151) was evaluated in suppressing MOG38-50- and PLP139-151-induced EAE. MVBMOG/PLP significantly suppressed both models of EAE even when there was some evidence of epitope spreading in the MOG38-50-induced EAE model. In addition, MVBMOG/PLP was found to be more effective than PLP-BPI and MOG-BPI in suppressing MOG38-50-induced EAE. Thus, the development of MVB molecules with broader antigenic targets can lead to suppression of epitope spreading in EAE.
Collapse
|
41
|
Calcedo R, Griesenbach U, Dorgan DJ, Soussi S, Boyd AC, Davies JC, Higgins TE, Hyde SC, Gill DR, Innes JA, Porteous DJ, Alton EW, Wilson JM, Limberis MP. Self-reactive CFTR T cells in humans: implications for gene therapy. HUM GENE THER CL DEV 2013; 24:108-15. [PMID: 23790242 DOI: 10.1089/humc.2012.249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most common autosomal recessive lethal disorders affecting white populations of northern European ancestry. To date there is no cure for CF. Life-long treatments for CF are being developed and include gene therapy and the use of small-molecule drugs designed to target specific cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. Irrespective of the type of molecular therapy for CF, which may include gene replacement, exon skipping, nonsense suppression, or molecular correctors, because all of these modulate gene expression there is an inherent risk of activation of T cells against the wild-type version of CFTR. Here we report the validation of the human interferon-γ enzyme-linked immunospot assay and its application for the analysis of CFTR-specific T cell responses in patients with CF and in non-CF subjects. We found non-CF subjects with low levels of self-reactive CFTR-specific T cells in the United States and several patients with CF with low to high levels of self-reactive CFTR-specific T cells in both the United States and the United Kingdom.
Collapse
Affiliation(s)
- Roberto Calcedo
- 1 Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Weinger JG, Marro BS, Hosking MP, Lane TE. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology 2013; 435:110-7. [PMID: 23217621 PMCID: PMC3522860 DOI: 10.1016/j.virol.2012.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry, UC Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
43
|
Ohyama B, Nishifuji K, Chan PT, Kawaguchi A, Yamashita T, Ishii N, Hamada T, Dainichi T, Koga H, Tsuruta D, Amagai M, Hashimoto T. Epitope spreading is rarely found in pemphigus vulgaris by large-scale longitudinal study using desmoglein 2-based swapped molecules. J Invest Dermatol 2012; 132:1158-68. [PMID: 22277941 DOI: 10.1038/jid.2011.448] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epitope spreading is involved in inducing and maintaining self-reactivity. Epitope spreading in pemphigus vulgaris (PV), caused by IgG autoantibodies to desmoglein 3 (Dsg3) and Dsg1, was previously analyzed using Dsg3/Dsg1 extracellular domain-swapped molecules. However, precise identification of the responsible epitopes in each molecule by using only this method was problematic. In this study, we studied epitope spreading in PV by a novel immunoprecipitation-immunoblot method using Dsg3 (or Dsg1)/Dsg2 domain-swapped molecules, which overcomes the problems associated with the previous approaches. We analyzed the antigenic epitopes recognized by 212 sera collected from 53 PV patients at multiple disease stages. The major epitopes were present at the N-terminal region of Dsgs and were unchanged over the course of the disease in both anti-Dsg3 mucosal dominant-type PV and anti-Dsg3/Dsg1 mucocutaneous-type PV. These N-terminal epitopes were calcium dependent. Circulating antibodies in paraneoplastic pemphigus and pemphigus herpetiformis had unique epitope distributions, although the Dsg N-termini still contained the major epitopes. These results suggest that, after onset, intramolecular and intermolecular epitope spreading among extracellular domains on Dsg3 and Dsg1 is rare in PV and has no correlation with disease course.
Collapse
Affiliation(s)
- Bungo Ohyama
- Department of Dermatology, Kurume University School of Medicine and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Multiple sclerosis is believed to be mediated by T cells specific for myelin antigens that circulate harmlessly in the periphery of healthy individuals until they are erroneously activated by an environmental stimulus. Upon activation, the T cells enter the central nervous system and orchestrate an immune response against myelin. To understand the initial steps in the pathogenesis of multiple sclerosis, it is important to identify the mechanisms that maintain T-cell tolerance to myelin antigens and to understand how some myelin-specific T cells escape tolerance and what conditions lead to their activation. Central tolerance strongly shapes the peripheral repertoire of myelin-specific T cells, as most myelin-specific T cells are eliminated by clonal deletion in the thymus. Self-reactive T cells that escape central tolerance are generally capable only of low-avidity interactions with antigen-presenting cells. Despite the low avidity of these interactions, peripheral tolerance mechanisms are required to prevent spontaneous autoimmunity. Multiple peripheral tolerance mechanisms for myelin-specific T cells have been identified, the most important of which appears to be regulatory T cells. While most studies have focused on CD4(+) myelin-specific T cells, interesting differences in tolerance mechanisms and the conditions that abrogate these mechanisms have recently been described for CD8(+) myelin-specific T cells.
Collapse
Affiliation(s)
- Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Scheikl T, Pignolet B, Mars LT, Liblau RS. Transgenic mouse models of multiple sclerosis. Cell Mol Life Sci 2010; 67:4011-34. [PMID: 20714779 PMCID: PMC11115830 DOI: 10.1007/s00018-010-0481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/08/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS) and a frequent cause of neurological disability in young adults. Multifocal inflammatory lesions in the CNS white matter, demyelination, oligodendrocyte loss, axonal damage, as well as astrogliosis represent the histological hallmarks of the disease. These pathological features of MS can be mimicked, at least in part, using animal models. This review discusses the current concepts of the immune effector mechanisms driving CNS demyelination in murine models. It highlights the fundamental contribution of transgenesis in identifying the mediators and mechanisms involved in the pathophysiology of MS models.
Collapse
Affiliation(s)
- Tanja Scheikl
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Toulouse, France.
| | | | | | | |
Collapse
|
46
|
Stoeckle C, Tolosa E. Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010; 51:149-72. [PMID: 19582405 DOI: 10.1007/400_2009_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Collapse
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Otfried-Mueller-Str. 27, 72076, Tuebingen, Germany.
| | | |
Collapse
|
47
|
Hellings N, Raus J, Stinissen P. T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination. Expert Rev Clin Immunol 2010; 2:705-16. [PMID: 20477626 DOI: 10.1586/1744666x.2.5.705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with presumed autoimmune origin. Pathogenic autoimmune responses in MS are thought to be the result of a breakdown of self tolerance. Several mechanisms account for the natural state of immunological tolerance to self antigens, including clonal deletion of self-reactive T cells in the thymus. However, autoimmune T cells are also part of the normal T-cell repertoire, supporting the existence of peripheral regulatory mechanisms that keep these potentially pathogenic T cells under control. One such mechanism involves active suppression by regulatory T cells. It has been indicated that regulatory T cells do not function properly in autoimmune disease. Immunization with attenuated autoreactive T cells, T-cell vaccination, may enhance or restore the regulatory immune networks to specifically suppress autoreactive T cells, as shown in experimental autoimmune encephalomyelitis, an animal model for MS. In the past decade, T-cell vaccination has been tested for MS in several clinical trials. This review summarizes these clinical trials and updates our current knowledge on the induction of regulatory immune networks by T cell vaccination.
Collapse
Affiliation(s)
- Niels Hellings
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium.
| | | | | |
Collapse
|
48
|
Getts MT, Miller SD. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: triggering of autoimmune diseases by infections. Clin Exp Immunol 2010; 160:15-21. [PMID: 20415846 PMCID: PMC2841830 DOI: 10.1111/j.1365-2249.2010.04132.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2010] [Indexed: 12/31/2022] Open
Abstract
Human autoimmune diseases, such as multiple sclerosis, type 1 diabetes, rheumatoid arthritis and systemic lupus erythematosus (SLE), are linked genetically to distinct major histocompatibility complex (MHC) class II molecules and other immune modulators. However, genetic predisposition is only one risk factor for the development of these diseases, and low concordance rates in monozygotic twins as well as geographical distribution of disease risk suggest a critical role for environmental factors in the triggering of these autoimmune diseases. Among potential environmental factors, infections have been implicated in the onset and/or promotion of autoimmunity. This review will discuss human autoimmune diseases with a potential viral cause, and outline potential mechanisms by which pathogens can trigger autoimmune disease as discerned from various animal models of infection-induced autoimmune disease.
Collapse
Affiliation(s)
- M T Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
49
|
Influence of neurosteroids on the pathogenesis of multiple sclerosis. Med Hypotheses 2010; 75:229-34. [PMID: 20227191 DOI: 10.1016/j.mehy.2010.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
This paper summarizes neuroendocrine effects on myelination and their possible relevance for the pathogenesis of multiple sclerosis (MS). Steroid hormones known as neurosteroids are synthesized in the human central nervous system (CNS) and exert local effects on glial and neuronal tissue. Progesterone derivatives seem to act as promyelinating factors in the slow but continuous process of myelin maintenance in the adult human brain. Diminished production of these myelin-promoting factors may lead to the formation of structurally altered and less stable myelin, resulting in the observed pathology of the normal-appearing white matter (NAWM) in MS. Dysmyelination, characterized by an altered myelin protein composition, reduced myelin content and increased vulnerability of the myelin sheath, precedes the formation of inflammatory lesions and the clinical onset of disease. Defects in the myelin sheath first occur in mechanically strained areas of the brain, where myelin turnover is physiologically increased. The continuous exposure of myelin proteins, normally sheltered from immunosurveillance, will lead to microglia activation and phagocytosis of myelin. Phagocytic cells from the brain and myelin material may drain to cervical lymph nodes with subsequent priming of T-cells. Finally, heterogenous focal auto-inflammatory reactions contribute to the clinical symptoms of the disease. Neurosteroids influence the biochemical composition of myelin proteins and promote myelin renewal. These promyelinating neurosteroidal functions seem to be impaired in the MS brain. Contrary to the view of auto-inflammatory demyelination being a causative factor in MS pathogenesis, it is argued here that widespread dysmyelination in the adult human brain precedes and induces a focal immune response to various myelin compounds.
Collapse
|
50
|
Abstract
Mouse hepatitis virus (MHV) is a positive-strand RNA virus that causes an acute encephalomyelitis that later resolves into a chronic fulminating demyelinating disease. Cytokine production, chemokine secretion, and immune cell infiltration into the central nervous system are critical to control viral replication during acute infection. Despite potent antiviral T-lymphocyte activity, sterile immunity is not achieved, and MHV chronically persists within oligodendrocytes. Continued infiltration and activation of the immune system, a result of the lingering viral antigen and RNA within oligodendrocytes, lead directly to the development of an immune-mediated demyelination that bears remarkable similarities, both clinically and histologically, to the human demyelinating disease multiple sclerosis. MHV offers a unique model system for studying host defense during acute viral infection and immune-mediated demyelination during chronic infection.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900 USA
| | - Thomas E. Lane
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900 USA
- Institute for Immunology, University of California, Irvine, CA 92697-3900 USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-3900 USA
| |
Collapse
|