1
|
Li L, Fei X, Wang H, Chen S, Xu X, Ke H, Zhou Y, Hu Y, He C, Xie C, Lu N, Liu J, Zhu Y, Li N. Genome-wide DNA methylation profiling reveals a novel hypermethylated biomarker PRKCB in gastric cancer. Sci Rep 2024; 14:26605. [PMID: 39496833 PMCID: PMC11535215 DOI: 10.1038/s41598-024-78135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Globally, gastric cancer (GC) ranks among the most prevalent forms of malignancy, posing a significant health burden. Epigenetic modifications, predominantly characterized by alterations in DNA methylation patterns, have been linked to a diverse array of neoplastic processes. Here, we undertake a comprehensive analysis of the DNA methylation signature in GC, with the aim to discover the potential diagnostic epigenetic biomarkers. Utilizing the Illumina 935 K BeadChip, we conducted a genome-wide exploration of DNA methylation patterns in four paired samples of GC tissues and adjacent non-cancerous counterparts. The bisulfite-pyrosequencing (n = 7) was employed to the quantification for methylated gene. The pubic databases including GWAS Catalog, TCGA and GEO were used. The immunohistochemistry and qRT-PCR analysis were performed. In contrast to adjacent tissues, GC tissues manifested pronounced hypermethylation patterns specifically within the promoter cytosine-phosphate-guanine (CpG) islands, indicating localized epigenetic alterations. DNA methylome analysis further revealed 4432 differentially-methylated probes (DMPs), with the gene PRKCB exhibited the most prominent average DNA methylation disparity (mean Δβ = 0.353). Pyrosequencing validation confirmed three DMPs within the PRKCB promoter (cg08406370, cg00735962, and cg18526361). Notably, the mean methylation levels of PRKCB were inversely correlated with mRNA expression levels in the GWAS Catalog. Furthermore, both mRNA and protein expression levels of PRKCB were significantly reduced in GCs when compared to their adjacent non-cancerous counterparts, verified by TCGA and GEO database. Our study reveals significant DNA methylation alterations in GC and emphasizes the pivotal role of PRKCB gene hypermethylation in conferring GC risk, which offers fresh perspectives for advancing diagnostic approaches and therapeutic strategies for GC.
Collapse
Affiliation(s)
- Leyan Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Chen CP, Huang JP, Wu FT, Wu PS, Pan YT, Wang W. Detection of chromosome 5q interstitial deletion of 5q14.3-q31.1 by chromosome microarray analysis in a second-trimester fetus with multiple congenital anomalies and a literature review of chromosome 5q interstitial deletion syndrome. Taiwan J Obstet Gynecol 2024; 63:918-921. [PMID: 39482004 DOI: 10.1016/j.tjog.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE We present application of chromosome microarray analysis (CMA) in the detection of chromosome 5q interstitial deletion of 5q14.3-q31.1 in a second-trimester fetus with multiple congenital anomalies on fetal ultrasound. CASE REPORT A 30-year-old, gravida 2, para 1, woman was found to have multiple anomalies in the fetus at 14 weeks of gestation by prenatal ultrasound screening. The fetal anomalies included echogenic bowel, a left neck cyst, hypoplastic left heart, single umbilical artery and bilateral clubfeet. The pregnancy was subsequently terminated, and a 64-g malformed fetus was delivered. CMA by array comparative genomic hybridization (aCGH) analysis on the DNA extracted from umbilical cord revealed the result of arr 5q14.3q31.1 (83,557,042-130,841,093) × 1.0 [GRCh37] with a 47.3-Mb 5q14.3-q31.1 deletion encompassing 95 OMIM genes including NR2F1, MEF2C, APC, KCNN2 and FBN2. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from parental bloods and umbilical cord using the informative markers of D5S2496 (5q21.3) and D5S818 (5q23.2) showed that the fetus inherited only one maternal allele, indicating a paternal origin of the interstitial 5q deletion in the fetus. CONCLUSION CMA is useful for genetic investigation of unknown congenital anomalies detected by fetal ultrasound.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical & Health Science, Asia University, Taichung, Taiwan.
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Yasmin T, Sadia A, Nadeem L, Basra MAR, Rice ML, Raza MH. Whole Genome Analysis in Consanguineous Families Reveals New Loci for Speech Sound Disorder (SSD). Genes (Basel) 2024; 15:1069. [PMID: 39202429 PMCID: PMC11354014 DOI: 10.3390/genes15081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Speech is the most common means of communication in humans. Any defect in accurate speech production ability results in the development of speech sound disorder (SSD), a condition that can significantly impair an individual's academic performance, social interactions, and relationships with peers and adults. This study investigated the genetic basis of SSD in three Pakistani families. We performed family-based genome-wide parametric linkage analysis and homozygosity mapping in three consanguineous families with SSD from the Punjab province of Pakistan. The Test for Assessment of Articulation and Phonology in Urdu (TAAPU) was used to analyze the speech articulation data and determine the Percentage Correct Consonants (PCC) score. The PCC score defined the affected and unaffected individuals in each family. Parametric linkage analysis revealed a linkage to chromosome 5 (5q21.3-5q23.1) with a significant logarithm of the odds (LOD) score of 3.13 in a Pakistani family with specific language impairment-97 (PKSLI-97) under an autosomal recessive mode of inheritance. The other two families showed a suggestive linkage at 6p22.1, 14q12, and 16q12.1 under the recessive mode of inheritance. Interestingly, homozygosity mapping showed a loss of heterozygosity in the linkage region at 5q15-5q23.1, shared among seven affected (mostly in the younger generation) and one unaffected individual of PKSLI-97. Our analysis identified the 6p22 locus previously implicated in dyslexia, childhood apraxia of speech (CAS), and language impairment, confirming the role of KIAA0319 and DCDC2 in this locus. These findings provide statistical evidence for the genomic regions associated with articulation disorder and offer future opportunities to further the role of genes in speech production.
Collapse
Affiliation(s)
- Tahira Yasmin
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (T.Y.); (A.S.); (L.N.); (M.A.R.B.)
| | - Aatika Sadia
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (T.Y.); (A.S.); (L.N.); (M.A.R.B.)
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping Campus, 60221 Norrköping, Sweden
| | - Laraib Nadeem
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (T.Y.); (A.S.); (L.N.); (M.A.R.B.)
| | - Muhammad Asim Raza Basra
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan; (T.Y.); (A.S.); (L.N.); (M.A.R.B.)
| | - Mabel L. Rice
- Speech-Language-Hearing Sciences & Disorders, University of Kansas, Lawrence, KS 66045, USA;
| | - Muhammad Hashim Raza
- Speech-Language-Hearing Sciences & Disorders, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
4
|
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, Wagner M. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat Genet 2024; 56:1644-1653. [PMID: 39039281 PMCID: PMC11319204 DOI: 10.1038/s41588-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Magdalena Danyel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Grundmann
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institut für Medizinische Biometrie, Informatik und Epidemiologie, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Shahida Moosa
- Institute for Medical Genetics, Stellenbosch University, Cape Town, South Africa
| | - Luisa Averdunk
- Department of Pediatrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Lisa Sczakiel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina Schwartzmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Manuel Holtgrewe
- Core Uni Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annemarie Bösch
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Weiß
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Weinhold
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aude-Annick Suter
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tillmann Kallinich
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Holzhauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schülke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Corinna Grasemann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Tobias Rothoeft
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Nora Matar
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martina Kreiss
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Lorenz Grigull
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tim Bender
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Christiane Stieber
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexandra Marzena Morawiec
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Valentin S Schäfer
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Patrick Weydt
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ahmad Aziz
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Marcus Grobe-Einsler
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Demet Önder
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pawel Tacik
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Meghna Ahuja Basin
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pietro Incardona
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Min Ae Lee-Kirsch
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Reinhard Berner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia Körholz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tanita Kretschmer
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nataliya Di Donato
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - André Heinen
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrike Reuner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Amalia-Mihaela Hanßke
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Eva Manka
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Martin Munteanu
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Kiewert Cordula
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Raphael Hirtz
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Elena Schlapakow
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina Weiler-Normann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Rillig
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Groffmann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ania Muntau
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Michal Zawada
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Pamela M Okun
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annekatrin Ripke
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martje Pauly
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Neurogenetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Rebecca Herzog
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Yorck Hellenbroich
- Department of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Tim Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Reka Kovacs
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | | | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | - Ulrich Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Christine Makowski
- Department of Paediatrics, Adolescent Medicine and Neonatology, München, Germany
| | - Heike Weigand
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Sebastian Schröder
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Katharina Vill
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | | | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Kehrer
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holm Graessner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lena Zeltner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ludger J Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
| | - Janine Magg
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Kehrer
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Nadja Kaiser
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Heiko Krude
- Berlin Centre for Rare Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany.
| | - Tobias Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| |
Collapse
|
5
|
Liu J, Supekar K, El-Said D, de los Angeles C, Zhang Y, Chang H, Menon V. Neuroanatomical, transcriptomic, and molecular correlates of math ability and their prognostic value for predicting learning outcomes. SCIENCE ADVANCES 2024; 10:eadk7220. [PMID: 38820151 PMCID: PMC11141625 DOI: 10.1126/sciadv.adk7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Foundational mathematical abilities, acquired in early childhood, are essential for success in our technology-driven society. Yet, the neurobiological mechanisms underlying individual differences in children's mathematical abilities and learning outcomes remain largely unexplored. Leveraging one of the largest multicohort datasets from children at a pivotal stage of knowledge acquisition, we first establish a replicable mathematical ability-related imaging phenotype (MAIP). We then show that brain gene expression profiles enriched for candidate math ability-related genes, neuronal signaling, synaptic transmission, and voltage-gated potassium channel activity contributed to the MAIP. Furthermore, the similarity between MAIP gene expression signatures and brain structure, acquired before intervention, predicted learning outcomes in two independent math tutoring cohorts. These findings advance our knowledge of the interplay between neuroanatomical, transcriptomic, and molecular mechanisms underlying mathematical ability and reveal predictive biomarkers of learning. Our findings have implications for the development of personalized education and interventions.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawlat El-Said
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlo de los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Nomura T, Taniguchi S, Wang YZ, Yeh NH, Wilen AP, Castillon CCM, Foote KM, Xu J, Armstrong JN, Savas JN, Swanson GT, Contractor A. A Pathogenic Missense Mutation in Kainate Receptors Elevates Dendritic Excitability and Synaptic Integration through Dysregulation of SK Channels. J Neurosci 2023; 43:7913-7928. [PMID: 37802657 PMCID: PMC10669804 DOI: 10.1523/jneurosci.1259-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023] Open
Abstract
Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sakiko Taniguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nai-Hsing Yeh
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Charlotte C M Castillon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John N Armstrong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
Shoob S, Buchbinder N, Shinikamin O, Gold O, Baeloha H, Langberg T, Zarhin D, Shapira I, Braun G, Habib N, Slutsky I. Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer's disease mouse model. Nat Commun 2023; 14:7002. [PMID: 37919286 PMCID: PMC10622498 DOI: 10.1038/s41467-023-42721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.
Collapse
Affiliation(s)
- Shiri Shoob
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Or Gold
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tomer Langberg
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Zarhin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
8
|
Rahman MA, Orfali R, Dave N, Lam E, Naguib N, Nam YW, Zhang M. K Ca 2.2 (KCNN2): A physiologically and therapeutically important potassium channel. J Neurosci Res 2023; 101:1699-1710. [PMID: 37466411 PMCID: PMC10932612 DOI: 10.1002/jnr.25233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
One group of the K+ ion channels, the small-conductance Ca2+ -activated potassium channels (KCa 2.x, also known as SK channels family), is widely expressed in neurons as well as the heart, endothelial cells, etc. They are named small-conductance Ca2+ -activated potassium channels (SK channels) due to their comparatively low single-channel conductance of about ~10 pS. These channels are insensitive to changes in membrane potential and are activated solely by rises in the intracellular Ca2+ . According to the phylogenic research done on the KCa 2.x channels family, there are three channels' subtypes: KCa 2.1, KCa 2.2, and KCa 2.3, which are encoded by KCNN1, KCNN2, and KCNN3 genes, respectively. The KCa 2.x channels regulate neuronal excitability and responsiveness to synaptic input patterns. KCa 2.x channels inhibit excitatory postsynaptic potentials (EPSPs) in neuronal dendrites and contribute to the medium afterhyperpolarization (mAHP) that follows the action potential bursts. Multiple brain regions, including the hippocampus, express the KCa 2.2 channel encoded by the KCNN2 gene on chromosome 5. Of particular interest, rat cerebellar Purkinje cells express KCa 2.2 channels, which are crucial for various cellular processes during development and maturation. Patients with a loss-of-function of KCNN2 mutations typically exhibit extrapyramidal symptoms, cerebellar ataxia, motor and language developmental delays, and intellectual disabilities. Studies have revealed that autosomal dominant neurodevelopmental movement disorders resembling rodent symptoms are caused by heterozygous loss-of-function mutations, which are most likely to induce KCNN2 haploinsufficiency. The KCa 2.2 channel is a promising drug target for spinocerebellar ataxias (SCAs). SCAs exhibit the dysregulation of firing in cerebellar Purkinje cells which is one of the first signs of pathology. Thus, selective KCa 2.2 modulators are promising potential therapeutics for SCAs.
Collapse
Affiliation(s)
- Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Nikita Dave
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Elyn Lam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Nadeen Naguib
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| |
Collapse
|
9
|
Zhong H, Ran X, Chen B, Xiong Y, Yu X. Apamin, an SK2 Inhibitor, Attenuated Neonatal Sevoflurane Exposures Caused Cognitive Deficits in Mice through the Regulation of Hippocampal Neuroinflammation. ACS Chem Neurosci 2023; 14:3409-3417. [PMID: 37647501 DOI: 10.1021/acschemneuro.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cognitive dysfunction induced by anesthesia in the infant is a crucial clinical issue that is still being debated and the focus of concern for the parents. However, the mechanism of cognitive decline caused by anesthesia and the corresponding treatment methods remain unclear. Postnatal day 7 (PND7) C57BL/6 mice included in the study were randomly divided into a control group (Control), a group with repeated exposure to sevoflurane (Sevo), and an Apamin intervention group (Sevo + Apamin). Apamin (0.5 μL at the concentration of 100 nmol/L) was injected into the bilateral hippocampus of mice. qRT-PCR, enzyme-linked immunosorbent assay (ELISA), and western blotting assay were used to evaluate the protein levels in the hippocampus. Object location memory (OLM) and novel object recognition (NOR) tasks, as well as elevated plus maze and contextual and cued fear conditioning tasks were used to evaluate the cognitive function of mice. Apamin mitigated sevoflurane-induced cognitive impairment of mice, sevoflurane-induced neuronal injury, and sevoflurane-induced activation of microglial in the hippocampus of the mice. Apamin inhibited M1-type polarization but promoted M2-type polarization of microglia after neonatal sevoflurane exposures in the hippocampus. In conclusion, Apamin attenuates neonatal sevoflurane exposures that cause cognitive deficits in mice through regulating hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Heying Zhong
- Department of Anesthesiology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510000, Guangdong, China
| | - Xiaojuan Ran
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou, China
| | - Bin Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yiqiang Xiong
- Department of Anesthesiology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83 Zhongshan Road, Nanming District, Guiyang 550003, Guizhou, China
| |
Collapse
|
10
|
Privitera F, Piccini F, Recalcati MP, Presi S, Mazzola S, Carrera P. APC-Related Phenotypes and Intellectual Disability in 5q Interstitial Deletions: A New Case and Review of the Literature. Genes (Basel) 2023; 14:1505. [PMID: 37510409 PMCID: PMC10379344 DOI: 10.3390/genes14071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The 5q deletion syndrome is a relatively rare condition caused by the monoallelic interstitial deletion of the long arm of chromosome 5. Patients described in literature usually present variable dysmorphic features, behavioral disturbance, and intellectual disability (ID); moreover, the involvement of the APC gene (5q22.2) in the deletion predisposes them to tumoral syndromes (Familial Adenomatous Polyposis and Gardner syndrome). Although the development of gastrointestinal tract malignancies has been extensively described, the genetic causes underlying neurologic manifestations have never been investigated. In this study, we described a new patient with a 19.85 Mb interstitial deletion identified by array-CGH and compared the deletions and the phenotypes reported in other patients already described in the literature and the Decipher database. Overlapping deletions allowed us to highlight a common region in 5q22.1q23.1, identifying KCNN2 (5q22.3) as the most likely candidate gene contributing to the neurologic phenotype.
Collapse
Affiliation(s)
- Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Piccini
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Presi
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Mazzola
- Medical Genetics, ASST del Garda, Desenzano, 25015 Brescia, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
11
|
d’Apolito M, Ceccarini C, Savino R, Adipietro I, di Bari I, Santacroce R, Curcetti M, D’Andrea G, Croce AI, Cesarano C, Polito AN, Margaglione M. A Novel KCNN2 Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:1380. [PMID: 37510285 PMCID: PMC10379157 DOI: 10.3390/genes14071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. AIM OF THE STUDY to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. METHODS Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. RESULTS The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (KCNN2) (NM_021614.3: c.1145G>A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The KCNN2 gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Savino
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna Nunzia Polito
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| |
Collapse
|
12
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Guo LK, Su Y, Zhang YYN, Yu H, Lu Z, Li WQ, Yang YF, Xiao X, Yan H, Lu TL, Li J, Liao YD, Kang ZW, Wang LF, Li Y, Li M, Liu B, Huang HL, Lv LX, Yao Y, Tan YL, Breen G, Everall I, Wang HX, Huang Z, Zhang D, Yue WH. Prediction of treatment response to antipsychotic drugs for precision medicine approach to schizophrenia: randomized trials and multiomics analysis. Mil Med Res 2023; 10:24. [PMID: 37269009 DOI: 10.1186/s40779-023-00459-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Choosing the appropriate antipsychotic drug (APD) treatment for patients with schizophrenia (SCZ) can be challenging, as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers. Previous studies have indicated the association between treatment response and genetic and epigenetic factors, but no effective biomarkers have been identified. Hence, further research is imperative to enhance precision medicine in SCZ treatment. METHODS Participants with SCZ were recruited from two randomized trials. The discovery cohort was recruited from the CAPOC trial (n = 2307) involved 6 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, Quetiapine, Aripiprazole, Ziprasidone, and Haloperidol/Perphenazine (subsequently equally assigned to one or the other) groups. The external validation cohort was recruited from the CAPEC trial (n = 1379), which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, and Aripiprazole groups. Additionally, healthy controls (n = 275) from the local community were utilized as a genetic/epigenetic reference. The genetic and epigenetic (DNA methylation) risks of SCZ were assessed using the polygenic risk score (PRS) and polymethylation score, respectively. The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis, methylation quantitative trait loci, colocalization, and promoter-anchored chromatin interaction. Machine learning was used to develop a prediction model for treatment response, which was evaluated for accuracy and clinical benefit using the area under curve (AUC) for classification, R2 for regression, and decision curve analysis. RESULTS Six risk genes for SCZ (LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, and RUFY1) involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response. The developed and externally validated prediction model, which incorporated clinical information, PRS, genetic risk score (GRS), and proxy methylation level (proxyDNAm), demonstrated positive benefits for a wide range of patients receiving different APDs, regardless of sex [discovery cohort: AUC = 0.874 (95% CI 0.867-0.881), R2 = 0.478; external validation cohort: AUC = 0.851 (95% CI 0.841-0.861), R2 = 0.507]. CONCLUSIONS This study presents a promising precision medicine approach to evaluate treatment response, which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ. Trial registration Chinese Clinical Trial Registry ( https://www.chictr.org.cn/ ), 18. Aug 2009 retrospectively registered: CAPOC-ChiCTR-RNC-09000521 ( https://www.chictr.org.cn/showproj.aspx?proj=9014 ), CAPEC-ChiCTR-RNC-09000522 ( https://www.chictr.org.cn/showproj.aspx?proj=9013 ).
Collapse
Affiliation(s)
- Liang-Kun Guo
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yi Su
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, China
| | - Yu-Ya-Nan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhe Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Wen-Qiang Li
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Yong-Feng Yang
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Tian-Lan Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Jun Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yun-Dan Liao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Zhe-Wei Kang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Li-Fang Wang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yue Li
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hai-Liang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Lu-Xian Lv
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 435001, Henan, China
| | - Yin Yao
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yun-Long Tan
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, China
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Ian Everall
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory for Neuroscience for Ministry of Education, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Wei-Hua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health and Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
14
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
15
|
Nam YW, Rahman MA, Yang G, Orfali R, Cui M, Zhang M. Loss-of-function K Ca2.2 mutations abolish channel activity. Am J Physiol Cell Physiol 2023; 324:C658-C664. [PMID: 36717104 PMCID: PMC10069973 DOI: 10.1152/ajpcell.00584.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Small-conductance Ca2+-activated potassium channels subtype 2 (KCa2.2, also called SK2) are operated exclusively by a Ca2+-calmodulin gating mechanism. Heterozygous genetic mutations of KCa2.2 channels have been associated with autosomal dominant neurodevelopmental disorders including cerebellar ataxia and tremor in humans and rodents. Taking advantage of these pathogenic mutations, we performed structure-function studies of the rat KCa2.2 channel. No measurable current was detected from HEK293 cells heterologously expressing these pathogenic KCa2.2 mutants. When coexpressed with the KCa2.2_WT channel, mutations of the pore-lining amino acid residues (I360M, Y362C, G363S, and I389V) and two proline substitutions (L174P and L433P) dominant negatively suppressed and completely abolished the activity of the coexpressed KCa2.2_WT channel. Coexpression of the KCa2.2_I289N and the KCa2.2_WT channels reduced the apparent Ca2+ sensitivity compared with the KCa2.2_WT channel, which was rescued by a KCa2.2 positive modulator.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| |
Collapse
|
16
|
Molecular and Physiological Functions of PACAP in Sweat Secretion. Int J Mol Sci 2023; 24:ijms24054572. [PMID: 36902003 PMCID: PMC10002779 DOI: 10.3390/ijms24054572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.
Collapse
|
17
|
Nam YW, Downey M, Rahman MA, Cui M, Zhang M. Channelopathy of small- and intermediate-conductance Ca 2+-activated K + channels. Acta Pharmacol Sin 2023; 44:259-267. [PMID: 35715699 PMCID: PMC9889811 DOI: 10.1038/s41401-022-00935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Myles Downey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA, 02115, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
18
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
19
|
Chen X, Duan X, Chong Q, Li C, Xiao H, Chen S. Genome-Wide DNA Methylation Differences between Bos indicus and Bos taurus. Animals (Basel) 2023; 13:203. [PMID: 36670743 PMCID: PMC9854497 DOI: 10.3390/ani13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Disease risk is a persistent problem in domestic cattle farming, while economic traits are the main concern. This study aimed to reveal the epigenetic basis for differences between zebu (Bos indicus) and taurine cattle (Bos taurus) in disease, disease resistance, and economic traits, and provide a theoretical basis for the genetic improvement of domestic cattle. In this study, whole genome bisulfite sequencing (WGBS) was used to analyze the whole-genome methylation of spleen and liver samples from Yunnan zebu and Holstein cattle. In the genome-wide methylation pattern analysis, it was found that the methylation pattern of all samples was dominated by the CG type, which accounted for >94.9%. The DNA methylation levels of different functional regions and transcriptional elements in the CG background varied widely. However, the methylation levels of different samples in the same functional regions or transcriptional elements did not differ significantly. In addition, we identified a large number of differentially methylation region (DMR) in both the spleen and liver groups, of which 4713 and 4663 were annotated to functional elements, and most of them were annotated to the intronic and exonic regions of genes. GO and KEGG functional analysis of the same differentially methylation region (DMG) in the spleen and liver groups revealed that significantly enriched pathways were involved in neurological, disease, and growth functions. As a result of the results of DMR localization, we screened six genes (DNM3, INPP4B, PLD, PCYT1B, KCNN2, and SLIT3) that were tissue-specific candidates for economic traits, disease, and disease resistance in Yunnan zebu. In this study, DNA methylation was used to construct links between genotypes and phenotypes in domestic cattle, providing useful information for further screening of epigenetic molecular markers in zebu and taurine cattle.
Collapse
Affiliation(s)
- Xiaona Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Xinyu Duan
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Qingqing Chong
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
20
|
Fearon C, Grippe TC, Chen R, Lang AE. Early-Onset Neurodevelopmental Movement Disorder Secondary to Novel Mutation in KCNN2. Mov Disord Clin Pract 2022; 9:S9-S12. [PMID: 36118511 PMCID: PMC9464988 DOI: 10.1002/mdc3.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Talyta Cortez Grippe
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
21
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
22
|
Matschke LA, Komadowski MA, Stöhr A, Lee B, Henrich MT, Griesbach M, Rinné S, Geibl FF, Chiu WH, Koprich JB, Brotchie JM, Kiper AK, Dolga AM, Oertel WH, Decher N. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Sci Rep 2022; 12:3180. [PMID: 35210472 PMCID: PMC8873463 DOI: 10.1038/s41598-022-06832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.
Collapse
Affiliation(s)
- Lina A Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany.,Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Marlene A Komadowski
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Annette Stöhr
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Bolam Lee
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Markus Griesbach
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Fanni F Geibl
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Wei-Hua Chiu
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| | - James B Koprich
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 8KD402, Toronto, ON, M5T 2S8, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 8KD402, Toronto, ON, M5T 2S8, Canada
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Wolfgang H Oertel
- Clinic for Neurology, Philipps-University Marburg, 35043, Marburg, Germany.,Hertie Senior Research Professor of the Charitable Hertie Foundation, 60323, Frankfurt am Main, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
23
|
Nam YW, Cui M, Salem El-Sayed N, Orfali R, Nguyen M, Yang G, Rahman MA, Lee J, Zhang M. Subtype-selective positive modulation of K Ca 2 channels depends on the HA/HB helices. Br J Pharmacol 2022; 179:460-472. [PMID: 34458981 PMCID: PMC8799485 DOI: 10.1111/bph.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE In the activated state of small-conductance Ca2+ -activated potassium (KCa 2) channels, calmodulin interacts with the HA/HB helices and the S4-S5 linker. CyPPA potentiates KCa 2.2a and KCa 2.3 channel activity but not the KCa 2.1 and KCa 3.1 subtypes. EXPERIMENTAL APPROACH Site-directed mutagenesis, patch-clamp recordings and in silico modelling were utilised to explore the structural determinants for the subtype-selective modulation of KCa 2 channels by CyPPA. KEY RESULTS Mutating residues in the HA (V420) and HB (K467) helices of KCa 2.2a channels to their equivalent residues in KCa 3.1 channels diminished the potency of CyPPA. CyPPA elicited prominent responses on mutant KCa 3.1 channels with an arginine residue in the HB helix substituted for its equivalent lysine residue in the KCa 2.2a channels (R355K). KCa 2.1 channels harbouring a three-amino-acid insertion upstream of the cognate R438 residues in the HB helix showed no response to CyPPA, whereas the deletion mutant (KCa 2.1_ΔA434/Q435/K436) became sensitive to CyPPA. In molecular dynamics simulations, CyPPA docked between calmodulin C-lobe and the HA/HB helices widens the cytoplasmic gate of KCa 2.2a channels. CONCLUSION AND IMPLICATIONS Selectivity of CyPPA among KCa 2 and KCa 3.1 channel subtypes relies on the HA/HB helices.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, 02115, USA
| | - Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Misa Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Judy Lee
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| |
Collapse
|
24
|
KCNN2 Mutation in Pediatric Tremor Myoclonus Dystonia Syndrome with Electrophysiological Evaluation. Tremor Other Hyperkinet Mov (N Y) 2022; 12:2. [PMID: 35106185 PMCID: PMC8796689 DOI: 10.5334/tohm.668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Here we combine clinical, electrophysiological, and genetic findings to phenotype an unusual childhood movement disorder in a patient with a rare form of KCNN2 mutation. Case Report: A 10-year-old male presented with a clinical syndrome of tremor and myoclonus. Electrophysiology demonstrated muscle activity indicative of myoclonus dystonia, an observation that was not appreciated clinically. Genetic testing revealed an abnormality in the KCNN 2 gene, not present in the parents, known to cause dystonia, as the etiology. Discussion: The value of utilizing noninvasive, electrophysiological recording in pediatric movement disorders expands the precision of diagnosis, potentially informing treatment when correlated with clinical and genetic findings.
Collapse
|
25
|
El-Sayed NS, Nam YW, Egorova PA, Nguyen HM, Orfali R, Rahman MA, Yang G, Wulff H, Bezprozvanny I, Parang K, Zhang M. Structure-Activity Relationship Study of Subtype-Selective Positive Modulators of K Ca2 Channels. J Med Chem 2022; 65:303-322. [PMID: 34962403 PMCID: PMC8758555 DOI: 10.1021/acs.jmedchem.1c01473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Ulitsa, 29, St. Petersburg, 195251, Russia
| | - Hai Minh Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Ulitsa, 29, St. Petersburg, 195251, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA 92618, USA
| |
Collapse
|