1
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Orlando IF, Hezemans FH, Ye R, Murley AG, Holland N, Regenthal R, Barker RA, Williams-Gray CH, Passamonti L, Robbins TW, Rowe JB, O’Callaghan C. Noradrenergic modulation of saccades in Parkinson's disease. Brain Commun 2024; 6:fcae297. [PMID: 39464213 PMCID: PMC11503952 DOI: 10.1093/braincomms/fcae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024] Open
Abstract
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40 mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of CambridgeCB2 3EA, CambridgeUK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
3
|
Carli S, Brugnano L, Caligiore D. Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system. Front Comput Neurosci 2024; 18:1386841. [PMID: 39247252 PMCID: PMC11378529 DOI: 10.3389/fncom.2024.1386841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the variations in therapy effects. Methods We present a system-level bio-constrained computational model that comprehensively investigates the dynamic interactions between these neurotransmitter systems. The model was designed to replicate experimental data demonstrating the impact of NA and 5-HT depletion in a PD animal model, providing insights into the causal relationships between basal ganglia regions and neuromodulator release areas. Results The model successfully replicates experimental data and generates predictions regarding changes in unexplored brain regions, suggesting avenues for further investigation. It highlights the potential efficacy of alternative treatments targeting the locus coeruleus and dorsal raphe nucleus, though these preliminary findings require further validation. Sensitivity analysis identifies critical model parameters, offering insights into key factors influencing brain area activity. A stability analysis underscores the robustness of our mathematical formulation, bolstering the model validity. Discussion Our holistic approach emphasizes that PD is a multifactorial disorder and opens promising avenues for early diagnostic tools that harness the intricate interactions among monoaminergic systems. Investigating NA and 5-HT systems alongside the DA system may yield more effective, subtype-specific therapies. The exploration of multisystem dysregulation in PD is poised to revolutionize our understanding and management of this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- Entersys s.r.l., Padua, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Luigi Brugnano
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
4
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
5
|
Miranda-Barrientos J, Adiraju S, Rehg JJ, Hallock HL, Li Y, Carr GV, Martinowich K. Patterns of neural activity in prelimbic cortex neurons correlate with attentional behavior in the rodent continuous performance test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605300. [PMID: 39091763 PMCID: PMC11291163 DOI: 10.1101/2024.07.26.605300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sustained attention, the ability to focus on a stimulus or task over extended periods, is crucial for higher level cognition, and is impaired in individuals diagnosed with neuropsychiatric and neurodevelopmental disorders, including attention-deficit/hyperactivity disorder, schizophrenia, and depression. Translational tasks like the rodent continuous performance test (rCPT) can be used to study the cellular mechanisms underlying sustained attention. Accumulating evidence points to a role for the prelimbic cortex (PrL) in sustained attention, as electrophysiological single unit and local field (LFPs) recordings reflect changes in neural activity in the PrL in mice performing sustained attention tasks. While the evidence correlating PrL electrical activity with sustained attention is compelling, limitations inherent to electrophysiological recording techniques, including low sampling in single unit recordings and source ambivalence for LFPs, impede the ability to fully resolve the cellular mechanisms in the PrL that contribute to sustained attention. In vivo endoscopic calcium imaging using genetically encoded calcium sensors in behaving animals can address these questions by simultaneously recording up to hundreds of neurons at single cell resolution. Here, we used in vivo endoscopic calcium imaging to record patterns of neuronal activity in PrL neurons using the genetically encoded calcium sensor GCaMP6f in mice performing the rCPT at three timepoints requiring differing levels of cognitive demand and task proficiency. A higher proportion of PrL neurons were recruited during correct responses in sessions requiring high cognitive demand and task proficiency, and mice intercalated non-responsive-disengaged periods with responsive-engaged periods that resemble attention lapses. During disengaged periods, the correlation of calcium activity between PrL neurons was higher compared to engaged periods, suggesting a neuronal network state change during attention lapses in the PrL. Overall, these findings illustrate that cognitive demand, task proficiency, and task engagement differentially recruit activity in a subset of PrL neurons during sustained attention.
Collapse
Affiliation(s)
| | - Suhaas Adiraju
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jason J. Rehg
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | | | - Ye Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Gregory V. Carr
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
7
|
Yan Y, Zhang M, Ren W, Zheng X, Chang Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease. Eur J Neurosci 2024; 59:2616-2627. [PMID: 38441250 DOI: 10.1111/ejn.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.
Collapse
Affiliation(s)
- Yayun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wenhua Ren
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoqi Zheng
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Zhu S, Liu Q, Zhang X, Zhou M, Zhou X, Ding F, Zhang R, Becker B, Kendrick KM, Zhao W. Transcutaneous auricular vagus nerve stimulation enhanced emotional inhibitory control via increasing intrinsic prefrontal couplings. Int J Clin Health Psychol 2024; 24:100462. [PMID: 38665809 PMCID: PMC11044052 DOI: 10.1016/j.ijchp.2024.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background Inhibitory control represents a core executive function that critically facilitates adaptive behavior and survival in an ever-changing environment. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been hypothesized to improve behavioral inhibition performance, however the neurocomputational mechanism of taVNS-induced neuroenhancement remains elusive. Method In the current study, we investigated the efficacy of taVNS in a sham-controlled between-subject functional near infrared spectroscopy (fNIRS) experiment with an emotional face Go/No-Go paradigm in ninety healthy young adults. Results After a data quality check, eighty-two subjects were included in the final data analysis. Behaviorally, the taVNS improved No-Go response accuracy, together with computational modeling using Hierarchical Bayesian estimation of the Drift Diffusion Model (HDDM) indicating that it specifically reduced the information accumulation rate for Go responses, and this was negatively associated with increased accuracy of No-Go responses. On the neural level, taVNS enhanced engagement of the bilateral inferior frontal gyrus (IFG) during inhibition of angry expression faces and modulated functional couplings (FCs) within the prefrontal inhibitory control network. Mediation models revealed that taVNS-induced facilitation of inhibitory control was critically mediated by a decreased information accumulation for Go responses and concomitantly enhanced neurofunctional coupling between the inferior and orbital frontal cortex. Discussion Our findings demonstrate a potential for taVNS to improve emotional inhibitory control via reducing pre-potent responses and enhancing FCs within prefrontal inhibitory control networks, suggesting a promising therapeutic role in treating specific disorders characterized by inhibitory control deficits.
Collapse
Affiliation(s)
- Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The Laboratory of Sport Psychology, School of Sport Training, Chengdu Sport University, Chengdu, 610041, PR China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu 610066, PR China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaolu Zhang
- Anhui Children's Hospital, Pediatric Hospital Affiliated to Fudan University, Hefei 230051, PR China
| | - Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xinqi Zhou
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, PR China
| | - Fangyuan Ding
- College of National Culture and Cognitive Science, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Rong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, National Committee of Health and Family Planning of China and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Department of Psychology, Hong Kong, 999077, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
9
|
Tansey MG, Boles J, Holt J, Cole C, Neighbarger N, Urs N, Uriarte-Huarte O. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. RESEARCH SQUARE 2024:rs.3.rs-3952442. [PMID: 38559083 PMCID: PMC10980147 DOI: 10.21203/rs.3.rs-3952442/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
|
10
|
Boles JS, Holt J, Cole CL, Neighbarger NK, Urs NM, Huarte OU, Tansey MG. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580010. [PMID: 38405709 PMCID: PMC10888767 DOI: 10.1101/2024.02.12.580010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jenny Holt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L. Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K. Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nikhil M. Urs
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
11
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
13
|
Tan JB, Müller EJ, Orlando IF, Taylor NL, Margulies DS, Szeto J, Lewis SJG, Shine JM, O'Callaghan C. Abnormal higher-order network interactions in Parkinson's disease visual hallucinations. Brain 2024; 147:458-471. [PMID: 37677056 DOI: 10.1093/brain/awad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.
Collapse
Affiliation(s)
- Joshua B Tan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Isabella F Orlando
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Center National de la Recherche Scientifique (CNRS) and Université de Paris, 75006 Paris, France
| | - Jennifer Szeto
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
14
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
16
|
Beckers E, Riphagen JM, Van Egroo M, Bennett DA, Jacobs HIL. Sparse Asymmetry in Locus Coeruleus Pathology in Alzheimer's Disease. J Alzheimers Dis 2024; 99:105-111. [PMID: 38607758 DOI: 10.3233/jad-231328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Joost M Riphagen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ye R, Hezemans FH, O'Callaghan C, Tsvetanov KA, Rua C, Jones PS, Holland N, Malpetti M, Murley AG, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus Coeruleus Integrity Is Linked to Response Inhibition Deficits in Parkinson's Disease and Progressive Supranuclear Palsy. J Neurosci 2023; 43:7028-7040. [PMID: 37669861 PMCID: PMC10586538 DOI: 10.1523/jneurosci.0289-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Rong Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Frank H Hezemans
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Claire O'Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, New South Wales, Australia
| | - Kamen A Tsvetanov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100, Catanzaro, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
18
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
20
|
Dahl MJ, Bachman SL, Dutt S, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M, Mather M. The integrity of dopaminergic and noradrenergic brain regions is associated with different aspects of late-life memory performance. NATURE AGING 2023; 3:1128-1143. [PMID: 37653256 PMCID: PMC10501910 DOI: 10.1038/s43587-023-00469-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Changes in dopaminergic neuromodulation play a key role in adult memory decline. Recent research has also implicated noradrenaline in shaping late-life memory. However, it is unclear whether these two neuromodulators have distinct roles in age-related cognitive changes. Here, combining longitudinal MRI of the dopaminergic substantia nigra-ventral tegmental area (SN-VTA) and noradrenergic locus coeruleus (LC) in younger (n = 69) and older (n = 251) adults, we found that dopaminergic and noradrenergic integrity are differentially associated with memory performance. While LC integrity was related to better episodic memory across several tasks, SN-VTA integrity was linked to working memory. Longitudinally, we found that older age was associated with more negative change in SN-VTA and LC integrity. Notably, changes in LC integrity reliably predicted future episodic memory. These differential associations of dopaminergic and noradrenergic nuclei with late-life cognitive decline have potential clinical utility, given their degeneration in several age-associated diseases.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Nils C Bodammer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Matt RA, Westhorpe FG, Romuar RF, Rana P, Gever JR, Ford AP. Fingerprinting heterocellular β-adrenoceptor functional expression in the brain using agonist activity profiles. Front Mol Biosci 2023; 10:1214102. [PMID: 37664183 PMCID: PMC10471193 DOI: 10.3389/fmolb.2023.1214102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, β-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(Emax/EC50) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints. These fingerprints were then used to assess receptor subtype expression across human brain cell systems and compared with Δlog(Emax/EC50) values arising from β-arrestin activation or measurements of cAMP response desensitization to assess the possibility of ligand bias among β-AR agonists. Agonist activity profiles were confirmed to be system-independent and, in particular, revealed β2-AR functional expression across several human brain cell types. Broad β2-AR function observed is consistent with noradrenergic tone arising from the locus coeruleus exerting heterocellular neuroexcitatory and homeostatic influence. Notably, Δlog(Emax/EC50) measurements suggest that tested β-AR agonists do not show ligand bias as it pertains to homologous receptor desensitization in the system examined. Δlog(Emax/EC50) agonist fingerprinting is a powerful means of assessing receptor subtype expression regardless of receptor expression levels or assay readout, and the method may be applicable to future use for novel ligands and tissues expressing any receptor with available reference agonists.
Collapse
|
22
|
Wolters AF, Heijmans M, Priovoulos N, Jacobs HIL, Postma AA, Temel Y, Kuijf ML, Michielse S. Neuromelanin related ultra-high field signal intensity of the locus coeruleus differs between Parkinson's disease and controls. Neuroimage Clin 2023; 39:103479. [PMID: 37494758 PMCID: PMC10394012 DOI: 10.1016/j.nicl.2023.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.
Collapse
Affiliation(s)
- Amée F Wolters
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alida A Postma
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Van Egroo M, Riphagen JM, Ashton NJ, Janelidze S, Sperling RA, Johnson KA, Yang HS, Bennett DA, Blennow K, Hansson O, Zetterberg H, Jacobs HIL. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau. Mol Psychiatry 2023; 28:2412-2422. [PMID: 37020050 PMCID: PMC10073793 DOI: 10.1038/s41380-023-02041-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Autopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP). We found that higher plasma measures of phosphorylated tau, in particular ptau231, correlated negatively with dorso-rostral LC integrity, whereas correlations for neurodegenerative plasma markers (neurofilament light, total tau) were scattered throughout the LC including middle to caudal sections. In contrast, the plasma Aβ42/40 ratio, associated with brain amyloidosis, did not correlate with LC integrity. These findings were specific to the rostral LC and not observed when using the entire LC or the hippocampus. Furthermore, in the MAP data, we observed higher rostral than caudal tangle density in the LC, independent of the disease stage. The in vivo LC-phosphorylated tau correlations became significant from midlife, with the earliest effect for ptau231, starting at about age 55. Finally, interactions between lower rostral LC integrity and higher ptau231 concentrations predicted lower cognitive performance. Together, these findings demonstrate a specific rostral vulnerability to early phosphorylated tau species that can be detected with dedicated magnetic resonance imaging measures, highlighting the promise of LC imaging as an early marker of AD-related processes.
Collapse
Grants
- R01 AG017917 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG074220 NIA NIH HHS
- K23 AG062750 NIA NIH HHS
- R01 AG068062 NIA NIH HHS
- K01 AG001016 NIA NIH HHS
- ZEN-21-848495 Alzheimer's Association
- P01 AG036694 NIA NIH HHS
- R01 AG062559 NIA NIH HHS
- R01 AG015819 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- Alzheimer Nederland WE.03-2019-02
- BrightFocus Foundation (BrightFocus)
- Alzheimer’s Association
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236)
- Cure Alzheimer’s Fund (Alzheimer’s Disease Research Foundation)
- Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2021-0293), The Parkinson foundation of Sweden (1280/20), the Cure Alzheimer’s fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712 and #101053962), Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Reisa A Sperling
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun-Sik Yang
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
25
|
Kelberman MA, Rorabaugh JM, Anderson CR, Marriott A, DePuy SD, Rasmussen K, McCann KE, Weiss JM, Weinshenker D. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 125:98-108. [PMID: 36889122 PMCID: PMC10038926 DOI: 10.1016/j.neurobiolaging.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Hyperphosphorylated tau in the locus coeruleus (LC) is ubiquitous in prodromal Alzheimer's disease (AD), and LC neurons degenerate as AD progresses. Hyperphosphorylated tau alters firing rates in other brain regions, but its effects on LC neurons are unknown. We assessed single unit LC activity in anesthetized wild-type (WT) and TgF344-AD rats at 6 months, which represents a prodromal stage when LC neurons are the only cells containing hyperphosphorylated tau in TgF344-AD animals, and at 15 months when amyloid-β (Aβ) and tau pathology are both abundant in the forebrain. At baseline, LC neurons from TgF344-AD rats were hypoactive at both ages compared to WT littermates but showed elevated spontaneous bursting properties. Differences in footshock-evoked LC firing depended on age, with 6-month TgF344-AD rats demonstrating aspects of hyperactivity, and 15-month transgenic rats showing hypoactivity. Early LC hyperactivity is consistent with appearance of prodromal neuropsychiatric symptoms and is followed by LC hypoactivity which contributes to cognitive impairment. These results support further investigation into disease stage-dependent noradrenergic interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
26
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
27
|
Eckert MA, Iuricich F, Harris KC, Hamlett ED, Vazey EM, Aston-Jones G. Locus coeruleus and dorsal cingulate morphology contributions to slowed processing speed. Neuropsychologia 2023; 179:108449. [PMID: 36528219 PMCID: PMC9906468 DOI: 10.1016/j.neuropsychologia.2022.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Slowed information processing speed is a defining feature of cognitive aging. Nucleus locus coeruleus (LC) and medial prefrontal regions are targets for understanding slowed processing speed because these brain regions influence neural and behavioral response latencies through their roles in optimizing task performance. Although structural measures of medial prefrontal cortex have been consistently related to processing speed, it is unclear if 1) declines in LC structure underlie this association because of reciprocal connections between LC and medial prefrontal cortex, or 2) if LC declines provide a separate explanation for age-related changes in processing speed. LC and medial prefrontal structural measures were predicted to explain age-dependent individual differences in processing speed in a cross-sectional sample of 43 adults (19-79 years; 63% female). Higher turbo-spin echo LC contrast, based on a persistent homology measure, and greater dorsal cingulate cortical thickness were significantly and each uniquely related to faster processing speed. However, only dorsal cingulate cortical thickness appeared to statistically mediate age-related differences in processing speed. The results suggest that individual differences in cognitive processing speed can be attributed, in part, to structural variation in nucleus LC and medial prefrontal cortex, with the latter key to understanding why older adults exhibit slowed processing speed.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA.
| | - Federico Iuricich
- Visual Computing Division, School of Computing, Clemson University, Clemson, S.C., 29634, USA
| | - Kelly C Harris
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, S.C., 29425-5500, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003-9297, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
28
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
29
|
Davenport F, Gallacher J, Kourtzi Z, Koychev I, Matthews PM, Oxtoby NP, Parkes LM, Priesemann V, Rowe JB, Smye SW, Zetterberg H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface 2023; 20:20220406. [PMID: 36651180 PMCID: PMC9846433 DOI: 10.1098/rsif.2022.0406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.
Collapse
Affiliation(s)
| | - John Gallacher
- Director of Dementias Platform, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zoe Kourtzi
- Professor of Cognitive Computational Neuroscience, Department of Psychology, University of Cambridge, UK
| | - Ivan Koychev
- Senior Clinical Researcher, Department of Psychiatry, University of Oxford, Oxford, UK
- Consultant Neuropsychiatrist, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, Oxford, UK
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing and Department of Computer Science, University College London, Gower Street, London, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Viola Priesemann
- Max Planck Group Leader and Fellow of the Schiemann Kolleg, Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
30
|
Xu B, He T, Lu Y, Jia J, Sahakian BJ, Robbins TW, Jin L, Ye Z. Locus coeruleus integrity correlates with inhibitory functions of the fronto-subthalamic 'hyperdirect' pathway in Parkinson's disease. Neuroimage Clin 2022; 36:103276. [PMID: 36510410 PMCID: PMC9723406 DOI: 10.1016/j.nicl.2022.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A long-running debate concerns whether dopamine or noradrenaline deficiency drives response disinhibition in Parkinson's disease (PD). This study aimed to investigate whether damage to the locus coeruleus (LC) or substantia nigra (SN) might impact inhibitory functions of the fronto-subthalamic hyperdirect or fronto-striatal indirect pathway. Patients with PD (n = 29, 13 women) and matched healthy controls (n = 29, 15 women) participated in this cross-sectional study. LC and SN integrity was assessed using neuromelanin-sensitive MRI. Response inhibition was measured using fMRI with a stop-signal task. In healthy controls, LC (but not SN) integrity correlated with the stopping-related activity of the right inferior frontal gyrus (IFG) and right subthalamic nucleus (STN), which further correlated with stop-signal reaction time (SSRT). PD patients showed reduced LC integrity, longer SSRT, and lower stopping-related activity over the right IFG, pre-supplementary motor area, and right caudate nucleus than healthy controls. In PD patients, the relationship between SSRT and the fronto-subthalamic pathway was preserved. However, LC integrity no longer correlated with the stopping-related right IFG or right STN activity. No contribution of SN integrity was found during stopping. In conclusion, LC (but not SN) might modulate inhibitory functions of the right IFG-STN pathway. Damage to the LC might impact the right IFG-STN pathway during stopping, leading to response disinhibition in PD.
Collapse
Affiliation(s)
- Biman Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing 100049, China
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Yuan Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Jia Jia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| |
Collapse
|
31
|
Zarkali A, Luppi AI, Stamatakis EA, Reeves S, McColgan P, Leyland LA, Lees AJ, Weil RS. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease. Commun Biol 2022; 5:928. [PMID: 36075964 PMCID: PMC9458713 DOI: 10.1038/s42003-022-03903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hallucinations are a core feature of psychosis and common in Parkinson's. Their transient, unexpected nature suggests a change in dynamic brain states, but underlying causes are unknown. Here, we examine temporal dynamics and underlying structural connectivity in Parkinson's-hallucinations using a combination of functional and structural MRI, network control theory, neurotransmitter density and genetic analyses. We show that Parkinson's-hallucinators spent more time in a predominantly Segregated functional state with fewer between-state transitions. The transition from integrated-to-segregated state had lower energy cost in Parkinson's-hallucinators; and was therefore potentially preferable. The regional energy needed for this transition was correlated with regional neurotransmitter density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic, but not dopaminergic, receptors. We show how the combination of neurochemistry and brain structure jointly shape functional brain dynamics leading to hallucinations and highlight potential therapeutic targets by linking these changes to neurotransmitter systems involved in early sensory and complex visual processing.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Rd, London, W1T 7BN, UK
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
32
|
Perry A, Hughes LE, Adams N, Naessens M, Murley AG, Rouse MA, Street D, Jones PS, Cope TE, Kocagoncu E, Rowe JB. The neurophysiological effect of NMDA-R antagonism of frontotemporal lobar degeneration is conditional on individual GABA concentration. Transl Psychiatry 2022; 12:348. [PMID: 36030249 PMCID: PMC9420128 DOI: 10.1038/s41398-022-02114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023] Open
Abstract
There is a pressing need to accelerate therapeutic strategies against the syndromes caused by frontotemporal lobar degeneration, including symptomatic treatments. One approach is for experimental medicine, coupling neurophysiological studies of the mechanisms of disease with pharmacological interventions aimed at restoring neurochemical deficits. Here we consider the role of glutamatergic deficits and their potential as targets for treatment. We performed a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study in 20 people with symptomatic frontotemporal lobar degeneration (10 behavioural variant frontotemporal dementia, 10 progressive supranuclear palsy) and 19 healthy age- and gender-matched controls. Both magnetoencephalography sessions recorded a roving auditory oddball paradigm: on placebo or following 10 mg memantine, an uncompetitive NMDA-receptor antagonist. Ultra-high-field magnetic resonance spectroscopy confirmed lower concentrations of GABA in the right inferior frontal gyrus of people with frontotemporal lobar degeneration. While memantine showed a subtle effect on early-auditory processing in patients, there was no significant main effect of memantine on the magnitude of the mismatch negativity (MMN) response in the right frontotemporal cortex in patients or controls. However, the change in the right auditory cortex MMN response to memantine (vs. placebo) in patients correlated with individuals' prefrontal GABA concentration. There was no moderating effect of glutamate concentration or cortical atrophy. This proof-of-concept study demonstrates the potential for baseline dependency in the pharmacological restoration of neurotransmitter deficits to influence cognitive neurophysiology in neurodegenerative disease. With changes to multiple neurotransmitters in frontotemporal lobar degeneration, we suggest that individuals' balance of excitation and inhibition may determine drug efficacy, with implications for drug selection and patient stratification in future clinical trials.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Natalie Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
33
|
Ye R, O'Callaghan C, Rua C, Hezemans FH, Holland N, Malpetti M, Jones PS, Barker RA, Williams‐Gray CH, Robbins TW, Passamonti L, Rowe J. Locus Coeruleus Integrity from 7 T MRI Relates to Apathy and Cognition in Parkinsonian Disorders. Mov Disord 2022; 37:1663-1672. [PMID: 35576973 PMCID: PMC9541468 DOI: 10.1002/mds.29072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (β = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (β = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical SciencesFaculty of Medicine and Health, University of SydneySydneyAustralia
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Frank H. Hezemans
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust—Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Caroline H. Williams‐Gray
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
| | - Trevor W. Robbins
- Department of PsychologyUniversity of CambridgeCambridgeUnited Kingdom
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- Istituto di Bioimmagini e Fisiologia MolecolareConsiglio Nazionale delle RicercheCefalùItaly
| | - James Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
34
|
David MCB, Del Giovane M, Liu KY, Gostick B, Rowe JB, Oboh I, Howard R, Malhotra PA. Cognitive and neuropsychiatric effects of noradrenergic treatment in Alzheimer's disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329136. [PMID: 35790417 PMCID: PMC9484390 DOI: 10.1136/jnnp-2022-329136] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dysfunction of the locus coeruleus-noradrenergic system occurs early in Alzheimer's disease, contributing to cognitive and neuropsychiatric symptoms in some patients. This system offers a potential therapeutic target, although noradrenergic treatments are not currently used in clinical practice. OBJECTIVE To assess the efficacy of drugs with principally noradrenergic action in improving cognitive and neuropsychiatric symptoms in Alzheimer's disease. METHODS The MEDLINE, Embase and ClinicalTrials.gov databases were searched from 1980 to December 2021. We generated pooled estimates using random effects meta-analyses. RESULTS We included 19 randomised controlled trials (1811 patients), of which six were judged as 'good' quality, seven as 'fair' and six 'poor'. Meta-analysis of 10 of these studies (1300 patients) showed a significant small positive effect of noradrenergic drugs on global cognition, measured using the Mini-Mental State Examination or Alzheimer's Disease Assessment Scale-Cognitive Subscale (standardised mean difference (SMD): 0.14, 95% CI: 0.03 to 0.25, p=0.01; I2=0%). No significant effect was seen on measures of attention (SMD: 0.01, 95% CI: -0.17 to 0.19, p=0.91; I2=0). The apathy meta-analysis included eight trials (425 patients) and detected a large positive effect of noradrenergic drugs (SMD: 0.45, 95% CI: 0.16 to 0.73, p=0.002; I2=58%). This positive effect was still present following removal of outliers to account for heterogeneity across studies. DISCUSSION Repurposing of established noradrenergic drugs is most likely to offer effective treatment in Alzheimer's disease for general cognition and apathy. However, several factors should be considered before designing future clinical trials. These include targeting of appropriate patient subgroups and understanding the dose effects of individual drugs and their interactions with other treatments to minimise risks and maximise therapeutic effects. PROSPERO REGISTERATION NUMBER CRD42021277500.
Collapse
Affiliation(s)
- Michael C B David
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Clinical Neurosciences, Charing Cross Hospital, London, UK
| | - Martina Del Giovane
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | | | - James Benedict Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Imafidon Oboh
- South West London and St George's Mental Health NHS Trust, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Paresh A Malhotra
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Clinical Neurosciences, Charing Cross Hospital, London, UK
| |
Collapse
|
35
|
Morris L, O'Callaghan C, Le Heron C. Disordered Decision Making: A Cognitive Framework for Apathy and Impulsivity in Huntington's Disease. Mov Disord 2022; 37:1149-1163. [PMID: 35491758 PMCID: PMC9322688 DOI: 10.1002/mds.29013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
A caregiver's all‐too‐familiar narrative ‐ “He doesn't think through what he does, but mostly he does nothing.” Apathy and impulsivity, debilitating and poorly understood, commonly co‐occur in Huntington's disease (HD). HD is a neurodegenerative disease with manifestations bridging clinical neurology and psychiatry. In addition to movement and cognitive symptoms, neurobehavioral disturbances, particularly apathy and impulsivity, are prevalent features of HD, occurring early in the disease course, often worsening with disease progression, and substantially reducing quality of life. Treatments remain limited, in part because of limited mechanistic understanding of these behavioral disturbances. However, emerging work within the field of decision‐making neuroscience and beyond points to common neurobiological mechanisms underpinning these seemingly disparate problems. These insights bridge the gap between underlying disease pathology and clinical phenotype, offering new treatment strategies, novel behavioral and physiological biomarkers of HD, and deeper understanding of human behavior. In this review, we apply the neurobiological framework of cost‐benefit decision making to the problems of apathy and impulsivity in HD. Through this decision‐making lens, we develop a mechanistic model that elucidates the occurrence of these behavioral disturbances and points to potential treatment strategies and crucial research priorities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lee‐Anne Morris
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health University of Sydney Sydney New South Wales Australia
| | - Campbell Le Heron
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
- Department of Neurology Canterbury District Health Board Christchurch New Zealand
| |
Collapse
|
36
|
Hezemans FH, Wolpe N, O’Callaghan C, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Comput Biol 2022; 18:e1010079. [PMID: 35533200 PMCID: PMC9119485 DOI: 10.1371/journal.pcbi.1010079] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Collapse
Affiliation(s)
- Frank H. Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Noham Wolpe
- Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Claire O’Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Prefrontal Cortical Connectivity Mediates Locus Coeruleus Noradrenergic Regulation of Inhibitory Control in Older Adults. J Neurosci 2022; 42:3484-3493. [PMID: 35277392 PMCID: PMC9034774 DOI: 10.1523/jneurosci.1361-21.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 02/02/2023] Open
Abstract
Response inhibition is a core executive function enabling adaptive behavior in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer (MT)-sensitive magnetic resonance imaging (MRI), in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioral change. Here, we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used MT MRI images from N = 63 healthy humans aged above 50 years (of either sex) who performed a Stop-Signal Task (SST), with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between presupplementary motor area (preSMA) and right inferior frontal gyrus (rIFG), but not volumes of the prefrontal cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behavior, where this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.SIGNIFICANCE STATEMENT We show that the integrity of the locus coeruleus, the principal source of cortical noradrenaline, is related to the efficiency of response inhibition in healthy older adults. This effect is in part mediated by its effect on functional connectivity in a prefrontal cortical stopping-network. The behavioral effect, and its mediation by connectivity, are moderated by age. This supports the psychopharmacological and genetic evidence for the noradrenergic regulation of behavioral control, in a population-based normative cohort. Noradrenergic treatment strategies may be effective to improve behavioral control in impulsive clinical populations, but age, and locus coeruleus integrity, are likely to be important stratification factors.
Collapse
|
38
|
Geranmayeh F. Cholinergic neurotransmitter system: a potential marker for post-stroke cognitive recovery. Brain 2022; 145:1576-1578. [PMID: 35438715 PMCID: PMC9166539 DOI: 10.1093/brain/awac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Cholinergic and hippocampal systems facilitate cross-domain cognitive recovery after stroke’ by O’Sullivan et al. (https://doi.org/10.1093/brain/awac070).
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Clinical Language and Cognition Group, Department of Brain Sciences, Imperial
College, London, UK,E-mail:
| |
Collapse
|
39
|
Cools R, Tichelaar JG, Helmich RCG, Bloem BR, Esselink RAJ, Smulders K, Timmer MHM. Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:309-343. [PMID: 35248200 DOI: 10.1016/bs.pbr.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Collapse
Affiliation(s)
- Roshan Cools
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jorryt G Tichelaar
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rick C G Helmich
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Katrijn Smulders
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Malatt C, Tagliati M. The role of the locus coeruleus/norepinephrine system in the pathogenesis of neurodegenerative disorders: An update. Curr Opin Neurol 2022; 35:220-229. [PMID: 35175974 DOI: 10.1097/wco.0000000000001042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review was to provide an update on current and emerging knowledge of the neuropathological processes affecting the locus coeruleus/norepinephrine (LC/NE) system, their effect on Alzheimer's disease and Parkinson's disease symptomatology, including efforts to translate these notions into therapeutic actions targeting the noradrenergic system. RECENT FINDINGS Over the past 2 years, work from multiple groups has contributed to support an early role of locus coeruleus degeneration and/or hyperactivation in the neurodegenerative process, including a trigger of neuroinflammation. Imaging advances are allowing the quantification of locus coeruleus structural features in vivo, which is critical in the early stages of disease. Nonmotor and noncognitive symptoms, often secondary to the involvement of the LC/NE system, are becoming more important in the definition of these diseases and their treatment. SUMMARY The diverse symptomatology of Parkinson's disease and Alzheimer's disease, which is not limited to cardinal motor and cognitive abnormalities, strongly suggests a multisystem neurodegenerative process. In this context, it is increasingly clear how the LC/NE system plays a key role in the initiation and maintenance of the neurodegenerative process.
Collapse
Affiliation(s)
- Camille Malatt
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
41
|
Wainstein G, Müller EJ, Taylor N, Munn B, Shine JM. The role of the locus coeruleus in shaping adaptive cortical melodies. Trends Cogn Sci 2022; 26:527-538. [DOI: 10.1016/j.tics.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
42
|
Madelung CF, Meder D, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Petersen ET, Hejl AM, Løkkegaard A, Siebner HR. Locus Coeruleus Shows a Spatial Pattern of Structural Disintegration in Parkinson's Disease. Mov Disord 2022; 37:479-489. [PMID: 35114035 PMCID: PMC9303353 DOI: 10.1002/mds.28945] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) causes a loss of neuromelanin-positive, noradrenergic neurons in the locus coeruleus (LC), which has been implicated in nonmotor dysfunction. OBJECTIVES We used "neuromelanin sensitive" magnetic resonance imaging (MRI) to localize structural disintegration in the LC and its association with nonmotor dysfunction in PD. METHODS A total of 42 patients with PD and 24 age-matched healthy volunteers underwent magnetization transfer weighted (MTw) MRI of the LC. The contrast-to-noise ratio of the MTw signal (CNRMTw ) was used as an index of structural LC integrity. We performed slicewise and voxelwise analyses to map spatial patterns of structural disintegration, complemented by principal component analysis (PCA). We also tested for correlations between regional CNRMTw and severity of nonmotor symptoms. RESULTS Mean CNRMTw of the right LC was reduced in patients relative to controls. Voxelwise and slicewise analyses showed that the attenuation of CNRMTw was confined to the right mid-caudal LC and linked regional CNRMTw to nonmotor symptoms. CNRMTw attenuation in the left mid-caudal LC was associated with the orthostatic drop in systolic blood pressure, whereas CNRMTw attenuation in the caudal most portion of right LC correlated with apathy ratings. PCA identified a bilateral component that was more weakly expressed in patients. This component was characterized by a gradient in CNRMTw along the rostro-caudal and dorso-ventral axes of the nucleus. The individual expression score of this component reflected the overall severity of nonmotor symptoms. CONCLUSION A spatially heterogeneous disintegration of LC in PD may determine the individual expression of specific nonmotor symptoms such as orthostatic dysregulation or apathy. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marta M Marques
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Schneider JS, Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203:108880. [PMID: 34774549 DOI: 10.1016/j.neuropharm.2021.108880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Impairment in various aspects of cognition is recognized as an important non-motor symptom of Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) is common in non-demented PD patients and is often associated with severity of motor symptoms, disease duration and increasing age. Further, PD-MCI can have a significant negative effect on performance of daily life activities and may be a harbinger of development of PD dementia. Thus, there is significant interest in developing therapeutic strategies to ameliorate cognitive deficits in PD and improve cognitive functioning of PD patients. However, due to significant questions that remain regarding the pathophysiology of cognitive dysfunction in PD, remediation of cognitive dysfunction in PD has proven difficult. In this paper, we will focus on PD-MCI and will review some of the current therapeutic approaches being taken to try to improve cognitive functioning in patients with PD-MCI.
Collapse
Affiliation(s)
- Jay S Schneider
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
44
|
Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, Gámez Tansey M, Goldstein DS, Abrol A, Calhoun VD, Goldstein FC, Hajjar I, Fagan AM, Galasko D, Edland SD, Hanfelt J, Lah JJ, Weinshenker D. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2021; 145:1924-1938. [PMID: 34919634 DOI: 10.1093/brain/awab452] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
The locus coeruleus (LC) is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. LC dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine (NE) transmission. To test NE augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved NE transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-center, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment (MCI) and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of NE and metabolites. Prespecified primary outcomes were CSF levels of IL1α and Thymus-Expressed Chemokine. Secondary/exploratory outcomes included clinical measures, CSF analyses of Aβ42, Tau, and pTau181, mass spectrometry proteomics, and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and FDG-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF NE levels. IL-1α and Thymus-Expressed Chemokine were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in Aβ42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism, and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK, and OPG proteins. Treatment was also associated with significantly increased BDNF and reduced triglycerides in plasma. Resting state fMRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. FDG-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus, and fusiform gyrus, with carry-over effects six months after treatment. In summary, atomoxetine treatment was safe, well tolerated, and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism, and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.
Collapse
Affiliation(s)
- Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Deqiang Qiu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, USA
| | - Liping Zhao
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - William T Hu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Lenora Higginbotham
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Chadwick M Hales
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Malú Gámez Tansey
- Department of Physiology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Felicia C Goldstein
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Ihab Hajjar
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Anne M Fagan
- Department of Neurology and Knight ADRC, Washington University, St. Louis, MO, 630130, USA
| | - Doug Galasko
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - Steven D Edland
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - John Hanfelt
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
45
|
O’Callaghan C, Firbank M, Tomassini A, Schumacher J, O’Brien JT, Taylor JP. Impaired sensory evidence accumulation and network function in Lewy body dementia. Brain Commun 2021; 3:fcab089. [PMID: 34396098 PMCID: PMC8361397 DOI: 10.1093/braincomms/fcab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Deficits in attention underpin many of the cognitive and neuropsychiatric features of Lewy body dementia. These attention-related symptoms remain difficult to treat and there are many gaps in our understanding of their neurobiology. An improved understanding of attention-related impairments can be achieved via mathematical modelling approaches, which identify cognitive parameters to provide an intermediate level between observed behavioural data and its underlying neural correlate. Here, we apply this approach to identify the role of impaired sensory evidence accumulation in the attention deficits that characterize Lewy body dementia. In 31 people with Lewy body dementia (including 13 Parkinson's disease dementia and 18 dementia with Lewy bodies cases), 16 people with Alzheimer's disease, and 23 healthy controls, we administered an attention task whilst they underwent functional 3 T MRI. Using hierarchical Bayesian estimation of a drift-diffusion model, we decomposed task performance into drift rate and decision boundary parameters. We tested the hypothesis that the drift rate-a measure of the quality of sensory evidence accumulation-is specifically impaired in Lewy body dementia, compared to Alzheimer's disease. We further explored whether trial-by-trial variations in the drift rate related to activity within the default and dorsal attention networks, to determine whether altered activity in these networks was associated with slowed drift rates in Lewy body dementia. Our results revealed slower drift rates in the Lewy body dementia compared to the Alzheimer's disease group, whereas the patient groups were equivalent for their decision boundaries. The patient groups were reduced relative to controls for both parameters. This highlights sensory evidence accumulation deficits as a key feature that distinguishes attention impairments in Lewy body dementia, consistent with impaired ability to efficiently process information from the environment to guide behaviour. We also found that the drift rate was strongly related to activity in the dorsal attention network across all three groups, whereas the Lewy body dementia group showed a divergent relationship relative to the Alzheimer's disease and control groups for the default network, consistent with altered default network modulation being associated with impaired evidence accumulation. Together, our findings reveal impaired sensory evidence accumulation as a specific marker of attention problems in Lewy body dementia, which may relate to large-scale network abnormalities. By identifying impairments in a specific sub-process of attention, these findings will inform future exploratory and intervention studies that aim to understand and treat attention-related symptoms that are a key feature of Lewy body dementia.
Collapse
Affiliation(s)
- Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Alessandro Tomassini
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|