1
|
Li J, Xu Y, Liu X, Yang F, Fan W. Cortical morphological alterations in cognitively normal Parkinson's disease with severe hyposmia. Brain Res 2024; 1844:149150. [PMID: 39127119 DOI: 10.1016/j.brainres.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Olfactory dysfunction is a common non-motor symptom of Parkinson's disease(PD) and may hold valuable insights into the disease's underlying pathophysiology. This study aimed to investigate cortical morphometry alterations in PD patients with severe hyposmia(PD-SH) and mild hyposmia(PD-MH) using surface-based morphometry(SBM) methods. Participants included 36 PD-SH patients, 38 PD-MH patients, and 40 healthy controls(HCs). SBM analysis revealed distinct patterns of cortical alterations in PD-SH and PD-MH patients. PD-MH patients exhibited reduced cortical thickness in the right supramarginal gyrus, while PD-SH patients showed widespread cortical thinning in regions including the bilateral pericalcarine cortex, bilateral lingual gyrus, left inferior parietal cortex, left lateral occipital cortex, right pars triangularis, right cuneus, and right superior parietal cortex. Moreover, PD-SH patients displayed reduced cortical thickness in the right precuneus compared to PD-MH patients. Fractal dimension analysis indicated increased cortical complexity in PD-MH patients' right superior temporal cortex and right supramarginal gyrus, as well as decreased complexity in the bilateral postcentral cortex, left superior parietal cortex, and right precentral cortex. Similarly, cortical gyrification index and cortical sulcal depth exhibited heterogeneous patterns of changes in PD-SH and PD-MH patients compared to HCs. These findings underscore the multifaceted nature of olfactory impairment in PD, with distinct patterns of cortical morphometry alterations associated with different degrees of hyposmia. The observed discrepancies in brain regions showing alterations reflect the complexity of PD's pathophysiology. These insights contribute to a deeper understanding of olfactory dysfunction in PD and provide potential avenues for early diagnosis and targeted interventions.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
2
|
Borne A, Perrone-Bertolotti M, Ferrand-Sorbets S, Bulteau C, Baciu M. Insights on cognitive reorganization after hemispherectomy in Rasmussen's encephalitis. A narrative review. Rev Neurosci 2024; 35:747-774. [PMID: 38749928 DOI: 10.1515/revneuro-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Rasmussen's encephalitis is a rare neurological pathology affecting one cerebral hemisphere, therefore, posing unique challenges. Patients may undergo hemispherectomy, a surgical procedure after which cognitive development occurs in the isolated contralateral hemisphere. This rare situation provides an excellent opportunity to evaluate brain plasticity and cognitive recovery at a hemispheric level. This literature review synthesizes the existing body of research on cognitive recovery following hemispherectomy in Rasmussen patients, considering cognitive domains and modulatory factors that influence cognitive outcomes. While language function has traditionally been the focus of postoperative assessments, there is a growing acknowledgment of the need to broaden the scope of language investigation in interaction with other cognitive domains and to consider cognitive scaffolding in development and recovery. By synthesizing findings reported in the literature, we delineate how language functions may find support from the right hemisphere after left hemispherectomy, but also how, beyond language, global cognitive functioning is affected. We highlight the critical influence of several factors on postoperative cognitive outcomes, including the timing of hemispherectomy and the baseline preoperative cognitive status, pointing to early surgical intervention as predictive of better cognitive outcomes. However, further specific studies are needed to confirm this correlation. This review aims to emphasize a better understanding of mechanisms underlying hemispheric specialization and plasticity in humans, which are particularly important for both clinical and research advancements. This narrative review underscores the need for an integrative approach based on cognitive scaffolding to provide a comprehensive understanding of mechanisms underlying the reorganization in Rasmussen patients after hemispherectomy.
Collapse
Affiliation(s)
- Anna Borne
- Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
| | | | - Sarah Ferrand-Sorbets
- Hôpital Fondation Adolphe de Rothschild, Service de Neurochirurgie Pédiatrique, 75019 Paris, France
| | - Christine Bulteau
- Hôpital Fondation Adolphe de Rothschild, Service de Neurochirurgie Pédiatrique, 75019 Paris, France
- Université de Paris-Cité, MC2Lab EA 7536, Institut de Psychologie, F-92100 Boulogne-Billancourt, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
- Neurology Department, CMRR, University Hospital, 38000 Grenoble, France
| |
Collapse
|
3
|
Ren L, Lv M, Wang X, Schwieter JW, Liu H. iTBS reveals the roles of domain-general cognitive control and language-specific brain regions during word formation rule learning. Cereb Cortex 2024; 34:bhae356. [PMID: 39233376 DOI: 10.1093/cercor/bhae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.
Collapse
Affiliation(s)
- Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Mengjie Lv
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory/Bilingualism Matters, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
- Department of Linguistics and Languages, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M2, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| |
Collapse
|
4
|
Shekari E, Seyfi M, Modarres Zadeh A, Batouli SA, Valinejad V, Goudarzi S, Joghataei MT. Mechanisms of brain activation following naming therapy in aphasia: A systematic review on task-based fMRI studies. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:780-801. [PMID: 35666667 DOI: 10.1080/23279095.2022.2074849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pattern of brain neuroplasticity after naming therapies in patients with aphasia can be evaluated using task-based fMRI. This article aims to review studies investigating brain reorganization after semantic and phonological-based anomia therapy that used picture-naming fMRI tasks. We searched for those articles that compared the activation of brain areas before and after aphasia therapies in the PubMed and the EMBASE databases from 1993 up to April 2020. All studies (single-cases or group designs) on anomia treatment in individuals with acquired aphasia were reviewed. Data were synthesized descriptively through tables to allow the facilitated comparison of the studies. A total of 14 studies were selected and reviewed. The results of the reviewed studies demonstrated that the naming improvement is associated with changes in the activation of cortical and subcortical brain areas. This review highlights the need for a more systematic investigation of the association between decreased and increased activation of brain areas related to anomia therapy. Also, more detailed information about factors influencing brain reorganization is required to elucidate the neural mechanisms of anomia therapy. Overall, regarding the theoretical and clinical aspects, the number of studies that used intensive protocol is growing, and based on the positive potential of these treatments, they could be suitable for the rehabilitation of people with aphasia.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Seyfi
- Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Modarres Zadeh
- Department of Speech Therapy, Faculty of Rehabilitation, Tehran University of Medical science, Tehran, Iran
| | - Seyed Amirhossein Batouli
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Valinejad
- Department of Speech Therapy, Faculty of Rehabilitation, Tehran University of Medical science, Tehran, Iran
| | - Sepideh Goudarzi
- Department of Pharmacology and Toxicology, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Raukola-Lindblom M, Kurki T, Ljungqvist L, Laasonen M, Hämäläinen H, Tenovuo O. Association of cognitive-linguistic deficits to diffusion tensor imaging parameters in moderate to severe traumatic diffuse axonal injury. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-8. [PMID: 36688868 DOI: 10.1080/23279095.2023.2169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive-linguistic functions are an essential part of adequate communication competence. Cognitive-linguistic deficits are common after traumatic diffuse axonal injury (DAI). We aimed to examine the integrity of perisylvian white matter tracts known to be associated with linguistic functions in individuals with DAI and their eventual association with poor cognitive-linguistic outcomes. Diffusion tensor imaging (DTI) results of 44 adults with moderate-to-severe DAI were compared with those of 67 controls. Fractional anisotropy (FA) values of the superior longitudinal fasciculus (SLF), arcuate fasciculus (AF), SLF with frontal connections to the lower parietal cortex, and AF with temporal connections to the lower parietal cortex were measured using tractography. The associations between white matter integrity FA values and cognitive-linguistic deficits were studied in the DAI group. Cognitive-linguistic deficits were determined based on our earlier study using the novel KAT test. No previous studies have examined the associations between white matter integrity and cognitive-linguistic deficits determined using the KAT test. Patients with DAI showed lower FA values in all left-side tracts than the controls. Unexpectedly, the poor cognitive-linguistic outcome in the language comprehension and production domains was associated with high FA values of several tracts. After excluding five cases with the poorest cognitive-linguistic performance, but with the highest values in the DTI variables, no significant associations with DTI metrics were found. The association between white matter integrity and cognitive-linguistic functioning is complex in patients with DAI of traumatic origin, probably reflecting the heterogeneity of TBI.
Collapse
Affiliation(s)
| | - Timo Kurki
- Department of Radiology, University of Turku, Turku, Finland.,Terveystalo Medical Center, Turku, Finland
| | - Linda Ljungqvist
- City of Turku, Welfare Division, Psychosocial Services, Turku, Finland
| | - Marja Laasonen
- Department of Logopedics, School of Humanities, University of Eastern Finland, Joensuu, Finland
| | - Heikki Hämäläinen
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Turku Brain Injury Center, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
7
|
Mariana B, Carolina L, Valeria A, Bautista EA, Silvia K, Lucía AF. Functional anatomy of idiomatic expressions. Brain Topogr 2021; 34:489-503. [PMID: 33948754 DOI: 10.1007/s10548-021-00843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Idiomatic expressions (IE) are groups of words whose meaning is different from the sum of its components. Neural mechanisms underlying their processing are still debated, especially regarding lateralization, main structures involved, and whether this neural network is independent from the spoken language. To investigate the neural correlates of IE processing in healthy Spanish speakers.Twenty one native speakers of Spanish were asked to select one of 4 possible meanings for IE or literal sentences. fMRI scans were performed in a 3.0T scanner and processed by SPM 12 comparing IE vs. literal sentences. Laterality indices were calculated at the group level. IE activated a bilateral, slightly right-sided network comprising the pars triangularis and areas 9 and 10. In the left hemisphere (LH): the pars orbitalis, superior frontal, angular and fusiform gyrus. In the right hemisphere (RH): anterior insula, middle frontal, and superior temporal gyrus. This network reveals the importance of the RH, besides traditional LH areas, to comprehend IE. This agrees with the semantic coding model: the LH activates narrow semantic fields choosing one single meaning and ignoring others, and the RH detects distant semantic relationships, activating diffuse semantic fields. It is also in line with the configuration hypothesis: both meanings, literal and figurative, are executed simultaneously, until the literal meaning is definitively rejected and the figurative one is accepted. Processing IE requires the activation of fronto-temporal networks in both hemispheres. The results concur with previous studies in other languages, so these networks are independent from the spoken language. Understanding these mechanisms sheds light on IE processing difficulties in different clinical populations and must be considered when planning resective surgery.
Collapse
Affiliation(s)
- Bendersky Mariana
- Living Anatomy Laboratory, 3rd Normal Anatomy Department, School of Medicine, Buenos Aires University, Paraguay 2155, Buenos Aires, Argentina. .,ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.
| | - Lomlomdjian Carolina
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Department of Neurology, Hospital Austral, Pilar, Argentina
| | - Abusamra Valeria
- School of Philosophy and Literature, National Scientific and Technical Research Council-Argentina (CONICET), Buenos Aires University, Puan 480, Buenos Aires, Argentina
| | - Elizalde Acevedo Bautista
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Faculty of Biomedical Science, Austral University, Mariano Acosta 1611, Pilar, Buenos Aires, Argentina.,IIMT (Instituto de Investigaciones en Medicina Traslacional), CONICET-Austral University, Derqui-Pilar, Buenos Aires, Argentina
| | - Kochen Silvia
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina
| | - Alba-Ferrara Lucía
- ENyS (Studies in Neurosciences and Complex Systems), National Scientific and Technical Research Council (CONICET), National University A. Jauretche (UNAJ), El Cruce Hospital Néstor Kirchner, Avenue Calchaquí 5402, Florencio Varela, Buenos Aires, Argentina.,Faculty of Biomedical Science, Austral University, Mariano Acosta 1611, Pilar, Buenos Aires, Argentina
| |
Collapse
|
8
|
Hybrid diffusion imaging reveals altered white matter tract integrity and associations with symptoms and cognitive dysfunction in chronic traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 30:102681. [PMID: 34215151 PMCID: PMC8102667 DOI: 10.1016/j.nicl.2021.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 11/20/2022]
Abstract
Hybrid Diffusion Imaging (HYDI) detects white matter associations in patients with cTBI. The advanced diffusion model NODDI was more sensitive in detecting between-group differences than classic DTI. DTI appeared to be just as sensitive as NODDI for detecting white matter correlations with self-reported symptoms. This study highlights the advantages of acquiring both DTI and NODDI to fully characterize white matter microstructure in cTBI.
The detection and association of in vivo biomarkers in white matter (WM) pathology after acute and chronic mild traumatic brain injury (mTBI) are needed to improve care and develop therapies. In this study, we used the diffusion MRI method of hybrid diffusion imaging (HYDI) to detect white matter alterations in patients with chronic TBI (cTBI). 40 patients with cTBI presenting symptoms at least three months post injury, and 17 healthy controls underwent magnetic resonance HYDI. cTBI patients were assessed with a battery of neuropsychological tests. A voxel-wise statistical analysis within the white matter skeleton was performed to study between group differences in the diffusion models. In addition, a partial correlation analysis controlling for age, sex, and time after injury was performed within the cTBI cohort, to test for associations between diffusion metrics and clinical outcomes. The advanced diffusion modeling technique of neurite orientation dispersion and density imaging (NODDI) showed large clusters of between-group differences resulting in lower values in the cTBI across the brain, where the single compartment diffusion tensor model failed to show any significant results. However, the diffusion tensor model appeared to be just as sensitive in detecting self-reported symptoms in the cTBI population using a within-group correlation. To the best of our knowledge this study provides the first application of HYDI in evaluation of cTBI using combined DTI and NODDI, significantly enhancing our understanding of the effects of concussion on white matter microstructure and emphasizing the utility of full characterization of complex diffusion to diagnose, monitor, and treat brain injury.
Collapse
|
9
|
Patterns and predictors of language representation and the influence of epilepsy surgery on language reorganization in children and young adults with focal lesional epilepsy. PLoS One 2020; 15:e0238389. [PMID: 32898166 PMCID: PMC7478845 DOI: 10.1371/journal.pone.0238389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mapping brain functions is crucial for neurosurgical planning in patients with drug-resistant seizures. However, presurgical language mapping using either functional or structural networks can be challenging, especially in children. In fact, most of the evidence on this topic derives from cross-sectional or retrospective studies in adults submitted to anterior temporal lobectomy. In this prospective study, we used fMRI and DTI to explore patterns of language representation, their predictors and impact on cognitive performances in 29 children and young adults (mean age at surgery: 14.6 ± 4.5 years) with focal lesional epilepsy. In 20 of them, we also assessed the influence of epilepsy surgery on language lateralization. All patients were consecutively enrolled at a single epilepsy surgery center between 2009 and 2015 and assessed with preoperative structural and functional 3T brain MRI during three language tasks: Word Generation (WG), Rhyme Generation (RG) and a comprehension task. We also acquired DTI data on arcuate fasciculus in 24 patients. We first assessed patterns of language representation (relationship of activations with the epileptogenic lesion and Laterality Index (LI)) and then hypothesized a causal model to test whether selected clinical variables would influence the patterns of language representation and the ensuing impact of the latter on cognitive performances. Twenty out of 29 patients also underwent postoperative language fMRI. We analyzed possible changes of fMRI and DTI LIs and their clinical predictors. Preoperatively, we found atypical language lateralization in four patients during WG task, in one patient during RG task and in seven patients during the comprehension task. Diffuse interictal EEG abnormalities predicted a more atypical language representation on fMRI (p = 0.012), which in turn correlated with lower attention (p = 0.036) and IQ/GDQ scores (p = 0.014). Postoperative language reorganization implied shifting towards atypical language representation. Abnormal postoperative EEG (p = 0.003) and surgical failures (p = 0.015) were associated with more atypical language lateralization, in turn correlating with worsened fluency. Neither preoperative asymmetry nor postoperative DTI LI changes in the arcuate fasciculus were observed. Focal lesional epilepsy associated with diffuse EEG abnormalities may favor atypical language lateralization and worse cognitive performances, which are potentially reversible after successful surgery.
Collapse
|
10
|
Interhemispheric compensation: A hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 2020; 23:281-8. [DOI: 10.1016/j.eurpsy.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood.Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.
Collapse
|
11
|
Asaridou SS, Demir-Lira ÖE, Goldin-Meadow S, Levine SC, Small SL. Language development and brain reorganization in a child born without the left hemisphere. Cortex 2020; 127:290-312. [PMID: 32259667 DOI: 10.1016/j.cortex.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/08/2019] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
We present a case of a 14-year-old girl born without the left hemisphere due to prenatal left internal carotid occlusion. We combined longitudinal language and cognitive assessments with functional and structural neuroimaging data to situate the case within age-matched, typically developing children. Despite having had a delay in getting language off the ground during the preschool years, our case performed within the normal range on a variety of standardized language tests, and exceptionally well on phonology and word reading, during the elementary and middle school years. Moreover, her spatial, number, and reasoning skills also fell in the average to above-average range based on assessments during these time periods. Functional MRI data revealed activation in right fronto-temporal areas when listening to short stories, resembling the bilateral activation patterns in age-matched typically developing children. Diffusion MRI data showed significantly larger dorsal white matter association tracts (the direct and anterior segments of the arcuate fasciculus) connecting areas active during language processing in her remaining right hemisphere, compared to either hemisphere in control children. We hypothesize that these changes in functional and structural brain organization are the result of compensatory brain plasticity, manifesting in unusually large right dorsal tracts, and exceptional performance in phonology, speech repetition, and decoding. More specifically, we posit that our case's large white matter connections might have played a compensatory role by providing fast and reliable transfer of information between cortical areas for language in the right hemisphere.
Collapse
Affiliation(s)
- Salomi S Asaridou
- University of California, Irvine, Department of Neurology, Biological Sciences III, Irvine, CA, USA.
| | - Ö Ece Demir-Lira
- The University of Iowa, Department of Psychological and Brain Sciences, DeLTA Center, Iowa Neuroscience Institute, Iowa City, IA, USA
| | - Susan Goldin-Meadow
- Department of Psychology, Center for Gesture, Sign and Language, University of Chicago, Chicago, IL, USA
| | - Susan C Levine
- University of Chicago, Department of Psychology, Chicago, IL, USA
| | - Steven L Small
- University of California, Irvine, Department of Neurology, Biological Sciences III, Irvine, CA, USA
| |
Collapse
|
12
|
Gao J, Zhang D, Wang L, Wang W, Fan Y, Tang M, Zhang X, Lei X, Wang Y, Yang J, Zhang X. Altered Effective Connectivity in Schizophrenic Patients With Auditory Verbal Hallucinations: A Resting-State fMRI Study With Granger Causality Analysis. Front Psychiatry 2020; 11:575. [PMID: 32670108 PMCID: PMC7327618 DOI: 10.3389/fpsyt.2020.00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Auditory verbal hallucinations (AVH) are among the most common and prominent symptoms of schizophrenia. Although abnormal functional connectivity associated with AVH has been reported in multiple regions, the changes in information flow remain unclear. In this study, we aimed to elucidate causal influences related to AVH in key regions of auditory, language, and memory networks, by using Granger causality analysis (GCA). PATIENTS AND METHODS Eighteen patients with schizophrenia with AVH and eighteen matched patients without AVH who received resting-state fMRI scans were enrolled in the study. The bilateral superior temporal gyrus (STG), Broca's area, Wernicke's area, putamen, and hippocampus were selected as regions of interest. RESULTS Granger causality (GC) increased from Broca's area to the left STG, and decreased from the right homolog of Wernicke's area to the right homolog of Broca's area, and from the right STG to the right hippocampus in the AVH group compared with the non-AVH group. Correlation analysis showed that the normalized GC ratios from the left STG to Broca's area, from the left STG to the right homolog of Broca's area, and from the right STG to the right homolog of Broca's area were negatively correlated with severity of AVH, and the normalized GC ratios from Broca's area to the left hippocampus and from Broca's area to the right STG were positively correlated with severity of AVH. CONCLUSION Our findings indicate a causal influence of pivotal regions involving the auditory, language, and memory networks in schizophrenia with AVH, which provide a deeper understanding of the neural mechanisms underlying AVH.
Collapse
Affiliation(s)
- Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
13
|
Bermúdez-Llusá G, Adrián JA, Arango-Lasprilla JC, Cuetos F. NeuroBel: Spanish screening test for oral psycholinguistics disabilities in elderly people with mild cognitive impairment and early-stage Alzheimer's disease. JOURNAL OF COMMUNICATION DISORDERS 2019; 82:105943. [PMID: 31630003 DOI: 10.1016/j.jcomdis.2019.105943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 08/31/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The NeuroBel is a short test that allows for psycholinguistic assessment of basic processes of oral comprehension and language production deterioration in the elderly. The objective is to carry out a pilot study of the initial reference values and cut-off points of this battery using a sample of Spanish elderly adults, with and without cognitive impairment, and detecting performance differences among them. METHOD NeuroBel consists of 8 tasks that analyze oral language functioning from the theoretical model proposed by the Psycholinguistic approach. Seventy-five Spanish monolingual adult-elderly participants of both genders. Of those, 25 with Alzheimer's disease (AD) in the initial phase, 25 with mild cognitive impairment (MCI) and 25 participants without cognitive impairment (Controls). All subjects were evaluated using NeuroBel. RESULTS There are significant differences between the three groups. The participants with AD are significantly worse in the total score of NeuroBel. A discriminant analysis shows that 86.7% of the cases appear correctly classified in the groups originally selected. Likewise, participants with MCI obtained results that are statistically significantly worse than the control group. NeuroBel shows a high correlation with the MMSE (.89) and Sensitivity (.96) in the determination of AD and cognitive deterioration (AD + MCI vs. Controls). The area under the ROC curve is .97 in the contrast of AD vs. Controls and .98 in the determination of cognitive deterioration (AD + MCI vs. Controls). The canonical discriminant functions and the precision cut-offs from the ROC analyses are also shown in the results. CONCLUSIONS NeuroBel is shown as a "very good" test in the detection of cognitive-linguistic impairment in elderly-adults.
Collapse
Affiliation(s)
- G Bermúdez-Llusá
- Department of Psychology and Speech-Therapy, University of Málaga, Spain
| | - J A Adrián
- Department of Psychology and Speech-Therapy, University of Málaga, Spain.
| | - J C Arango-Lasprilla
- BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - F Cuetos
- Department of Psychology and Speech-Therapy, University of Málaga, Spain
| |
Collapse
|
14
|
Characterising neural plasticity at the single patient level using connectivity fingerprints. NEUROIMAGE-CLINICAL 2019; 24:101952. [PMID: 31357148 PMCID: PMC6664196 DOI: 10.1016/j.nicl.2019.101952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of wide-scale neuroplasticity in the injured human brain raises hopes for biomarkers to guide personalised treatment. At the individual level, functional reorganisation has proven challenging to quantify using current techniques that are optimised for population-based analyses. In this cross-sectional study, we acquired functional MRI scans in 44 patients (22 men, 22 women, mean age: 39.4 ± 14 years) with a language-dominant hemisphere brain tumour prior to surgery and 23 healthy volunteers (11 men, 12 women, mean age: 36.3 ± 10.9 years) during performance of a verbal fluency task. We applied a recently developed approach to characterise the normal range of functional connectivity patterns during task performance in healthy controls. Next, we statistically quantified differences from the normal in individual patients and evaluated factors driving these differences. We show that the functional connectivity of brain regions involved in language fluency identifies “fingerprints” of brain plasticity in individual patients, not detected using standard task-evoked analyses. In contrast to healthy controls, patients with a tumour in their language dominant hemisphere showed highly variable fingerprints that uniquely distinguished individuals. Atypical fingerprints were influenced by tumour grade and tumour location relative to the typical fluency-activated network. Our findings show how alterations in brain networks can be visualised and statistically quantified from connectivity fingerprints in individual brains. We propose that connectivity fingerprints offer a statistical metric of individually-specific network organisation through which behaviourally-relevant adaptations could be formally quantified and monitored across individuals, treatments and time. Personalised treatment awaits individualised measures of brain adaptation. Connectivity patterns from FMRI offer unique “fingerprints” of brain networks. Individual brain tumours disrupt the language fluency network in unique ways. By fingerprint matching, networks can be tested and visualised in single patients.
Collapse
|
15
|
Bodwin BK, Zhang K, Nobel A. A TESTING BASED APPROACH TO THE DISCOVERY OF DIFFERENTIALLY CORRELATED VARIABLE SETS. Ann Appl Stat 2018; 12:1180-1203. [PMID: 31871518 PMCID: PMC6927674 DOI: 10.1214/17-aoas1083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Given data obtained under two sampling conditions, it is often of interest to identify variables that behave differently in one condition than in the other. We introduce a method for differential analysis of second-order behavior called Differential Correlation Mining (DCM). The DCM method identifies differentially correlated sets of variables, with the property that the average pairwise correlation between variables in a set is higher under one sample condition than the other. DCM is based on an iterative search procedure that adaptively updates the size and elements of a candidate variable set. Updates are performed via hypothesis testing of individual variables, based on the asymptotic distribution of their average differential correlation. We investigate the performance of DCM by applying it to simulated data as well as to recent experimental datasets in genomics and brain imaging.
Collapse
Affiliation(s)
| | - Kai Zhang
- The University of North Carolina at Chapel Hill
| | | |
Collapse
|
16
|
Biduła SP, Przybylski Ł, Pawlak MA, Króliczak G. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals. Front Neurosci 2017; 11:525. [PMID: 28983238 PMCID: PMC5613132 DOI: 10.3389/fnins.2017.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Using functional magnetic resonance imaging (fMRI) in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN), including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation.
Collapse
Affiliation(s)
- Szymon P Biduła
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Łukasz Przybylski
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznań University of Medical SciencesPoznan, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| |
Collapse
|
17
|
Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol 2017; 19:34. [PMID: 28831723 DOI: 10.1007/s11940-017-0469-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. RECENT FINDINGS fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy.
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| |
Collapse
|
18
|
Ivanova A, Zaidel E, Salamon N, Bookheimer S, Uddin LQ, de Bode S. Intrinsic functional organization of putative language networks in the brain following left cerebral hemispherectomy. Brain Struct Funct 2017; 222:3795-3805. [PMID: 28470553 DOI: 10.1007/s00429-017-1434-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
In rare cases of severe and intractable epilepsy, cerebral hemispherectomy is performed to arrest seizure activity and improve quality of life. The remaining hemisphere is often capable of supporting many cognitive functions post-surgery, although the outcome depends on the underlying etiology, hemisphere removed, and age of resection. The mechanisms underlying this massive reorganization are at present unknown. Here we examined intrinsic functional connectivity of putative language brain networks in four children after left cerebral hemispherectomy using resting-state functional magnetic resonance imaging (rsfMRI). We compared these functional systems to intrinsic language networks in 15 neurotypical controls using region-of-interest (ROI)-based functional connectivity analyses. In three out of four hemispherectomy patients, the ROI placed in the right inferior gyrus revealed a functional network that strongly resembled the right-hemisphere intrinsic language network observed in controls. This network typically comprised inferior frontal gyrus, superior temporal sulcus, and premotor regions. Quantitative ROI-to-ROI analyses revealed that functional connectivity between major nodes of the language network was significantly altered in all 4 examined patients. Overall, our data demonstrate that the pattern of functional connectivity within language networks is at least partially preserved in the intact right hemisphere of patients who underwent left hemispherectomy.
Collapse
Affiliation(s)
- Anna Ivanova
- Department of Psychology, University of Miami, P.O. Box 248185, Coral Gables, FL, 33124, USA
| | - Eran Zaidel
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Susan Bookheimer
- Department of Radiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, P.O. Box 248185, Coral Gables, FL, 33124, USA. .,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Stella de Bode
- The Brain Recovery Project, Los Angeles, CA, USA.,CTC Widney, Los Angeles, CA, USA
| |
Collapse
|
19
|
Bulteau C, Jambaqué I, Chiron C, Rodrigo S, Dorfmüller G, Dulac O, Hertz-Pannier L, Noulhiane M. Language plasticity after hemispherotomy of the dominant hemisphere in 3 patients: Implication of non-linguistic networks. Epilepsy Behav 2017; 69:86-94. [PMID: 28236728 DOI: 10.1016/j.yebeh.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
The neural networks involved in language recovery following hemispherotomy of the dominant hemisphere after language acquisition in children remain poorly known. Twelve hemispherotomized children (mean age at surgery: 11.3years) with comparable post-operative neuropsychological patterns underwent multi-task language functional MRI. Three of them had recovered from an initial postoperative aphasia i.e., hemispherotomy was performed on the language-dominant hemisphere. Our main results revealed (1) perisylvian activations in all patients after either left or right hemispherotomy; (2) no differences in activations between groups regarding the side of hemispherotomy; (3) additional activations in pre-frontal (3/3) and hippocampal/parahippocampal and occipito-parietal (2/3) areas, when comparing language activation in each of the three subjects with hemispherotomy of the language-dominant hemisphere to the group of 9 non-dominant hemispherotomized patients. These neural networks support the stronger engagement of learning and memory during language recovery in a hemisphere that was not initially actively subserving language.
Collapse
Affiliation(s)
- Christine Bulteau
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; Rothschild Foundation Hospital, Pediatric Neurosurgery Department, Paris, France.
| | - Isabelle Jambaqué
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; Rothschild Foundation Hospital, Pediatric Neurosurgery Department, Paris, France
| | - Catherine Chiron
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; CEA, I2BM, Neurospin & Orsay, and IFR 49, Saclay, France
| | - Sebastian Rodrigo
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; CEA, I2BM, Neurospin & Orsay, and IFR 49, Saclay, France
| | - Georg Dorfmüller
- Rothschild Foundation Hospital, Pediatric Neurosurgery Department, Paris, France
| | - Olivier Dulac
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France
| | - Lucie Hertz-Pannier
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; CEA, I2BM, Neurospin & Orsay, and IFR 49, Saclay, France
| | - Marion Noulhiane
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity", Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France; CEA, Gif sur Yvette, France; CEA, I2BM, Neurospin & Orsay, and IFR 49, Saclay, France
| |
Collapse
|
20
|
Takaya S, Liu H, Greve DN, Tanaka N, Leveroni C, Cole AJ, Stufflebeam SM. Altered anterior-posterior connectivity through the arcuate fasciculus in temporal lobe epilepsy. Hum Brain Mapp 2016; 37:4425-4438. [PMID: 27452151 DOI: 10.1002/hbm.23319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
How the interactions between cortices through a specific white matter pathway change during cognitive processing in patients with epilepsy remains unclear. Here, we used surface-based structural connectivity analysis to examine the change in structural connectivity with Broca's area/the right Broca's homologue in the lateral temporal and inferior parietal cortices through the arcuate fasciculus (AF) in 17 patients with left temporal lobe epilepsy (TLE) compared with 17 healthy controls. Then, we investigated its functional relevance to the changes in task-related responses and task-modulated functional connectivity with Broca's area/the right Broca's homologue during a semantic classification task of a single word. The structural connectivity through the AF pathway and task-modulated functional connectivity with Broca's area decreased in the left midtemporal cortex. Furthermore, task-related response decreased in the left mid temporal cortex that overlapped with the region showing a decrease in the structural connectivity. In contrast, the region showing an increase in the structural connectivity through the AF overlapped with the regions showing an increase in task-modulated functional connectivity in the left inferior parietal cortex. These structural and functional changes in the overlapping regions were correlated. The results suggest that the change in the structural connectivity through the left frontal-temporal AF pathway underlies the altered functional networks between the frontal and temporal cortices during the language-related processing in patients with left TLE. The left frontal-parietal AF pathway might be employed to connect anterior and posterior brain regions during language processing and compensate for the compromised left frontal-temporal AF pathway. Hum Brain Mapp 37:4425-4438, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigetoshi Takaya
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Douglas N Greve
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Naoaki Tanaka
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Catherine Leveroni
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew J Cole
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Stufflebeam
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Buklina SB, Batalov AI, Fadeeva LM, Smirnov AS, Goryaynov SA, Zhukov VY, Poddubskaya AA, Ogurtsova AA, Kulikov AS, Chumakova AP, Pronin IN, Kornienko VN, Potapov AA. [The structure of activation of the language zone in patients with intracerebral tumors according to fMRI with respect to tumor location and the functional asymmetry profile]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 79:60-68. [PMID: 26529535 DOI: 10.17116/neiro201579360-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MATERIAL AND METHODS A total of 50 patients were examined prior to surgical resection of intracranial tumors of the temporal and frontal lobes. Left-sided tumors were observed in 33 patients and right-sided tumors were observed in 17 patients. The functional asymmetry profile was determined using self-assessment, the Annet questionnaire, and the dichotic listening task. Twelve patients were left-handers or retrained left-handers and the remaining 38 patients were right-handers. FMRI examination was carried out on a 3.0 T SignaHDxt magnetic resonance tomograph (GE). The standard language block design paradigm was used in the study. We used the following tests: 1) recitation of months in reverse order; 2) generation of nouns according to the initial letters shown on the screen (K, M, L, N, P, C); 3) generation of verbs according to simple actions shown on the screen; 4) producing sentences using nouns shown on the screen; 5) listening to text through headphones. Data were processed using the standard BrainWave PA software (General Electric). Z-test was used in the range from 6 to 9. In all the studies, p<0.001. Statistical data processing included the nonparametric Spearman's test to determine the correlation between lateralization of the detected activation zone under speech load and tumor location (tumor is adjacent to the language zone, invades the language zone, or is located far from the language zone), as well as left- or right-handedness. RESULTS Among 16 patients (right-handers and 2 left-handers) the activation of language zones was observed only on the left side; in one left-handed patient, Broca's area was detected only on the right side. In other patients (including right-handers with right-sided tumors), lateralization of language zones was different, including bilateral. Statistical processing revealed that bilateral activation of both Broca's and Wernicke's areas was more frequently observed in left-handers. Broca's area was more frequently detected on the left side in the presence of a distant tumor, while this trend did not apply for Wernicke's area. CONCLUSION Localization of activation of Broca's area is more dependent on tumor location, while it depends on personal characteristics of an individual in the case of Wernicke's area.
Collapse
Affiliation(s)
- S B Buklina
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A S Smirnov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - V Yu Zhukov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A S Kulikov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
22
|
Takaya S, Kuperberg GR, Liu H, Greve DN, Makris N, Stufflebeam SM. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain. Front Neuroanat 2015; 9:119. [PMID: 26441551 PMCID: PMC4569731 DOI: 10.3389/fnana.2015.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023] Open
Abstract
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language.
Collapse
Affiliation(s)
- Shigetoshi Takaya
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Gina R Kuperberg
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA ; Department of Psychology, Tufts University Medford, MA, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Nikos Makris
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA ; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology Cambridge, MA, USA
| |
Collapse
|
23
|
Huertas Hoyas E, Pedrero Pérez EJ, Águila Maturana AM, García López-Alberca S, González Alted C. Functionality predictors in acquired brain damage. Neurologia 2015; 30:339-46. [PMID: 24560472 DOI: 10.1016/j.nrl.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. METHOD Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. RESULTS The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. CONCLUSIONS It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation.
Collapse
Affiliation(s)
- E Huertas Hoyas
- Universidad Rey Juan Carlos, Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Alcorcón, Madrid, España.
| | - E J Pedrero Pérez
- Instituto de Adicciones de Madrid, Ayuntamiento de Madrid, Madrid, España
| | - A M Águila Maturana
- Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Alcorcón, Madrid, España
| | - S García López-Alberca
- Centro de Rehabilitación integral a personas con daño cerebral adquirido, POLIBEA, Madrid, España
| | - C González Alted
- Centro de Referencia Estatal de Atención al Daño Cerebral Adquirido, CEADAC, Madrid, España
| |
Collapse
|
24
|
Huertas Hoyas E, Pedrero Pérez E, Águila Maturana A, García López-Alberca S, González Alted C. Functionality predictors in acquired brain damage. NEUROLOGÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.nrleng.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Veeramuthu V, Narayanan V, Kuo TL, Delano-Wood L, Chinna K, Bondi MW, Waran V, Ganesan D, Ramli N. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J Neurotrauma 2015; 32:1497-509. [PMID: 25952562 PMCID: PMC4589266 DOI: 10.1089/neu.2014.3750] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.
Collapse
Affiliation(s)
- Vigneswaran Veeramuthu
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Tan Li Kuo
- 2 University Malaya Research Imaging Center, University of Malaya , Kuala Lumpur, Malaysia
| | - Lisa Delano-Wood
- 3 VA San Diego Healthcare System , San Diego, California.,4 Department of Psychiatry, University of California San Diego , San Diego, California
| | - Karuthan Chinna
- 5 Julius Center University Malaya, Department of Social and Preventive Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Mark William Bondi
- 3 VA San Diego Healthcare System , San Diego, California.,4 Department of Psychiatry, University of California San Diego , San Diego, California
| | - Vicknes Waran
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Dharmendra Ganesan
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Norlisah Ramli
- 2 University Malaya Research Imaging Center, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Kiran S, Meier EL, Kapse KJ, Glynn PA. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front Hum Neurosci 2015; 9:316. [PMID: 26106314 PMCID: PMC4460429 DOI: 10.3389/fnhum.2015.00316] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
In this study, we examined regions in the left and right hemisphere language network that were altered in terms of the underlying neural activation and effective connectivity subsequent to language rehabilitation. Eight persons with chronic post-stroke aphasia and eight normal controls participated in the current study. Patients received a 10 week semantic feature-based rehabilitation program to improve their skills. Therapy was provided on atypical examples of one trained category while two control categories were monitored; the categories were counterbalanced across patients. In each fMRI session, two experimental tasks were conducted: (a) picture naming and (b) semantic feature verification of trained and untrained categories. Analysis of treatment effect sizes revealed that all patients showed greater improvements on the trained category relative to untrained categories. Results from this study show remarkable patterns of consistency despite the inherent variability in lesion size and activation patterns across patients. Across patients, activation that emerged as a function of rehabilitation on the trained category included bilateral IFG, bilateral SFG, LMFG, and LPCG for picture naming; and bilateral IFG, bilateral MFG, LSFG, and bilateral MTG for semantic feature verification. Analysis of effective connectivity using Dynamic Causal Modeling (DCM) indicated that LIFG was the consistently significantly modulated region after rehabilitation across participants. These results indicate that language networks in patients with aphasia resemble normal language control networks and that this similarity is accentuated by rehabilitation.
Collapse
Affiliation(s)
- Swathi Kiran
- Aphasia Research Laboratory, Speech Language and Hearing Sciences, Sargent College, Boston University Boston MA, USA
| | - Erin L Meier
- Aphasia Research Laboratory, Speech Language and Hearing Sciences, Sargent College, Boston University Boston MA, USA
| | - Kushal J Kapse
- Aphasia Research Laboratory, Speech Language and Hearing Sciences, Sargent College, Boston University Boston MA, USA
| | - Peter A Glynn
- Feinberg School of Medicine, Northwestern University Chicago IL, USA
| |
Collapse
|
27
|
Distinct functional connectivity of the hippocampus during semantic and phonemic fluency. Neuropsychologia 2015; 69:39-49. [PMID: 25619848 DOI: 10.1016/j.neuropsychologia.2015.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/21/2014] [Accepted: 01/21/2015] [Indexed: 01/12/2023]
Abstract
Verbal fluency tasks are typically used in neuropsychological practice for assessment of language function in a variety of neurological disorders. Recently, it has been shown that the hippocampus, a region thought to be exclusive to the domain of memory, is also involved in tests of semantic fluency. The present study further explores hippocampal contribution to verbal fluency using functional Magnetic Resonance Imaging (fMRI) and examining mean activity and inter-regional functional connectivity with known task-related brain regions. Given the clear lateralization of brain areas involved in language, lateralization of hippocampal involvement in semantic and phonemic word fluency was also investigated. Different hippocampal recruitment during semantic and phonemic fluency was found: greater change in activity was seen during semantic fluency, as compared with phonemic fluency. This pattern was obtained in the right and the left hippocampus, with no lateralization effects. Functional connectivity analyses corroborate the notion of selective contribution of the hippocampus to semantic fluency. During the semantic fluency task, connectivity levels between the hippocampi and components of the semantic network did not differ from connectivity levels within the semantic network. In contrast, during the phonemic fluency task, the hippocampi were less correlated with components of the phonemic network, as compared to the within phonemic network connectivity. Importantly, hippocampal connectivity with the semantic network was task-dependent and restricted to periods of semantic fluency performance. Altogether, results suggest that the right and the left hippocampus are integral components of the brain network that selectively supports verbal semantic fluency, but not phonemic fluency.
Collapse
|
28
|
Kristo G, Raemaekers M, Rutten GJ, de Gelder B, Ramsey NF. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery. Cortex 2014; 64:235-48. [PMID: 25500538 DOI: 10.1016/j.cortex.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/26/2014] [Accepted: 11/07/2014] [Indexed: 01/30/2023]
Abstract
Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system.
Collapse
Affiliation(s)
- Gert Kristo
- Department of Medical Psychology and Neuropsychology, University of Tilburg, Tilburg, The Netherlands; Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands; Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs Raemaekers
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert-Jan Rutten
- Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Beatrice de Gelder
- Department of Medical Psychology and Neuropsychology, University of Tilburg, Tilburg, The Netherlands
| | - Nick F Ramsey
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Chaudhary UJ, Duncan JS. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy. Neuroimaging Clin N Am 2014; 24:671-94. [PMID: 25441507 DOI: 10.1016/j.nic.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK; Queen Square Division, UCLH NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
30
|
Oh A, Duerden EG, Pang EW. The role of the insula in speech and language processing. BRAIN AND LANGUAGE 2014; 135:96-103. [PMID: 25016092 PMCID: PMC4885738 DOI: 10.1016/j.bandl.2014.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/24/2014] [Accepted: 06/15/2014] [Indexed: 05/13/2023]
Abstract
Lesion and neuroimaging studies indicate that the insula mediates motor aspects of speech production, specifically, articulatory control. Although it has direct connections to Broca's area, the canonical speech production region, the insula is also broadly connected with other speech and language centres, and may play a role in coordinating higher-order cognitive aspects of speech and language production. The extent of the insula's involvement in speech and language processing was assessed using the Activation Likelihood Estimation (ALE) method. Meta-analyses of 42 fMRI studies with healthy adults were performed, comparing insula activation during performance of language (expressive and receptive) and speech (production and perception) tasks. Both tasks activated bilateral anterior insulae. However, speech perception tasks preferentially activated the left dorsal mid-insula, whereas expressive language tasks activated left ventral mid-insula. Results suggest distinct regions of the mid-insula play different roles in speech and language processing.
Collapse
Affiliation(s)
- Anna Oh
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada
| | - Emma G Duerden
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Canada; Neurology, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
Croall ID, Cowie CJA, He J, Peel A, Wood J, Aribisala BS, Mitchell P, Mendelow AD, Smith FE, Millar D, Kelly T, Blamire AM. White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology 2014; 83:494-501. [PMID: 25031282 DOI: 10.1212/wnl.0000000000000666] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To relate neurophysiologic changes after mild/moderate traumatic brain injury to cognitive deficit in a longitudinal diffusion tensor imaging investigation. METHODS Fifty-three patients were scanned an average of 6 days postinjury (range = 1-14 days). Twenty-three patients were rescanned 1 year later. Thirty-three matched control subjects were recruited. At the time of scanning, participants completed cognitive testing. Tract-Based Spatial Statistics was used to conduct voxel-wise analysis on diffusion changes and to explore regressions between diffusion metrics and cognitive performance. RESULTS Acutely, increased axial diffusivity drove a fractional anisotropy (FA) increase, while decreased radial diffusivity drove a negative regression between FA and Verbal Letter Fluency across widespread white matter regions, but particularly in the ascending fibers of the corpus callosum. Raised FA is hypothesized to be caused by astrogliosis and compaction of axonal neurofilament, which would also affect cognitive functioning. Chronically, FA was decreased, suggesting myelin sheath disintegration, but still regressed negatively with Verbal Letter Fluency in the anterior forceps. CONCLUSIONS Acute mild/moderate traumatic brain injury is characterized by increased tissue FA, which represents a clear neurobiological link between cognitive dysfunction and white matter injury after mild/moderate injury.
Collapse
Affiliation(s)
- Iain D Croall
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK.
| | - Christopher J A Cowie
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Jiabao He
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Anna Peel
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Joshua Wood
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Benjamin S Aribisala
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Patrick Mitchell
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - A David Mendelow
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Fiona E Smith
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - David Millar
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Tom Kelly
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Verbal Fluency in Focal Epilepsy: A Systematic Review and Meta-analysis. Neuropsychol Rev 2014; 24:200-18. [DOI: 10.1007/s11065-014-9255-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
33
|
Kin H, Ishikawa E, Takano S, Ayuzawa S, Matsushita A, Muragaki Y, Aiyama H, Sakamoto N, Yamamoto T, Matsumura A. Language areas involving the inferior temporal cortex on intraoperative mapping in a bilingual patient with glioblastoma. Neurol Med Chir (Tokyo) 2014; 53:256-8. [PMID: 23615419 DOI: 10.2176/nmc.53.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 40-year-old bilingual man underwent removal of glioblastoma multiforme with intraoperative language mapping, mainly using the picture-naming and auditory responsive-naming tasks under cortical stimulation. Multiple language areas were identified, including one located in the middle of the inferior temporal cortex (ITC). Individual mapping for glioma patients must be performed because language areas might be located in various and unexpected regions, including the ITC.
Collapse
Affiliation(s)
- Hidehiro Kin
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Craig ADB. Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J Comp Neurol 2014; 522:36-63. [PMID: 23853108 PMCID: PMC4145874 DOI: 10.1002/cne.23425] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/15/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spinothalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig [2004] J. Comp. Neurol. 477:119-148). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise microinjections of various tracers in VMpo. A prior report (Craig and Zhang [2006] J. Comp. Neurol. 499:953-964) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the anteroposterior (head to foot) topography. The present report describes the results of microinjections of anterograde tracers placed at different levels in VMpo, based on the anteroposterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent anteroposterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus.
Collapse
Affiliation(s)
- A D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona, 85013
| |
Collapse
|
35
|
Shapira-Lichter I, Vakil E, Litinsky I, Oren N, Glikmann-Johnston Y, Caspi D, Hendler T, Paran D. Learning and memory-related brain activity dynamics are altered in systemic lupus erythematosus: a functional magnetic resonance imaging study. Lupus 2013; 22:562-73. [DOI: 10.1177/0961203313480399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Memory impairment is prevalent in systemic lupus erythematosus (SLE); however, the pathogenesis is unknown. Methods We studied 12 patients with SLE without clinically overt neuropsychiatric manifestations and 11 matched healthy controls, aiming to characterize neural correlates of memory impairment, using structural and functional magnetic resonance imaging (MRI). The paradigm consisted of three encoding and free-recall cycles, allowing characterization of dynamics along consecutive retrieval attempts. Results During learning, patients with SLE and healthy controls showed brain activity changes in two principal networks, the default mode network (DMN) and the task-positive network (TPN). Patients with SLE demonstrated significantly less deactivation in the DMN and greater activation in the TPN, reflecting greater recruitment of both networks. The anterior medial prefrontal cortex (amPFC) of the DMN emerged as the only region where brain activity dynamics were altered both over the learning process ( p < 0.006), and within free-recall period attempts ( p < 0.034). Patients showed significant positive correlations between learning efficiency and hippocampal activity, and greater hippocampal functional connectivity, with pronounced connectivity to DMN structures. Conclusions Increased brain activation in patients with SLE during learning may reflect compensatory mechanisms to overcome memory impairment. Our findings localize this impairment to the amPFC, consistent with the behavioral pattern seen in SLE. Altered networking of the hippocampal subsystem of the DMN is consistent with hippocampal neuronal damage seen in SLE, and may reflect compensatory cortical reorganization to cope with dysfunction in these regions pivotal to mnemonic functions.
Collapse
Affiliation(s)
- Irit Shapira-Lichter
- Functional Brain Center, Wohl Institute for Advanced Imaging
- Functional Neurosurgery Unit and the
| | - Eli Vakil
- Department of Psychology and Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Israel
| | - Ira Litinsky
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Israel
- Faculty of Medicine
| | - Noga Oren
- Functional Brain Center, Wohl Institute for Advanced Imaging
- Faculty of Medicine
| | - Yifat Glikmann-Johnston
- Functional Brain Center, Wohl Institute for Advanced Imaging
- School of Psychological Sciences
| | - Dan Caspi
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Israel
- Faculty of Medicine
| | - Talma Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging
- Faculty of Medicine
- School of Psychological Sciences
- Sagol School of Neuroscience; Tel-Aviv University, Israel
| | - Daphna Paran
- Department of Rheumatology, Tel-Aviv Sourasky Medical Center, Israel
- Faculty of Medicine
| |
Collapse
|
36
|
Wang L, Chen D, Yang X, Olson JJ, Gopinath K, Fan T, Mao H. Group independent component analysis and functional MRI examination of changes in language areas associated with brain tumors at different locations. PLoS One 2013; 8:e59657. [PMID: 23555736 PMCID: PMC3608667 DOI: 10.1371/journal.pone.0059657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/19/2013] [Indexed: 01/07/2023] Open
Abstract
Object This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA). Subjects and Methods BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group. Results The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca’s and Wernicke’s areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca’s and Wernicke’s areas, while tumors in the left temporal lobe affect mainly Wernicke’s area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors. Conclusion Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.
Collapse
Affiliation(s)
- Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Radiology, Baoan Hospital, Shenzhen, Guangdong, China
| | - Dandan Chen
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| | - Xiaofeng Yang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeffrey J. Olson
- Department of Neurosurgery, Emory University School of Medicine, Georgia, United States of America
| | - Kaundinya Gopinath
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tianning Fan
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Danelli L, Cossu G, Berlingeri M, Bottini G, Sberna M, Paulesu E. Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy. Neurocase 2013; 19:209-31. [PMID: 22519521 DOI: 10.1080/13554794.2011.654226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We studied the linguistic profile and neurolinguistic organization of a 14-year-old adolescent (EB) who underwent a left hemispherectomy at the age of 2.5 years. After initial aphasia, his language skills recovered within 2 years, with the exception of some word finding problems. Over the years, the neuropsychological assessments showed that EB's language was near-to-normal, with the exception of lexical competence, which lagged slightly behind for both auditory and written language. Moreover, EB's accuracy and speed in both reading and writing words and non-words were within the normal range, whereas difficulties emerged in reading loan words and in tasks with homophones. EB's functional magnetic resonance imaging (fMRI) patterns for several linguistic and metalinguistic tasks were similar to those observed in the dominant hemisphere of controls, suggesting that his language network conforms to a left-like linguistic neural blueprint. However, a stronger frontal recruitment suggests that linguistic tasks are more demanding for him. Finally, no specific reading activation was found in EB's occipitotemporal region, a finding consistent with the surface dyslexia-like behavioral pattern of the patient. While a lone right hemisphere may not be sufficient to guarantee full blown linguistic competences after early hemispherectomy, EB's behavioral and fMRI patterns suggest that his lone right hemisphere followed a left-like blueprint of the linguistic network.
Collapse
Affiliation(s)
- Laura Danelli
- Psychology Department, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Tivarus ME, Starling SJ, Newport EL, Langfitt JT. Homotopic language reorganization in the right hemisphere after early left hemisphere injury. BRAIN AND LANGUAGE 2012; 123:1-10. [PMID: 22835489 PMCID: PMC3443966 DOI: 10.1016/j.bandl.2012.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/11/2012] [Accepted: 06/23/2012] [Indexed: 05/27/2023]
Abstract
To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy controls. Patient groups were carefully matched for IQ, lesion location and size. RH patients' activation across all tasks was greatest in right hemisphere areas homotopic to areas activated by LH and control participants. Differences in right vs. left dominant hemisphere activation were limited to homologous areas typically activated by language tasks, supporting the hypothesis that language localization following transfer to the RH is the mirror-image of localization in the absence of transfer. The similarity of these findings to those in patients with larger, peri-sylvian lesions suggests that these areas in both hemispheres may be uniquely predisposed to subserve various language functions.
Collapse
Affiliation(s)
- Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester, 110 Science Parkway, Rochester NY 14620, USA
- Rochester Center for Brain Imaging, University of Rochester, 430 Elmwood Ave., Medical Center Annex, Rochester, NY 14620, USA
| | - Sarah J. Starling
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Box 270268, Rochester, NY 14627, USA
| | - Elissa L. Newport
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Box 270268, Rochester, NY 14627, USA
| | - John T. Langfitt
- Department of Neurology, University of Rochester, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA
- Department of Psychiatry, University of Rochester, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Nelson BD, Sarapas C, Robison-Andrew EJ, Altman SE, Campbell ML, Shankman SA. Frontal brain asymmetry in depression with comorbid anxiety: a neuropsychological investigation. JOURNAL OF ABNORMAL PSYCHOLOGY 2012; 121:579-91. [PMID: 22428788 DOI: 10.1037/a0027587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The approach-withdrawal model posits that depression and anxiety are associated with a relative right asymmetry in frontal brain activity. Most studies have tested this model using measures of cortical brain activity such as electroencephalography. However, neuropsychological tasks that differentially use left versus right frontal cortical regions can also be used to test hypotheses from the model. In two independent samples (Study 1 and 2), the present study investigated the performance of currently depressed individuals with or without a comorbid anxiety disorder and healthy controls on neuropsychological tasks tapping primarily left (verbal fluency) or right (design fluency) frontal brain regions. Across both samples, results indicated that comorbid participants performed more poorly than depressed only and control participants on design fluency, while all groups showed equivalent performance on verbal fluency. Moreover, comorbid participants showed "asymmetrical" performance on these two tasks (i.e., poorer design [right frontal] relative to verbal [left frontal] fluency), whereas depressed only and control participants showed approximately symmetrical profiles of performance. Results from these two samples suggest an abnormal frontal asymmetry in neurocognitive performance driven primarily by right frontal dysfunction among anxious-depressed individuals and highlight the importance of considering comorbid anxiety when examining frontal brain functioning in depression.
Collapse
Affiliation(s)
- Brady D Nelson
- Department of Psychology, University of Illinois-Chicago, (M/C 285), 1007 West Harrison Street, Room 1062D, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
40
|
Elkana O, Frost R, Kramer U, Ben-Bashat D, Schweiger A. Cerebral language reorganization in the chronic stage of recovery: a longitudinal fMRI study. Cortex 2011; 49:71-81. [PMID: 21983479 DOI: 10.1016/j.cortex.2011.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 05/14/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022]
Abstract
The goal of the present study was to investigate whether spontaneous functional recovery following insult to the language-dominant hemisphere continues in the so-called "chronic stage," and if so, to examine its neuro-functional correlates. We used a longitudinal functional magnetic resonance imaging (fMRI) block design, where each young patient served as his/her own control. Specifically, we examined whether language functions differed significantly in two monitoring sessions conducted years apart, both in the chronic stage, where almost no functional changes are expected. We focused on a unique cohort of young brain damaged patients with aphasiogenic lesions occurring after normal language acquisition, in order to maximize the potential of plasticity for language reorganization following brain damage. The most striking finding was that the linguistic recovery of our patients was significant not just relative to their linguistic scores on initial testing (T1), but also in absolute terms, relative to the respective age-matched normal population. Such improvement, therefore, cannot be simply attributed to the natural process of development. Overall, we found that right hemisphere (RH) activation was associated with better recovery in the chronic stage. Our longitudinal findings may challenge the view of recovery as ending within the first year following onset, suggesting that the RH may provide the substrate for ongoing plasticity in the damaged brain.
Collapse
Affiliation(s)
- Odelia Elkana
- Psychology Department, Hebrew University, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
41
|
Bick AS, Mayer A, Levin N. From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci 2011; 312:158-65. [PMID: 21864850 DOI: 10.1016/j.jns.2011.07.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/16/2011] [Accepted: 07/22/2011] [Indexed: 01/23/2023]
Abstract
In the last two decades functional magnetic resonance imaging (fMRI) has dominated research in neuroscience. However, only recently has it taken the first steps in translation to the clinical field. In this paper we describe the advantages of fMRI and DTI and the possible benefits of implementing these methods in clinical practice. We review the current clinical usages of fMRI and DTI and discuss the challenges and difficulties of translating these methods to clinical use. The most common application today is in neurosurgery. fMRI and DTI are done preoperatively for brain tumor patients who are having tumors removed and for epilepsy patients who are candidates for temporal resection. Imaging results supply the neurosurgeon with essential information regarding possible functional damage and thereby aid both in planning and performing surgery. Scientific research suggests more promising potential implementations of fMRI and DTI in improving diagnosis and rehabilitation. These advanced imaging methods can be used for pre-symptomatic diagnosis, as a differentiating biomarker in the absence of anatomical measurements, and for identification of mental response in the absence of motor-sensory abilities. These methods can aid and direct rehabilitation by predicting the success of possible interventions and rehabilitation options and by supplying a measure for biofeedback. This review opens a window to the state of the art neuroimaging methods being implemented these days into the clinical practice and provides a glance to the future clinical possibilities of fMRI and DTI.
Collapse
Affiliation(s)
- Atira S Bick
- fMRI Lab, Neurology Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
42
|
You X, Adjouadi M, Guillen MR, Ayala M, Barreto A, Rishe N, Sullivan J, Dlugos D, Vanmeter J, Morris D, Donner E, Bjornson B, Smith ML, Bernal B, Berl M, Gaillard WD. Sub-patterns of language network reorganization in pediatric localization related epilepsy: a multisite study. Hum Brain Mapp 2011; 32:784-99. [PMID: 21484949 DOI: 10.1002/hbm.21066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To study the neural networks reorganization in pediatric epilepsy, a consortium of imaging centers was established to collect functional imaging data. Common paradigms and similar acquisition parameters were used. We studied 122 children (64 control and 58 LRE patients) across five sites using EPI BOLD fMRI and an auditory description decision task. After normalization to the MNI atlas, activation maps generated by FSL were separated into three sub-groups using a distance method in the principal component analysis (PCA)-based decisional space. Three activation patterns were identified: (1) the typical distributed network expected for task in left inferior frontal gyrus (Broca's) and along left superior temporal gyrus (Wernicke's) (60 controls, 35 patients); (2) a variant left dominant pattern with greater activation in IFG, mesial left frontal lobe, and right cerebellum (three controls, 15 patients); and (3) activation in the right counterparts of the first pattern in Broca's area (one control, eight patients). Patients were over represented in Groups 2 and 3 (P < 0.0004). There were no scanner (P = 0.4) or site effects (P = 0.6). Our data-driven method for fMRI activation pattern separation is independent of a priori notions and bias inherent in region of interest and visual analyses. In addition to the anticipated atypical right dominant activation pattern, a sub-pattern was identified that involved intensity and extent differences of activation within the distributed left hemisphere language processing network. These findings suggest a different, perhaps less efficient, cognitive strategy for LRE group to perform the task.
Collapse
Affiliation(s)
- Xiaozhen You
- College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, Miami, FL 33174, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hsin YL, Chuang MF, Shen TW, Harnod T. Temporo-spatial analyses define epileptogenic and functional zones in a case of Dyke-Davidoff-Masson syndrome. Seizure 2011; 20:713-6. [PMID: 21764333 DOI: 10.1016/j.seizure.2011.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 11/16/2022] Open
Abstract
Dyke-Davidoff-Masson syndrome (DDMS) is a rare epilepsy syndrome that is characterized by cerebral hemiatrophy, homolateral skull hyperplasia, hyperpneumatization of the paranasal sinuses, seizures with or without mental retardation, and contralateral hemiparesis. We describe a case of DDMS in a 40-year-old female who had complex partial seizures with occasional secondary generalization since the age of 4 years. Her seizure frequency was 10-20 seizures/month even though she took four antiepileptic drugs. We applied magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI, and invasive electroencephalography (EEG) to define her epileptogenic and functional zones. Brain MRI showed prominent atrophy in the left frontal dorsal and lateral regions and mild atrophy of the left superior temporal gyrus and left parietal gyri. Interictal PET revealed decreased glucose metabolism in the atrophic regions. Functional MRI demonstrated that the inferior frontal and inferior parieto-occipital regions of the right hemisphere were activated by language testing. Invasive EEG revealed that the left lateral temporal lobe was the sole source of her seizures. Our results imply that the "metabolic border zone" rather than the atrophic region plays an important role in seizure activity, and that reorganization of functional zones occur after cerebral damage early in life.
Collapse
Affiliation(s)
- Y L Hsin
- Department of Neurology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | |
Collapse
|
44
|
de Guibert C, Maumet C, Jannin P, Ferré JC, Tréguier C, Barillot C, Le Rumeur E, Allaire C, Biraben A. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia). ACTA ACUST UNITED AC 2011; 134:3044-58. [PMID: 21719430 DOI: 10.1093/brain/awr141] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n = 21), to a matched group of typically developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs paediatric template, groups and between-groups analysis, and laterality indices assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus and superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke's area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas.
Collapse
|
45
|
Cui Z, Luan G. A venous malformation accompanying focal cortical dysplasia resulting in a reorganization of language-eloquent areas. J Clin Neurosci 2011; 18:404-6. [DOI: 10.1016/j.jocn.2010.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 10/18/2022]
|
46
|
NI CB, LU GM, ZHANG ZQ, WANG ZQ, XU XD, ZHANG ZY. Brain Areas Activated and Cognitive Approaches Adopted in L2 Phonological Process. ACTA PSYCHOLOGICA SINICA 2011. [DOI: 10.3724/sp.j.1041.2010.01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Berthier ML, Dávila G, García-Casares N, Green C, Juárez R, Ruiz-Cruces R, Pablo Lara J, Barbancho MA. Atypical conduction aphasia and the right hemisphere: Cross-hemispheric plasticity of phonology in a developmentally dyslexic and dysgraphic patient with early left frontal damage. Neurocase 2011; 17:93-111. [PMID: 20818576 DOI: 10.1080/13554794.2010.498380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report the rare case of a patient, JNR, with history of mixed handedness, developmental dyslexia, dysgraphia, and attentional deficits associated with a Klippel-Trenaunay syndrome and a small subcortical frontal lesion involving the left arcuate fasciculus. In adulthood, he suffered a large right perisylvian stroke and developed atypical conduction aphasia with deficits in input and output phonological processing and poor auditory-verbal short-term memory. Lexical-semantic processing for single words was intact, but he was unable to access meaning in sentence comprehension and repetition. Reading and writing deficits worsened after the stroke and he presented a combination of developmental and acquired dysgraphia and dyslexia with mixed lexical and phonological processing deficits. This case suggest that a small lesion sustained prenatally or early in life could induce a selective rightward shift of phonology sparing the standard left hemisphere lateralisation of lexical-semantic functions.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Centro de Investigaciones Médico-Sanitarias (CIMES), C/Marques de Beccaria 3, Málaga, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wilke M, Pieper T, Lindner K, Dushe T, Staudt M, Grodd W, Holthausen H, Krägeloh-Mann I. Clinical functional MRI of the language domain in children with epilepsy. Hum Brain Mapp 2010; 32:1882-93. [PMID: 21181799 DOI: 10.1002/hbm.21156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/30/2010] [Accepted: 08/03/2010] [Indexed: 11/05/2022] Open
Abstract
Functional MRI (fMRI) for the assessment of language functions is increasingly used in the diagnostic workup of patients with epilepsy. Termed "clinical fMRI," such an approach is also feasible in children who may display specific patterns of language reorganization. This study was aimed at assessing language reorganization in pediatric epilepsy patients, using fMRI. We studied 26 pediatric epilepsy patients (median age, 13.05 years; range, 5.6-18.7 years) and 23 healthy control children (median age, 9.37 years; range, 6.2-15.4 years), using two child-friendly fMRI tasks and adapted data-processing streams. Overall, 81 functional series could be analyzed. Reorganization seemed to occur primarily in homotopic regions in the contralateral hemisphere, but lateralization in the frontal as well as in the temporal lobes was significantly different between patients and controls. The likelihood to find atypical language organization was significantly higher in patients. Additionally, we found significantly stronger activation in the healthy controls in a primarily passive task, suggesting a systematic confounding influence of antiepileptic medication. The presence of a focal cortical dysplasia was significantly associated with atypical language lateralization. We conclude that important confounds need to be considered and that the pattern of language reorganization may be distinct from the patterns seen in later-onset epilepsy.
Collapse
Affiliation(s)
- Marko Wilke
- Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstracts. Neuroradiol J 2010. [DOI: 10.1177/19714009100230s111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Tyler LK, Wright P, Randall B, Marslen-Wilson WD, Stamatakis EA. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function? Brain 2010; 133:3396-408. [PMID: 20870779 PMCID: PMC2965424 DOI: 10.1093/brain/awq262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.
Collapse
Affiliation(s)
- Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | | | | | |
Collapse
|