1
|
Laurell AAS, Mak E, O'Brien JT. A systematic review of diffusion tensor imaging and tractography in dementia with Lewy bodies and Parkinson's disease dementia. Neurosci Biobehav Rev 2025; 169:106007. [PMID: 39793681 DOI: 10.1016/j.neubiorev.2025.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
We reviewed studies using diffusion tensor imaging (DTI) and tractography to characterise white matter changes in Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD). The search included MEDLINE and EMBASE, and we used a narrative strategy to synthesise the evidence. Data was extracted from 57 studies, of which the majority were considered 'good quality'. Subjects with DLB and PDD had widespread white matter changes compared to healthy controls and Parkinson's disease without cognitive impairment, with a relative sparing of the hippocampus. Compared to subjects with Alzheimer's disease (AD), DLB had greater changes in thalamic connectivity and in the nigroputaminal tract, while AD had greater changes in the parahippocampal white matter and fornix. Cognition was associated with widespread white matter changes, visual hallucinations with thalamic and cholinergic connectivity, and parkinsonism with changes in structures involved in motor control. DTI and tractography may therefore be well suited for discriminating DLB and PDD from other types of dementia, and for studying the aetiology of common symptoms.
Collapse
Affiliation(s)
- Axel A S Laurell
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom.
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
2
|
Gabriel V, Bousiges O, Mondino M, Cretin B, Philippi N, Muller C, Anthony P, Demuynck C, de Sousa PL, Botzung A, Sanna L, Chabran E, Blanc F. Aβ42 biomarker linked to insula, striatum, thalamus and claustrum in dementia with Lewy bodies. GeroScience 2025:10.1007/s11357-025-01513-z. [PMID: 39821801 DOI: 10.1007/s11357-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The differential mechanisms between proteinopathies and neurodegeneration in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remain unclear. To address this issue, we conducted a voxel-based morphometry and cerebrospinal fluid biomarker (α-synuclein, Aβ42, t-Tau and p-Tau181) level correlation study in patients with DLB, AD and mixed cases (AD + DLB). Cerebrospinal fluid samples obtained by lumbar puncture and whole-brain T1-weighted images were collected in the AlphaLewyMA cohort. Within the cohort, 65 DLB patients, 18 AD patients, 24 AD + DLB patients and 16 neurological control subjects (NC) were clinically diagnosed. Correlation analyses were performed between cerebrospinal fluid biomarker levels and gray matter volumes using a voxel-based morphometry approach. A mediation analysis was performed to explore the role of gray matter volumes in the relationship between Aβ42 levels and clinical severity (MMSE scores). We observed a significant positive correlation between gray matter volumes and cerebrospinal fluid Aβ42 levels in the insula, the striatal regions, the right thalamus, and the claustrum in DLB patients (pFDR < 0.05). Mediation analysis revealed that gray matter volumes significantly mediated the relationship between Aβ42 levels and MMSE scores in DLB patients. We found no significant correlation with gray matter volumes for α-synuclein, p-Tau181 or t-Tau in DLB patients (pFDR < 0.05). We found no significant correlations in the AD, AD + DLB and NC groups for any of the biomarkers (pFDR < 0.05). The specific correlation between a reduced cerebrospinal fluid Aβ42 level and lower gray matter volumes in insula, striatum, thalamus, and claustrum in DLB patients suggests a prominent role for amyloidopathy in promoting brain atrophy in key regions of the disease.
Collapse
Affiliation(s)
- Vincent Gabriel
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France.
| | - Olivier Bousiges
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
- CM2R, Geriatric Day Hospital, Geriatrics Division, Civil Hospitals of Colmar, Colmar, France
| | - Catherine Demuynck
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Léa Sanna
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Eléna Chabran
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Olney KC, Rabichow BE, Wojtas AM, DeTure M, McLean PJ, Dickson DW, Chang R, Ross OA, Fryer JD. Distinct transcriptional alterations distinguish Lewy body disease from Alzheimer's disease. Brain 2025; 148:69-88. [PMID: 38916996 PMCID: PMC11706328 DOI: 10.1093/brain/awae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Lewy body dementia and Alzheimer's disease (AD) are leading causes of cognitive impairment, characterized by distinct but overlapping neuropathological hallmarks. Lewy body disease (LBD) is characterized by α-synuclein aggregates in the form of Lewy bodies as well as the deposition of extracellular amyloid plaques, with many cases also exhibiting neurofibrillary tangle (NFT) pathology. In contrast, AD is characterized by amyloid plaques and neurofibrillary tangles. Both conditions often co-occur with additional neuropathological changes, such as vascular disease and TDP-43 pathology. To elucidate shared and distinct molecular signatures underlying these mixed neuropathologies, we extensively analysed transcriptional changes in the anterior cingulate cortex, a brain region critically involved in cognitive processes. We performed bulk tissue RNA sequencing from the anterior cingulate cortex and determined differentially expressed genes (q-value <0.05) in control (n = 81), LBD (n = 436), AD (n = 53) and pathological amyloid cases consisting of amyloid pathology with minimal or no tau pathology (n = 39). We used gene set enrichment and weighted gene correlation network analysis to understand the pathways associated with each neuropathologically defined group. LBD cases had strong upregulation of inflammatory pathways and downregulation of metabolic pathways. The LBD cases were further subdivided into either high Thal amyloid, Braak NFT, or low pathological burden cohorts. Compared to the control cases, the LBD cohorts consistently showed upregulation for genes involved in protein folding and cytokine immune response, as well as downregulation of fatty acid metabolism. Surprisingly, concomitant tau pathology within the LBD cases resulted in no additional changes. Some core inflammatory pathways were shared between AD and LBD but with numerous disease-specific changes. Direct comparison of LBD cohorts versus AD cases revealed strong enrichment of synaptic signalling, behaviour and neuronal system pathways. Females had a stronger response overall in both LBD and AD, with several sex-specific changes. Overall, the results identify genes commonly and uniquely dysregulated in neuropathologically defined LBD and AD cases, shedding light on shared and distinct molecular pathways. Additionally, the study underscores the importance of considering sex-specific changes in understanding the complex transcriptional landscape of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Benjamin E Rabichow
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
- Program in Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Aleksandra M Wojtas
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
- Program in Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rui Chang
- Department of Neurology, University of Arizona, Tucson, AZ 85724, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
- Program in Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
4
|
Zhao G, Zhang H, Xu Y, Chu X. Research on magnetic resonance imaging in diagnosis of Alzheimer's disease. Eur J Med Res 2024; 29:632. [PMID: 39734227 DOI: 10.1186/s40001-024-02172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/23/2024] [Indexed: 12/31/2024] Open
Abstract
As a common disease in the elderly, the diagnosis of Alzheimer's disease (AD) is of great significance to the treatment and prognosis of the patients. Studies have found that magnetic resonance imaging plays an important role in the early diagnosis of Alzheimer's disease. This article tries to review the application of magnetic resonance imaging in the diagnosis and differential diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Guohua Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Haixia Zhang
- Department of Hyperbaric Oxygen, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Xiuli Chu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wisse LEM, Spotorno N, Rossi M, Grothe MJ, Mammana A, Tideman P, Baiardi S, Strandberg O, Ticca A, van Westen D, Mattsson-Carlgren N, Palmqvist S, Stomrud E, Parchi P, Hansson O. MRI Signature of α-Synuclein Pathology in Asymptomatic Stages and a Memory Clinic Population. JAMA Neurol 2024; 81:1051-1059. [PMID: 39068668 PMCID: PMC11284633 DOI: 10.1001/jamaneurol.2024.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
Importance The lack of an in vivo measure for α-synuclein (α-syn) pathology until recently has limited thorough characterization of its brain atrophy pattern, especially during early disease stages. Objective To assess the association of state-of-the-art cerebrospinal fluid (CSF) seed amplification assays (SAA) α-syn positivity (SAA α-syn+) with magnetic resonance imaging (MRI) structural measures, across the continuum from clinically unimpaired (CU) to cognitively impaired (CI) individuals, in 3 independent cohorts, and separately in CU and CI individuals, the latter reflecting a memory clinic population. Design, Setting, and Participants Cross-sectional data were used from the Swedish BioFINDER-2 study (inclusion, 2017-2023) as the discovery cohort and the Swedish BioFINDER-1 study (inclusion, 2007-2015) and Alzheimer's Disease Neuroimaging Initiative (ADNI; inclusion 2005-2022) as replication cohorts. All cohorts are from multicenter studies, but the BioFINDER cohorts used 1 MRI scanner. CU and CI individuals fulfilling inclusion criteria and without missing data points in relevant metrics were included in the study. All analyses were performed from 2023 to 2024. Exposures Presence of α-syn pathology, estimated by baseline CSF SAA α-syn. Main Outcomes and Measures The primary outcomes were cross-sectional structural MRI measures either through voxel-based morphometry (VBM) or regions of interest (ROI) including an automated pipeline for cholinergic basal forebrain nuclei CH4/4p (nucleus basalis of Meynert [NBM]) and CH1/2/3. Secondary outcomes were domain-specific cross-sectional cognitive measures. Analyses were adjusted for CSF biomarkers of Alzheimer pathology. Results A total of 2961 participants were included in this study: 1388 (mean [SD] age, 71 [10] years; 702 female [51%]) from the BioFINDER-2 study, 752 (mean [SD] age, 72 [6] years; 406 female [54%]) from the BioFINDER-1 study, and 821 (mean [SD] age, 75 [8] years; 449 male [55%]) from ADNI. In the BioFINDER-2 study, VBM analyses in the whole cohort revealed a specific association between SAA α-syn+ and the cholinergic NBM, even when adjusting for Alzheimer copathology. ROI-based analyses in the BioFINDER-2 study focused on regions involved in the cholinergic system and confirmed that SAA α-syn+ was indeed independently associated with smaller NBM (β = -0.271; 95% CI, -0.399 to -0.142; P <.001) and CH1/2/3 volumes (β = -0.227; 95% CI, -0.377 to -0.076; P =.02). SAA α-syn+ was also independently associated with smaller NBM volumes in the separate CU (β = -0.360; 95% CI, -0.603 to -0.117; P =.03) and CI (β = -0.251; 95% CI, -0.408 to -0.095; P =.02) groups. Overall, the association between SAA α-syn+ and NBM volume was replicated in the BioFINDER-1 study and ADNI cohort. In CI individuals, NBM volumes partially mediated the association of SAA α-syn+ with attention/executive impairments in all cohorts (BioFINDER-2, β = -0.017; proportion-mediated effect, 7%; P =.04; BioFINDER-1, β = -0.096; proportion-mediated effect, 19%; P =.04; ADNI, β = -0.061; proportion-mediated effect, 20%; P =.007). Conclusions and Relevance In this cohort study, SAA α-syn+ was consistently associated with NBM atrophy already during asymptomatic stages. Further, in memory clinic CI populations, SAA α-syn+ was associated with NBM atrophy, which partially mediated α-syn-induced attention/executive impairment.
Collapse
Affiliation(s)
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michel J. Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
- Image and Function, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Chadani Y, Fujito R, Kimura N, Kawai R, Kashibayashi T, Takahashi R, Kanemoto H, Ishii K, Tagai K, Shinagawa S, Ikeda M, Kazui H. Neural basis of false recognition in Alzheimer's disease and dementia with lewy bodies. Sci Rep 2024; 14:21290. [PMID: 39266605 PMCID: PMC11392955 DOI: 10.1038/s41598-024-71440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
In Alzheimer's disease (AD), reports on the association between false recognition and brain structure have been inconsistent. In dementia with Lewy bodies (DLB), no such association has been reported. This study aimed to identify brain regions associated with false recognition in AD and DLB by analyzing regional gray matter volume (rGMV). We included 184 patients with AD and 60 patients with DLB. The number of false recognitions was assessed using the Alzheimer's Disease Assessment Scale' word recognition task. Brain regions associated with the number of false recognitions were examined by voxel-based morphometry analysis. The number of false recognitions significantly negatively correlated with rGMV in the bilateral hippocampus, left parahippocampal gyrus, bilateral amygdala, and bilateral entorhinal cortex in patients with AD (p < 0.05, family-wise error [FEW] corrected) and in the bilateral hippocampus, left parahippocampal gyrus, right inferior frontal gyrus, right middle frontal gyrus, right basal forebrain, right insula, left medial and lateral orbital gyri, and left fusiform in those with DLB (p < 0.05, FWE corrected). Bilateral hippocampus and left parahippocampal gyrus were associated with false recognition in both diseases. However, we found there were regions where the association between false recognition and rGMV differed from disease to disease.
Collapse
Affiliation(s)
- Yoshihiro Chadani
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Ryoko Fujito
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Naohiro Kimura
- Graduate School of Integrated Arts and Sciences, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
- Department of Rehabilitation, Atago Hospital Branch, 6012-1, Nagahama, Kochi City, Kochi, 781-0270, Japan
| | - Ryo Kawai
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Tetsuo Kashibayashi
- Dementia-related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1, Kouto, Shingu-cho, Tatsuno City, Hyogo, 679-5165, Japan
| | - Ryuichi Takahashi
- Dementia-related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1, Kouto, Shingu-cho, Tatsuno City, Hyogo, 679-5165, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Health and Counseling Center, Osaka University, 1-17, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazunari Ishii
- Department of Radiology, Kindai University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Kenji Tagai
- Department of Psychiatry, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Shunichiro Shinagawa
- Department of Psychiatry, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|
8
|
Devenyi RA, Hamedani AG. Visual dysfunction in dementia with Lewy bodies. Curr Neurol Neurosci Rep 2024; 24:273-284. [PMID: 38907811 PMCID: PMC11258179 DOI: 10.1007/s11910-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE OF REVIEW To review the literature on visual dysfunction in dementia with Lewy bodies (DLB), including its mechanisms and clinical implications. RECENT FINDINGS Recent studies have explored novel aspects of visual dysfunction in DLB, including visual texture agnosia, mental rotation of 3-dimensional drawn objects, and reading fragmented letters. Recent studies have shown parietal and occipital hypoperfusion correlating with impaired visuoconstruction performance. While visual dysfunction in clinically manifest DLB is well recognized, recent work has focused on prodromal or mild cognitive impairment (MCI) due to Lewy body pathology with mixed results. Advances in retinal imaging have recently led to the identification of abnormalities such as parafoveal thinning in DLB. Patients with DLB experience impairment in color perception, form and object identification, space and motion perception, visuoconstruction tasks, and illusions in association with visual cortex and network dysfunction. These symptoms are associated with visual hallucinations, driving impairment, falls, and other negative outcomes.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Liao K, Lou Q. Alzheimer's disease increases the risk of erectile dysfunction independent of cardiovascular diseases: A mendelian randomization study. PLoS One 2024; 19:e0303338. [PMID: 38870203 PMCID: PMC11175418 DOI: 10.1371/journal.pone.0303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Previous research has underscored the correlation between Alzheimer's disease (AD) and erectile dysfunction (ED). However, due to inherent limitations of observational studies, the causative relationship remains inconclusive. METHODS Utilizing publicly available data from genome-wide association studies (GWAS) summary statistics, this study probed the potential causal association between AD and ED using univariate Mendelian randomization (MR). Further, the multivariable MR assessed the confounding effects of six cardiovascular diseases (CVDs). The primary approach employed was inverse variance weighted (IVW), supplemented by three additional methods. A series of sensitivity analyses were conducted to ensure the robustness of the results. RESULTS In the forward MR analysis, the IVW method revealed causal evidence of genetically predicted AD being a risk factor for ED (OR = 1.077, 95% CI 1.007∼1.152, P = 0.031). Reverse analysis did not demonstrate any causal evidence linking ED to AD (OR = 1.018, 95% CI 0.974∼1.063, P = 0.430). Multivariable MR analysis showed that after adjusting for coronary heart disease (OR = 1.082, 95% CI 0.009∼1.160, P = 0.027), myocardial infarction (OR = 1.085, 95% CI 1.012∼1.163, P = 0.022), atrial fibrillation (OR = 1.076, 95% CI 1.002∼1.154, P = 0.043), heart failure (OR = 1.103, 95% CI 1.024∼1.188, P = 0.010), ischemic stroke (OR = 1.079, 95% CI 1.009∼1.154, P = 0.027), hypertension (OR = 1.092, 95% CI 1.011∼1.180, P = 0.025), and all models (OR = 1.115, 95% CI 1.024∼1.214, P = 0.012), the causal association between AD and ED persisted. Sensitivity analyses confirmed the absence of pleiotropy, heterogeneity, and outliers, validating the robustness of our results (P > 0.05). CONCLUSIONS This MR study consistently evidences a causal effect of genetically predicted AD on the risk of ED, independent of certain CVDs, yet offers no evidence for a reverse effect from ED.
Collapse
Affiliation(s)
- Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiang Lou
- Department of Andrology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Phan TX, Baratono S, Drew W, Tetreault AM, Fox MD, Darby RR. Increased Cortical Thickness in Alzheimer's Disease. Ann Neurol 2024; 95:929-940. [PMID: 38400760 PMCID: PMC11060923 DOI: 10.1002/ana.26894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.
Collapse
Affiliation(s)
- Tony X. Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Sheena Baratono
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William Drew
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Aaron M. Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - R. Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Singh NA, Goodrich AW, Graff-Radford J, Machulda MM, Sintini I, Carlos AF, Robinson CG, Reid RI, Lowe VJ, Jack CR, Petersen RC, Boeve BF, Josephs KA, Kantarci K, Whitwell JL. Altered structural and functional connectivity in Posterior Cortical Atrophy and Dementia with Lewy bodies. Neuroimage 2024; 290:120564. [PMID: 38442778 PMCID: PMC11019668 DOI: 10.1016/j.neuroimage.2024.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/07/2024] Open
Abstract
Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.
Collapse
Affiliation(s)
| | - Austin W Goodrich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States
| | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
12
|
Varrias D, Saralidze T, Borkowski P, Pargaonkar S, Spanos M, Bazoukis G, Kokkinidis D. Atrial Fibrillation and Dementia: Pathophysiological Mechanisms and Clinical Implications. Biomolecules 2024; 14:455. [PMID: 38672471 PMCID: PMC11048426 DOI: 10.3390/biom14040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Numerous longitudinal studies suggest a strong association between cardiovascular risk factors and cognitive impairment. Individuals with atrial fibrillation are at higher risk of dementia and cognitive dysfunction, as atrial fibrillation increases the risk of cerebral hypoperfusion, inflammation, and stroke. The lack of comprehensive understanding of the observed association and the complex relationship between these two diseases makes it very hard to provide robust guidelines on therapeutic indications. With this review, we attempt to shed some light on how atrial fibrillation is related to dementia, what we know regarding preventive interventions, and how we could move forward in managing those very frequently overlapping conditions.
Collapse
Affiliation(s)
- Dimitrios Varrias
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Tinatin Saralidze
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Pawel Borkowski
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Sumant Pargaonkar
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.B.); (S.P.)
| | - Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - George Bazoukis
- School of Medicine, European University Cyprus, 2417 Nicosia, Cyprus
| | - Damianos Kokkinidis
- Section of Cardiovascular Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Nakata T, Shimada K, Iba A, Oda H, Terashima A, Koide Y, Kawasaki R, Yamada T, Ishii K. Differential diagnosis of MCI with Lewy bodies and MCI due to Alzheimer's disease by visual assessment of occipital hypoperfusion on SPECT images. Jpn J Radiol 2024; 42:308-318. [PMID: 37861956 DOI: 10.1007/s11604-023-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE Predicting progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD) or dementia with Lewy bodies (DLB) is important. We evaluated morphological and functional differences between MCI with Lewy bodies (MCI-LB) and MCI due to AD (MCI-AD), and a method for differentiating between these conditions using brain MRI and brain perfusion SPECT. METHODS A continuous series of 101 subjects, who had visited our memory clinic and met the definition of MCI, were enrolled retrospectively. They were consisted of 60 MCI-LB and 41 MCI-AD subjects. Relative cerebral blood flow (rCBF) on SPECT images and relative brain atrophy on MRI images were evaluated. We performed voxel-based analysis and visually inspected brain perfusion SPECT images for regional brain atrophy, occipital hypoperfusion and the cingulate island sign (CIS), for differential diagnosis of MCI-LB and MCI-AD. RESULTS MRI showed no significant differences in regional atrophy between the MCI-LB and MCI-AD groups. In MCI-LB subjects, occipital rCBF was significantly decreased compared with MCI-AD subjects (p < 0.01, family wise error [FWE]-corrected). Visual inspection of occipital hypoperfusion had sensitivity, specificity, and accuracy values of 100%, 73.2% and 89.1%, respectively, for differentiating MCI-LB and MCI-AD. Occipital hypoperfusion was offered higher diagnostic utility than the CIS. CONCLUSIONS The occipital lobe was the region with significantly decreased rCBF in MCI-LB compared with MCI-AD subjects. Occipital hypoperfusion on brain perfusion SPECT may be a more useful imaging biomarker than the CIS for visually differentiating MCI-LB and MCI-AD.
Collapse
Affiliation(s)
- Takashi Nakata
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan.
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan.
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan.
| | - Kenichi Shimada
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
| | - Akiko Iba
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
- Department of Psychiatry, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Hyogo Mental Health Center, 3 Noborio, Kamitanigami, Yamadacho, Kita-Ku, Kobe, Hyogo, Japan
| | - Haruhiko Oda
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
- Hyogo Mental Health Center, 3 Noborio, Kamitanigami, Yamadacho, Kita-Ku, Kobe, Hyogo, Japan
| | - Akira Terashima
- Neurocognitive Disorders Medical Center, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, 670-8560, Japan
- Department of Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himji, Hyogo, Japan
| | - Yutaka Koide
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| | - Ryota Kawasaki
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| | - Takahiro Yamada
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan
| | - Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan
- Department of Diagnostic and Interventional Radiology, Hyogo Prefectural Harima-Himeji General Medical Center, 3-264 Kamiyacho, Himeji, Hyogo, Japan
- Department of Radiology and Nuclear Medicine, Hyogo Brain and Heart Center, 520 Saisho-Ko, Himeji, Hyogo, Japan
| |
Collapse
|
14
|
Tosun D, Yardibi O, Benzinger TLS, Kukull WA, Masters CL, Perrin RJ, Weiner MW, Simen A, Schwarz AJ. Identifying individuals with non-Alzheimer's disease co-pathologies: A precision medicine approach to clinical trials in sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:421-436. [PMID: 37667412 PMCID: PMC10843695 DOI: 10.1002/alz.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Biomarkers remain mostly unavailable for non-Alzheimer's disease neuropathological changes (non-ADNC) such as transactive response DNA-binding protein 43 (TDP-43) proteinopathy, Lewy body disease (LBD), and cerebral amyloid angiopathy (CAA). METHODS A multilabel non-ADNC classifier using magnetic resonance imaging (MRI) signatures was developed for TDP-43, LBD, and CAA in an autopsy-confirmed cohort (N = 214). RESULTS A model using demographic, genetic, clinical, MRI, and ADNC variables (amyloid positive [Aβ+] and tau+) in autopsy-confirmed participants showed accuracies of 84% for TDP-43, 81% for LBD, and 81% to 93% for CAA, outperforming reference models without MRI and ADNC biomarkers. In an ADNI cohort (296 cognitively unimpaired, 401 mild cognitive impairment, 188 dementia), Aβ and tau explained 33% to 43% of variance in cognitive decline; imputed non-ADNC explained an additional 16% to 26%. Accounting for non-ADNC decreased the required sample size to detect a 30% effect on cognitive decline by up to 28%. DISCUSSION Our results lead to a better understanding of the factors that influence cognitive decline and may lead to improvements in AD clinical trial design.
Collapse
Affiliation(s)
- Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ozlem Yardibi
- Takeda Pharmaceutical Company LtdCambridgeMassachusettsUSA
| | | | - Walter A. Kukull
- Department of EpidemiologyNational Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Richard J. Perrin
- Department of Pathology & ImmunologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael W. Weiner
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Arthur Simen
- Takeda Pharmaceutical Company LtdCambridgeMassachusettsUSA
| | | | | |
Collapse
|
15
|
Borghammer P, Okkels N, Weintraub D. Parkinson's Disease and Dementia with Lewy Bodies: One and the Same. JOURNAL OF PARKINSON'S DISEASE 2024; 14:383-397. [PMID: 38640172 PMCID: PMC11091584 DOI: 10.3233/jpd-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The question whether Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are expressions of the same underlying disease has been vigorously debated for decades. The recently proposed biological definitions of Lewy body disease, which do not assign any particular importance to the dopamine system over other degenerating neurotransmitter systems, has once more brought the discussion about different types of Lewy body disease to the forefront. Here, we briefly compare PDD and DLB in terms of their symptoms, imaging findings, and neuropathology, ultimately finding them to be indistinguishable. We then present a conceptual framework to demonstrate how one can view different clinical syndromes as manifestations of a shared underlying Lewy body disease. Early Parkinson's disease, isolated RBD, pure autonomic failure and other autonomic symptoms, and perhaps even psychiatric symptoms, represent diverse manifestations of the initial clinical stages of Lewy body disease. They are characterized by heterogeneous and comparatively limited neuronal dysfunction and damage. In contrast, Lewy body dementia, an encompassing term for both PDD and DLB, represents a more uniform and advanced stage of the disease. Patients in this category display extensive and severe Lewy pathology, frequently accompanied by co-existing pathologies, as well as multi-system neuronal dysfunction and degeneration. Thus, we propose that Lewy body disease should be viewed as a single encompassing disease entity. Phenotypic variance is caused by the presence of individual risk factors, disease mechanisms, and co-pathologies. Distinct subtypes of Lewy body disease can therefore be defined by subtype-specific disease mechanisms or biomarkers.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok-A-Hin YS, Lleó A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, Arezoumandan S, Chen-Plotkin A, Irwin DJ, van der Flier WM, Lemstra AW, Teunissen CE. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nat Commun 2023; 14:5635. [PMID: 37704597 PMCID: PMC10499811 DOI: 10.1038/s41467-023-41122-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Juliette L van Alphen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Okkels N, Horsager J, Labrador-Espinosa M, Kjeldsen PL, Damholdt MF, Mortensen J, Vestergård K, Knudsen K, Andersen KB, Fedorova TD, Skjærbæk C, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain 2023; 146:3690-3704. [PMID: 37279796 DOI: 10.1093/brain/awad192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Janne Mortensen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Kindler C, Upadhyay N, Bendella Z, Dorn F, Keil VC, Petzold GC. Independent and additive contribution of white matter hyperintensities and Alzheimer's disease pathology to basal forebrain cholinergic system degeneration. Neuroimage Clin 2023; 39:103477. [PMID: 37478584 PMCID: PMC10387606 DOI: 10.1016/j.nicl.2023.103477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES Degeneration of the cholinergic basal forebrain nuclei (CBFN) system has been studied extensively in Alzheimer's disease (AD). White matter hyperintensities are a hallmark of aging as well as a common co-morbidity of AD, but their contribution to CBFN degeneration has remained unclear. Therefore, we explored the influence of white matter hyperintensities within cholinergic subcortical-cortical projection pathways on CBFN volumes and regional gray matter volumes in AD and age- and gender-matched controls. METHODS We analyzed magnetic resonance images (MRI) from 42 patients with AD and 87 age- and gender-matched control subjects. We assessed the white matter hyperintensity burden within the cholinergic projection pathways using the Cholinergic Pathways Hyperintensities Scale (CHIPS), and applied probabilistic anatomical maps for the analysis of CBFN volumes, i.e. the Ch1-3 compartment and the Ch4 cell group (nucleus basalis of Meynert), by diffeomorphic anatomical registration using exponentiated lie algebra analysis of voxel-based morphometry. Using multiple linear regression analyses, we explored correlations between regional gray matter volumes and the extent of white matter hyperintensities or CBFN volumes in both groups. RESULTS In AD, all CBFN volumes were significantly smaller than in controls, and white matter hyperintensity burden within the cholinergic projection pathways was not correlated with CBFN volume. In controls, white matter hyperintensity burden within the cholinergic projection pathways was inversely correlated with CBFN volume when corrected for sex and total intracranial volume, but this correlation was no longer significant after correction for age. Voxel-wise multiple linear regression analyses using threshold-free cluster enhancement revealed that in controls, cholinergic pathway hyperintensities correlated with gray matter loss in perisylvian areas, whereas the were no effects in AD. Moreover, we found that CBFN volumes correlated with distinct regional cortical atrophy patterns in both groups. CONCLUSION Our results indicate that white matter hyperintensities and AD pathology contribute independently but additively to the degeneration of cholinergic basal forebrain structures. Whereas AD is primarily associated with CBFN volume loss, cholinergic degeneration associated with white matter hyperintensities appears to involve disruption of cholinergic cortical projection fibers with less pronounced effects on CBFN volumes.
Collapse
Affiliation(s)
- Christine Kindler
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Neeraj Upadhyay
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany; Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Zeynep Bendella
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gabor C Petzold
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
19
|
Massett R, Maher A, Imms P, Amgalan A, Chaudhari N, Chowdhury N, Irimia A. Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression. J Gerontol A Biol Sci Med Sci 2023; 78:872-881. [PMID: 36183259 PMCID: PMC10235198 DOI: 10.1093/gerona/glac209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.
Collapse
Affiliation(s)
- Roy J Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Alexander S Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Phoebe E Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Nahian F Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
20
|
Shin JH, Kim H, Kim YK, Yoon EJ, Nam H, Jeon B, Lee JY. Longitudinal evolution of cortical thickness signature reflecting Lewy body dementia in isolated REM sleep behavior disorder: a prospective cohort study. Transl Neurodegener 2023; 12:27. [PMID: 37217951 DOI: 10.1186/s40035-023-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The isolated rapid-eye-movement sleep behavior disorder (iRBD) is a prodromal condition of Lewy body disease including Parkinson's disease and dementia with Lewy bodies (DLB). We aim to investigate the longitudinal evolution of DLB-related cortical thickness signature in a prospective iRBD cohort and evaluate the possible predictive value of the cortical signature index in predicting dementia-first phenoconversion in individuals with iRBD. METHODS We enrolled 22 DLB patients, 44 healthy controls, and 50 video polysomnography-proven iRBD patients. Participants underwent 3-T magnetic resonance imaging (MRI) and clinical/neuropsychological evaluations. We characterized DLB-related whole-brain cortical thickness spatial covariance pattern (DLB-pattern) using scaled subprofile model of principal components analysis that best differentiated DLB patients from age-matched controls. We analyzed clinical and neuropsychological correlates of the DLB-pattern expression scores and the mean values of the whole-brain cortical thickness in DLB and iRBD patients. With repeated MRI data during the follow-up in our prospective iRBD cohort, we investigated the longitudinal evolution of the cortical thickness signature toward Lewy body dementia. Finally, we analyzed the potential predictive value of cortical thickness signature as a biomarker of phenoconversion in iRBD cohort. RESULTS The DLB-pattern was characterized by thinning of the temporal, orbitofrontal, and insular cortices and relative preservation of the precentral and inferior parietal cortices. The DLB-pattern expression scores correlated with attentional and frontal executive dysfunction (Trail Making Test-A and B: R = - 0.55, P = 0.024 and R = - 0.56, P = 0.036, respectively) as well as visuospatial impairment (Rey-figure copy test: R = - 0.54, P = 0.0047). The longitudinal trajectory of DLB-pattern revealed an increasing pattern above the cut-off in the dementia-first phenoconverters (Pearson's correlation, R = 0.74, P = 6.8 × 10-4) but no significant change in parkinsonism-first phenoconverters (R = 0.0063, P = 0.98). The mean value of the whole-brain cortical thickness predicted phenoconversion in iRBD patients with hazard ratio of 9.33 [1.16-74.12]. The increase in DLB-pattern expression score discriminated dementia-first from parkinsonism-first phenoconversions with 88.2% accuracy. CONCLUSION Cortical thickness signature can effectively reflect the longitudinal evolution of Lewy body dementia in the iRBD population. Replication studies would further validate the utility of this imaging marker in iRBD.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea.
| | - Eun Jin Yoon
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
21
|
Müller SJ, Wiltfang J, Hansen N. Onset matters in dementia with Lewy bodies. Aging (Albany NY) 2023; 15:3228-3229. [PMID: 37171387 PMCID: PMC10449291 DOI: 10.18632/aging.204730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Affiliation(s)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Portugal
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Germany
- Translational Psychoneuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
22
|
Bosco P, Lancione M, Retico A, Nigri A, Aquino D, Baglio F, Carne I, Ferraro S, Giulietti G, Napolitano A, Palesi F, Pavone L, Savini G, Tagliavini F, Bruzzone MG, Gandini Wheeler-Kingshott CAM, Tosetti M, Biagi L. Quality assessment, variability and reproducibility of anatomical measurements derived from T1-weighted brain imaging: The RIN-Neuroimaging Network case study. Phys Med 2023; 110:102577. [PMID: 37126963 DOI: 10.1016/j.ejmp.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Initiatives for the collection of harmonized MRI datasets are growing continuously, opening questions on the reliability of results obtained in multi-site contexts. Here we present the assessment of the brain anatomical variability of MRI-derived measurements obtained from T1-weighted images, acquired according to the Standard Operating Procedures, promoted by the RIN-Neuroimaging Network. A multicentric dataset composed of 77 brain T1w acquisitions of young healthy volunteers (mean age = 29.7 ± 5.0 years), collected in 15 sites with MRI scanners of three different vendors, was considered. Parallelly, a dataset of 7 "traveling" subjects, each undergoing three acquisitions with scanners from different vendors, was also used. Intra-site, intra-vendor, and inter-site variabilities were evaluated in terms of the percentage standard deviation of volumetric and cortical thickness measures. Image quality metrics such as contrast-to-noise and signal-to-noise ratio in gray and white matter were also assessed for all sites and vendors. The results showed a measured global variability that ranges from 11% to 19% for subcortical volumes and from 3% to 10% for cortical thicknesses. Univariate distributions of the normalized volumes of subcortical regions, as well as the distributions of the thickness of cortical parcels appeared to be significantly different among sites in 8 subcortical (out of 17) and 21 cortical (out of 68) regions of i nterest in the multicentric study. The Bland-Altman analysis on "traveling" brain measurements did not detect systematic scanner biases even though a multivariate classification approach was able to classify the scanner vendor from brain measures with an accuracy of 0.60 ± 0.14 (chance level 0.33).
Collapse
Affiliation(s)
- Paolo Bosco
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, INFN - National Institute for Nuclear Physics, Pisa, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Irene Carne
- Neuroradiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Stefania Ferraro
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Giovanni Giulietti
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - Antonio Napolitano
- Medical Physics, IRCCS Istituto Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fulvia Palesi
- Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Giovanni Savini
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabrizio Tagliavini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square, Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
23
|
Ferreira D, Przybelski SA, Lesnick TG, Schwarz CG, Diaz-Galvan P, Graff-Radford J, Senjem ML, Fields JA, Knopman DS, Jones DT, Savica R, Ferman TJ, Graff-Radford N, Lowe VJ, Jack CR, Petersen RC, Westman E, Boeve BF, Kantarci K. Cross-sectional Associations of β-Amyloid, Tau, and Cerebrovascular Biomarkers With Neurodegeneration in Probable Dementia With Lewy Bodies. Neurology 2023; 100:e846-e859. [PMID: 36443011 PMCID: PMC9984215 DOI: 10.1212/wnl.0000000000201579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although alpha-synuclein-related pathology is the hallmark of dementia with Lewy bodies (DLB), cerebrovascular and Alzheimer disease pathologies are common in patients with DLB. Little is known about the contribution of these pathologies to neurodegeneration in DLB. We investigated associations of cerebrovascular, β-amyloid, and tau biomarkers with gray matter (GM) volume in patients with probable DLB. METHODS We assessed patients with probable DLB and cognitively unimpaired (CU) controls with 11C-Pittsburgh compound B (PiB) and 18F-flortaucipir PET as markers of β-amyloid and tau, respectively. MRI was used to assess white matter hyperintensity (WMH) volume (a marker of cerebrovascular lesion load) and regional GM volume (a marker of neurodegeneration). We used correlations and analysis of covariance (ANCOVA) in the entire cohort and structural equation models (SEMs) in patients with DLB to investigate associations of WMH volume and regional β-amyloid and tau PET standardized uptake value ratios (SUVrs) with regional GM volume. RESULTS We included 30 patients with DLB (69.3 ± 10.2 years, 87% men) and 100 CU controls balanced on age and sex. Compared with CU controls, patients with DLB showed a lower GM volume across all cortical and subcortical regions except for the cuneus, putamen, and pallidum. A larger WMH volume was associated with a lower volume in the medial and orbital frontal cortices, insula, fusiform cortex, and thalamus in patients with DLB. A higher PiB SUVr was associated with a lower volume in the inferior temporal cortex, while flortaucipir SUVr did not correlate with GM volume. SEMs showed that a higher age and absence of the APOE ε4 allele were significant predictors of higher WMH volume, and WMH volume in turn was a significant predictor of GM volume in medial and orbital frontal cortices, insula, and inferior temporal cortex. By contrast, we observed 2 distinct paths for the fusiform cortex, with age having an effect through PiB and flortaucipir SUVr on one path and through WMH volume on the other path. DISCUSSION Patients with probable DLB have widespread cortical atrophy, most of which is likely influenced by alpha-synuclein-related pathology. Although cerebrovascular, β-amyloid, and tau pathologies often coexist in probable DLB, their contributions to neurodegeneration seem to be region specific.
Collapse
Affiliation(s)
- Daniel Ferreira
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Scott A Przybelski
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Timothy G Lesnick
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Christopher G Schwarz
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Patricia Diaz-Galvan
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Jonathan Graff-Radford
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Matthew L Senjem
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Julie A Fields
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David S Knopman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David T Jones
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Rodolfo Savica
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tanis J Ferman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Neill Graff-Radford
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Val J Lowe
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Clifford R Jack
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Ronald C Petersen
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Eric Westman
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Brad F Boeve
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Kejal Kantarci
- From the Division of Clinical Geriatrics (D.F., P.D.-G., E.W.), Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Departments of Radiology (D.F., C.G.S., P.D.-G., M.L.S., V.J.L., C.R.J., K.K.), Quantitative Health Sciences (S.A.P., T.G.L.), Neurology (J.G.-R., D.S.K., D.T.J., R.S., R.C.P., B.F.B.), Information Technology (M.L.S.), and Psychiatry and Psychology (J.A.F.), Mayo Clinic, Rochester, MN; Departments of Psychiatry and Psychology (T.J.F.) and Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
24
|
Chiu SY, Wyman-Chick KA, Ferman TJ, Bayram E, Holden SK, Choudhury P, Armstrong MJ. Sex differences in dementia with Lewy bodies: Focused review of available evidence and future directions. Parkinsonism Relat Disord 2023; 107:105285. [PMID: 36682958 PMCID: PMC10024862 DOI: 10.1016/j.parkreldis.2023.105285] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In this review, we summarize the current knowledge on sex differences in dementia with Lewy bodies (DLB) relating to epidemiology, clinical features, neuropathology, biomarkers, disease progression, and caregiving. While many studies show a higher DLB prevalence in men, this finding is inconsistent and varies by study approach. Visual hallucinations may be more common and occur earlier in women with DLB, whereas REM sleep behavior disorder may be more common and occur earlier in men. Several studies report a higher frequency of parkinsonism in men with DLB, while the frequency of fluctuations appears similar between sexes. Women tend to be older, have greater cognitive impairment at their initial visit, and are delayed in meeting DLB criteria compared to men. Women are also more likely to have Lewy body disease with co-existing AD-related pathology than so-called "pure" Lewy body disease, while men may present with either. Research is mixed regarding the impact of sex on DLB progression. Biomarker and treatment research assessing for sex differences is lacking. Women provide the majority of caregiving in DLB but how this affects the caregiving experience is uncertain. Gaining a better understanding of sex differences will be instrumental in aiding future development of sex-specific strategies in DLB for early diagnosis, care, and drug development.
Collapse
Affiliation(s)
- Shannon Y Chiu
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA.
| | - Kathryn A Wyman-Chick
- Center for Memory and Aging, Department of Neurology, HealthPartners, Saint Paul, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samantha K Holden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Parichita Choudhury
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
26
|
Lamotte G, Singer W. Synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:175-202. [PMID: 37620069 DOI: 10.1016/b978-0-323-98817-9.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The α-synucleinopathies include pure autonomic failure, multiple system atrophy, dementia with Lewy bodies, and Parkinson disease. The past two decades have witnessed significant advances in the diagnostic strategies and symptomatic treatment of motor and nonmotor symptoms of the synucleinopathies. This chapter provides an in-depth review of the pathophysiology, pathology, genetic, epidemiology, and clinical and laboratory autonomic features that distinguish the different synucleinopathies with an emphasis on autonomic failure as a common feature. The treatment of the different synucleinopathies is discussed along with the proposal for multidisciplinary, individualized care models that optimally address the various symptoms. There is an urgent need for clinical scientific studies addressing patients at risk of developing synucleinopathies and the investigation of disease mechanisms, biomarkers, potential disease-modifying therapies, and further advancement of symptomatic treatments for motor and nonmotor symptoms.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
27
|
Anderson AR, Monroe TB, Dietrich MS, Bruehl SP, Iversen WL, Cowan RL, Failla MD. Increased pain unpleasantness and pain-related fMRI activation in the periaqueductal gray in Alzheimer's disease. FRONTIERS IN PAIN RESEARCH 2022; 3:914473. [PMID: 36387417 PMCID: PMC9650512 DOI: 10.3389/fpain.2022.914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Pain continues to be underrecognized and undertreated in people with Alzheimer's disease (AD). The periaqueductal gray (PAG) is essential to pain processing and modulation yet is damaged by AD. While evidence exists of altered neural processing of pain in AD, there has not been a focused investigation of the PAG during pain in people with AD. Purpose To investigate the role of the PAG in sensory and affective pain processing for people living with AD. Methods Participants from a larger study completed pain psychophysics assessments and then a perceptually-matched heat pain task (warmth, mild, and moderate pain) during a functional MRI scan. In this cross-sectional study, we examined blood oxygenation level-dependent (BOLD) responses in the PAG and other pain-related regions in participants with AD (n = 18) and cognitively intact older adults (age- and sex-matched, n = 18). Associations of BOLD percent signal change and psychophysics were also examined. Results There were significant main effects of AD status on the temperature needed to reach each perception of warmth or pain, where people with AD reached higher temperatures. Furthermore, participants with AD rated mild and moderate pain as more unpleasant than controls. PAG BOLD activation was greater in AD relative to controls during warmth and mild pain percepts. No significant differences were found for moderate pain or in other regions of interest. Greater PAG activation during mild pain was associated with higher affective/unpleasantness ratings of mild pain in participants with AD but not in controls. Conclusion Results suggest a role for the PAG in altered pain responses in people with AD. The PAG is the primary source of endogenous opioid pain inhibition in the neuroaxis, thus, altered PAG function in AD suggests possible changes in descending pain inhibitory circuits. People with AD may have a greater risk of suffering from pain compared to cognitively intact older adults.
Collapse
Affiliation(s)
- Alison R. Anderson
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- School of Nursing, Vanderbilt University, Nashville, TN, United States
| | - Todd B. Monroe
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- School of Nursing, Vanderbilt University, Nashville, TN, United States
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mary S. Dietrich
- School of Nursing, Vanderbilt University, Nashville, TN, United States
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen P. Bruehl
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - W. Larkin Iversen
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
| | - Ronald L. Cowan
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Departments of Psychiatry and Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michelle D. Failla
- Center for Complex Care, Self-Management and Healthy Aging, The Ohio State University, College of Nursing, Columbus, OH, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Constant AB, Basavaraju R, France J, Honig LS, Marder KS, Provenzano FA. Longitudinal Patterns of Cortical Atrophy on MRI in Patients With Alzheimer Disease With and Without Lewy Body Pathology. Neurology 2022; 99:e1843-e1852. [PMID: 36123123 PMCID: PMC9620811 DOI: 10.1212/wnl.0000000000200947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although Alzheimer disease (AD) and dementia with Lewy bodies (DLBs) represent 2 different pathologies, they have clinical overlap, and there is a significant degree of co-occurrence of their neuropathologic findings. Many studies have examined imaging characteristics in clinically diagnosed patients; however, there is a relative lack of longitudinal studies that have studied patients with pathologic confirmation. We examined whether there were differences in longitudinal patterns of cortical atrophy between patients with both AD and DLB (AD/DLB) vs those with AD alone. METHODS We collected and analyzed clinical and neuroimaging data from the AD Neuroimaging Initiative (ADNI) database for patients who underwent autopsy. The rates of change in various neuropsychological assessments were not significantly different between patients with AD/DLB and AD, and each group had neuropsychological outcomes consistent with disease progression. For our neuroimaging analysis, we used a linear mixed-effects model to examine whether there were longitudinal differences in cortical rates of atrophy between patients with AD/DLB and AD. RESULTS Autopsies and serial neuroimaging were available on 48 patients (24 AD and 24 AD/DLB). Patients with AD alone had significantly higher atrophy rates in the left cuneus, lateral occipital, and parahippocampal regions over time when compared with patients with concomitant DLB, after covarying for interval from imaging to autopsy, sex, and total estimated intracranial volume. Site ID was included as a random effect to account for site differences. For these regions, the rate of decline over time in the AD/DLB group was less steep by a difference of 0.1887, 0.395, and 0.0989, respectively (p = 0.022, 0.006, and 0.006). The lattermost left cuneus volume measurement and Braak Lewy score had a Pearson product-moment correlation of 0.37, p = 0.009, while the lattermost left parahippocampal volume measurement and Braak neurofibrillary tangle score had a Pearson product-moment correlation of -0.327, p = 0.02. DISCUSSION Patients with AD had more significant atrophy in the left cuneus, lateral occipital, and parahippocampal regions when compared with patients with AD/DLB. These regions are known to distinguish DLB and AD pathology cross-sectionally but here are shown to distinguish longitudinal disease progression.
Collapse
Affiliation(s)
- Allison Beers Constant
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Rakshathi Basavaraju
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Jeanelle France
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Lawrence S Honig
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Karen S Marder
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Frank Anthony Provenzano
- From the Columbia University Vagelos College of Physicians & Surgeons (A.B.C.), New York, NY; Department of Neurology (R.B., J.F., L.S.H., K.S.M., F.A.P.), Columbia University Medical Center, New York, NY; Department of Neurology (L.S.H., K.S.M., F.A.P.), Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY; and Department of Neurology (L.S.H., K.S.M.), Getrude H. Sergievsky Center, Columbia University Medical Center, New York, NY.
| |
Collapse
|
29
|
Hansen N, Müller SJ, Khadhraoui E, Riedel CH, Langer P, Wiltfang J, Timäus CA, Bouter C, Ernst M, Lange C. Metric magnetic resonance imaging analysis reveals pronounced substantia-innominata atrophy in dementia with Lewy bodies with a psychiatric onset. Front Aging Neurosci 2022; 14:815813. [PMID: 36274999 PMCID: PMC9580213 DOI: 10.3389/fnagi.2022.815813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Dementia with Lewy bodies (DLB) is a type of dementia often diagnosed in older patients. Since its initial symptoms range from delirium to psychiatric and cognitive symptoms, the diagnosis is often delayed. Objectives In our study, we evaluated the magnetic resonance imaging (MRI) of patients suffering from DLB in correlation with their initial symptoms taking a new pragmatic approach entailing manual measurements in addition to an automated volumetric analysis of MRI. Methods A total of 63 patients with diagnosed DLB and valid 3D data sets were retrospectively and blinded evaluated. We assessed atrophy patterns (1) manually for the substantia innominata and (2) via FastSurfer for the most common supratentorial regions. Initial symptoms were categorized by (1) mild cognitive impairment (MCI), (2) psychiatric episodes, and (3) delirium. Results Manual metric MRI measurements revealed moderate, but significant substantia-innominata (SI) atrophy in patients with a psychiatric onset. FastSurfer analysis revealed no regional volumetric differences between groups. Conclusion The SI in patients with DLB and a psychiatric-onset is more atrophied than that in patients with initial MCI. Our results suggest potential differences in SI between DLB subtypes at the prodromal stage, which are useful when taking a differential-diagnostic approach. This finding should be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Niels Hansen,
| | - Sebastian Johannes Müller
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
- Sebastian Johannes Müller,
| | - Eya Khadhraoui
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Heiner Riedel
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Philip Langer
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Charles-Arnold Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg August University, Göttingen, Germany
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Nara S, Fujii H, Tsukada H, Tsuda I. Visual hallucinations in dementia with Lewy bodies originate from necrosis of characteristic neurons and connections in three-module perception model. Sci Rep 2022; 12:14172. [PMID: 35986200 PMCID: PMC9391481 DOI: 10.1038/s41598-022-18313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Mathematical and computational approaches were used to investigate dementia with Lewy bodies (DLB), in which recurrent complex visual hallucinations (RCVH) is a very characteristic symptom. Beginning with interpretative analyses of pathological symptoms of patients with RCVH-DLB in comparison with the veridical perceptions of normal subjects, we constructed a three-module scenario concerning function giving rise to perception. The three modules were the visual input module, the memory module, and the perceiving module. Each module interacts with the others, and veridical perceptions were regarded as a certain convergence to one of the perceiving attractors sustained by self-consistent collective fields among the modules. Once a rather large but inhomogeneously distributed area of necrotic neurons and dysfunctional synaptic connections developed due to network disease, causing irreversible damage, then bottom-up information from the input module to both the memory and perceiving modules were severely impaired. These changes made the collective fields unstable and caused transient emergence of mismatched perceiving attractors. This may account for the reason why DLB patients see things that are not there. With the use of our computational model and experiments, the scenario was recreated with complex bifurcation phenomena associated with the destabilization of collective field dynamics in very high-dimensional state space.
Collapse
|
31
|
Boku Y, Ota M, Nemoto M, Numata Y, Kitabatake A, Takahashi T, Nemoto K, Tamura M, Sekine A, Ide M, Kaneda Y, Arai T. Effects of a multicomponent day-care program on cerebral blood flow in patients with mild cognitive impairment. Psychogeriatrics 2022; 22:478-484. [PMID: 35534913 DOI: 10.1111/psyg.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a prodromal phase of dementia and is considered an important period for intervention to prevent conversion to dementia. It has been well established that multicomponent day-care programs including exercise training, cognitive intervention and music therapy have beneficial effects on cognition, but the effects on cerebral blood flow (CBF) in MCI remain unknown. This study examined whether a multicomponent day-care program would have beneficial effects on the longitudinal changes of CBF in MCI patients. METHODS Participants were 24 patients with MCI attending a day-care program; they underwent two 99 mTc-ethyl cysteinate dimer single photon emission computed tomography scans during the study period. We evaluated the association between the changes of regional cerebral blood flow and the attendance rate. RESULTS There was a significant negative correlation between the reduction of regional CBF in the right parietal region and the attendance rate. We found no significant relation between the baseline CBF images and the attendance rate. CONCLUSIONS Our results suggest that continuous participation in a multicomponent day-care program might prevent reduction in brain activity in patients with MCI.
Collapse
Affiliation(s)
- Youshun Boku
- Department of Psychiatry, Degree Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,University of Tsukuba Hospital, Tsukuba, Japan
| | - Miho Ota
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | - Takumi Takahashi
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masashi Tamura
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aya Sekine
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Ide
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Kaneda
- University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Huang H, Zheng S, Yang Z, Wu Y, Li Y, Qiu J, Cheng Y, Lin P, Lin Y, Guan J, Mikulis DJ, Zhou T, Wu R. Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer's disease based on cerebral gray matter changes. Cereb Cortex 2022; 33:754-763. [PMID: 35301516 PMCID: PMC9890469 DOI: 10.1093/cercor/bhac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.
Collapse
Affiliation(s)
- Huaidong Huang
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | | | - Zhongxian Yang
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen 518000, China
| | - Yi Wu
- Department of Neurology, Shantou Central Hospital and Affiliated Shantou Hospital of Sun Yat-Sen University, No. 114, Waima Road, Jinping District, Shantou 515041, China
| | - Yan Li
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Jinming Qiu
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Yan Cheng
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Panpan Lin
- School of Clinical Medicine, Quanzhou Medical College, No. 2, Anji Road, Luojiang District, Quanzhou 362000, China
| | - Yan Lin
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Jitian Guan
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - David John Mikulis
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, University Health Network, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S7, Canada
| | - Teng Zhou
- Department of Computer Science, Shantou University, 243 Daxue Road, Shantou 515063, China
- Renhua Wu, Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Renhua Wu
- Department of Computer Science, Shantou University, 243 Daxue Road, Shantou 515063, China
- Renhua Wu, Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| |
Collapse
|
33
|
Yoo HS, Jeon S, Cavedo E, Ko M, Yun M, Lee PH, Sohn YH, Grothe MJ, Teipel S, Hampel H, Evans AC, Ye BS. Association of β-Amyloid and Basal Forebrain With Cortical Thickness and Cognition in Alzheimer and Lewy Body Disease Spectra. Neurology 2022; 98:e947-e957. [PMID: 34969939 PMCID: PMC8901177 DOI: 10.1212/wnl.0000000000013277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cholinergic degeneration and β-amyloid contribute to brain atrophy and cognitive dysfunction in Alzheimer disease (AD) and Lewy body disease (LBD), but their relationship has not been comparatively evaluated. METHODS In this cross-sectional study, we recruited 28 normal controls (NC), 55 patients with AD mild cognitive impairment (MCI), 34 patients with AD dementia, 28 patients with LBD MCI, and 51 patients with LBD dementia. Participants underwent cognitive evaluation, brain MRI to measure the basal forebrain (BF) volume and global cortical thickness (CTh), and 18F-florbetaben (FBB) PET to measure the standardized uptake value ratio (SUVR). Using general linear models and path analyses, we evaluated the association of FBB-SUVR and BF volume with CTh or cognitive dysfunction in the AD spectrum (AD and NC) and LBD spectrum (LBD and NC), respectively. Covariates included age, sex, education, deep and periventricular white matter hyperintensities, intracranial volume, hypertension, diabetes, and hyperlipidemia. RESULTS BF volume mediated the association between FBB-SUVR and CTh in both the AD and LBD spectra, while FBB-SUVR was associated with CTh independently of BF volume only in the LBD spectrum. Significant correlation between voxel-wise FBB-SUVR and CTh was observed only in the LBD group. FBB-SUVR was independently associated with widespread cognitive dysfunction in both the AD and LBD spectra, especially in the memory domain (standardized beta [B] for AD spectrum = -0.60, B for LBD spectrum = -0.33). In the AD spectrum, BF volume was associated with memory dysfunction (B = 0.18), and CTh was associated with language (B = 0.21) and executive (B = 0.23) dysfunction. In the LBD spectrum, however, BF volume and CTh were independently associated with widespread cognitive dysfunction. CONCLUSIONS There is a common β-amyloid-related degenerative mechanism with or without the mediation of BF in the AD and LBD spectra, while the association of BF atrophy with cognitive dysfunction is more profound and there is localized β-amyloid-cortical atrophy interaction in the LBD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Byoung Seok Ye
- From the Department of Neurology (H.S.Y., S.J., P.H.L., Y.H.S., B.S.Y.), Brain Research Institute (S.J.), Severance Biomedical Science Institute (M.J.K.), and Department of Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, South Korea; Sorbonne University (E.C., H.H.), GRC N0. 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital; Qynapse (E.C.), Paris, France; German Center for Neurodegenerative Diseases (DZNE)-Rostock/Greifswald (M.J.G., S.T.), Rostock, Germany; Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychosomatic Medicine (S.T.), University Medicine Rostock, Germany; and McGill Center for Integrative Neuroscience (A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada.
| |
Collapse
|
34
|
Rivard L, Friberg L, Conen D, Healey JS, Berge T, Boriani G, Brandes A, Calkins H, Camm AJ, Yee Chen L, Lluis Clua Espuny J, Collins R, Connolly S, Dagres N, Elkind MSV, Engdahl J, Field TS, Gersh BJ, Glotzer TV, Hankey GJ, Harbison JA, Haeusler KG, Hills MT, Johnson LSB, Joung B, Khairy P, Kirchhof P, Krieger D, Lip GYH, Løchen ML, Madhavan M, Mairesse GH, Montaner J, Ntaios G, Quinn TJ, Rienstra M, Rosenqvist M, Sandhu RK, Smyth B, Schnabel RB, Stavrakis S, Themistoclakis S, Van Gelder IC, Wang JG, Freedman B. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022; 145:392-409. [PMID: 35100023 DOI: 10.1161/circulationaha.121.055018] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing evidence suggests a consistent association between atrial fibrillation (AF) and cognitive impairment and dementia that is independent of clinical stroke. This report from the AF-SCREEN International Collaboration summarizes the evidence linking AF to cognitive impairment and dementia. It provides guidance on the investigation and management of dementia in patients with AF on the basis of best available evidence. The document also addresses suspected pathophysiologic mechanisms and identifies knowledge gaps for future research. Whereas AF and dementia share numerous risk factors, the association appears to be independent of these variables. Nevertheless, the evidence remains inconclusive regarding a direct causal effect. Several pathophysiologic mechanisms have been proposed, some of which are potentially amenable to early intervention, including cerebral microinfarction, AF-related cerebral hypoperfusion, inflammation, microhemorrhage, brain atrophy, and systemic atherosclerotic vascular disease. The mitigating role of oral anticoagulation in specific subgroups (eg, low stroke risk, short duration or silent AF, after successful AF ablation, or atrial cardiopathy) and the effect of rhythm versus rate control strategies remain unknown. Likewise, screening for AF (in cognitively normal or cognitively impaired patients) and screening for cognitive impairment in patients with AF are debated. The pathophysiology of dementia and therapeutic strategies to reduce cognitive impairment warrant further investigation in individuals with AF. Cognition should be evaluated in future AF studies and integrated with patient-specific outcome priorities and patient preferences. Further large-scale prospective studies and randomized trials are needed to establish whether AF is a risk factor for cognitive impairment, to investigate strategies to prevent dementia, and to determine whether screening for unknown AF followed by targeted therapy might prevent or reduce cognitive impairment and dementia.
Collapse
Affiliation(s)
- Léna Rivard
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Leif Friberg
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | | | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Italy (G.B.)
| | | | | | - A John Camm
- Cardiovascular Clinical Academic Group, St Georges Hospital, London, UK (A.J.C.)
| | | | | | | | - Stuart Connolly
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada (D.C., J.S.H., S.C.)
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Germany (N.D.)
| | | | - Johan Engdahl
- Karolinska Institutet, Department of Clinical Sciences, Danderyds Hospital, Stockholm, Sweden (J.E.)
| | - Thalia S Field
- University of British Columbia, Vancouver Stroke Program, Canada (T.S.F.)
| | | | | | - Graeme J Hankey
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia (G.J.H.)
| | | | - Karl G Haeusler
- Department of Neurology, Universitätsklinikum Würzburg, Germany (K.G.H.)
| | | | | | - Boyoung Joung
- Yonsei University College of Medicine, Seoul, South Korea (B.J.)
| | - Paul Khairy
- Montreal Heart Institute, Université de Montréal, Canada (L.R., P. Khairy)
| | - Paulus Kirchhof
- University Heart and Vascular Center UKE Hamburg, Germany (P. Kirchhof)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (P. Kirchhof)
- Institute of Cardiovascular Sciences, University of Birmingham, UK, and AFNET, Münster, Germany (P. Kirchhof)
| | - Derk Krieger
- University Hospital of Zurich, Switzerland (D.K.)
| | | | - Maja-Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø (M.L.L.)
| | - Malini Madhavan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (M.M.)
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain (J.M.)
- Stroke Research Program, Institute of Biomedicine of Seville, Spain (J.M.)
- IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Spain (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain (J.M.)
| | | | | | - Michiel Rienstra
- Karolinska Institute, Stockholm, Sweden (L.F., M.R.)
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | | | | | - Breda Smyth
- Department of Public Health, Health Service Executive West, Galway, Ireland (B.S.)
| | | | | | | | - Isabelle C Van Gelder
- University of Groningen, University Medical Center Groningen, the Netherlands (M.R., I.C.V.G.)
| | - Ji-Guang Wang
- Jiaotong University School of Medicine, China (J.G.W.)
| | - Ben Freedman
- Charles Perkins Centre and Concord Hospital Cardiology, University of Sydney, Australia (B.F.)
| |
Collapse
|
35
|
Abdelnour C, Ferreira D, van de Beek M, Cedres N, Oppedal K, Cavallin L, Blanc F, Bousiges O, Wahlund LO, Pilotto A, Padovani A, Boada M, Pagonabarraga J, Kulisevsky J, Aarsland D, Lemstra AW, Westman E. Parsing heterogeneity within dementia with Lewy bodies using clustering of biological, clinical, and demographic data. Alzheimers Res Ther 2022; 14:14. [PMID: 35063023 PMCID: PMC8783432 DOI: 10.1186/s13195-021-00946-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) includes various core clinical features that result in different phenotypes. In addition, Alzheimer's disease (AD) and cerebrovascular pathologies are common in DLB. All this increases the heterogeneity within DLB and hampers clinical diagnosis. We addressed this heterogeneity by investigating subgroups of patients with similar biological, clinical, and demographic features. METHODS We studied 107 extensively phenotyped DLB patients from the European DLB consortium. Factorial analysis of mixed data (FAMD) was used to identify dimensions in the data, based on sex, age, years of education, disease duration, Mini-Mental State Examination (MMSE), cerebrospinal fluid (CSF) levels of AD biomarkers, core features of DLB, and regional brain atrophy. Subsequently, hierarchical clustering analysis was used to subgroup individuals based on the FAMD dimensions. RESULTS We identified 3 dimensions using FAMD that explained 38% of the variance. Subsequent hierarchical clustering identified 4 clusters. Cluster 1 was characterized by amyloid-β and cerebrovascular pathologies, medial temporal atrophy, and cognitive fluctuations. Cluster 2 had posterior atrophy and showed the lowest frequency of visual hallucinations and cognitive fluctuations and the worst cognitive performance. Cluster 3 had the highest frequency of tau pathology, showed posterior atrophy, and had a low frequency of parkinsonism. Cluster 4 had virtually normal AD biomarkers, the least regional brain atrophy and cerebrovascular pathology, and the highest MMSE scores. CONCLUSIONS This study demonstrates that there are subgroups of DLB patients with different biological, clinical, and demographic characteristics. These findings may have implications in the diagnosis and prognosis of DLB, as well as in the treatment response in clinical trials.
Collapse
Affiliation(s)
- Carla Abdelnour
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Department of Medicine of the Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marleen van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nira Cedres
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden
| | - Ketil Oppedal
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Lena Cavallin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology Karolinska University Hospital, Stockholm, Sweden
| | - Frédéric Blanc
- Service, Memory Resources and Research Centre, University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research, ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Strasbourg, France
| | - Olivier Bousiges
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives, UMR7364, University Hospital of Strasbourg, Strasbourg, France
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya-Barcelona, Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau. Biomedical Research Institute (IIB-Sant Pau), Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau. Biomedical Research Institute (IIB-Sant Pau), Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
36
|
Das S, Panigrahi P, Chakrabarti S. Corpus Callosum Atrophy in Detection of Mild and Moderate Alzheimer's Disease Using Brain Magnetic Resonance Image Processing and Machine Learning Techniques. J Alzheimers Dis Rep 2021; 5:771-788. [PMID: 34870103 PMCID: PMC8609489 DOI: 10.3233/adr-210314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/25/2023] Open
Abstract
Background: The total number of people with dementia is projected to reach 82 million in 2030 and 152 in 2050. Early and accurate identification of the underlying causes of dementia, such as Alzheimer’s disease (AD) is of utmost importance. A large body of research has shown that imaging techniques are most promising technologies to improve subclinical and early diagnosis of dementia. Morphological changes, especially atrophy in various structures like cingulate gyri, caudate nucleus, hippocampus, frontotemporal lobe, etc., have been established as markers for AD. Being the largest white matter structure with a high demand of blood supply from several main arterial systems, anatomical alterations of the corpus callosum (CC) may serve as potential indication neurodegenerative disease. Objective: To detect mild and moderate AD using brain magnetic resonance image (MRI) processing and machine learning techniques. Methods: We have performed automatic detection and segmentation of the CC and calculated its morphological features to feed into a multivariate pattern analysis using support vector machine (SVM) learning techniques. Results: Our results using large patients’ cohort show CC atrophy-based features are capable of distinguishing healthy and mild/moderate AD patients. Our classifiers obtain more than 90%sensitivity and specificity in differentiating demented patients from healthy cohorts and importantly, achieved more than 90%sensitivity and > 80%specificity in detecting mild AD patients. Conclusion: Results from this analysis are encouraging and advocate development of an image analysis software package to detect dementia from brain MRI using morphological alterations of the CC.
Collapse
Affiliation(s)
- Subhrangshu Das
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Priyanka Panigrahi
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
37
|
Ma WY, Tian MJ, Yao Q, Li Q, Tang FY, Xiao CY, Shi JP, Chen J. Neuroimaging alterations in dementia with Lewy bodies and neuroimaging differences between dementia with Lewy bodies and Alzheimer's disease: An activation likelihood estimation meta-analysis. CNS Neurosci Ther 2021; 28:183-205. [PMID: 34873859 PMCID: PMC8739049 DOI: 10.1111/cns.13775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of this study was to identify brain regions with local, structural, and functional abnormalities in dementia with Lewy bodies (DLB) and uncover the differences between DLB and Alzheimer's disease (AD). The neural networks involved in the identified abnormal brain regions were further described. Methods PubMed, Web of Science, OVID, Science Direct, and Cochrane Library databases were used to identify neuroimaging studies that included DLB versus healthy controls (HCs) or DLB versus AD. The coordinate‐based meta‐analysis and functional meta‐analytic connectivity modeling were performed using the activation likelihood estimation algorithm. Results Eleven structural studies and fourteen functional studies were included in this quantitative meta‐analysis. DLB patients showed a dysfunction in the bilateral inferior parietal lobule and right lingual gyrus compared with HC patients. DLB patients showed a relative preservation of the medial temporal lobe and a tendency of lower metabolism in the right lingual gyrus compared with AD. The frontal‐parietal, salience, and visual networks were all abnormally co‐activated in DLB, but the default mode network remained normally co‐activated compared with AD. Conclusions The convergence of local brain regions and co‐activation neural networks might be potential specific imaging markers in the diagnosis of DLB. This might provide a pathway for the neural regulation in DLB patients, and it might contribute to the development of specific interventions for DLB and AD.
Collapse
Affiliation(s)
- Wen-Ying Ma
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min-Jie Tian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Yao
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Li
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan-Yu Tang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Yong Xiao
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Institute of Neuropsychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Rémillard-Pelchat D, Rahayel S, Gaubert M, Postuma RB, Montplaisir J, Pelletier A, Monchi O, Brambati SM, Carrier J, Gagnon JF. Comprehensive Analysis of Brain Volume in REM Sleep Behavior Disorder with Mild Cognitive Impairment. JOURNAL OF PARKINSONS DISEASE 2021; 12:229-241. [PMID: 34690149 DOI: 10.3233/jpd-212691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rapid-eye-movement sleep behavior disorder (RBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. More than a third of RBD patients have mild cognitive impairment (MCI), but their specific structural brain alterations remain poorly understood. OBJECTIVE This study aimed to investigate the local deformation and volume of gray and white matter tissue underlying MCI in RBD. METHODS Fifty-two idiopathic RBD patients, including 17 with MCI (33%), underwent polysomnography, neuropsychological, neurological, and magnetic resonance imaging assessments. MCI diagnosis was based on a subjective complaint, cognitive impairment on the neuropsychological battery, and preserved daily functioning. Forty-one controls were also included. Deformation-based morphometry (DBM), voxel-based morphometry (VBM), and regional volume analyses of the corpus callosum and basal forebrain cholinergic were performed. Multiple regressions models were also computed using anatomical, cognitive (composite z score), and motor parameters. RESULTS Globally, patients with MCI displayed a widespread pattern of local deformation and volume atrophy in the cortical (bilateral insula, cingulate cortex, precuneus, frontal and temporal regions, right angular gyrus, and mid-posterior segment of the corpus callosum) and subcortical (brainstem, corona radiata, basal ganglia, thalamus, amygdala, and right hippocampus) regions compared to patients without MCI (DBM) or controls (DBM and VBM). Moreover, brain deformation (DBM) in patients were associated with lower performance in attention and executive functions, visuospatial abilities, and higher motor symptoms severity. CONCLUSION The present study identified novel brain structural alterations in RBD patients with MCI which correlated with poorer cognitive performance. These results are consistent with those reported in patients with synucleinopathies-related cognitive impairment.
Collapse
Affiliation(s)
- David Rémillard-Pelchat
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Shady Rahayel
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Malo Gaubert
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pelletier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Oury Monchi
- Department of Radiology, Radio-Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,Departments of Clinical Neurosciences, Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Simona Maria Brambati
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal -Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Caso F, Agosta F, Scamarcia PG, Basaia S, Canu E, Magnani G, Volontè MA, Filippi M. A multiparametric MRI study of structural brain damage in dementia with lewy bodies: A comparison with Alzheimer's disease. Parkinsonism Relat Disord 2021; 91:154-161. [PMID: 34628194 DOI: 10.1016/j.parkreldis.2021.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Differential diagnosis between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is crucial for an adequate patients' management but might be challenging. We investigated with advanced MRI techniques gray (GM) and white matter (WM) damage in DLB patients compared to those with AD. METHODS 24 DLB patients, 26 age- and disease severity-matched AD patients, and 20 age and sex-matched controls performed clinical and neuropsychological assessment, and brain structural and diffusion-tensor MRI. We measured GM atrophy using voxel-based morphometry, WM hyperintensities (WMH) using a local thresholding segmentation technique, and normal-appearing WM (NAWM) damage using tract-based spatial statistic. RESULTS DLB and AD patients exhibited mild-to-moderate-stage dementia. Compared to controls, GM damage was diffuse in AD, while limited to bilateral thalamus and temporal regions in DLB. Compared to DLB, AD patients exhibited GM atrophy in bilateral fronto-temporal and occipital regions. DLB and AD patients showed higher WMH load than controls, with no differences among each other. WMH in DLB were diffuse with relative prevalence in posterior parietal-occipital regions. Compared to controls, both DLB and AD patients showed reduced microstructural integrity of the main supratentorial and infratentorial NAWM tracts. AD patients exhibited greater posterior NAWM damage than DLB. CONCLUSIONS DLB showed prominent WM degeneration compared to the limited GM atrophy, while in AD both tissue compartments were severely involved. In DLB, NAWM microstructural degeneration was independent of WMH, thus revealing two possible underlying processes. Different pathophysiological mechanisms are likely to drive GM and WM damage distribution in DLB and AD.
Collapse
Affiliation(s)
- Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro G Scamarcia
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
40
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Busceti CL, Fornai F. The connections of Locus Coeruleus with hypothalamus: potential involvement in Alzheimer's disease. J Neural Transm (Vienna) 2021; 128:589-613. [PMID: 33942174 PMCID: PMC8105225 DOI: 10.1007/s00702-021-02338-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The hypothalamus and Locus Coeruleus (LC) share a variety of functions, as both of them take part in the regulation of the sleep/wake cycle and in the modulation of autonomic and homeostatic activities. Such a functional interplay takes place due to the dense and complex anatomical connections linking the two brain structures. In Alzheimer's disease (AD), the occurrence of endocrine, autonomic and sleep disturbances have been associated with the disruption of the hypothalamic network; at the same time, in this disease, the occurrence of LC degeneration is receiving growing attention for the potential roles it may have both from a pathophysiological and pathogenetic point of view. In this review, we summarize the current knowledge on the anatomical and functional connections between the LC and hypothalamus, to better understand whether the impairment of the former may be responsible for the pathological involvement of the latter, and whether the disruption of their interplay may concur to the pathophysiology of AD. Although only a few papers specifically explored this topic, intriguingly, some pre-clinical and post-mortem human studies showed that aberrant protein spreading and neuroinflammation may cause hypothalamus degeneration and that these pathological features may be linked to LC impairment. Moreover, experimental studies in rodents showed that LC plays a relevant role in modulating the hypothalamic sleep/wake cycle regulation or neuroendocrine and systemic hormones; in line with this, the degeneration of LC itself may partly explain the occurrence of hypothalamic-related symptoms in AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
41
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
42
|
Siddappaji KK, Gopal S. Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neurosci 2021; 8:357-389. [PMID: 34183987 PMCID: PMC8222772 DOI: 10.3934/neuroscience.2021020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common, severe neurodegenerative brain disorder characterized by the accumulation of amyloid-beta plaques, neurofibrillary tangles in the brain causing neural disintegration, synaptic dysfunction, and neuronal death leading to dementia. Although many US-FDA-approved drugs like Donepezil, Rivastigmine, Galantamine are available in the market, their consumption reduces only the symptoms of the disease but fails in potency to cure the disease. This disease affects many individuals with aging. Combating the disease tends to be very expensive. This review focuses on biochemical mechanisms in the neuron both at normal and AD state with relevance to the tau hypothesis, amyloid hypothesis, the risk factors influencing dementia, oxidative stress, and neuroinflammation altogether integrated with neurodegeneration. A brief survey is carried out on available biomarkers in the diagnosis of the disease, drugs used for the treatment, and the challenges in approaching therapeutic targets in inhibiting the disease pathologies. This review conjointly assesses the demerits with the inefficiency of drugs to reach targets, their side effects, and toxicity. Optimistically, this review directs on the advantageous strategies in using nanotechnology-based drug delivery systems to cross the blood-brain barrier for improving the efficacy of drugs combined with a novel neuronal stem cell therapy approach. Determinately, this review aims at the natural, non-therapeutic healing impact of physical exercise on different model organisms and the effect of safe neuromodulation treatments using repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Electrical Stimulation (tES) in humans to control the disease pathologies prominent in enhancing the synaptic function.
Collapse
Affiliation(s)
| | - Shubha Gopal
- Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| |
Collapse
|
43
|
Schumacher J, Taylor JP, Hamilton CA, Firbank M, Cromarty RA, Donaghy PC, Roberts G, Allan L, Lloyd J, Durcan R, Barnett N, O'Brien JT, Thomas AJ. In vivo nucleus basalis of Meynert degeneration in mild cognitive impairment with Lewy bodies. NEUROIMAGE-CLINICAL 2021; 30:102604. [PMID: 33711623 PMCID: PMC7972982 DOI: 10.1016/j.nicl.2021.102604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Nucleus basalis of Meynert (NBM) degeneration occurs early in Lewy body dementia. NBM degeneration is related to cognitive impairment in MCI with Lewy bodies. EEG slowing in MCI patients is related to the severity of NBM degeneration.
Objectives To investigate in vivo degeneration of the cholinergic system in mild cognitive impairment with Lewy bodies (MCI-LB), we studied nucleus basalis of Meynert (NBM) volumes from structural MR images and its relation to EEG slowing and cognitive impairment. Methods We studied the NBM using structural MR images in 37 patients with MCI-LB, 34 patients with MCI with Alzheimer’s disease (MCI-AD), and 31 healthy control participants. We also tested correlations between NBM volumes and measures of overall cognition and measures of EEG slowing in the MCI groups. Results Overall NBM volume was reduced in MCI-LB compared to controls with no significant difference between MCI-AD and controls or between the two MCI groups. The voxel-wise analysis revealed bilateral clusters of reduced NBM volume in MCI-LB compared to controls and smaller clusters in MCI-AD compared to controls. There was a significant association between overall NBM volume and measures of overall cognition in MCI-LB, but not in MCI-AD. In both MCI groups, reduced NBM volume was correlated with more severe EEG slowing. Conclusions This study provides in vivo evidence that early cholinergic degeneration in DLB occurs at the MCI stage and is related to the severity of cognitive impairment. Furthermore, the results suggest that early EEG slowing in MCI-LB might be in part cholinergically driven. Importantly, these findings suggest an early cholinergic deficit in MCI-LB that may motivate further testing of the effectiveness of cholinesterase inhibitors in this group.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom.
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Ruth A Cromarty
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Gemma Roberts
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Louise Allan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom; Institute of Health Research, University of Exeter, Exeter, United Kingdom
| | - Jim Lloyd
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NFS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rory Durcan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Nicola Barnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge CB2 0SP, United Kingdom
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| |
Collapse
|
44
|
Nemoto K, Sakaguchi H, Kasai W, Hotta M, Kamei R, Noguchi T, Minamimoto R, Arai T, Asada T. Differentiating Dementia with Lewy Bodies and Alzheimer's Disease by Deep Learning to Structural MRI. J Neuroimaging 2021; 31:579-587. [PMID: 33476487 DOI: 10.1111/jon.12835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Dementia with Lewy bodies (DLB) is the second most prevalent cause of degenerative dementia next to Alzheimer's disease (AD). Though current DLB diagnostic criteria employ several indicative biomarkers, relative preservation of the medial temporal lobe as revealed by structural MRI suffers from low sensitivity and specificity, making them unreliable as sole supporting biomarkers. In this study, we investigated how a deep learning approach would be able to differentiate DLB from AD with structural MRI data. METHODS Two-hundred and eight patients (101 DLB, 69 AD, and 38 controls) participated in this retrospective study. Gray matter images were extracted using voxel-based morphometry (VBM). In order to compare the conventional statistical analysis with deep-learning feature extraction, we built a classification model for DLB and AD with a residual neural network (ResNet) type of convolutional neural network architecture, which is one of the deep learning models. The anatomically standardized gray matter images extracted in the same way as for the VBM process were used as inputs, and the classification performance achieved by our model was evaluated. RESULTS Conventional statistical analysis detected no significant atrophy other than fine differences on the middle temporal pole and hippocampal regions. The feature extracted by the deep learning method differentiated DLB from AD with 79.15% accuracy compared to the 68.41% of the conventional method. CONCLUSIONS Our results confirmed that the deep learning method with gray matter images can detect fine differences between DLB and AD that may be underestimated by the conventional method.
Collapse
Affiliation(s)
- Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | | | - Masatoshi Hotta
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryotaro Kamei
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoyuki Noguchi
- National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Ryogo Minamimoto
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Asada
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.,Memory Clinic Ochanomizu, Tokyo, Japan
| |
Collapse
|
45
|
Smith EE, Barber P, Field TS, Ganesh A, Hachinski V, Hogan DB, Lanctôt KL, Lindsay MP, Sharma M, Swartz RH, Ismail Z, Gauthier S, Black SE. Canadian Consensus Conference on Diagnosis and Treatment of Dementia (CCCDTD)5: Guidelines for management of vascular cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12056. [PMID: 33209971 PMCID: PMC7657196 DOI: 10.1002/trc2.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Vascular disease is a common cause of dementia, and often coexists with other brain pathologies such as Alzheimer's disease to cause mixed dementia. Many of the risk factors for vascular disease are treatable. Our objective was to review evidence for diagnosis and treatment of vascular cognitive impairment (VCI) to issue recommendations to clinicians. METHODS A subcommittee of the Canadian Consensus Conference on Diagnosis and Treatment of Dementia (CCCDTD) reviewed areas of emerging evidence. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was used to assign the quality of the evidence and strength of the recommendations. RESULTS Using standardized diagnostic criteria, managing hypertension to conventional blood pressure targets, and reducing risk for stroke are strongly recommended. Intensive blood pressure lowering in middle-aged adults with vascular risk factors, using acetylsalicylic acid in persons with VCI and covert brain infarctions but not if only white matter lesions are present, and using cholinesterase inhibitors are weakly recommended. CONCLUSIONS The CCCDTD has provided evidence-based recommendations for diagnosis and management of VCI for use nationally in Canada, that may also be of use worldwide.
Collapse
Affiliation(s)
- Eric E. Smith
- Department of Clinical Neurosciences and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Philip Barber
- Department of Clinical Neurosciences and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Thalia S. Field
- Vancouver Stroke ProgramDjavad Mowafaghian Centre for Brain Health, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Aravind Ganesh
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Vladimir Hachinski
- Department of Clinical Neurological SciencesWestern UniversityLondonOntarioCanada
| | - David B. Hogan
- Department of Medicine and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Krista L. Lanctôt
- Department of Psychiatry and Hurvitz Brain Sciences Research ProgramSunnybrook Research Institute and Departments of Psychiatry and PharmacologyUniversity of TorontoTorontoOntarioCanada
| | | | - Mukul Sharma
- Department of Medicine (Neurology)Population Health Research InstituteMcMaster UniversityCanada
| | - Richard H. Swartz
- Department of Medicine (Neurology)Hurvitz Brain Sciences ProgramSunnybrook HSCUniversity of TorontoTorontoCanada
| | - Zahinoor Ismail
- Departments of PsychiatryClinical Neurosciences and Community Health SciencesHotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | - Serge Gauthier
- McGill Center for Studies in AgingMcGill UniversityMontrealCanada
| | - Sandra E. Black
- Department of Medicine (Neurology)Hurvitz Brain Sciences Research ProgramLC Campbell Cognitive Neurology UnitCanadian Partnership for Stroke RecoveryUniversity of TorontoTorontoCanada
| |
Collapse
|
46
|
Tsentidou G, Moraitou D, Tsolaki M. Cognition in Vascular Aging and Mild Cognitive Impairment. J Alzheimers Dis 2020; 72:55-70. [PMID: 31561369 DOI: 10.3233/jad-190638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular health declines with age, due to vascular risk factors, and this leads to an increasing risk of cognitive decline. Mild cognitive impairment (MCI) is defined as the negative cognitive changes beyond what is expected in normal aging. The purpose of the study was to compare older adults with vascular risk factors (VRF), MCI patients, and healthy controls (HC) in main dimensions of cognitive control. The sample comprised a total of 109 adults, aged 50 to 85 (M = 66.09, S.D. = 9.02). They were divided into three groups: 1) older adults with VRF, 2) MCI patients, and 3) healthy controls (HC). VRF and MCI did not differ significantly in age, educational level, or gender as was the case with HC. The tests used mainly examine inhibition, cognitive flexibility, and working memory processing. Results showed that the VRF group had more Set Loss Errors in drawing designs indicating deficits in establishing cognitive set and in cognitive shifting. MCI patients displayed lower performance in processing. Hence, different types of specific impairments emerge in vascular aging and MCI, and this may imply that discrete underlying pathologies may play a role in the development of somewhat different profiles of cognitive decline.
Collapse
Affiliation(s)
- Glykeria Tsentidou
- Laboratoty of Psychology, Department of Experimental and Cognitive Psychology, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI), AUTh, Greece
| | - Despina Moraitou
- Laboratoty of Psychology, Department of Experimental and Cognitive Psychology, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki (GAADRD), Greece.,Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI), AUTh, Greece
| | - Magda Tsolaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki (AUTh), Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki (GAADRD), Greece.,Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI), AUTh, Greece
| |
Collapse
|
47
|
Malattia a corpi di Lewy. Neurologia 2020. [DOI: 10.1016/s1634-7072(20)44006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Tung EE, Walston V, Bartley M. Approach to the Older Adult With New Cognitive Symptoms. Mayo Clin Proc 2020; 95:1281-1292. [PMID: 32498781 DOI: 10.1016/j.mayocp.2019.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
Dementia affects nearly 50 million people worldwide, translating into one new case every 3 seconds. Dementia syndrome is one of the leading causes of disability among older adults, yet it remains vastly underdiagnosed. A timely diagnosis of dementia is essential to ensuring optimal care and support of individuals and their loved ones. Although there is no single test for dementia, health care providers can use a structured approach to the workup and management of new cognitive symptoms. Comprehensive MEDLINE and PubMed searches were performed to develop an unbiased, practical diagnostic approach to these symptoms. This review guides primary care providers in the workup, diagnosis, delivery, and initial management of patients presenting with new cognitive symptoms.
Collapse
Affiliation(s)
- Ericka E Tung
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN; Division of Community Internal Medicine and the Division of Geriatric Medicine and Gerontology, Mayo Clinic College of Medicine and Science, Rochester, MN.
| | - Victoria Walston
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN; Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Mairead Bartley
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN; Division of Community Internal Medicine and the Division of Geriatric Medicine and Gerontology, Mayo Clinic College of Medicine and Science, Rochester, MN
| |
Collapse
|
49
|
Chabran E, Noblet V, Loureiro de Sousa P, Demuynck C, Philippi N, Mutter C, Anthony P, Martin-Hunyadi C, Cretin B, Blanc F. Changes in gray matter volume and functional connectivity in dementia with Lewy bodies compared to Alzheimer's disease and normal aging: implications for fluctuations. Alzheimers Res Ther 2020; 12:9. [PMID: 31907068 PMCID: PMC6945518 DOI: 10.1186/s13195-019-0575-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/23/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Fluctuations are one of the core clinical features characterizing dementia with Lewy bodies (DLB). They represent a determining factor for its diagnosis and strongly impact the quality of life of patients and their caregivers. However, the neural correlates of this complex symptom remain poorly understood. This study aimed to investigate the structural and functional changes in DLB patients, compared to Alzheimer's disease (AD) patients and healthy elderly subjects, and their potential links with fluctuations. METHODS Structural and resting-state functional MRI data were collected from 92 DLB patients, 70 AD patients, and 22 control subjects, who also underwent a detailed clinical examination including the Mayo Clinic Fluctuation Scale. Gray matter volume changes were analyzed using whole-brain voxel-based morphometry, and resting-state functional connectivity was investigated using a seed-based analysis, with regions of interest corresponding to the main nodes of the salience network (SN), frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN). RESULTS At the structural level, fluctuation scores in DLB patients did not relate to the atrophy of insular, temporal, and frontal regions typically found in this pathology, but instead showed a weak correlation with more subtle volume reductions in different regions of the cholinergic system. At the functional level, the DLB group was characterized by a decreased connectivity within the SN and attentional networks, while the AD group showed decreases within the SN and DMN. In addition, higher fluctuation scores in DLB patients were correlated to a greater connectivity of the SN with the DAN and left thalamus, along with a decreased connectivity between the SN and DMN, and between the right thalamus and both the FPN and DMN. CONCLUSIONS Functional connectivity changes, rather than significant gray matter loss, could play an important role in the emergence of fluctuations in DLB. Notably, fluctuations in DLB patients appeared to be related to a disturbed external functional connectivity of the SN, which may lead to less relevant transitions between different cognitive states in response to internal and environmental stimuli. Our results also suggest that the thalamus could be a key region for the occurrence of this symptom.
Collapse
Affiliation(s)
- Eléna Chabran
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Vincent Noblet
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
| | - Catherine Demuynck
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Catherine Mutter
- INSERM Centre d’Investigation Clinique 1434, University Hospitals of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- General Hospital Centre, Geriatrics Department, CM2R, Geriatric Day Hospital, Colmar, France
| | - Catherine Martin-Hunyadi
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Research and Resources Memory Centre), Geriatrics Department, University Hospitals of Strasbourg, Geriatric Day Hospital and Neuropsychology Unit, Strasbourg, France
| |
Collapse
|
50
|
Matar E, Shine JM, Halliday GM, Lewis SJG. Cognitive fluctuations in Lewy body dementia: towards a pathophysiological framework. Brain 2019; 143:31-46. [DOI: 10.1093/brain/awz311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Fluctuating cognition is a complex and disabling symptom that is seen most frequently in the context of Lewy body dementias encompassing dementia with Lewy bodies and Parkinson’s disease dementia. In fact, since their description over three decades ago, cognitive fluctuations have remained a core diagnostic feature of dementia with Lewy bodies, the second most common dementia in the elderly. In the absence of reliable biomarkers for Lewy body pathology, the inclusion of such patients in therapeutic trials depends on the accurate identification of such core clinical features. Yet despite their diagnostic relevance, cognitive fluctuations remain poorly understood, in part due to the lack of a cohesive clinical and scientific explanation of the phenomenon itself. Motivated by this challenge, the present review examines the history, clinical phenomenology and assessment of cognitive fluctuations in the Lewy body dementias. Based on these data, the key neuropsychological, neurophysiological and neuroimaging correlates of cognitive fluctuations are described and integrated into a novel testable heuristic framework from which new insights may be gained.
Collapse
Affiliation(s)
- Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - James M Shine
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenda M Halliday
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
| | - Simon J G Lewis
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| |
Collapse
|