1
|
Liu J, Binding L, Puntambekar I, Patodia S, Lim YM, Mryzyglod A, Xiao F, Pan S, Mito R, de Tisi J, Duncan JS, Baxendale S, Koepp M, Thom M. Microangiopathy in temporal lobe epilepsy with diffusion MRI alterations and cognitive decline. Acta Neuropathol 2024; 148:49. [PMID: 39377933 PMCID: PMC11461556 DOI: 10.1007/s00401-024-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorβ and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuroscience, University of Westminster, London, UK
| | - Lawrence Binding
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Isha Puntambekar
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yau Mun Lim
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alicja Mryzyglod
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shengning Pan
- Department of Statistical Science, University College London, Gower St., London, UK
| | - Remika Mito
- Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
2
|
Gurski F, Shirvanchi K, Rajendran V, Rajendran R, Megalofonou FF, Böttiger G, Stadelmann C, Bhushan S, Ergün S, Karnati S, Berghoff M. Anti-inflammatory and remyelinating effects of fexagratinib in experimental multiple sclerosis. Br J Pharmacol 2024. [PMID: 39367768 DOI: 10.1111/bph.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND AND PURPOSE FGF, VEGFR-2 and CSF1R signalling pathways play a key role in the pathogenesis of multiple sclerosis (MS). Selective inhibition of FGFR by infigratinib in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) prevented severe first clinical episodes by 40%; inflammation and neurodegeneration were reduced, and remyelination was enhanced. Multi-kinase inhibition of FGFR1-3, CSFR and VEGFR-2 by fexagratinib (formerly known as AZD4547) may be more efficient in reducing inflammation, neurodegeneration and regeneration in the disease model. EXPERIMENTAL APPROACH Female C57BL/6J mice were treated with fexagratinib (6.25 or 12.5 mg·kg-1) orally or placebo over 10 days either from time of EAE induction (prevention experiment) or onset of symptoms (suppression experiment). Effects on inflammation, neurodegeneration and remyelination were assessed at the peak of the disease (Day 18/20 post immunization) and the chronic phase of EAE (Day 41/42). KEY RESULTS In the prevention experiment, treatment with 6.25 or 12.5 mg·kg-1 fexagratinib prevented severe first clinical episodes by 66.7% or 84.6% respectively. Mice treated with 12.5 mg·kg-1 fexagratinib hardly showed any symptoms in the chronic phase of EAE. In the suppression experiment, fexagratinib resulted in a long-lasting reduction of severe symptoms by 91 or 100%. Inflammation and demyelination were reduced, and axonal density, numbers of oligodendrocytes and their precursor cells, and remyelinated axons were increased by both experimental approaches. CONCLUSION AND IMPLICATIONS Multi-kinase inhibition by fexagratinib in a well-tolerated dose of 1 mg·kg-1 in humans may be a promising approach to reduce inflammation and neurodegeneration, to slow down disease progression and support remyelination in patients.
Collapse
Affiliation(s)
- Fynn Gurski
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | | | - Gregor Böttiger
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Schulte F, Reiter JT, Bauer T, Taube J, Bitzer F, Witt J, Piper R, Thanabalasingam A, von Wrede R, Racz A, Baumgartner T, Borger V, Specht‐Riemenschneider L, Vatter H, Hattingen E, Deichmann R, Helmstaedter C, Radbruch A, Friedman A, Surges R, Rüber T. Interictal blood-brain barrier dysfunction in piriform cortex of people with epilepsy. Ann Clin Transl Neurol 2024; 11:2623-2632. [PMID: 39190772 PMCID: PMC11514923 DOI: 10.1002/acn3.52176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE The piriform cortex is considered to be highly epileptogenic. Its resection during epilepsy surgery is a predictor for postoperative seizure freedom in temporal lobe epilepsy. Epilepsy is associated with a dysfunction of the blood-brain barrier. We investigated blood-brain barrier dysfunction in the piriform cortex of people with temporal lobe epilepsy using quantitative T1-relaxometry. METHODS Gadolinium-based contrast agent was administered ictally and interictally in 37 individuals before undergoing quantitative T1-relaxometry. Postictal and interictal images were co-registered, and subtraction maps were created as biomarkers for peri-ictal (∆qT1interictal-postictal) and interictal (∆qT1noncontrast-interictal) blood-brain barrier dysfunction. Values were extracted for the piriform cortex, hippocampus, amygdala, and the whole cortex. RESULTS In temporal lobe epilepsy (n = 14), ∆qT1noncontrast-interictal was significantly higher in the piriform cortex than in the whole cortex (p = 0.02). In extratemporal lobe epilepsy (n = 23), ∆qT1noncontrast-interictal was higher in the hippocampus than in the whole cortex (p = 0.05). Across all individuals (n = 37), duration of epilepsy was correlated with ∆qT1noncontrast-interictal (ß = 0.001, p < 0.001) in all regions, while the association was strongest in the piriform cortex. Impaired verbal memory was associated with ∆qT1noncontrast-interictal only in the piriform cortex (p = 0.04). ∆qT1interictal-postictal did not show differences in any region. INTERPRETATION Interictal blood-brain barrier dysfunction occurs in the piriform cortex in temporal lobe epilepsy. This dysfunction is linked to longer disease duration and worse cognitive deficits, emphasizing the central role of the piriform cortex in the epileptogenic network of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Freya Schulte
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Johannes T. Reiter
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Tobias Bauer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Julia Taube
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Felix Bitzer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Rory Piper
- Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Randi von Wrede
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Attila Racz
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Valeri Borger
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | | | - Hartmut Vatter
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | - Elke Hattingen
- Department of NeuroradiologyClinics of Johann Wolfgang‐Goethe UniversityFrankfurt am MainGermany
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Ralf Deichmann
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | | | - Alexander Radbruch
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Alon Friedman
- Department of Brain and Cognitive SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Medical NeuroscienceDalhousie UniversityHalifaxCanada
| | - Rainer Surges
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Theodor Rüber
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
| |
Collapse
|
4
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ngo A, Royer J, Rodriguez-Cruces R, Xie K, DeKraker J, Auer H, Tavakol S, Lam J, Schrader DV, Dudley RWR, Bernasconi A, Bernasconi N, Frauscher B, Lariviere S, Bernhardt BC. Associations of Cerebral Blood Flow Patterns With Gray and White Matter Structure in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209528. [PMID: 39008785 PMCID: PMC11314957 DOI: 10.1212/wnl.0000000000209528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables. METHODS We included individuals with and without pharmaco-resistant TLE who underwent multimodal 3T MRI, including arterial spin labelling, structural, and diffusion-weighted imaging. Using surface-based MRI mapping, we generated individualized cortico-subcortical profiles of perfusion, morphology, and microstructure. Linear models compared regional CBF in patients with controls and related alterations to morphological and microstructural metrics. We further probed interregional vascular networks in TLE, using graph theoretical CBF covariance analysis. The effects of disease duration were explored to better understand the progressive changes in perfusion. We assessed the utility of perfusion in separating patients with TLE from controls using supervised machine learning. RESULTS Compared with control participants (n = 38; mean ± SD age 34.8 ± 9.3 years; 20 females), patients with TLE (n = 24; mean ± SD age 35.8 ± 10.6 years; 12 females) showed widespread CBF reductions predominantly in fronto-temporal regions (Cohen d -0.69, 95% CI -1.21 to -0.16), consistent in a subgroup of patients who remained seizure-free after surgical resection of the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partially constrained by gray and white matter changes (8.11% reduction in Cohen d) and topologically segregated from whole-brain perfusion networks (area under the curve -0.17, p < 0.05). Negative effects of progressive disease duration further targeted regional CBF profiles in patients (r = -0.54, 95% CI -0.77 to -0.16). Perfusion-derived classifiers discriminated patients from controls with high accuracy (71% [70%-82%]). Findings were robust when controlling for several methodological confounds. DISCUSSION Our multimodal findings provide insights into vascular contributions to TLE pathophysiology affecting and extending beyond mesiotemporal structures and highlight their clinical potential in epilepsy diagnosis. As our work was cross-sectional and based on a single site, it motivates future longitudinal studies to confirm progressive effects, ideally in a multicentric setting.
Collapse
Affiliation(s)
- Alexander Ngo
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jessica Royer
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raul Rodriguez-Cruces
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ke Xie
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jordan DeKraker
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Auer
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shahin Tavakol
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jack Lam
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dewi V Schrader
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Roy W R Dudley
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Andrea Bernasconi
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Neda Bernasconi
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Birgit Frauscher
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sara Lariviere
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Boris C Bernhardt
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Hanael E, Baruch S, Altman RK, Chai O, Rapoport K, Peery D, Friedman A, Shamir MH. Blood-brain barrier dysfunction and decreased transcription of tight junction proteins in epileptic dogs. J Vet Intern Med 2024; 38:2237-2248. [PMID: 38842297 PMCID: PMC11256172 DOI: 10.1111/jvim.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Epilepsy in dogs and humans is associated with blood-brain barrier (BBB) dysfunction (BBBD), which may involve dysfunction of tight junction (TJ) proteins, matrix metalloproteases, and astrocytes. Imaging techniques to assess BBB integrity, to identify potential treatment strategies, have not yet been evaluated in veterinary medicine. HYPOTHESIS Some dogs with idiopathic epilepsy (IE) will exhibit BBBD. Identifying BBBD may improve antiepileptic treatment in the future. ANIMALS Twenty-seven dogs with IE and 10 healthy controls. METHODS Retrospective, prospective cohort study. Blood-brain barrier permeability (BBBP) scores were calculated for the whole brain and piriform lobe of all dogs by using dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) and subtraction enhancement analysis (SEA). Matrix metalloproteinase-9 (MMP9) activity in serum and cerebrospinal fluid (CSF) was measured and its expression in the piriform lobe was examined using immunofluorescent staining. Gene expression of TJ proteins and astrocytic transporters was analyzed in the piriform lobe. RESULTS The DCE-MRI analysis of the piriform lobe identified higher BBBP score in the IE group when compared with controls (34.5% vs 26.5%; P = .02). Activity and expression of MMP9 were increased in the serum, CSF, and piriform lobe of IE dogs as compared with controls. Gene expression of Kir4.1 and claudin-5 in the piriform lobe of IE dogs was significantly lower than in control dogs. CONCLUSIONS AND CLINICAL IMPORTANCE Our findings demonstrate BBBD in dogs with IE and were supported by increased MMP9 activity and downregulation of astrocytic potassium channels and some TJ proteins. Blood brain barrier dysfunction may be a novel antiepileptic therapy target.
Collapse
Affiliation(s)
- Erez Hanael
- Koret School of Veterinary Medicine, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Shelly Baruch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Rotem Kalev Altman
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | - Orit Chai
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | - Kira Rapoport
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Dana Peery
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | | | - Merav H. Shamir
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
9
|
Wang J, Wu T, Zhao Y, Mao L, Ding J, Wang X. IL-17A Aggravated Blood-Brain Barrier Disruption via Activating Src Signaling in Epilepsy Mice. Mol Neurobiol 2024:10.1007/s12035-024-04203-7. [PMID: 38819634 DOI: 10.1007/s12035-024-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an important pathogenic driving force in the genesis and development of epilepsy. The latest researches demonstrated that IL-17A mediated blood-brain barrier (BBB) dysfunction through disruption of tight junction protein expression. To investigate whether IL-17A is involved in BBB disruption after acute seizure attack, the pilocarpine model was established with C57BL/6 J (wild type, WT) and IL-17R-deficient mice in vivo and with primary cultured rat brain microvascular endothelial cells in vitro. The mortality rate and brain water content were evaluated at 24 h after status epilepticus, and IL-17A concentration, endothelial tight junction, adherens junction proteins, and albumin leakage were assessed at 0 h, 4 h, 12 h, and 24 h after status epilepticus (SE). IL-17R-deficient mice showed lessen severity of epilepsy than WT mice, accompanied by less albumin leakage, reduced brain water content, decreased IL-17A, and upregulated expression of target proteins (ZO-1, Occludin and VE-cadherin). IL-17R knockout abrogated abnormal upregulation of Src kinase and phosphorylated Src kinase in the setting of SE, and Src kinase inhibitor PP1 abrogated IL-17A-induced SE related endothelial injury in vitro. In conclusion, IL-17A inhibition might be a promising therapeutic option to attenuate endothelial cell injury and further BBB disruption by reducing Src kinase activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanan Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
10
|
Reiter JT, Schulte F, Bauer T, David B, Endler C, Isaak A, Schuch F, Bitzer F, Witt JA, Hattingen E, Deichmann R, Attenberger U, Becker AJ, Helmstaedter C, Radbruch A, Surges R, Friedman A, Rüber T. Evidence for interictal blood-brain barrier dysfunction in people with epilepsy. Epilepsia 2024; 65:1462-1474. [PMID: 38436479 DOI: 10.1111/epi.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.
Collapse
Affiliation(s)
- Johannes T Reiter
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Freya Schulte
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Christoph Endler
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Fabiane Schuch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Felix Bitzer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Elke Hattingen
- Institute of Neuroradiology, University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Departments of Cognitive and Brain Sciences, Physiology, and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Aydogan Avşar P, Akkuş M. ZO-1 Serum Levels as a Potential Biomarker for Psychotic Disorder. Clin Neuropharmacol 2024; 47:67-71. [PMID: 38743599 DOI: 10.1097/wnf.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE There are limited studies in the literature on the relationship between intestinal and blood-brain barrier permeability and the etiology of schizophrenia. We hypothesized that the difference in serum ZO-1 levels in patients with schizophrenia may affect the severity of the disease. The aim of this study was to investigate the role of changes in serum ZO-1 concentrations in the etiopathogenesis of patients with schizophrenia. METHODS A total of 46 patients, 34 with schizophrenia, 12 with a first psychotic attack, and 37 healthy controls, were included in the study. Symptom severity was determined by applying the Positive and Negative Syndrome Scale and the Clinical Global Impression-Severity Scale. Serum ZO-1 levels were measured from venous blood samples. RESULTS Serum ZO-1 levels were higher in patients with psychotic disorder compared to healthy controls. There was no statistically significant difference between the groups in the first psychotic attack group and the schizophrenia patients. There was a statistically significant positive correlation between serum ZO-1 levels and Positive and Negative Syndrome Scale positive symptom score. CONCLUSIONS These findings regarding ZO-1 levels suggest that dysregulation of the blood-brain barrier in psychotic disorder may play a role in the etiology of the disorder.
Collapse
Affiliation(s)
- Pinar Aydogan Avşar
- Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University Training and Research Hospital, Alanya, Turkey
| | - Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Evliya Celebi Education and Research Hospital, Kütahya, Turkey
| |
Collapse
|
12
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
13
|
Diaz-Villegas V, Pichardo-Macías LA, Juárez-Méndez S, Ignacio-Mejía I, Cárdenas-Rodríguez N, Vargas-Hernández MA, Mendoza-Torreblanca JG, Zamudio SR. Changes in the Dentate Gyrus Gene Expression Profile Induced by Levetiracetam Treatment in Rats with Mesial Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:1690. [PMID: 38338984 PMCID: PMC10855401 DOI: 10.3390/ijms25031690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.
Collapse
Affiliation(s)
- Veronica Diaz-Villegas
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | | | - Sergio R. Zamudio
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| |
Collapse
|
14
|
Bernardino PN, Luo AS, Andrew PM, Unkel CM, Gonzalez MI, Gelli A, Lein PJ. Evidence Implicating Blood-Brain Barrier Impairment in the Pathogenesis of Acquired Epilepsy following Acute Organophosphate Intoxication. J Pharmacol Exp Ther 2024; 388:301-312. [PMID: 37827702 PMCID: PMC10801776 DOI: 10.1124/jpet.123.001836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Audrey S Luo
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Peter M Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Chelsea M Unkel
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Marco I Gonzalez
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Angie Gelli
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| |
Collapse
|
15
|
Hong Y, Wei C, Fu M, Li X, Zhang H, Yao B. MCC950 alleviates seizure severity and angiogenesis by inhibiting NLRP3/ IL-1β signaling pathway-mediated pyroptosis in mouse model of epilepsy. Int Immunopharmacol 2024; 126:111236. [PMID: 38039716 DOI: 10.1016/j.intimp.2023.111236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Epilepsy is one of the most common serious chronic brain disorders, affecting up to 70 million people worldwide. Vascular disruption, including blood-brain barrier impairment and pathological angiogenesis, exacerbates its occurrence. However, its underlying mechanisms remain elusive. MCC950 is a specific small-molecule inhibitor that selectively blocks NLRP3 inflammatory vesicle activation across the blood-brain barrier, limits downstream IL-1β maturation and release, and exerts therapeutic effects across multiple diseases. In the present study, an epilepsy model was established by intraperitoneal administration of Kainic acid to adult male C57BL/6J wild-type mice. The results revealed that the epilepsy susceptibility of MCC950-treated mice was decreased, and neural damage following seizure episodes was reduced. In addition, immunofluorescence staining, RT-qPCR, and Western blot demonstrated that MCC950 inhibited the expression of the NLRP3 inflammasome and its related proteins in microglia, whereas microangiogenesis was found to be increased in the cerebral cortex and hippocampus of epileptic mice, and these effects could be reversed by MCC950. Furthermore, neurobehavioral impairment was observed in the epileptic mouse model, and MCC950 similarly alleviated the aforementioned pathological process. To the best of our knowledge, this is the first study to establish that pathological microangiogenesis is associated with NLRP3/IL-1β signaling pathway activation in a Kainic acid-induced epilepsy mouse model and that MCC950 administration attenuates the above-mentioned pathological changes and exerts neuroprotective effects. Therefore, MCC950 is a promising therapeutic agent for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yongri Hong
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Xinyang Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Zoungrana LI, Didik S, Wang H, Slotabec L, Li J. Activated protein C in epilepsy pathophysiology. Front Neurosci 2023; 17:1251017. [PMID: 37901428 PMCID: PMC10603301 DOI: 10.3389/fnins.2023.1251017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Epilepsy is one of the most common neurologic disorders that is characterized by recurrent seizures, and depending on the type of seizure, it could lead to a severe outcome. Epilepsy's mechanism of development is not fully understood yet, but some of the common features of the disease are blood-brain barrier disruption, microglia activation, and neuroinflammation. Those are also targets of activated protein C (APC). In fact, by downregulating thrombin, known as a pro-inflammatory, APC acts as an anti-inflammatory. APC is also an anti-apoptotic protein, instance by blocking p53-mediated apoptosis. APC's neuroprotective effect could prevent blood-brain barrier dysfunction by acting on endothelial cells. Furthermore, through the downregulation of proapoptotic, and proinflammatory genes, APC's neuroprotection could reduce the effect or prevent epilepsy pathogenesis. APC's activity acts on blood-brain barrier disruption, inflammation, and apoptosis and causes neurogenesis, all hallmarks that could potentially treat or prevent epilepsy. Here we review both Activated Protein C and epilepsy mechanism, function, and the possible association between them.
Collapse
Affiliation(s)
- Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Steven Didik
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
17
|
Gubler FS, Turan EI, Ramlagan S, Ackermans L, Kubben PL, Kuijf ML, Temel Y. Brain vascularization in deep brain stimulation surgeries: epilepsy, Parkinson's disease, and obsessive-compulsive disorder. J Neurosurg Sci 2023; 67:567-575. [PMID: 35380200 DOI: 10.23736/s0390-5616.22.05606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In our experience, we encountered more blood vessels during deep brain stimulation (DBS) surgeries in epilepsy. In this study, we have quantified and compared the cerebral vascularization in epilepsy, Parkinson's disease (PD) and obsessive-compulsive disorder (OCD). METHODS A retrospective observational study in 15 epilepsy and 15 PD patients was performed. The amount, location, and size of blood vessels within 5 millimeters (mm) of all DBS electrode trajectories (N.=120) for both targets (anterior nucleus of the thalamus: ANT and subthalamic nucleus: STN) in both patient groups were quantified and compared on a Medtronic workstation (Dublin, Ireland). Additionally, blood vessels in the trajectories (N.=120) of another group of 15 PD (STN) and 15 OCD (ventral capsule-ventral striatum [VC-VS]) patients were quantified and compared (trajectories N.=120), also to the first group. Statistical analyses were performed with SPSS version 27.0 (descriptive statistics, independent samples t-tests, Mann Whitney U Test, ANOVA Test and post-hoc Tukey Test). A P value <0.05 was considered statistically significant. RESULTS Our results showed a significant greater amount of cerebral blood vessels in epilepsy patients (10 SD±4) compared to PD (PD1 6 SD±1 and PD2 5 SD±3) and OCD (5 SD±1) with P<0.0001. Also, all other subanalyses showed more vascularization in the epilepsy group. CONCLUSIONS Our results show that the brain of epilepsy patients seems to be more vascularized compared to PD and OCD patients. This can make the surgical planning for DBS more challenging, and the use of multiple trajectories limited.
Collapse
Affiliation(s)
- Felix S Gubler
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands -
| | - Engin I Turan
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Shalini Ramlagan
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter L Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
18
|
van Lanen RHGJ, Haeren RHL, Staals J, Dings JTA, Schijns OEMG, Hoogland G, van Kuijk SMJ, Kapsokalyvas D, van Zandvoort MAMJ, Vink H, Rijkers K. Cerebrovascular glycocalyx damage and microcirculation impairment in patients with temporal lobe epilepsy. J Cereb Blood Flow Metab 2023; 43:1737-1751. [PMID: 37231664 PMCID: PMC10581235 DOI: 10.1177/0271678x231179413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Temporal lobe epilepsy (TLE) is increasingly associated with blood-brain barrier dysfunction and microvascular alterations, yet the pathophysiological link is missing. An important barrier function is exerted by the glycocalyx, a gel-like layer coating the endothelium. To explore such associations, we used intraoperative videomicroscopy to quantify glycocalyx and microcirculation properties of the neocortex and hippocampus of 15 patients undergoing resective brain surgery as treatment for drug-resistant TLE, and 15 non-epileptic controls. Fluorescent lectin staining of neocortex and hippocampal tissue was used for blood vessel surface area quantification. Neocortical perfused boundary region, the thickness of the glycocalyx' impaired layer, was higher in patients (2.64 ± 0.52 µm) compared to controls (1.31 ± 0.29 µm), P < 0.01, indicative of reduced glycocalyx integrity in patients. Moreover, erythrocyte flow velocity analysis revealed an impaired ability of TLE patients to (de-)recruit capillaries in response to changing metabolic demands (R2 = 0.75, P < 0.01), indicating failure of neurovascular coupling mechanisms. Blood vessel quantification comparison between intraoperative measurements and resected tissue showed strong correlation (R2 = 0.94, P < 0.01). This is the first report on in vivo assessment of glycocalyx and microcirculation properties in TLE patients, confirming the pivotal role of cerebrovascular changes. Further assessment of the cerebral microcirculation in relation to epileptogenesis might open avenues for new therapeutic targets for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Rick HGJ van Lanen
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roel HL Haeren
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim TA Dings
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Olaf EMG Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sander MJ van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dimitris Kapsokalyvas
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), University Hospital RWTH Aachen, Aachen, Germany
| | - Marc AMJ van Zandvoort
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, Universitätsklinikum, Aachen University, Aachen, Germany
| | - Hans Vink
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| |
Collapse
|
19
|
Averchuk AS, Ryazanova MV, Baranich TI, Stavrovskaya AV, Rozanova NA, Novikova SV, Salmina AB. The Neurotoxic Effect of β-Amyloid Is Accompanied by Changes in the Mitochondrial Dynamics and Autophagy in Neurons and Brain Endothelial Cells in the Experimental Model of Alzheimer's Disease. Bull Exp Biol Med 2023; 175:315-320. [PMID: 37561373 DOI: 10.1007/s10517-023-05859-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 08/11/2023]
Abstract
A comparative assessment of the expression of the mitochondrial fission marker Drp1 and the autophagy marker LC3 in neurons and endothelial cells in the hippocampus and entorhinal cortex during progression of cognitive deficit was performed in animals with intrahippocampal administration of β-amyloid. In both brain regions, the expression of Drp1 and LC3 in neuronal and endothelial cells was enhanced. The peak of cognitive impairment corresponded to the maximum expression of Drp1 and LC3 in hippocampal neurons and was preceded by an increase in the number of Drp1+ and LC3+ endothelial cells in this brain region. These data attests to a possible role of aberrant mitochondrial dynamics and autophagy of endothelial cells in the impairment of brain plasticity in the Alzheimer's type neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A B Salmina
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
20
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
21
|
Li H, Liu X, Wang R, Lu A, Ma Z, Wu S, Lu H, Du Y, Deng K, Wang L, Yuan F. Blood-brain barrier damage and new onset refractory status epilepticus: An exploratory study using dynamic contrast-enhanced magnetic resonance imaging. Epilepsia 2023. [PMID: 36892496 DOI: 10.1111/epi.17576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE This study was undertaken to characterize the blood-brain barrier (BBB) dysfunction in patients with new onset refractory status epilepticus (NORSE) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This study included three groups of adult participants: patients with NORSE, encephalitis patients without status epilepticus (SE), and healthy subjects. These participants were retrospectively included from a prospective DCE-MRI database of neurocritically ill patients and healthy subjects. The BBB permeability (Ktrans) in the hippocampus, basal ganglia, thalamus, claustrum, periventricular white matter, and cerebellum were measured and compared between these three groups. RESULTS A total of seven patients with NORSE, 14 encephalitis patients without SE, and nine healthy subjects were included in this study. Among seven patients with NORSE, only one had a definite etiology (autoimmune encephalitis), and the rest were cryptogenic. Etiology of encephalitis patients without SE included viral (n = 2), bacterial (n = 8), tuberculous (n = 1), cryptococcal (n = 1), and cryptic (n = 2) encephalitis. Of these 14 encephalitis patients without SE, three patients had seizures. Compared to healthy controls, NORSE patients had significantly increased Ktrans values in the hippocampus (.73 vs. .02 × 10-3 /min, p = .001) and basal ganglia (.61 vs. .003 × 10-3 /min, p = .007) and a trend in the thalamus (.24 vs. .08 × 10-3 /min, p = .017). Compared to encephalitis patients without SE, NORSE patients had significantly increased Ktrans values in the thalamus (.24 vs. .01 × 10-3 /min, p = .002) and basal ganglia (.61 vs. .004 × 10-3 /min, p = .013). SIGNIFICANCE This exploratory study demonstrates that BBBs of NORSE patients were impaired diffusely, and BBB dysfunction in the basal ganglia and thalamus plays an important role in the pathophysiology of NORSE.
Collapse
Affiliation(s)
- Huiping Li
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Imaging, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruihong Wang
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aili Lu
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaohui Ma
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shibiao Wu
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongji Lu
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaming Du
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kan Deng
- Philips Healthcare, Guangzhou, China
| | - Lixin Wang
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Emergency Research, Guangzhou, China
| | - Fang Yuan
- Department of Neurocritical Care, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
23
|
Cudna A, Bronisz E, Jopowicz A, Kurkowska-Jastrzębska I. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. Seizure 2023; 106:129-137. [PMID: 36841062 DOI: 10.1016/j.seizure.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Seizures have been shown to increase blood-brain barrier (BBB) permeability, yet the role of this phenomenon is not fully understood. Additionally, dysfunction of the BBB leads to initiation and propagation of seizures in animal models. To demonstrate the increased permeability of the BBB in time, we investigated changes of the serum levels of BBB markers in patients with epilepsy after bilateral tonic-clonic seizures. We chose markers that might reflect endothelial activation (ICAM-1, selectins), BBB leakage (MMP-9, S100B) and mechanisms of BBB restoration (TIMP-1, thrombomodulin -TM). METHODS We enrolled 50 consecutive patients hospitalised after bilateral tonic-clonic seizures who agreed to take part in the study and 50 participants with no history of epilepsy. Serum levels of selected markers were measured by ELISA at 1-3, 24, and 72 hours after seizures and one time in the control group. RESULTS We found increased levels of S100B, ICAM-1, MMP-9 and P-selectin at 1-3 and 24 hours after seizures and TIMP-1 and TM at 24 and 72 hours after seizures as compared to the control group. The level of E-selectin was decreased at 72 hours after seizures. CONCLUSIONS Our findings suggest early activation of endothelium and increased BBB permeability after seizures. While we are aware of the limitations due to the non-specificity of the tested proteins, our results might indicate the presence of prolonged BBB impairment due to seizure activity.
Collapse
Affiliation(s)
- Agnieszka Cudna
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Elżbieta Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Jopowicz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | |
Collapse
|
24
|
Castañeda-Cabral JL, Orozco-Suárez SA, Beas-Zárate C, Fajardo-Fregoso BF, Flores-Soto ME, Ureña-Guerrero ME. Inhibition of VEGFR-2 by SU5416 increases neonatally glutamate-induced neuronal damage in the cerebral motor cortex and hippocampus. J Biochem Mol Toxicol 2023; 37:e23315. [PMID: 36732937 DOI: 10.1002/jbt.23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/23/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.
Collapse
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Sandra A Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Blanca F Fajardo-Fregoso
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Mario E Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), IMSS, Guadalajara, México
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
25
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
26
|
Hamed R, Eyal AD, Berman E, Eyal S. In silico screening for clinical efficacy of antiseizure medications: Not all central nervous system drugs are alike. Epilepsia 2023; 64:311-319. [PMID: 36478573 PMCID: PMC10107105 DOI: 10.1111/epi.17479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Roaa Hamed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit David Eyal
- Computational Medicine Program, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erez Berman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
28
|
Li Y, Jin M, Yin X, Zhou B, Ni H. Effects of leptin treatment immediately after neonatal seizures on serum clusterin and VEGF levels and brain oxidative stress-related proteins and neurobehavioral phenotypes. Epilepsy Behav 2023; 138:109016. [PMID: 36473302 DOI: 10.1016/j.yebeh.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The developing infant brain has a different response mechanism and repair potential for injury than the adult brain. There is an urgent need for new anticonvulsants to effectively control neonatal seizures while minimizing the drug's toxic damage to the developing brain. Leptin protects neuronal plasma membrane integrity, while it has clinical advantages in terms of anticonvulsant properties as well. This study aimed to evaluate the effect of immediate leptin treatment on the serum concentration of clusterin and vascular endothelial growth factor (VEGF), neuronal plasma membrane integrity-related proteins, and the neurobehavioral phenotypes following neonatal seizures. Leptin was injected i.p at a dose of 4 mg/kg 1 hour after daily 30 minutes prolonged seizures for consecutive 10 days. The serum biomarkers (clusterin and VEGF), and brain protein expression of ATF-4/GRP78/autophagy axis were measured by enzyme-linked immunosorbent assay and western blot in the acute phase (24 hours after the last seizures), respectively. Behavioral and histopathological phenotypes and seizure threshold were conducted from P23 to P34, respectively. There were rapid elevation of serum VEGF and clusterin as well as upregulated protein expression of ATF-4, GRP78, Beclin-1, and LC3 in the cerebral cortex and hippocampus following a neonatal seizure, which was restored by immediate treatment with leptin after seizures. In addition, leptin improved seizure-induced impaired neuropsychological, and cognitive functioning. Furthermore, leptin succeeded in ameliorating markers of neuronal excitability, including seizure threshold and hippocampal mossy fiber sprouting. In conclusion, this study verified that immediate treatment with leptin after neonatal seizures restored both rapid elevation of serum clusterin as well as upregulated protein expression of ATF-4/GRP78/autophagy axis in the cerebral cortex and hippocampus, which contributes to the recovery of neurological function.
Collapse
Affiliation(s)
- Yachao Li
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China; Department of Pediatrics, The First People's Hospital, Pingdingshan, Henan Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoping Yin
- Department of Pediatrics, Taixing People's Hospital, Taizhou, Jiangsu Province, China
| | - Baojian Zhou
- Department of Pediatrics, Taixing People's Hospital, Taizhou, Jiangsu Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
30
|
Microglia-Derived Olfactomedin-like 3 Is a Potent Angiogenic Factor in Primary Mouse Brain Endothelial Cells: A Novel Target for Glioblastoma. Int J Mol Sci 2022; 23:ijms232314613. [PMID: 36498941 PMCID: PMC9741462 DOI: 10.3390/ijms232314613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Neoangiogenesis, a hallmark feature of all malignancies, is robust in glioblastoma (GBM). Vascular endothelial growth factor (VEGF) has long been regarded as the primary pro-angiogenic molecule in GBM. However, anti-VEGF therapies have had little clinical efficacy, highlighting the need to explore VEGF-independent mechanisms of neoangiogenesis. Olfactomedin-like 3 (OLFML3), a secreted glycoprotein, is an established proangiogenic factor in many cancers, but its role in GBM neoangiogenesis is unknown. To gain insight into the role of OLFML3 in microglia-mediated angiogenesis, we assessed endothelial cell (EC) viability, migration and differentiation following (1) siRNA knockdown targeting endogenous EC Olfml3 and (2) EC exposure to human recombinant OLFML3 (rhOLFML3; 10 ng/mL, 48 h), and conditioned medium (CM) from isogenic control and Olfml3−/− microglia (48 h). Despite a 70% reduction in Olfml3 mRNA levels, EC angiogenic parameters were not affected. However, exposure to both rhOLFML3 and isogenic control microglial CM increased EC viability (p < 0.01), migration (p < 0.05) and differentiation (p < 0.05). Strikingly, these increases were abolished, or markedly attenuated, following exposure to Olfml3−/− microglial CM despite corresponding increased microglial secretion of VEGF-A (p < 0.0001). Consistent with reports in non-CNS malignancies, we have demonstrated that OLFML3, specifically microglia-derived OLFML3, promotes VEGF-independent angiogenesis in primary brain microvascular ECs and may provide a complementary target to mitigate neovascularization in GBM.
Collapse
|
31
|
Khilazheva ED, Lychkovskaya EV, Kutyakov VA, Morgun AV, Salmin VV. In vitro Effects of Plasma Acid on Proliferation of Rat Brain Endothelial Cells. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Simöes Da Gama C, Morin-Brureau M. Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood-Brain Barrier. Front Cell Neurosci 2022; 16:863836. [PMID: 35755780 PMCID: PMC9226644 DOI: 10.3389/fncel.2022.863836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier (BBB) is a cellular and physical barrier with a crucial role in homeostasis of the brain extracellular environment. It controls the imports of nutrients to the brain and exports toxins and pathogens. Dysregulation of the blood-brain barrier increases permeability and contributes to pathologies, including Alzheimer's disease, epilepsy, and ischemia. It remains unclear how a dysregulated BBB contributes to these different syndromes. Initial studies on the role of the BBB in neurological disorders and also techniques to permit the entry of therapeutic molecules were made in animals. This review examines progress in the use of human models of the BBB, more relevant to human neurological disorders. In recent years, the functionality and complexity of in vitro BBB models have increased. Initial efforts consisted of static transwell cultures of brain endothelial cells. Human cell models based on microfluidics or organoids derived from human-derived induced pluripotent stem cells have become more realistic and perform better. We consider the architecture of different model generations as well as the cell types used in their fabrication. Finally, we discuss optimal models to study neurodegenerative diseases, brain glioma, epilepsies, transmigration of peripheral immune cells, and brain entry of neurotrophic viruses and metastatic cancer cells.
Collapse
Affiliation(s)
- Coraly Simöes Da Gama
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Mélanie Morin-Brureau
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
33
|
Alinaghipour A, Salami M, Nabavizadeh F. Nanocurcumin substantially alleviates noise stress-induced anxiety-like behavior: the roles of tight junctions and NMDA receptors in the hippocampus. Behav Brain Res 2022; 432:113975. [PMID: 35750244 DOI: 10.1016/j.bbr.2022.113975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022]
Abstract
Environmental noise stress affects non-auditory brain regions such as the hippocampus; an area of the brain implicated in cognition and emotion. Recent experimental data indicate that dysfunction of the blood-brain barrier (BBB) and overexpression of NMDA receptors may cause anxiety. In this experiment, we evaluated the effect of nanocurcumin on anxiety-like behavior and the expression of tight junctions and NMDA receptor subunits in the hippocampus of rats exposed to traffic noise. Forty rats were assigned to control (CON), stress (ST), nanocurcumin (NC), and nanocurcumin+stress (NC+ST) groups. Anxiety-like behavior was evaluated through an elevated zero maze apparatus. The gene expression of tight junctions and NMDA receptor subunits was examined by real-time PCR in the hippocampus. Statistical analysis showed that noise exposure developed anxiety-like behavior and elevated the corticosterone level in the ST group compared to the CON group. The nanocurcumin administration decreased the stress and anxiety in the NC+ST group compared to the ST animals. While the noise stress reduced the gene expression of tight junctions occludin, claudin-5, and ZO-1, the nanocurcumin administration increased them in the NC+ST animals. Furthermore, the noise stress elevated the gene expression of the NMDA receptor subunits GRIN1 and GRIN2B. The NC+ST animals showed a modification of these subunits compared to the ST animals. Our findings showed that noise exposure promotes stress and anxiety and impairs the NMDA receptor structure and BBB integrity. The nanocurcumin treatment displayed partly restored the destructive effects of noise exposure.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I. R. Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I. R. Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I. R. Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I. R. Iran.
| |
Collapse
|
34
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
35
|
Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun 2022; 13:2003. [PMID: 35422069 PMCID: PMC9010415 DOI: 10.1038/s41467-022-29657-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/22/2022] [Indexed: 01/03/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients. The mechanisms underlying epilepsy development are not well understood. Here the authors show that loss of a key component of the so called blood-brain barrier drives seizures in mice and is also lost in humans with treatment resistant epilepsy
Collapse
|
36
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
37
|
Zhu J, Yang Y, Ma W, Wang Y, Chen L, Xiong H, Yin C, He Z, Fu W, Xu R, Lin Y. Antiepilepticus Effects of Tetrahedral Framework Nucleic Acid via Inhibition of Gliosis-Induced Downregulation of Glutamine Synthetase and Increased AMPAR Internalization in the Postsynaptic Membrane. NANO LETTERS 2022; 22:2381-2390. [PMID: 35266400 DOI: 10.1021/acs.nanolett.2c00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than 15 million out of 70 million patients worldwide do not respond to available antiepilepticus drugs (AEDs). With the emergence of nanomedicine, nanomaterials are increasingly being used to treat many diseases. Here, we report that tetrahedral framework nucleic acid (tFNA), an assembled nucleic acid nanoparticle, showed an excellent ability to the cross blood-brain barrier (BBB) to inhibit M1 microglial activation and A1 reactive astrogliosis in the hippocampus of mice after status epilepticus. Furthermore, tFNA inhibited the downregulation of glutamine synthetase by alleviating oxidative stress in reactive astrocytes and subsequently reduced glutamate accumulation and glutamate-mediated neuronal hyperexcitability. Meanwhile, tFNA promotes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization in the postsynaptic membrane by regulating AMPAR endocytosis, which contributed to reduced calcium influx and ultimately reduced hyperexcitability and spontaneous epilepticus spike frequencies. These findings demonstrated tFNA as a potential AED and that nucleic acid material may be a new direction for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lihua Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
38
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
39
|
Matsuura R, Hamano SI, Daida A, Horiguchi A, Nonoyama H, Kubota J, Ikemoto S, Hirata Y, Koichihara R, Kikuchi K. Serum matrix metallopeptidase-9 and tissue inhibitor of metalloproteinase-1 levels may predict response to adrenocorticotropic hormone therapy in patients with infantile spasms. Brain Dev 2022; 44:114-121. [PMID: 34429218 DOI: 10.1016/j.braindev.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate whether serum matrix metallopeptidase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels predict response to adrenocorticotropic hormone (ACTH) therapy in patients with infantile spasms. METHODS We prospectively evaluated patients with infantile spasms who were referred to Saitama Children's Medical Center from January 2011 to December 2020. We measured Q-albumin and serum MMP-9 and TIMP-1 levels before ACTH therapy. Patients were divided into three groups based on the etiology of their infantile spasms: those with an unknown etiology and normal development (unknown-normal group); those with a structural and acquired etiology (structural-acquired group); and those with a structural and congenital, genetic, metabolic, or unknown etiology with developmental delay (combined-congenital group). Responders were defined as those having complete cessation of spasms for more than 3 months with the resolution of hypsarrhythmia on electroencephalography during ACTH therapy. RESULTS We collected serum from 36 patients with West syndrome and five patients with infantile spasms without hypsarrhythmia before ACTH therapy. Twenty-three of 41 patients (56.1%) were responders, including 8/8 (100%) in the unknown-normal group, 6/9 (66.7%) in the structural-acquired group, and 9/24 (37.5%) in the combined-congenital group. The serum MMP-9 level and MMP-9/TIMP-1 ratio were significantly higher in responders than in nonresponders (P = 0.001 for both). CONCLUSION A therapeutic response to ACTH was associated with a higher serum MMP-9 level and higher MMP-9/TIMP-1 ratio in patients with infantile spasms. Therefore, these biomarkers may predict responses to ACTH therapy in this patient population.
Collapse
Affiliation(s)
- Ryuki Matsuura
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan.
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Ayumi Horiguchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan
| | - Hazuki Nonoyama
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Jun Kubota
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Satoru Ikemoto
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Yuko Hirata
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| | - Reiko Koichihara
- Division of Child Health and Human Development, Saitama Children's Medical Center, Saitama, Japan
| | - Kenjiro Kikuchi
- Division of Neurology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama, Japan; Department of Pediatrics, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, Japan
| |
Collapse
|
40
|
Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF Modulates Neurogenesis and Microvascular Remodeling in Epileptogenesis After Status Epilepticus in Immature Rats. Front Neurol 2022; 12:808568. [PMID: 35002944 PMCID: PMC8739962 DOI: 10.3389/fneur.2021.808568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis are widely recognized to occur during epileptogenesis and important in brain development. Because vascular endothelial growth factor (VEGF) is a critical neurovascular target in neurological diseases, its effect on neurogenesis, microvascular remodeling and epileptogenesis in the immature brain after lithium-pilocarpine-induced status epilepticus (SE) was investigated. The dynamic changes in and the correlation between hippocampal neurogenesis and microvascular remodeling after SE and the influence of VEGF or SU5416 injection into the lateral ventricles at different stages after SE on neurogenesis and microvascular remodeling through regulation of VEGF expression were assessed by immunofluorescence and immunohistochemistry. Western blot analysis revealed that the VEGFR2 signaling pathway promotes phosphorylated ERK and phosphorylated AKT expression. The effects of VEGF expression regulation at different stages after SE on pathological changes in hippocampal structure and spontaneous recurrent seizures (SRS) were evaluated by Nissl staining and electroencephalography (EEG). The results showed that hippocampal neurogenesis after SE is related to microvascular regeneration. VEGF promotion in the acute period and inhibition in the latent period after SE alleviates loss of hippocampal neuron, abnormal vascular regeneration and inhibits neural stem cells (NSCs) ectopic migration, which may effectively alleviate SRS severity. Interfering with VEGF via the AKT and ERK pathways in different phases after SE may be a promising strategy for treating and preventing epilepsy in children.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaojie Song
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tianyi Li
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
41
|
Stoddart P, Satchell SC, Ramnath R. Cerebral microvascular endothelial glycocalyx damage, its implications on the blood-brain barrier and a possible contributor to cognitive impairment. Brain Res 2022; 1780:147804. [DOI: 10.1016/j.brainres.2022.147804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
|
42
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
43
|
van Lanen RH, Melchers S, Hoogland G, Schijns OE, Zandvoort MAV, Haeren RH, Rijkers K. Microvascular changes associated with epilepsy: A narrative review. J Cereb Blood Flow Metab 2021; 41:2492-2509. [PMID: 33866850 PMCID: PMC8504411 DOI: 10.1177/0271678x211010388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is dysfunctional in temporal lobe epilepsy (TLE). In this regard, microvascular changes are likely present. The aim of this review is to provide an overview of the current knowledge on microvascular changes in epilepsy, and includes clinical and preclinical evidence of seizure induced angiogenesis, barriergenesis and microcirculatory alterations. Anatomical studies show increased microvascular density in the hippocampus, amygdala, and neocortex accompanied by BBB leakage in various rodent epilepsy models. In human TLE, a decrease in afferent vessels, morphologically abnormal vessels, and an increase in endothelial basement membranes have been observed. Both clinical and experimental evidence suggests that basement membrane changes, such as string vessels and protrusions, indicate and visualize a misbalance between endothelial cell proliferation and barriergenesis. Vascular endothelial growth factor (VEGF) appears to play a crucial role. Following an altered vascular anatomy, its physiological functioning is affected as expressed by neurovascular decoupling that subsequently leads to hypoperfusion, disrupted parenchymal homeostasis and potentially to seizures". Thus, epilepsy might be a condition characterized by disturbed cerebral microvasculature in which VEGF plays a pivotal role. Additional physiological data from patients is however required to validate findings from models and histological studies on patient biopsies.
Collapse
Affiliation(s)
- Rick Hgj van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stan Melchers
- Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Olaf Emg Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marc Amj van Zandvoort
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Molecular Cell Biology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roel Hl Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
44
|
Rampino A, Annese T, Torretta S, Tamma R, Maria Falcone R, Ribatti D. Involvement of vascular endothelial growth factor in schizophrenia. Neurosci Lett 2021; 760:136093. [PMID: 34216717 DOI: 10.1016/j.neulet.2021.136093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Vascular endothelial growth factor (VEGF), which acts as an angiogenic and neurotrophic factor, is involved the regulation of cerebral blood volume and flow in Schizophrenia (SCZ). Several evidence indicates that modification of brain blood circulation due to alterations in the VEGF system affects cognitive performance and brain function in patients with SCZ. The aim of this study is: 1) To analyze the literature data concerning the role of VEGF in modulating the angiogenic response in SCZ. These data are controversial because some studies found elevated VEGF serum levels of VEGF in patients with SCZ, whereas others demonstrated no significant differences between SCZ patients and controls. 2)To analyze the role of VEGF as a predictive factor on the effects of antipsychotics agents used in the treatment of SCZ. In this context, high VEGF levels, associated to better responses to antipsychotics, might be predictive of the use of first generation antipsycotic drugs, whereas low VEGF levels, expression of resistance to therapy, might be predictive for the use of second generation antipsycotic drugs.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Silvia Torretta
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Rosa Maria Falcone
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
45
|
Miljanovic N, Hauck SM, van Dijk RM, Di Liberto V, Rezaei A, Potschka H. Proteomic signature of the Dravet syndrome in the genetic Scn1a-A1783V mouse model. Neurobiol Dis 2021; 157:105423. [PMID: 34144125 DOI: 10.1016/j.nbd.2021.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course. METHODS A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure, and behavioral analysis. Hippocampal tissue was dissected from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantification. Proteomic data sets were subjected to bioinformatic analysis including pathway enrichment analysis. The differential expression of selected proteins was confirmed by immunohistochemical staining. RESULTS The findings confirmed an increased susceptibility to hyperthermia-associated seizures, the development of spontaneous seizures, and behavioral alterations in the novel Scn1a-A1873V mouse model of Dravet syndrome. As expected, proteomic analysis demonstrated more pronounced alterations following epilepsy manifestation. In particular, proteins involved in neurotransmitter dynamics, receptor and ion channel function, synaptic plasticity, astrogliosis, neoangiogenesis, and nitric oxide signaling showed a pronounced regulation in Dravet mice. Pathway enrichment analysis identified several significantly regulated pathways at the later time point, with pathways linked to synaptic transmission and glutamatergic signaling dominating the list. CONCLUSION In conclusion, the whole proteome analysis in a mouse model of Dravet syndrome demonstrated complex molecular alterations in the hippocampus. Some of these alterations may have an impact on excitability or may serve a compensatory function, which, however, needs to be further confirmed by future investigations. The proteomic data indicate that, due to the molecular consequences of the genetic deficiency, the pathophysiological mechanisms may become more complex during the course of the disease. As a result, the management of Dravet syndrome may need to consider further molecular and cellular alterations. Ensuing functional follow-up studies, this data set may provide valuable guidance for the future development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ali Rezaei
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
46
|
Sun H, Hu H, Liu C, Sun N, Duan C. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis 2021; 36:723-735. [PMID: 33635479 DOI: 10.1007/s11011-021-00694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier (BBB) comprises the interface between blood, brain and cerebrospinal fluid. Its primary function, which is mainly carried out by tight junctions, is to stabilize the tightly controlled microenvironment of the brain. To study the development and maintenance of the BBB, as well as various roles their intrinsic mechanisms that play in neurological disorders, suitable measurements are required to demonstrate integrity and functional changes at the interfaces between the blood and brain tissue. Markers and plasma proteins with different molecular weight (MW) are used to measure the permeability of BBB. In addition, the expression changes of tight-junction proteins form the basic structure of BBB, and imaging modalities are available to study the disruption of BBB. In the present review, above mentioned methods are depicted in details, together with the pros and cons as well as the differences between these methods, which maybe benefit research studies focused on the detection of BBB breakdown.
Collapse
Affiliation(s)
- Huixin Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiling Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chuanjie Liu
- Weihai City Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, Shandong Province, China
| | - Nannan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
47
|
Yeh TY, Liu PH. Removal of a compressive mass causes a transient disruption of blood-brain barrier but a long-term recovery of spiny stellate neurons in the rat somatosensory cortex. Restor Neurol Neurosci 2021; 39:111-127. [PMID: 34024792 DOI: 10.3233/rnn-201085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. OBJECTIVE The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. METHODS Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi-Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. RESULTS The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. CONCLUSIONS Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.
Collapse
Affiliation(s)
- Tzu-Yin Yeh
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Pei-Hsin Liu
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan.,Medical Physiology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
48
|
Brukner AM, Billington S, Benifla M, Nguyen TB, Han H, Bennett O, Gilboa T, Blatch D, Fellig Y, Volkov O, Unadkat JD, Ekstein D, Eyal S. Abundance of P-glycoprotein and Breast Cancer Resistance Protein Measured by Targeted Proteomics in Human Epileptogenic Brain Tissue. Mol Pharm 2021; 18:2263-2273. [PMID: 34008992 PMCID: PMC8488956 DOI: 10.1021/acs.molpharmaceut.1c00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Our goal was to measure the absolute
differential abundance of
key drug transporters in human epileptogenic brain tissue and to compare
them between patients and at various distances from the epileptogenic
zone within the same patient. Transporter protein abundance was quantified
in brain tissue homogenates from patients who underwent epilepsy surgery,
using targeted proteomics, and correlations with clinical and tissue
characteristics were assessed. Fourteen brain samples (including four
epileptogenic hippocampal samples) were collected from nine patients.
Among the quantifiable drug transporters, the abundance (median, range)
ranked: breast cancer resistance protein (ABCG2/BCRP; 0.55, 0.01–3.26
pmol/g tissue) > P-glycoprotein (ABCB1/MDR1; 0.30,
0.02–1.15 pmol/g tissue) > equilibrative nucleoside transporter
1 (SLC29A1/ENT1; 0.06, 0.001–0.35 pmol/g tissue). The ABCB1/ABCG2
ratio (mean 0.27, range 0.08–0.47) was comparable with literature
values from nonepileptogenic brain tissue (mean 0.5–0.8). Transporter
abundance was lower in the hippocampi than in the less epileptogenic
neocortex of the same patients. ABCG2/BCRP and ABCB1/MDR1 expression
strongly correlated with that of glucose transporter 1 (SLC2A1/GLUT1)
(r = 0.97, p < 0.001; r = 0.90, p < 0.01, respectively). Low
transporter abundance was found in patients with overt vascular pathology,
whereas the highest abundance was seen in a sample with normally appearing
blood vessels. In conclusion, drug transporter abundance highly varies
across patients and between epileptogenic and less epileptogenic brain
tissue of the same patient. The strong correlation in abundance of
ABCB1/MDR1, ABCG2/BCRP, and SLC2A1/GLUT1 suggests variation in the
content of the functional vasculature within the tissue samples. The
epileptogenic tissue can be depleted of key drug transport mechanisms,
warranting consideration when selecting treatments for patients with
drug-resistant epilepsy.
Collapse
Affiliation(s)
- Aniv Mann Brukner
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| | - Sarah Billington
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Mony Benifla
- Children's Neurosurgery Department, Rambam Academic Hospital, Haifa 31999, Israel
| | - Tot Bui Nguyen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Hadas Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| | - Odeya Bennett
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Tal Gilboa
- Neuropediatric Unit, Pediatrics Division, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dana Blatch
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Yakov Fellig
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Olga Volkov
- Nuclear Medicine Institute, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Dana Ekstein
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| |
Collapse
|
49
|
Ebrahimi T, Tafakhori A, Hashemi H, Ali Oghabian M. An interictal measurement of cerebral oxygen extraction fraction in MRI-negative refractory epilepsy using quantitative susceptibility mapping. Phys Med 2021; 85:87-97. [PMID: 33984822 DOI: 10.1016/j.ejmp.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Oxygen extraction fraction (OEF) can be a factor to identify brain tissue's disability in epileptic patients. This study aimed to assess the OEF's level measurement in refractory epileptic patients (REPs) using a quantitative susceptibility mapping (QSM) method and to determine whether the OEF parameters change. METHODS QSM-OEF maps of 26 REPs and 16 healthy subjects were acquired using 3T MRI with a 64-channel coil. Eighteen regions-of-interest (ROIs) were chosen around the cortex in one appropriate slice of the brain and the mean QSM-OEF for each ROI was obtained. The correlations of QSM-OEF among different clinical characteristics of the disease, as well as between the patients and normal subjects, were also investigated. RESULTS QSM-OEF was shown to be significantly higher in REPs (44.9 ± 5.8) than that in HS (41.9 ± 6.2) (p < 0.05). Mean QSM-OEF was statistically lower in the ipsilateral side (44.5 ± 6.6) compared to the contralateral side (46.4 ± 6.8) (P < 0.01). QSM-OEF was illustrated to have a strong positive correlation with the attack duration (r = 0.6), and a moderate negative correlation with the attack frequency (r = -0.3). Using an optimized support vector machine algorithm, we could predict the disease in subjects having abnormal OEF values in the brain-selected-ROIs with sensitivity, specificity, AUC, and the precision of 0.96, 1, 0.98, and 1, respectively. CONCLUSIONS The results of this study revealed that QSM-OEF of the REPs' brain is higher than that of HS, which indicates that QSM-OEF is associated with disease activity.
Collapse
Affiliation(s)
- Tayyebeh Ebrahimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroimaging and Analysis, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Tafakhori
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hashemi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroimaging and Analysis, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
50
|
Henning L, Steinhäuser C, Bedner P. Initiation of Experimental Temporal Lobe Epilepsy by Early Astrocyte Uncoupling Is Independent of TGFβR1/ALK5 Signaling. Front Neurol 2021; 12:660591. [PMID: 34025561 PMCID: PMC8137820 DOI: 10.3389/fneur.2021.660591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction following brain insults has been associated with the development and progression of focal epilepsy, although the underlying molecular mechanisms are not fully elucidated yet. Activation of transforming growth factor beta (TGFβ) signaling in astrocytes by extravasated albumin impairs the ability of astrocytes to properly interact with neurons, eventually leading to epileptiform activity. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to gain further insights into the role of BBB leakage in status epilepticus (SE)-induced epileptogenesis. Immunohistochemical examination revealed pronounced albumin extravasation already 4 h after SE induction. Astrocytes were virtually devoid of albumin immunoreactivity (IR), indicating the lack of uptake by this time point. Inhibition of the TGFβ pathway by the specific TGFβ receptor 1 (TGFβR1) kinase inhibitor IPW-5371 did not prevent seizure-induced reduction of astrocytic gap junction coupling. Thus, loss of coupling, which is thought to play a causative role in triggering TLE-HS, is most likely not mediated by extravasated albumin. Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed that inhibition of the TGFβ pathway during the initial phase of epileptogenesis slightly attenuated acute and chronic epileptiform activity, but did not reduce the extent of HS. Together, these data indicate that albumin extravasation due to increased BBB permeability and TGFβ pathway activation during the first hours after SE induction are not significantly involved in initiating TLE.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|