1
|
Koay H, Haskali MB, Van Zuylekom J, Cullinane C, McLean CA, White JM, Roselt PD, Donnelly PS. A gallium fluoride-18 complex containing a pentadentate macrocyclic ligand with a dimethylaminostilbene functional group designed for diagnostic imaging of Alzheimer's disease. Dalton Trans 2025. [PMID: 40358251 DOI: 10.1039/d5dt00621j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The molecular pathology of Alzheimer's disease is associated with the presence of aggregates of amyloid-β, a 39-43 amino acid peptide, that form amyloid plaques in the brain. Appropriately substituted stilbene derivatives, radiolabelled with positron-emitting radionuclides, that bind selectively to amyloid-β plaques can be used to assess plaque burden by Positron Emission Tomography (PET) imaging and assist in the diagnosis of Alzheimer's disease. In this work, a substituted pentadentate ligand based on a triazacyclononane backbone (H2L1) with one pendent stilbene functional group and two pendent carboxylate groups was synthesised. The new ligand binds to amyloid-β plaques present in human brain tissue. Non-conventional radiolabelling with fluorine-18 was achieved by the formation of a GaIII-[18F]F- coordinate bond to give a complex, [18F][GaL1F]. This ligand can also be radiolabelled with gallium-68 to give [68Ga][GaL1F], or copper-64 to give [64Cu][CuL1]. The in vivo biodistribution of [18F][GaL1F] and [64Cu][CuL1] was evaluated in mice, revealing that the initial uptake of [18F][GaL1F] and [64Cu][CuL1] in the brain was 0.85 ± 0.13% IA g-1 and 0.71 ± 0.03% IA g-1 respectively. An increase in radioactivity in bone at later time points suggested that [18F][GaL1F] is unstable in vivo.
Collapse
Affiliation(s)
- HuiJing Koay
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Mohammad B Haskali
- Department of Radiopharmaceutical Sciences, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Jessica Van Zuylekom
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Carleen Cullinane
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, The Alfred Hospital, Victoria 3181 Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Peter D Roselt
- Department of Radiopharmaceutical Sciences, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
2
|
Niknam N, Khaefi S, Heidarpour H, Sadeghi M, Jafari NA, Mohammadi S, Ahmadi Z, Ahangar-Sirous R, Mayeli M, Seyedmirzaei H. Associations between diffusion tensor imaging patterns and cerebrospinal fluid markers in mild cognitive impairment. J Clin Neurosci 2025; 135:111141. [PMID: 40010169 DOI: 10.1016/j.jocn.2025.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Diffusion tensor imaging (DTI) can be used to detect early signs of increased water diffusivity in white matter tracts in patients with mild cognitive impairment (MCI). This study examined how DTI, alongside cerebrospinal fluid (CSF) biomarkers (like tau proteins and amyloid-β), can help identify early brain changes in MCI. We included 159 individuals (92 with MCI and 67 healthy controls) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and extracted their demographics, CSF biomarkers, and DTI metrics. We compared the biomarkers (CSF biomarkers and DTI markers in 57 white matter tracts) between the two study groups using a general linear model, adjusting for age, sex, and handedness. CSF biomarker levels showed a statistically significant difference between the two study groups. Also, diffusion properties of left Cingulum and left Uncinate fasciculus in both groups were statistically different. Additionally, we explored possible associations between CSF and DTI markers in the MCI group. Our results indicated several statistically significant associations between DTI metrics and CSF biomarkers within specific white matter tracts. These findings underscore the complexity of imaging and molecular markers associated with MCI.
Collapse
Affiliation(s)
| | - Sara Khaefi
- Department of Electrical Engineering, Shahed University, Tehran, Iran
| | - Hadise Heidarpour
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Gastroenterology and Hepatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sheida Mohammadi
- Department of Psychology, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Ahmadi
- Neuroscience Graduate Program, Medical School, University of Crete, Greece
| | - Ramin Ahangar-Sirous
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Radiology and Biomedical Imaging, Yale School of Medicine, CT, USA
| | - Homa Seyedmirzaei
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cohen AD, Villemagne VL. A brief history of Aβ imaging. Alzheimers Dement 2025; 21:e70291. [PMID: 40407091 PMCID: PMC12100503 DOI: 10.1002/alz.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025]
Abstract
β-Amyloid (Αβ) imaging revolutionized the in vivo assessment of Alzheimer's disease (AD) Αβ pathology and its changes over time, increasing our insights into Aβ deposition in the brain by providing highly accurate, reliable, and reproducible quantitative statements of regional and global Aβ burden in the brain, proving essential for the differential diagnosis, staging, and evaluation of disease-specific anti-Αβ therapeutic approaches. Longitudinal observations, coupled with different disease-specific biomarkers to assess potential downstream effects of Aβ, have confirmed that Αβ deposition in the brain starts decades before the onset of symptoms. Aβ imaging studies continue to refine our understanding of the role of Αβ deposition in AD, and its relation to other imaging and fluid biomarkers. HIGHLIGHTS: Αβ imaging revolutionized the in vivo assessment of Alzheimer's disease Αβ pathology. Αβ imaging has increased our insights into Aβ deposition in the brain by providing highly accurate, reliable, and reproducible quantitative statements of regional and global Αβ burden in the brain. Αβ imaging is essential for the differential diagnosis, staging, and evaluation of disease-specific anti-Αβ therapeutic approaches. Αβ imaging studies continue to refine our understanding of the role of Αβ deposition in Alzheimer's disease, and its relation to other imaging and fluid biomarkers.
Collapse
Affiliation(s)
- Ann D. Cohen
- Department of PsychiatryThe University of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
4
|
Zeiss CJ, Huttner A, Nairn AC, Arnsten A, Datta D, Strittmatter SM, Wyk BV, Duque A. The neuropathologic basis for translational biomarker development in the macaque model of late-onset Alzheimer's disease. J Alzheimers Dis 2025; 104:1243-1258. [PMID: 40095666 DOI: 10.1177/13872877251323787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAccurate placement of the macaque within the Alzheimer's disease (AD) research framework is essential to discover early-stage predictive biomarkers.ObjectiveTo assess utility of the aging macaque in advancing translational biomarker development for preclinical AD, we evaluated relative signal strength of comparable neuropathologic phenomena in macaques and patients.MethodsWe compared pathology in patient and macaque formalin-fixed paraffin embedded (FFPE) tissues using identical criteria. We quantified expression of amyloid-β (Aβ), pTau, and inflammatory and senescence markers across species. Distribution of AD-relevant markers were compared in FFPE and perfused frozen macaque brain to assess expression of labile proteins that could inform in-life fluid biomarkers.ResultsAβ pathology in macaques closely approximated patient pathology. Complex plaque composition in macaques implied significant disruption of synaptic connectivity. In FFPE tissue, pretangle pTau immunoreactivity placed the macaque in Braak Stage 1b. In perfused frozen tissue, soluble pTau distribution approximated Braak Stage III-IV. In macaque, Aβ, pTau, and acetylcholinesterase labeling co-localized to AD-vulnerable circuits. Significant association of glial fibrillary acidic protein with Aβ occurred in humans only. The senescence marker p16 correlated positively with pTau expression and negatively with Aβ in patients only. Macaques lacked neuropathologic co-morbidities.ConclusionsAD-relevant neuropathologic signals in the macaque support biomarker discovery in the areas of Aβ plaque evolution and associated synaptic disruption as well as early-stage tau phosphorylation. Relative protection from accumulation of senescence markers, fibrillar tau and neuropathologic co-morbidities in macaque implicate species difference in rates of biological brain aging. We provide over 4000 digital slides for further study.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Cho SH, Kang H, Ham H, Moon SH, Jang H, Yun J, Lee EH, Shin D, Yim S, Kim BC, Kim HJ, Na DL, Seo SW, Kim JP. Comparison of accumulation rates of beta-amyloid tracers and their relationship with cognitive changes. Sci Rep 2025; 15:7072. [PMID: 40016250 PMCID: PMC11868567 DOI: 10.1038/s41598-025-90642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
We aimed to compare amyloid-β (Aβ) accumulation rates between different tracers and investigate whether the relationship between changes in Aβ uptake and cognitive decline varies depending on tracer type. Two cohorts were analyzed: (1) a head-to-head longitudinal cohort using 18F-Florbetaben (FBB) and 18F-Flutemetamol (FMM) tracers (n = 13), and (2) separate longitudinal cohorts for each tracer (n = 174 for both FMM and FBB), matched by propensity score. Aβ uptake was measured using regional direct comparison of Centiloid (rdcCL) values. In the head-to-head cohort, subtracting changes in FMM rdcCL from FBB rdcCL yielded median values above zero in all regions except the cingulate. In the individual tracer cohorts, FBB rdcCL showed faster accumulation than FMM rdcCL in all cortical regions except the striatum (β [SE] = - 2.49 to - 1.56 [0.47-0.54], p < 0.001). Mini-Mental State Examination changes were associated with annualized FMM rdcCL changes in the temporal cortex (p = 0.02) and striatum (p = 0.01); however, no such differences were found in the FBB cohort. Our findings suggest that longitudinal Aβ positron emission tomography studies should consider the specific characteristics of tracers depending on the context of use.
Collapse
Affiliation(s)
- Soo Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Heekyoung Kang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hongki Ham
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihwan Yun
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon-si, Republic of Korea
| | - Eun Hye Lee
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Daeun Shin
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sohyun Yim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Byeong Chae Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee Jin Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Duk L Na
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Happymind Clinic, Seoul, Republic of Korea
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Jun Pyo Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Islam T, Hill E, Abrahamson EE, Servaes S, Smirnov DS, Zeng X, Sehrawat A, Chen Y, Kac PR, Kvartsberg H, Olsson M, Sjons E, Gonzalez-Ortiz F, Therriault J, Tissot C, Del Popolo I, Rahmouni N, Richardson A, Mitchell V, Zetterberg H, Pascoal TA, Lashley T, Wall MJ, Galasko D, Rosa-Neto P, Ikonomovic MD, Blennow K, Karikari TK. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer's disease. Nat Med 2025; 31:574-588. [PMID: 39930142 PMCID: PMC11835754 DOI: 10.1038/s41591-024-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/02/2024] [Indexed: 02/20/2025]
Abstract
Patients with Alzheimer's disease (AD) with little or no quantifiable insoluble brain tau neurofibrillary tangle (NFT) pathology demonstrate stronger clinical benefits of therapies than those with advanced NFTs. The formation of NFTs can be prevented by targeting the intermediate soluble tau assemblies (STAs). However, biochemical understanding and biomarkers of STAs are lacking. We show that Tris-buffered saline-soluble tau aggregates from autopsy-verified AD brain tissues include the core sequence ~tau258-368. In neuropathological assessments, antibodies against the phosphorylation sites serine-262 and serine-356 within the STA core almost exclusively stained granular (that is, prefibrillar) tau aggregates in pre-NFTs while antibodies against phosphorylation at serine-202 and threonine-205 and threonine-231, outside the STA core, stained the entire spectrum of tau aggregates in pre-NFTs and mature NFTs, dystrophic neurites and neuropil threads in the hippocampus. Functionally, a recombinantly produced STA core peptide robustly altered neuronal excitability and synaptic transmission in mouse hippocampal brain slices. Furthermore, we developed a cerebrospinal fluid assay that differentiated STAs in AD from non-AD tauopathies, correlated with the severity of NFT burden and cognitive decline independently of amyloid beta deposition, and with tau positron emission tomography uptake across Braak NFT stages. Together, our findings inform about the status of early-stage tau aggregation, reveal aggregation-relevant phosphorylation epitopes in tau and offer a diagnostic biomarker and targeted therapeutic opportunities for AD.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- AARF-21-850325 Alzheimer's Association
- P01AG14449 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P01 AG014449 NIA NIH HHS
- P50 AG005133 NIA NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- R01AG083874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R37 AG023651 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- 2021-03244 Vetenskapsrådet (Swedish Research Council)
- P01AG025204 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30AG066468 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ELH is supported by a Race Against Dementia Fellowship (funded by the Barbara Naylor Foundation)
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018 and #2019-02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
Collapse
Affiliation(s)
- Tohidul Islam
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eric E Abrahamson
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Denis S Smirnov
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Pathology Residency Program, Mass General and Brigham and Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijun Chen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Douglas Galasko
- Shiley-Marcos Alzheimer's Disease Research Center, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montréal Neurological Institute, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Milos D Ikonomovic
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Fenson L, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded Spatial Biology Identifies Amyloid Plaque-Age-Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. RESEARCH SQUARE 2025:rs.3.rs-5829037. [PMID: 39975899 PMCID: PMC11838767 DOI: 10.21203/rs.3.rs-5829037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding how amyloid beta (Aβ) plaques form and progress to neurotoxicity in Alzheimer's disease remains a significant challenge. This study aims to elucidate the processes involved in Aβ plaque formation and maturation using a knock-in Aβ mouse model (App NL-F/NL-F ). By employing mass spectrometry imaging and stable isotope labeling, we timestamped Aβ plaques from their initial deposition, enabling the spatial tracking of plaque aging. Correlating single-plaque spatial transcriptomics with time since seeding, allowed us to track gene-expression changes specifically associated with plaque age, independent of chronological age of the mouse or disease severity. We found that plaque age, within sections from individual mice aged from 10 to 18 months, negatively correlates with synaptic gene expression. Further, correlation with hyperspectral confocal microscopy using structure-specific dyes revealed a positive link between plaque age and structural maturity, with older plaques identified as more compact and associated with significantly greater synapse loss and toxicity.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Lydia Fenson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, PR China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Klingstedt T, Shirani H, Parvin F, Nyström S, Hammarström P, Graff C, Ingelsson M, Vidal R, Ghetti B, Sehlin D, Syvänen S, Nilsson KPR. Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits. J Biol Chem 2025; 301:108032. [PMID: 39615691 PMCID: PMC11731580 DOI: 10.1016/j.jbc.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Different types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Farjana Parvin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
9
|
Hunter TR, Santos LE, Tovar-Moll F, De Felice FG. Alzheimer's disease biomarkers and their current use in clinical research and practice. Mol Psychiatry 2025; 30:272-284. [PMID: 39232196 DOI: 10.1038/s41380-024-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.
Collapse
Affiliation(s)
- Tai R Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luis E Santos
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
| | | | - Fernanda G De Felice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Wu X, Shirani H, Vidal R, Ghetti B, Ingelsson M, Klingstedt T, Nilsson KPR. Distinct Chemical Determinants are Essential for Achieving Ligands for Superior Optical Detection of Specific Amyloid-β Deposits in Alzheimer's Disease. ChemistryOpen 2024; 13:e202400186. [PMID: 39508558 PMCID: PMC11625938 DOI: 10.1002/open.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aggregated forms of different proteins are common hallmarks for several neurodegenerative diseases, including Alzheimer's disease, and ligands that selectively detect specific protein aggregates are vital. Herein, we investigate the molecular requirements of thiophene-vinyl-benzothiazole based ligands to detect a specific type of Aβ deposits found in individuals with dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. The staining of these Aβ deposits was alternated when switching the terminal heterocyclic moiety attached to the thiophene-vinyl-benzothiazole scaffold. The most prevalent staining was observed for ligands having a terminal 3-methyl-1H-indazole moiety or a terminal 1,2-dimethoxybenzene moiety, verifying that specific molecular interactions between these ligands and the aggregates were necessary. The synthesis of additional thiophene-vinyl-benzothiazole ligands aided in pinpointing additional crucial chemical determinants, such as positioning of nitrogen atoms and methyl substituents, for achieving optimal staining of Aβ aggregates. When combining the optimized thiophene-vinyl-benzothiazole based ligands with a conventional ligand, CN-PiB, distinct staining patterns were observed for sporadic Alzheimer's disease versus dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. Our findings provide chemical insights for developing novel ligands that allow for a more precise assignment of Aβ deposits, and might also aid in creating novel agents for clinical imaging of distinct Aβ aggregates in AD.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Martin Ingelsson
- Krembil Brain InstituteUniversity Health NetworkM5T 1 M8Toronto, OntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseasesDepartments of Medicine and Laboratory Medicine & PathobiologyUniversity of TorontoM5T 0S8Toronto, OntarioCanada
- Molecular GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversitySE-751 85UppsalaSweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| |
Collapse
|
11
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
12
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded chemical Imaging Identifies Amyloid Plaque Age Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617019. [PMID: 39416086 PMCID: PMC11482761 DOI: 10.1101/2024.10.08.617019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is of critical importance to our understanding of Alzheimer's disease (AD) pathology to determine how key pathological factors are interconnected and implicated in nerve cell death, clinical symptoms, and disease progression. The formation of extracellular beta-amyloid (Aβ) plaques is the major pathological hallmark of AD and Aβ has been suggested to be a critical inducer of AD, driving disease pathogenesis. Exactly how Aβ plaque formation begins and how ongoing plaque deposition proceeds and initiates subsequent neurotoxic mechanisms is not well understood. The primary aim of our research is to elucidate the biochemical processes underlying early Aβ plaque formation in brain tissue. We recently introduced a chemical imaging paradigm based on mass spectrometry imaging (MSI) and metabolic isotope labelling to follow stable isotope labelling kinetics (iSILK) in vivo to track the in vivo build-up and deposition of Aβ. Herein, knock-in Aβ mouse models (App NL-F ) that develop Aβ pathology gradually are metabolically labeled with stable isotopes. This chemical imaging approach timestamps amyloid plaques during the period of initial deposition allowing the fate of aggregating Aβ species from before and during the earliest events of plaque pathology through plaque maturation to be tracked. To identify the molecular and cellular response to plaque maturation, we integrated iSILK with single plaque transcriptomics performed on adjacent tissue sections. This enabled changes in gene expression to be tracked as a function of plaque age (as encoded in the Aβ peptide isotopologue pattern) distinct from changes due to the chronological age or pathological severity. This approach identified that plaque age correlates negatively with gene expression patterns associated with synaptic function as early as in 10-month-old animals but persists into 18 months. Finally, we integrated hyperspectral confocal microscopy into our multiomic approach to image amyloid structural isomers, revealing a positive correlation between plaque age and amyloid structural maturity. This analysis identified three categories of plaques, each with a distinct impact on the surrounding microenvironment. Here, we identified that older, more compact plaques were associated with the most significant synapse loss and toxicity. These data show how isotope-encoded MS imaging can be used to delineate Aβ toxicity dynamics in vivo. Moreover, we show for the first time a functional integration of dynamic MSI, structural plaque imaging and whole genome-wide spatial transcriptomics at the single plaque level. This multiomic approach offers an unprecedented combination of temporal and spatial resolution enabling a description of the earliest events of precipitating amyloid pathology and how Aβ modulates synaptotoxic mechanisms.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
13
|
Li F, Cheng J, Jin K, Zhao L, Li J, Wu J, Ren X. Comparative Diagnostic Performance of Amyloid-β Positron Emission Tomography and Magnetic Resonance Imaging in Alzheimer's Disease: A Head-to-Head Meta-Analysis. Brain Behav 2024; 14:e70111. [PMID: 39435676 PMCID: PMC11494400 DOI: 10.1002/brb3.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE This meta-analysis aimed to evaluate the comparative diagnostic performance of amyloid-β positron emission tomography (Aβ PET) and magnetic resonance imaging (MRI) in diagnosing Alzheimer's disease (AD). METHODS An extensive search was conducted in the PubMed and Embase databases to identify available publications up to December 2023. Head-to-head comparative studies were included if they evaluated the diagnostic performance of Aβ PET and MRI in diagnosing Alzheimer's disease. Sensitivity and specificity were assessed using the DerSimonian and Laird method, followed by transformation via the Freeman-Tukey double inverse sine transformation. RESULTS Six articles involving 560 patients were included in the meta-analysis. When distinguishing AD from mild cognitive impairment (MCI), both methods showed comparable sensitivity (Aβ PET: 0.71, MRI: 0.62) and specificity (Aβ PET: 0.68, MRI: 0.69), with no statistically significant differences observed (p = 0.34 and 0.99). When identifying AD from normal cognitive control (NC), both Aβ PET and MRI showed similar results, with comparable sensitivity (Aβ PET: 0.93, MRI: 0.85) and specificity (Aβ PET: 0.95, MRI: 0.82), without significant differences (p = 0.38 and 0.19). Similarly, in detecting MCI from NC, both Aβ PET and MRI demonstrated similar sensitivity (Aβ PET: 0.69, MRI: 0.64) and specificity (Aβ PET: 0.75, MRI: 0.76) without significant differences (p = 0.40 and 0.94). However, 18F-FMM seems to have a higher specificity compared to MRI when distinguishing AD from MCI (P = 0.03) and AD from NC (p = 0.04). CONCLUSIONS Our meta-analysis indicates that Aβ PET demonstrates similar sensitivity and specificity to MRI in diagnosing Alzheimer's disease. However, the limited number of studies may impact the evidence of the current study; further larger sample prospective research is required to confirm these findings.
Collapse
Affiliation(s)
- Fang Li
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Jiang Cheng
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Kaihui Jin
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Li Zhao
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Junyong Li
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Jia Wu
- Department of NeurologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Xiaolu Ren
- Department of RadiologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
- School of Health SciencesUniversiti Sains MalaysiaKubang KerianKelantanMalaysia
| |
Collapse
|
14
|
Yamakuni R, Murakami T, Ukon N, Kakamu T, Toda W, Hattori K, Sekino H, Ishii S, Fukushima K, Matsuda H, Ugawa Y, Wakasugi N, Abe M, Ito H. Differential centiloid scale normalization techniques: comparison between hybrid PET/MRI and independently acquired MRI. Ann Nucl Med 2024; 38:835-846. [PMID: 38902587 DOI: 10.1007/s12149-024-01955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Centiloid (CL) scales play an important role in semiquantitative analyses of amyloid-β (Aβ) PET. CLs are derived from the standardized uptake value ratio (SUVR), which needs Aβ positron emission tomography (PET) normalization processing. There are two methods to collect the T1-weighted imaging (T1WI) for normalization: (i) anatomical standardization using simultaneously acquired T1WI (PET/MRI), usually adapted to PET images from PET/MRI scanners, and (ii) T1WI from a separate examination (PET + MRI), usually adapted to PET images from PET/CT scanners. This study aimed to elucidate the correlations and differences in CLs between when using the above two T1WI collection methods. METHODS Among patients who underwent Aβ PET/MRI (using 11C-Pittuberg compound B (11C-PiB) or 18F-flutemetamol (18F-FMM)) at our institution from 2015 to 2023, we selected 49 patients who also underwent other additional MRI examinations, including T1WI for anatomic standardization within 3 years. Thirty-one of them underwent 11C-PiB PET/MRI, and 18 participants underwent 18F-FMM PET/MRI. Twenty-five of them, additional MRI acquisition parameters were identical to simultaneous MRI during PET, and 24 participants were different. After normalization using PET/MRI or PET + MRI method each, SUVR was measured using the Global Alzheimer's Association Initiative Network cerebral cortical and striatum Volume of Interest templates (VOI) and whole cerebellum VOI. Subsequently, CLs were calculated using the previously established equations for each Aβ PET tracer. RESULTS Between PET/MRI and PET + MRI methods, CLs correlated linearly in 11C-PiB PET (y = 1.00x - 0.11, R2 = 0.999), 18F-FMM PET (y = 0.97x - 0.12, 0.997), identical additional MRI acquisition (y = 1.00x + 0.33, 0.999), different acquisition (y = 0.98x - 0.43, 0.997), and entire study group (y = 1.00x - 0.24, 0.999). Wilcoxon signed-rank test revealed no significant differences: 11C-PiB (p = 0.49), 18F-FMM (0.08), and whole PET (0.46). However, significant differences were identified in identical acquisition (p = 0.04) and different acquisition (p = 0.02). Bland-Altman analysis documented only a small bias between PET/MRI and PET + MRI in 11C-PiB PET, 18F-FMM PET, identical additional MRI acquisition, different acquisition, and whole PET (- 0.05, 0.67, - 0.30, 0.78, and 0.21, respectively). CONCLUSIONS Anatomical standardizations using PET/MRI and using PET + MRI can lead to almost equivalent CL. The CL values obtained using PET/MRI or PET + MRI normalization methods are consistent and comparable in clinical studies.
Collapse
Affiliation(s)
- Ryo Yamakuni
- Department of Radiology and Nuclear Medicine, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.
| | - Takenobu Murakami
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Takeyasu Kakamu
- Department of Hygiene and Preventive Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Wataru Toda
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kasumi Hattori
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirofumi Sekino
- Department of Radiology and Nuclear Medicine, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Shiro Ishii
- Department of Radiology and Nuclear Medicine, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Kenji Fukushima
- Department of Radiology and Nuclear Medicine, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Hiroshi Matsuda
- Department of Bio-Functional Imaging, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsunari Abe
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| |
Collapse
|
15
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 PMCID: PMC11916921 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
16
|
Folloso MC, Villaraza SG, Yi-Wen L, Pek-Lan K, Tanaka T, Hilal S, Venketasubramanian N, Li-Hsian Chen C. The AHA/ASA and DSM-V diagnostic criteria for vascular cognitive impairment identify cases with predominant vascular pathology. Int J Stroke 2024; 19:925-934. [PMID: 38651759 PMCID: PMC11408959 DOI: 10.1177/17474930241252556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND There are major challenges in determining the etiology of vascular cognitive impairment (VCI) clinically, especially in the presence of mixed pathologies, such as vascular and amyloid. Most recently, two criteria (American Heart Association/American Stroke Association (AHA/ASA) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V)) have been proposed for the clinical diagnosis of VCI but have not as yet been validated using neuroimaging. AIMS This study aims to determine whether the AHA/ASA and DSM-V criteria for VCI can distinguish between cases with predominantly vascular pathology and cases with mixed pathology. METHODS A total of 186 subjects were recruited from a cross-sectional memory clinic-based study at the National University Hospital, Singapore. All subjects underwent clinical and neuropsychological assessment, magnetic resonance imaging (MRI) and carbon 11-labeled Pittsburgh Compound B ([11C] PiB) positron emission tomography (PET) scans. Diagnosis of the etiological subtypes of VCI (probable vascular mild cognitive impairment (VaMCI), possible VaMCI, non-VaMCI, probable vascular dementia (VaD), possible VaD, non-VaD) were performed following AHA/ASA and DSM-V criteria. Brain amyloid burden was determined for each subject with standardized uptake value ratio (SUVR) values ⩾1.5 classified as amyloid positive. RESULTS Using κ statistics, both criteria had excellent agreement for probable VaMCI, probable VaD, and possible VaD (κ = 1.00), and good for possible VaMCI (κ = 0.71). Using the AHA/ASA criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.7%), non-VaMCI (33.3%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). Similarly, using the DSM-V criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.3%), non-VaMCI (32.1%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). In both criteria, there was good agreement in differentiating individuals with non-VaD and possible VaD, with significantly higher (p < 0.001) global [11C]-PiB SUVR, from individuals with probable VaMCI and probable VaD, who had predominant vascular pathology. CONCLUSION The AHA/ASA and DSM-V criteria for VCI can identify VCI cases with little to no concomitant amyloid pathology, hence supporting the utility of AHA/ASA and DSM-V criteria in diagnosing patients with predominant vascular pathology. DATA ACCESS STATEMENT Data supporting this study are available from the Memory Aging and Cognition Center, National University of Singapore. Access to the data is subject to approval and a data sharing agreement due to University policy.
Collapse
Affiliation(s)
- Melmar C Folloso
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Steven G Villaraza
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Lo Yi-Wen
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Khong Pek-Lan
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Tomotaka Tanaka
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Li-Hsian Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| |
Collapse
|
17
|
Xiong M, Dahlén A, Roshanbin S, Wik E, Aguilar X, Eriksson J, Sehlin D, Syvänen S. Antibody engagement with amyloid-beta does not inhibit [ 11C]PiB binding for PET imaging. J Neurochem 2024; 168:2601-2610. [PMID: 38721627 DOI: 10.1111/jnc.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 10/04/2024]
Abstract
The elimination of amyloid-beta (Aβ) plaques in Alzheimer's disease patients after treatment with anti-Aβ antibodies such as lecanemab and aducanumab is supported by a substantially decreased signal in amyloid positron emission tomography (PET) imaging. However, this decreased PET signal has not been matched by a similar substantial effect on cognitive function. There may be several reasons for this, including short treatment duration and advanced disease stages among the patients. However, one aspect that has not been investigated, and the subject of this study, is whether antibody engagement with amyloid plaques inhibits the binding of amyloid-PET ligands, leading to a false impression of Aβ removal from the brain. In the present study, tg-ArcSwe mice received three injections of RmAb158, the murine version of lecanemab or phosphate-buffered saline (PBS) before the administration of the amyloid-PET radioligand [11C]PiB, followed by isolation of brain tissue. Autoradiography showed that RmAb158- and PBS-treated mice displayed similar [11C]PiB binding. Moreover, the total Aβ1-40 levels, representing the major Aβ species of plaques in the tg-ArcSwe model, as well as soluble triggering receptor on myeloid cells 2 (sTREM2) levels, were similar in both groups. Interestingly, the concentration of soluble Aβ aggregates was decreased in the RmAb158-treated group, along with a small but significant decrease in the total Aβ1-42 levels. In conclusion, this study indicates that the binding of [11C]PiB to Aβ accurately mirrors the load of Aβ plaques in the brain, aligning with how amyloid-PET is interpreted in clinical studies of anti-Aβ antibodies. However, early treatment effects on soluble Aβ aggregates and Aβ1-42 levels were not detected.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Amelia Dahlén
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Elin Wik
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
19
|
Li W, Sun L, Yue L, Xiao S. Diagnostic and predictive power of plasma proteins in Alzheimer's disease: a cross-sectional and longitudinal study in China. Sci Rep 2024; 14:17557. [PMID: 39080359 PMCID: PMC11289122 DOI: 10.1038/s41598-024-66195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Convenient and effective biomarkers are essential for the early diagnosis and treatment of Alzheimer's disease (AD). In the cross-sectional study, 103 patients with AD, 82 patients with aMCI and 508 normal controls (NC) were enrolled. The single-molecule array (Simoa) technique was used to assess the levels of plasma proteins, including NfL, T-tau, P-tau-181, Aβ40, Aβ42. Montreal Cognitive Assessment (MoCA) was used to assess the overall cognitive function of all subjects. Moreover, Amyloid PET and structural head MRI were also performed in a subset of the population. In the follow-up, the previous 508 normal older adults were followed up for two years, then COX regression analysis was used to investigate the association between baseline plasma proteins and future cognitive outcomes. NfL, T-tau, P-tau-181, Aβ40, Aβ42 and Aβ42/40 were altered in AD dementia, and NfL, Aβ42 and Aβ42/40 significantly outperformed all plasma proteins in differentiating AD dementia from NC, while NfL and Aβ42/40 could effectively distinguish between aMCI and NC. However, only plasma NfL was associated with future cognitive decline, and it was negatively correlated with MoCA (r = - 0.298, p < 0.001) and the volume of the left globus pallidus (r = - 0.278, p = 0.033). Plasma NfL can help distinguish between cognitively normal and cognitively impaired individuals (MCI/dementia) at the syndrome level. However, since we have not introduced other biomarkers for AD, such as PET CT or cerebrospinal fluid, and have not verified in other neurodegenerative diseases, whether plasma NFL can be used as a biomarker for AD needs to be further studied and explored.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Garcia-Cordero I, Anastassiadis C, Khoja A, Morales-Rivero A, Thapa S, Vasilevskaya A, Davenport C, Sumra V, Couto B, Multani N, Taghdiri F, Anor C, Misquitta K, Vandevrede L, Heuer H, Tang-Wai D, Dickerson B, Pantelyat A, Litvan I, Boeve B, Rojas JC, Ljubenkov P, Huey E, Fox S, Kovacs GG, Boxer A, Lang A, Tartaglia MC, 4-R-Tauopathy Neuroimaging Initiative Consortium, and the Alzheimer’s Disease Neuroimaging Initiative. Evaluating the Effect of Alzheimer's Disease-Related Biomarker Change in Corticobasal Syndrome and Progressive Supranuclear Palsy. Ann Neurol 2024; 96:99-109. [PMID: 38578117 PMCID: PMC11249787 DOI: 10.1002/ana.26930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Abeer Khoja
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Neurology division, Medical Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alonso Morales-Rivero
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- ABC Medical Center, Mexico City, Mexico
| | - Simrika Thapa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Institute of Cognitive and Translational Neuroscience (INCyT-INECO-CONICET), Favaloro University Hospital, Buenos Aires, Argentina
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Anor
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Lawren Vandevrede
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Hilary Heuer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - David Tang-Wai
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bradford Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julio C. Rojas
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Peter Ljubenkov
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Edward Huey
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, USA
| | - Susan Fox
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam Boxer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Anthony Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Strobel J, Yousefzadeh-Nowshahr E, Deininger K, Bohn KP, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Glatting G, Riepe MW, Higuchi M, Beer AJ, Ludolph A, Winter G. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer's Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024; 12:1460. [PMID: 39062033 PMCID: PMC11274645 DOI: 10.3390/biomedicines12071460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Deininger
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Halle University, 06120 Halle, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Dörte Polivka
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Patrick Fissler
- Psychiatric Services Thurgau (Academic Teaching Hospital of the University of Konstanz), 8596 Münsterlingen, Switzerland
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, 89075 Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
22
|
Sarazin M, Lagarde J, El Haddad I, de Souza LC, Bellier B, Potier MC, Bottlaender M, Dorothée G. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer's disease. NATURE AGING 2024; 4:761-770. [PMID: 38839924 DOI: 10.1038/s43587-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
The cautious optimism following recent anti-amyloid therapeutic trials for Alzheimer's disease (AD) provides a glimmer of hope after years of disappointment. Although these encouraging results represent discernible progress, they also highlight the need to enhance further the still modest clinical efficacy of current disease-modifying immunotherapies. Here, we highlight crucial milestones essential for advancing precision medicine in AD. These include reevaluating the choice of therapeutic targets by considering the key role of both central neuroinflammation and peripheral immunity in disease pathogenesis, refining patient stratification by further defining the inflammatory component within the forthcoming ATN(I) (amyloid, tau and neurodegeneration (and inflammation)) classification of AD biomarkers and defining more accurate clinical outcomes and prognostic biomarkers that better reflect disease heterogeneity. Next-generation immunotherapies will need to go beyond the current antibody-only approach by simultaneously targeting pathological proteins together with innate neuroinflammation and/or peripheral-central immune crosstalk. Such innovative immunomodulatory combination therapy approaches should be evaluated in appropriately redesigned clinical therapeutic trials, which must carefully integrate the neuroimmune component.
Collapse
Affiliation(s)
- Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.
- Université Paris-Cité, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris-Cité, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
| | - Inès El Haddad
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Leonardo Cruz de Souza
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, UFMG, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Bertrand Bellier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif-sur-Yvette, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
23
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Kim S, Yoon D, Seong J, Jeong YJ, Kang DY, Park KW. Clinical and Neuroimaging Predictors of Alzheimer's Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:547. [PMID: 38791762 PMCID: PMC11121685 DOI: 10.3390/ijerph21050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Patients with mild cognitive impairment (MCI) have a relatively high risk of developing Alzheimer's dementia (AD), so early identification of the risk for AD conversion can lessen the socioeconomic burden. In this study, 18F-Florapronol, newly developed in Korea, was used for qualitative and quantitative analyses to assess amyloid positivity. We also investigated the clinical predictors of the progression from MCI to dementia over 2 years. From December 2019 to December 2022, 50 patients with MCI were recruited at a single center, and 34 patients were included finally. Based on visual analysis, 13 (38.2%) of 34 participants were amyloid-positive, and 12 (35.3%) were positive by quantitative analysis. Moreover, 6 of 34 participants (17.6%) converted to dementia after a 2-year follow-up (p = 0.173). Among the 15 participants who were positive for amyloid in the posterior cingulate region, 5 (33.3%) patients developed dementia (p = 0.066). The Clinical Dementia Rating-Sum of Boxes (CDR-SOB) at baseline was significantly associated with AD conversion in multivariate Cox regression analyses (p = 0.043). In conclusion, these results suggest that amyloid positivity in the posterior cingulate region and higher CDR-SOB scores at baseline can be useful predictors of AD conversion in patients with MCI.
Collapse
Affiliation(s)
- Seonjeong Kim
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Daye Yoon
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Junho Seong
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Young Jin Jeong
- Department of Nuclear Medicine, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (Y.J.J.); (D.-Y.K.)
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (Y.J.J.); (D.-Y.K.)
| | - Kyung Won Park
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| |
Collapse
|
25
|
Klingstedt T, Lantz L, Shirani H, Ge J, Hanrieder J, Vidal R, Ghetti B, Nilsson KPR. Thiophene-Based Ligands for Specific Assignment of Distinct Aβ Pathologies in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1581-1595. [PMID: 38523263 PMCID: PMC10995944 DOI: 10.1021/acschemneuro.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Aggregated species of amyloid-β (Aβ) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aβ deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aβ deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aβ deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aβ plaques, whereas LL-1 mainly stained cored and neuritic Aβ deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aβ plaques. The ligand-labeled Aβ deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aβ aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aβ peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aβ deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aβ species associated with different forms of AD.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Linda Lantz
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Hamid Shirani
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Diseases, University
College London Institute of Neurology, Queen Square, London WC1N 3BG, United
Kingdom
| | - Ruben Vidal
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Bernardino Ghetti
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
26
|
Høilund-Carlsen PF, Alavi A, Castellani RJ, Neve RL, Perry G, Revheim ME, Barrio JR. Alzheimer's Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int J Mol Sci 2024; 25:3892. [PMID: 38612701 PMCID: PMC11012162 DOI: 10.3390/ijms25073892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The amyloid cascade hypothesis for Alzheimer's disease is still alive, although heavily challenged. Effective anti-amyloid immunotherapy would confirm the hypothesis' claim that the protein amyloid-beta is the cause of the disease. Two antibodies, aducanumab and lecanemab, have been approved by the U.S. Food and Drug Administration, while a third, donanemab, is under review. The main argument for the FDA approvals is a presumed therapy-induced removal of cerebral amyloid deposits. Lecanemab and donanemab are also thought to cause some statistical delay in the determination of cognitive decline. However, clinical efficacy that is less than with conventional treatment, selection of amyloid-positive trial patients with non-specific amyloid-PET imaging, and uncertain therapy-induced removal of cerebral amyloids in clinical trials cast doubt on this anti-Alzheimer's antibody therapy and hence on the amyloid hypothesis, calling for a more thorough investigation of the negative impact of this type of therapy on the brain.
Collapse
Affiliation(s)
- Poul F. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Rudolph J. Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rachael L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Jorge R. Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, LA 90095, USA
| |
Collapse
|
27
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
28
|
Myburgh PJ, Solingapuram Sai KK. Two decades of [ 11C]PiB synthesis, 2003-2023: a review. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:48-62. [PMID: 38500746 PMCID: PMC10944378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Because carbon-11 (11C) radiotracers cannot be shipped over long distances, their use in routine positron emission tomography (PET) studies is dependent on the production capabilities of individual radiochemistry laboratories. Since 2003, 11C-labeled Pittsburgh compound B ([11C]PiB) has been the gold standard PET radiotracer for in vivo imaging of amyloid β (Aβ) plaques. For more than two decades, researchers have been working to develop faster, higher-yielding, more robust, and optimized production methods with higher radiochemical yields for various imaging applications. This review evaluates progress in [11C]PiB radiochemistry. An introductory overview assesses how it has been applied in clinical neurologic imaging research. We examine the varying approaches reported for radiolabeling, purification, extraction, and formulation. Further considerations for QC methods, regulatory considerations, and optimizations were also discussed.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational Imaging Program, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
| | - Kiran Kumar Solingapuram Sai
- Translational Imaging Program, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of MedicineWinston-Salem, NC 27157, USA
| |
Collapse
|
29
|
Liu F, Shi Y, Wu Q, Chen H, Wang Y, Cai L, Zhang N. The value of FDG combined with PiB PET in the diagnosis of patients with cognitive impairment in a memory clinic. CNS Neurosci Ther 2024; 30:e14418. [PMID: 37602885 PMCID: PMC10848040 DOI: 10.1111/cns.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS To analyze the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with amyloid PET in cognitive impairment diagnosis. METHODS A total of 187 patients with dementia or mild cognitive impairment (MCI) who underwent 11 C-Pittsburgh compound B (PiB) and FDG PET scans in a memory clinic were included in the final analysis. RESULTS Amyloid-positive and amyloid-negative dementia patient groups showed a significant difference in the proportion of individuals presenting temporoparietal cortex (p < 0.001) and posterior cingulate/precuneus cortex (p < 0.001) hypometabolism. The sensitivity and specificity of this hypometabolic pattern for identifying amyloid pathology were 72.61% and 77.97%, respectively, in patients clinically diagnosed with AD and 60.87% and 76.19%, respectively, in patients with MCI. The initial diagnosis was changed in 32.17% of patients with dementia after considering both PiB and FDG results. There was a significant difference in both the proportion of patients showing the hypometabolic pattern and PiB positivity between dementia conversion patients and patients with a stable diagnosis of MCI (p < 0.05). CONCLUSION Temporoparietal and posterior cingulate/precuneus cortex hypometabolism on FDG PET suggested amyloid pathology in patients with cognitive impairment and is helpful in diagnostic decision-making and predicting AD dementia conversion from MCI, particularly when combined with amyloid PET.
Collapse
Affiliation(s)
- Fang Liu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yudi Shi
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Health Management CenterTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Qiuyan Wu
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Huifeng Chen
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| | - Ying Wang
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Li Cai
- PET/CT CenterTianjin Medical University General HospitalTianjinChina
| | - Nan Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
- Department of NeurologyTianjin Medical University General Hospital Airport SiteTianjinChina
| |
Collapse
|
30
|
Slee MG, Rainey‐Smith SR, Villemagne VL, Doecke JD, Sohrabi HR, Taddei K, Ames D, Dore V, Maruff P, Laws SM, Masters CL, Rowe CC, Martins RN, Erickson KI, Brown BM. Physical activity and brain amyloid beta: A longitudinal analysis of cognitively unimpaired older adults. Alzheimers Dement 2024; 20:1350-1359. [PMID: 37984813 PMCID: PMC10917015 DOI: 10.1002/alz.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aβ) over 15 years in a cohort of cognitively unimpaired older adults. METHODS PA and Aβ measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aβ. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aβ relationship. RESULTS PA was not associated with brain Aβ at baseline (β = -0.001, p = 0.72) or over time (β = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aβ relationship over time (β = 0.12, p = 0.73). Brain Aβ levels did not predict PA trajectory (β = -54.26, p = 0.59). DISCUSSION Our study did not identify a relationship between habitual PA and brain Aβ levels. HIGHLIGHTS Physical activity levels did not predict brain amyloid beta (Aβ) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aβ relationship over time. Physical activity trajectories were not impacted by brain Aβ levels.
Collapse
Affiliation(s)
- Michael G. Slee
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Victor L. Villemagne
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - James D. Doecke
- The Australian e‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| | - David Ames
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- National Ageing Research InstituteParkvilleVictoriaAustralia
- Academic Unit for Psychiatry of Old AgeUniversity of MelbourneCarltonVictoriaAustralia
| | - Vincent Dore
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Cogstate LtdMelbourneVictoriaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Kirk I. Erickson
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Belinda M. Brown
- Centre for Healthy AgeingHealthy Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian Alzheimer's Research FoundationNedlandsWestern AustraliaAustralia
| |
Collapse
|
31
|
Mrđenović D, Combes BF, Ni R, Zenobi R, Kumar N. Probing Chemical Complexity of Amyloid Plaques in Alzheimer's Disease Mice using Hyperspectral Raman Imaging. ACS Chem Neurosci 2024; 15:78-85. [PMID: 38096362 PMCID: PMC10767745 DOI: 10.1021/acschemneuro.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024] Open
Abstract
One of the distinctive pathological features of Alzheimer's disease (AD) is the deposition of amyloid plaques within the brain of affected individuals. These plaques have traditionally been investigated using labeling techniques such as immunohistochemical imaging. However, the use of labeling can disrupt the structural integrity of the molecules being analyzed. Hence, it is imperative to employ label-free imaging methods for noninvasive examination of amyloid deposits in their native form, thereby providing more relevant information pertaining to AD. This study presents compelling evidence that label-free and nondestructive confocal Raman imaging is a highly effective approach for the identification and chemical characterization of amyloid plaques within cortical regions of an arcAβ mouse model of AD. Furthermore, this investigation elucidates how the spatial correlation of Raman signals can be exploited to identify robust Raman marker bands and discern proteins and lipids from amyloid plaques. Finally, this study uncovers the existence of distinct types of amyloid plaques in the arcAβ mouse brain, exhibiting significant disparities in terms of not only shape and size but also molecular composition.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1−5/10, 8093 Zürich, Switzerland
| | - Benjamin F. Combes
- Institute
for Regenerative Medicine, University of
Zürich, Wagistrasse
12, 8952 Schlieren, Switzerland
| | - Ruiqing Ni
- Institute
for Regenerative Medicine, University of
Zürich, Wagistrasse
12, 8952 Schlieren, Switzerland
- Institute
for Biomedical Engineering, University of
Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1−5/10, 8093 Zürich, Switzerland
| | - Naresh Kumar
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1−5/10, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
33
|
Triumbari EKA, Chiaravalloti A, Schillaci O, Mercuri NB, Liguori C. Positron Emission Tomography/Computed Tomography Imaging in Therapeutic Clinical Trials in Alzheimer's Disease: An Overview of the Current State of the Art of Research. J Alzheimers Dis 2024; 101:S603-S628. [PMID: 39422956 DOI: 10.3233/jad-240349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The integration of positron emission tomography/computed tomography (PET/CT) has revolutionized the landscape of Alzheimer's disease (AD) research and therapeutic interventions. By combining structural and functional imaging, PET/CT provides a comprehensive understanding of disease pathology and response to treatment assessment. PET/CT, particularly with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), facilitates the visualization of glucose metabolism in the brain, enabling early diagnosis, staging, and monitoring of neurodegenerative disease progression. The advent of amyloid and tau PET imaging has further propelled the field forward, offering invaluable tools for tracking pathological hallmarks, assessing treatment response, and predicting clinical outcomes. While some therapeutic interventions targeting amyloid plaque load showed promising results with the reduction of cerebral amyloid accumulation over time, others failed to demonstrate a significant impact of anti-amyloid agents for reducing the amyloid plaques burden in AD brains. Tau PET imaging has conversely fueled the advent of disease-modifying therapeutic strategies in AD by supporting the assessment of neurofibrillary tangles of tau pathology deposition over time. Looking ahead, PET imaging holds immense promise for studying additional targets such as neuroinflammation, cholinergic deficit, and synaptic dysfunction. Advances in radiotracer development, dedicated brain PET/CT scanners, and Artificial Intelligence-powered software are poised to enhance the quality, sensitivity, and diagnostic power of molecular neuroimaging. Consequently, PET/CT remains at the forefront of AD research, offering unparalleled opportunities for unravelling the complexities of the disease and advancing therapeutic interventions, although it is not yet enough alone to allow patients' recruitment in therapeutic clinical trials.
Collapse
Affiliation(s)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
34
|
Sánchez-Soblechero A, López-García S, Lage C, Fernández-Matarrubia M, Irure J, López-Hoyos M, Jiménez-Bonilla J, Quirce R, de Arcocha-Torres M, Cuenca-Vera O, Martín-Arroyo J, Martínez-Dubarbie F, Pozueta A, García-Martínez M, Infante J, Sánchez-Juan P, Rodríguez-Rodríguez E. Where Should I Draw the Line: PET-Driven, Data-Driven, or Manufacturer Cut-Off? J Alzheimers Dis 2024; 98:957-967. [PMID: 38489172 DOI: 10.3233/jad-230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The optimal cut-off for Alzheimer's disease (AD) CSF biomarkers remains controversial. Objective To analyze the performance of cut-off points standardized by three methods: one that optimized the agreement between 11C-Pittsburgh compound B PET (a-PET) and CSF biomarkers (Aβ1-42, pTau, tTau, and Aβ1-42/Aβ1-40 ratio) in our population, called PET-driven; an unbiased cut-off using data from a healthy research cohort, called data-driven, and that provided by the manufacturer. We also compare changes in ATN classification. Methods CSF biomarkers measured by the LUMIPULSE G600II platform and qualitative visualization of amyloid positron emission tomography (a-PET) were performed in all the patients. We established a cut-off for each single biomarker and Aβ1-42/Aβ1-40 ratio that optimized their agreement with a-PET using ROC curves. Sensitivity, Specificity, and Overall Percent of Agreement are assessed using a-PET or clinical diagnosis as gold standard for every cut-off. Also, we established a data-driven cut-off from our cognitively unimpaired cohort. We then analyzed changes in ATN classification. Results One hundred and ten patients were recruited. Sixty-six (60%) were a-PET positive. PET-driven cut-offs were: pTau > 57, tTau > 362.62, Aβ1-42/Aβ1-40 < 0.069. For a single biomarker, pTau showed the highest accuracy (AUC 0.926). New PET-driven cut-offs classified patients similarly to manufacturer cut-offs (only two patients changed). However, 20 patients (18%) changed when data-driven cut-offs were used. Conclusions We established our sample's best CSF biomarkers cut-offs using a-PET as the gold standard. These cut-offs categorize better symptomatic subjects than data-driven in ATN classification, but they are very similar to the manufacturer's.
Collapse
Affiliation(s)
| | - Sara López-García
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Lage
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Fernández-Matarrubia
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Irure
- Immunology Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Marcos López-Hoyos
- Immunology Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Julio Jiménez-Bonilla
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Remedios Quirce
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - María de Arcocha-Torres
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Oriana Cuenca-Vera
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Juan Martín-Arroyo
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Francisco Martínez-Dubarbie
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Pozueta
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María García-Martínez
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jon Infante
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Pascual Sánchez-Juan
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Eloy Rodríguez-Rodríguez
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| |
Collapse
|
35
|
Kim SJ, Jang H, Yoo H, Na DL, Ham H, Kim HJ, Kim JP, Farrar G, Moon SH, Seo SW. Clinical and Pathological Validation of CT-Based Regional Harmonization Methods of Amyloid PET. Clin Nucl Med 2024; 49:1-8. [PMID: 38048354 DOI: 10.1097/rlu.0000000000004937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
PURPOSE The CT-based regional direct comparison Centiloid (dcCL) method was developed to harmonize and quantify regional β-amyloid (Aβ) burden. In the present study, we aimed to investigate correlations between the CT-based regional dcCL scales and Aβ pathological burdens and to validate the clinical utility using thresholds derived from pathological assessment. PATIENTS AND METHODS We included a pathological cohort of 63 cases and a clinical cohort of 4062 participants, and obtained modified Consortium to Establish a Registry for Alzheimer's Disease criteria (mCERAD) scores by assessment of neuritic plaque burdens in multiple areas of each cortical region. PET and CT images were processed using the CT-based regional dcCL method to calculate scales in 6 distinct regions. RESULTS The CT-based regional dcCL scales were correlated with neuritic plaque burdens represented by mCERAD scores, globally and regionally ( r = 0.56~0.76). In addition, striatum dcCL scales reflected Aβ involvement in the striatum ( P < 0.001). The regional dcCL scales could predict significant Aβ deposition in specific brain regions with high accuracy: area under the receiver operating characteristic curve of 0.81-0.97 with an mCERAD cutoff of 1.5 and area under the receiver operating characteristic curve of 0.88-0.93 with an mCERAD cutoff of 0.5. When applying the dcCL thresholds of 1.5 mCERAD scores, the G(-)R(+) group showed lower performances in memory and global cognitive functions and had less hippocampal volume compared with the G(-)R(-) group ( P < 0.001). However, when applying the dcCL thresholds of 0.5 mCERAD scores, there were no differences in the global cognitive functions between the 2 groups. CONCLUSIONS The thresholds of regional dcCL scales derived from pathological assessments might provide clinicians with a better understanding of biomarker-guided diagnosis and distinguishable clinical phenotypes, which are particularly useful when harmonizing different PET ligands with only PET/CT.
Collapse
Affiliation(s)
| | | | - Heejin Yoo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center
| | | | | | | | | | - Gill Farrar
- Pharmaceutical Diagnostics, GE Healthcare, Chalfont St Giles, United Kingdom
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | |
Collapse
|
36
|
Omar MA, El-Shiekh RA, Dawood DH, Temirak A, Srour AM. Hydrazone-sulfonate hybrids as potential cholinesterase inhibitors: design, synthesis and molecular modeling simulation. Future Med Chem 2023; 15:2269-2287. [PMID: 37994559 DOI: 10.4155/fmc-2023-0238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Aim: Design and synthesis of a series of hydrazone-sulfonate hybrids, 5a-r. Methodology: The inhibitory properties of the synthesized compounds against acetylcholinesterase and butyrylcholinesterase were evaluated using donepezil as the reference standard. Results & conclusion: Compound 5e was identified as the most potent inhibitor of acetylcholinesterase (IC50 = 9.30 μM), and compound 5i was the most potent inhibitor of butyrylcholinesterase (IC50 = 11.82 μM). To confirm the safety of the most potent hits at the used doses, toxicological bioassays were conducted. Molecular docking was performed and the tested derivatives were found to fit well in the active sites of both enzymes. This study provides valuable insights into the potential of hydrazone-sulfonate hybrids as drug candidates.
Collapse
Affiliation(s)
- Mohamed A Omar
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Dina H Dawood
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Temirak
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
37
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic brain injury and Alzheimer's Disease biomarkers: A systematic review of findings from amyloid and tau positron emission tomography (PET). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.30.23298528. [PMID: 38077068 PMCID: PMC10705648 DOI: 10.1101/2023.11.30.23298528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with dementia risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of amyloid-β and/or tau to examine subjects with history of TBI who are at risk for AD due to advanced age. A comprehensive literature search was conducted on January 9, 2023, and 24 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about subjects' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both amyloid and tau, results were widespread but inconsistent. The regions which showed the most compelling evidence for increased amyloid deposition were the cingulate gyrus, cuneus/precuneus, and parietal lobe. Evidence for increased tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions of interest in both amyloid- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older subjects at risk for AD.
Collapse
Affiliation(s)
- Kaitlyn M. Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cecelia J. Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Desarae A. Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
38
|
Greer O, Cheng R, Tamres LK, Mattos M, Morris JL, Knox ML, Lingler JH. Nurse-led pre-test counseling for Alzheimer's disease biomarker testing: Knowledge and skills required to meet the needs of patients and families. Geriatr Nurs 2023; 53:130-134. [PMID: 37540906 DOI: 10.1016/j.gerinurse.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Biomarker testing for Alzheimer's disease and related disorders (ADRD) brings new opportunities for nurses to foster shared decision-making by leading pre-test counseling (PTC) for patients and families. METHODS Audio-recordings of 18 nurse-led PTC sessions were analyzed to characterize questions posed by patient and family members dyads considering whether to pursue amyloid positron emission tomography. RESULTS Sessions lasted 20 to 75 minutes and generated rich discussion of the purpose and potential implications of amyloid imaging. Dyads posed questions regarding: basic neuroanatomy; the spectrum of normal cognitive aging to dementia; clinical phenotypes and pathological hallmarks of ADRD; secondary prevention of ADRD; and advance planning. In response, PTC facilitators provided disease-specific education, clarification of overt misconceptions, caregiver support, and emotion de-escalation. CONCLUSION Nurses conducting PTC for AD biomarker testing should be equipped to answer questions about topics both directly and indirectly related to testing, and also provide emotional support.
Collapse
Affiliation(s)
- Olivia Greer
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebekah Cheng
- UPMC Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Lisa K Tamres
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Meghan Mattos
- University of Virginia School of Nursing, Charlottesville, VA, USA
| | - Jonna L Morris
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Melissa L Knox
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | | |
Collapse
|
39
|
Agarwal A, Gupta V, Brahmbhatt P, Desai A, Vibhute P, Joseph-Mathurin N, Bathla G. Amyloid-related Imaging Abnormalities in Alzheimer Disease Treated with Anti-Amyloid-β Therapy. Radiographics 2023; 43:e230009. [PMID: 37651273 DOI: 10.1148/rg.230009] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alzheimer disease (AD) is the most common form of dementia worldwide. Treatment of AD has mainly been focused on symptomatic treatment until recently with the advent and approval of monoclonal antibody (MAB) immunotherapy. U.S. Food and Drug Administration-approved drugs such as aducanumab, as well as upcoming newer-generation drugs, have provided an exciting new therapy focused on reducing the amyloid plaque burden in AD. Although this new frontier has shown benefits for patients, it is not without complications, which are mainly neurologic. Increased use of MABs led to the discovery of amyloid-related imaging abnormalities (ARIA). ARIA has been further classified into two categories, ARIA-E and ARIA-H, representing edema and/or effusion and hemorrhage, respectively. ARIA is thought to be caused by increased vascular permeability following an inflammatory response, leading to the extravasation of blood products and proteinaceous fluid. Patients with ARIA may present with headaches, but they are usually asymptomatic and ARIA is only diagnosable at MRI; it is essential for the radiologist to recognize and monitor ARIA. Increased incidence and investigation into this concern have led to the creation of grading scales and monitoring guidelines to diagnose and guide treatment using MABs. Cerebral amyloid angiopathy has an identical pathogenesis to that of ARIA and is its closest differential diagnosis, with imaging findings being the same for both entities and only a history of MAB administration allowing differentiation. The authors discuss the use of MABs for treating AD, expand on ARIA and its consequences, and describe how to identify and grade ARIA to guide treatment properly. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center See the invited commentary by Yu in this issue.
Collapse
Affiliation(s)
- Amit Agarwal
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Vivek Gupta
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Pavan Brahmbhatt
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Amit Desai
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Prasanna Vibhute
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Nelly Joseph-Mathurin
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| | - Girish Bathla
- From the Departments of Radiology (A.A., V.G., P.B., A.D.) and Neuroradiology (P.V.), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Mo (N.J.M.); and Department of Radiology, Mayo Clinic, Rochester, Minn (G.B.)
| |
Collapse
|
40
|
Osborne OM, Naranjo O, Heckmann BL, Dykxhoorn D, Toborek M. Anti-amyloid: An antibody to cure Alzheimer's or an attitude. iScience 2023; 26:107461. [PMID: 37588168 PMCID: PMC10425904 DOI: 10.1016/j.isci.2023.107461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
For more than a century, clinicians have been aware of the devastating neurological condition called Alzheimer's disease (AD). AD is characterized by the presence of abnormal amyloid protein plaques and tau tangles in the brain. The dominant hypothesis, termed the amyloid hypothesis, attributes AD development to excessive cleavage and accumulation of amyloid precursor protein (APP), leading to brain tissue atrophy. The amyloid hypothesis has greatly influenced AD research and therapeutic endeavors. However, despite significant attention, a complete understanding of amyloid and APP's roles in disease pathology, progression, and cognitive impairment remains elusive. Recent controversies and several unsuccessful drug trials have called into question whether amyloid is the only neuropathological factor for treatment. To accomplish disease amelioration, we argue that researchers and clinicians may need to take a compounding approach to target amyloid and other factors in the brain, including traditional pharmaceuticals and holistic therapies.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradlee L. Heckmann
- Department of Immunology, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Byrd Alzheimer’s Center, University of South Florida Health Neuroscience Institute, Tampa, FL 33613, USA
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Asha Therapeutics, Tampa, FL, USA
| | - Derek Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Doher N, Davoudi V, Magaki S, Townley RA, Haeri M, Vinters HV. Illustrated Neuropathologic Diagnosis of Alzheimer's Disease. Neurol Int 2023; 15:857-867. [PMID: 37489360 PMCID: PMC10366902 DOI: 10.3390/neurolint15030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
As of 2022, the prevalence of Alzheimer's disease (AD) among individuals aged 65 and older is estimated to be 6.2 million in the United States. This figure is predicted to grow to 13.8 million by 2060. An accurate assessment of neuropathologic changes represents a critical step in understanding the underlying mechanisms in AD. The current method for assessing postmortem Alzheimer's disease neuropathologic change follows version 11 of the National Alzheimer's Coordinating Center (NACC) coding guidebook. Ambiguity regarding steps in the ABC scoring method can lead to increased time or inaccuracy in staging AD. We present a concise overview of how this postmortem diagnosis is made and relate it to the evolving understanding of antemortem AD biomarkers.
Collapse
Affiliation(s)
- Nicholas Doher
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Vahid Davoudi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ryan A Townley
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway City, KS 66205, USA
| | - Mohammad Haeri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway City, KS 66205, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Zhao Q, Du X, Chen W, Zhang T, Xu Z. Advances in diagnosing mild cognitive impairment and Alzheimer's disease using 11C-PIB- PET/CT and common neuropsychological tests. Front Neurosci 2023; 17:1216215. [PMID: 37492405 PMCID: PMC10363609 DOI: 10.3389/fnins.2023.1216215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Alzheimer's disease (AD) is a critical health issue worldwide that has a negative impact on patients' quality of life, as well as on caregivers, society, and the environment. Positron emission tomography (PET)/computed tomography (CT) and neuropsychological scales can be used to identify AD and mild cognitive impairment (MCI) early, provide a differential diagnosis, and offer early therapies to impede the course of the illness. However, there are few reports of large-scale 11C-PIB-PET/CT investigations that focus on the pathology of AD and MCI. Therefore, further research is needed to determine how neuropsychological test scales and PET/CT measurements of disease progression interact.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinxin Du
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenhong Chen
- Department of Sleep Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Rehabilitation Therapeutics, School of Nursing of Jilin University, Changchun, Jilin, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
43
|
Govindarajan K, Kar S. Detection of β-amyloid aggregates/plaques in 5xFAD mice by labelled native PLGA nanoparticles: implication in the diagnosis of alzheimer's disease. J Nanobiotechnology 2023; 21:216. [PMID: 37424018 PMCID: PMC10332042 DOI: 10.1186/s12951-023-01957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Evidence suggests that increased level/aggregation of β-amyloid (Aβ) peptide, together with enhanced phosphorylation/aggregation of tau protein, play a critical role in the development of Alzheimer's disease (AD), the leading cause of dementia in the elderly. At present, AD diagnosis is based primarily on cognitive assessment, neuroimaging, and immunological assays to detect altered levels/deposition of Aβ peptides and tau protein. While measurement of Aβ and tau in the cerebrospinal fluid/blood can indicate disease status, neuroimaging of aggregated Aβ and tau protein in the brain using positron emission tomography (PET) enable to monitor the pathological changes in AD patients. With advancements in nanomedicine, several nanoparticles, apart from drug-delivery, have been used as a diagnostic agent to identify more accurately changes in AD patients. Recently, we reported that FDA approved native PLGA nanoparticles can interact with Aβ to inhibit its aggregation/toxicity in cellular and animal models of AD. Here, we reveal that fluorescence labelled native PLGA following acute intracerebellar injection can identify majority of the immunostained Aβ as well as Congo red labelled neuritic plaques in the cortex of 5xFAD mice. Labelling of plaques by PLGA is apparent at 1 h, peak around 3 h and then start declining by 24 h after injection. No fluorescent PLGA was detected in the cerebellum of 5xFAD mice or in any brain regions of wild-type control mice following injection. These results provide the very first evidence that native PLGA nanoparticles can be used as a novel nano-theragnostic agent in the treatment as well as diagnosis of AD pathology.
Collapse
Affiliation(s)
- Karthivashan Govindarajan
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
44
|
Abrahamson EE, Padera RF, Davies J, Farrar G, Villemagne VL, Dorbala S, Ikonomovic MD. The flutemetamol analogue cyano-flutemetamol detects myocardial AL and ATTR amyloid deposits: a post-mortem histofluorescence analysis. Amyloid 2023; 30:169-187. [PMID: 36411500 PMCID: PMC10199962 DOI: 10.1080/13506129.2022.2141623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND [18F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium. METHODS Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls. Most subjects had antemortem electrocardiography, echocardiography, SPECT and cardiac MRI. Cyano-flutemetamol labeling patterns and integrated density values were evaluated relative to fluorescent derivatives of Congo red (X-34) and Pittsburgh compound-B (cyano-PiB). RESULTS Cyano-flutemetamol labeling was not detectable in control subjects. In subjects with cardiac amyloidosis, cyano-flutemetamol labeling matched X-34- and cyano-PiB-labeled, and transthyretin- or lambda light chain-immunoreactive, amyloid deposits and was prevented by formic acid pre-treatment of myocardial sections. Cyano-flutemetamol mean fluorescence intensity, when adjusted for X-34 signal, was higher in the ATTRwt than the AL group. Cyano-flutemetamol integrated density correlated strongly with echocardiography measures of ventricular septal thickness and posterior wall thickness, and with heart mass. CONCLUSION The high selectivity of cyano-flutemetamol binding to myocardial amyloid supports the diagnostic utility of [18F]flutemetamol PET imaging in patients with ATTR and AL types of cardiac amyloidosis.
Collapse
Affiliation(s)
- Eric E. Abrahamson
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | | | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Sharmila Dorbala
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Brigham and Women’s Hospital, Boston, MA 02115
| | - Milos D. Ikonomovic
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
45
|
Song AK, Hett K, Eisma JJ, McKnight CD, Elenberger J, Stark AJ, Kang H, Yan Y, Considine CM, Donahue MJ, Claassen DO. Parasagittal dural space hypertrophy and amyloid-β deposition in Alzheimer's disease. Brain Commun 2023; 5:fcad128. [PMID: 37143860 PMCID: PMC10152899 DOI: 10.1093/braincomms/fcad128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
One of the pathological hallmarks of Alzheimer's and related diseases is the increased accumulation of protein amyloid-β in the brain parenchyma. As such, recent studies have focused on characterizing protein and related clearance pathways involving perivascular flow of neurofluids, but human studies of these pathways are limited owing to limited methods for evaluating neurofluid circulation non-invasively in vivo. Here, we utilize non-invasive MRI methods to explore surrogate measures of CSF production, bulk flow and egress in the context of independent PET measures of amyloid-β accumulation in older adults. Participants (N = 23) were scanned at 3.0 T with 3D T2-weighted turbo spin echo, 2D perfusion-weighted pseudo-continuous arterial spin labelling and phase-contrast angiography to quantify parasagittal dural space volume, choroid plexus perfusion and net CSF flow through the aqueduct of Sylvius, respectively. All participants also underwent dynamic PET imaging with amyloid-β tracer 11C-Pittsburgh Compound B to quantify global cerebral amyloid-β accumulation. Spearman's correlation analyses revealed a significant relationship between global amyloid-β accumulation and parasagittal dural space volume (rho = 0.529, P = 0.010), specifically in the frontal (rho = 0.527, P = 0.010) and parietal (rho = 0.616, P = 0.002) subsegments. No relationships were observed between amyloid-β and choroid plexus perfusion nor net CSF flow. Findings suggest that parasagittal dural space hypertrophy, and its possible role in CSF-mediated clearance, may be closely related to global amyloid-β accumulation. These findings are discussed in the context of our growing understanding of the physiological mechanisms of amyloid-β aggregation and clearance via neurofluids.
Collapse
Affiliation(s)
- Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam J Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 32732, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 32732, USA
| | - Ciaran M Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Paredes AM, Guareña LA, Stickel AM, Schairer CE, González HM. To donate, or not to donate, that is the question: Latino insights into brain donation. Alzheimers Dement 2023; 19:1274-1280. [PMID: 36029516 PMCID: PMC9968816 DOI: 10.1002/alz.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Latinos are underrepresented in brain autopsy research on Alzheimer's disease and related dementias (ADRD). The study's purpose is to identify Latinos' attitudes about brain donation (BD) to inform methods by which researchers can increase autopsy consent. METHODS Forty Latinos (mean age: 59.4 years) completed a semi-structured interview and were presented with educational information about BD. Participants completed a questionnaire assessing their understanding of BD and willingness to donate their brain for research. RESULTS Among participants, there was near unanimous support for BD to study ADRD after hearing educational information. However, prior to the information presented, participants reported a lack of knowledge about BD and demonstrated a possibility that misunderstandings about BD may affect participation. DISCUSSION While nearly all study participants agree that donating is beneficial for research and for future generations, the lack of BD information must be addressed to help support positive attitudes and willingness for participation.
Collapse
Affiliation(s)
| | - Lesley A. Guareña
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ariana M. Stickel
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| | - Cynthia E. Schairer
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Hector M. González
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
47
|
Islam A, Saito T, Saido T, Ali AB. Presubiculum principal cells are preserved from degeneration in knock-in APP/TAU mouse models of Alzheimer's disease. Semin Cell Dev Biol 2023; 139:55-72. [PMID: 35292192 PMCID: PMC10439011 DOI: 10.1016/j.semcdb.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
The presubiculum (PRS) is an integral component of the perforant pathway that has recently been recognised as a relatively unscathed region in clinical Alzheimer's disease (AD), despite neighbouring components of the perforant pathway, CA1 and the entorhinal cortex, responsible for formation of episodic memory and storage, showing severe hallmarks of AD including, amyloid-beta (Aβ) plaques, tau tangles and marked gliosis. However, the question remains whether this anatomical resilience translates into functional resilience of the PRS neurons. Using neuroanatomy combined with whole-cell electrophysiological recordings, we investigated whether the unique spatial profile of the PRS was replicable in two knock-in mouse models of AD, APPNL-F/NL-F, and APPNL-F/MAPTHTAU and whether the intrinsic properties and morphological integrity of the PRS principal neurons was maintained compared to the lateral entorhinal cortex (LEC) and hippocampal CA1 principal cells. Our data revealed an age-dependent Aβ and tau pathology with neuroinflammation in the LEC and CA1, but a presence of fleece-like Aβ deposits with an absence of tau tangles and cellular markers of gliosis in the PRS of the mouse models at 11-16 and 18-22 months. These observations were consistent in human post-mortem AD tissue. This spatial profile also correlated with functional resilience of strong burst firing PRS pyramidal cells that showed unaltered sub- and suprathreshold intrinsic biophysical membrane properties and gross morphology in the AD models that were similar to the properties of pyramidal cells recorded in age-matched wild-type mice (11-14 months). This was in contrast to the LEC and CA1 principal cells which showed altered subthreshold intrinsic properties such as a higher input resistance, longer membrane time constants and hyperexcitability in response to suprathreshold stimulation that correlated with atrophied dendrites in both AD models. In conclusion, our data show for the first time that the unique anatomical profile of the PRS constitutes a diffuse AD pathology that is correlated with the preservation of principal pyramidal cell intrinsic biophysical and morphological properties despite alteration of LEC and CA1 pyramidal cells in two distinct genetic models of AD. Understanding the underlying mechanisms of this resilience could be beneficial in preventing the spread of disease pathology before cognitive deficits are precipitated in AD.
Collapse
Affiliation(s)
- Anam Islam
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Afia B Ali
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
48
|
Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24043321. [PMID: 36834733 PMCID: PMC9968142 DOI: 10.3390/ijms24043321] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer's disease and Parkinson's disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life.
Collapse
|
49
|
Baik K, Jeon S, Park M, Lee YG, Lee PH, Sohn YH, Ye BS. Comparison Between 18F-Florapronol and 18F-Florbetaben Imaging in Patients With Cognitive Impairment. J Clin Neurol 2023; 19:260-269. [PMID: 36775276 PMCID: PMC10169926 DOI: 10.3988/jcn.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND AND PURPOSE To determine the imaging characteristics and cutoff value of 18F-florapronol (FC119S) quantitative analysis for detecting β-amyloid positivity and Alzheimer's disease (AD), we compared the findings of FC119S and 18F-florbetaben (FBB) positron- emission tomography (PET) in patients with cognitive impairment. METHODS We prospectively enrolled 35 patients with cognitive impairment who underwent FBB-PET, FC119S-PET, and brain magnetic resonance imaging. We measured global and vertex-wise standardized uptake value ratios (SUVRs) using a surface-based method with the cerebellar gray matter as reference. Optimal global FC119S SUVR cutoffs were determined using receiver operating characteristic curves for β-amyloid positivity based on the global FBB SUVR of 1.478 and presence of AD, respectively. We evaluated the global and vertex-wise SUVR correlations between the two tracers. In addition, we performed correlation analysis for global or vertex-wise SUVR of each tracer with the vertex-wise cortical thicknesses. RESULTS The optimal global FC119S SUVR cutoff value was 1.385 both for detecting β-amyloid positivity and for detecting AD. Based on the global SUVR cutoff value of each tracer, 32 (91.4%) patients had concordant β-amyloid positivity. The SUVRs of FC119S and FBB had strong global (r=0.72) and vertex-wise (r>0.7) correlations in the overall cortices, except for the parietal and temporal cortices (0.4<r<0.7). The FC119S SUVR had significant negative vertex-wise correlations with cortical thicknesses in the posterior cingulate, anterior cingulate, parietal, posterior temporal, and occipital cortices. CONCLUSIONS Quantitative FC119S-PET analysis provided reliable information for detecting β-amyloid deposition and the presence of AD.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Brain Research Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Chung-Ang University College of Medicine and Graduate School of Medicine, Gwangmyeong Hospital, Gwangmyeong, Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
50
|
Reddy TT, Iguban MH, Melkonyan LL, Shergill J, Liang C, Mukherjee J. Development of [ 124/125I]IAZA as a New Proteinopathy Imaging Agent for Alzheimer's Disease. Molecules 2023; 28:molecules28020865. [PMID: 36677925 PMCID: PMC9863004 DOI: 10.3390/molecules28020865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Radioiodinated imaging agents for Aβ amyloid plaque imaging in Alzheimer’s disease (AD) patients have not been actively pursued. Our previous studies employed the “diaza” derivatives [11C]TAZA and [18F]flotaza in order to develop successful positron emission tomography (PET) imaging agents for Aβ plaques. There is a need for radioiodinated imaging agents for Aβ plaques for single photon emission computed tomography (SPECT) and PET imaging. We report our findings on the preparation of [124/125I]IAZA, a “diaza” analog of [11C]TAZA and [18F]flotaza, and the evaluation of binding to Aβ plaques in the postmortem human AD brain. The binding affinity of IAZA for Aβ plaques was Ki = 10.9 nM with weak binding affinity for neurofibrillary tangles (Ki = 3.71 μM). Both [125I]IAZA and [124I]IAZA were produced in >25% radiochemical yield and >90% radiochemical purity. In vitro binding of [125I]IAZA and [124I]IAZA in postmortem human AD brains was higher in gray matter containing Aβ plaques compared to white matter (ratio of gray to white matter was >7). Anti-Aβ immunostaining strongly correlated with [124/125I]IAZA in postmortem AD human brains. The binding of [124/125I]IAZA in postmortem human AD brains was displaced by the known Aβ plaque imaging agents. Thus, radiolabeled [124/123I]IAZA may potentially be a useful PET or SPECT radioligand for Aβ plaques in brain imaging studies.
Collapse
|