1
|
Wu Z, Sun J, Liao Z, Sun T, Huang L, Qiao J, Ling C, Chen C, Zhang B, Wang H. Activation of PAR1 contributes to ferroptosis of Schwann cells and inhibits regeneration of myelin sheath after sciatic nerve crush injury in rats via Hippo-YAP/ACSL4 pathway. Exp Neurol 2025; 384:115053. [PMID: 39542339 DOI: 10.1016/j.expneurol.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Peripheral nerve injury (PNI) is characterized by high incidence and sequela rate. Recently, there was increasing evidence that has shown ferroptosis may impede functional recovery. Our objective is to explore the novel mechanism that regulates ferroptosis after PNI. METHODS LC-MS/MS proteomics was used to explore the possible differential signals, while PCR array was performed to investigate the differential factors. Besides, we also tried to activate or inhibit the key factors and then observe the level of ferroptosis. Regeneration of myelin sheath was finally examined in vivo via transmission electron microscopy. RESULTS Proteomics analysis suggested coagulation signal was activated after sciatic nerve crush injury, in which high expression of F2 (encoding thrombin) and F2r (encoding PAR1) were observed. Both thrombin and PAR1-targeted activator TRAP6 can induce ferroptosis in RSC96 cells, which can be rescued by Vorapaxar (PAR1 targeted inhibitor) in vitro. Further PCR array revealed that activation of PAR1 induced ferroptosis in RSC96 cells by increasing expression of YAP and ACSL4. Immunofluorescence of sciatic nerve confirmed that the expression of YAP and ACSL4 were simultaneously reduced after PAR1 inhibition, which may contribute to myelin regeneration after injury in SD rats. CONCLUSION Inhibition of PAR1 can relieve ferroptosis after sciatic nerve crush injury in SD rats through Hippo-YAP/ACSL4 pathway, thereby regulating myelin regeneration after injury. In summary, PAR1/Hippo-YAP/ACSL4 pathway may be a promising therapeutic target for promoting functional recovery post-sciatic crush injury.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Jun Sun
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Zhi Liao
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Tao Sun
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Lixin Huang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Jia Qiao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Cong Ling
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Chuan Chen
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Baoyu Zhang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| | - Hui Wang
- Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
2
|
Kong L, Gu PP, Tang ZZ, Gou LS, Liu YW. High glucose upregulates PAR-1 in SH-SY5Y cells via deficiency of miR-20a and miR-190a. Fundam Clin Pharmacol 2021; 36:509-517. [PMID: 34904279 DOI: 10.1111/fcp.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Thrombin activity enhancement and its receptor protease-activated receptor 1 (PAR-1) activation play vital roles in neurologic deficits in the central nervous system. Our recent study showed that PAR-1 upregulation stimulated by chronic high glucose (HG) caused central neuron injury through neuroinflammation; however, the molecular mechanisms are far from clear. In the present study, we found that HG resulted in neuronal injury of SH-SY5Y cells as evidenced by decreased cell viability and increased lactate dehydrogenase release and elevated the mRNA level of PAR-1. Moreover, we predicted and determined several potential microRNAs (miRs) combining with the 3'-UTR of PAR-1 mRNA, finding that miR-20a-5p, miR-93-5p, and miR-190a-5p were significantly decreased in HG-cultured SH-SY5Y cells compared with control. Further, SH-SY5Y cells stably transfected with miR-20a-5p or miR-190a-5p mimic were established, and overexpression efficiency were confirmed. It was found that miR-20a-5p or miR-190a-5p overexpression markedly decreased PAR-1 mRNA level and protein expression in SH-SY5Y cells cultured with HG and normal glucose, indicating that miR-20a or miR-19a deficiency contributed to HG-induced PAR-1 upregulation. Together, our findings demonstrated that PAR-1 upregulation mediated HG-induced neuronal damage in central neurons, which was achieved through miR-20a or miR-190a deficiency.
Collapse
Affiliation(s)
- Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Pan-Pan Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang-Zhuang Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Barbe MF, Loomis R, Lepkowsky AM, Forman S, Zhao H, Gordon J. A longitudinal characterization of sex-specific somatosensory and spatial memory deficits in HIV Tg26 heterozygous mice. PLoS One 2020; 15:e0244725. [PMID: 33382797 PMCID: PMC7775086 DOI: 10.1371/journal.pone.0244725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of human immunodeficiency virus associated neurological disorders is still not well understood, yet is known to result in neurological declines despite combination anti-retroviral therapy. HIV-1 transgenic (Tg26) mice contain integrated non-infectious HIV-1 proviral DNA. We sought to assess the integrity of neurocognitive function and sensory systems in HIV-1 Tg26 mice using a longitudinal design, in both sexes, to examine both age- and sex-related disease progression. General neurological reflexive testing showed only acclimation to repeated testing by all groups. Yet, at 2.5 months of age, female Tg26 +/- mice showed hyposensitivity to noxious hot temperatures, compared to wild types (both sexes) and male Tg26 +/- mice, that worsened by 10 months of age. Female Tg26 +/- mice had short-term spatial memory losses in novel object location memory testing at 2.5 and 7 months, compared to female wild types; changes not observed in male counterparts. Female Tg26 +/- mice showed mild learning deficits and short- and long-term spatial memory deficits in olfactory and visually cued Barnes Maze testing at 3 months of age, yet greater learning and memory deficits by 8 months. In contrast, male Tg26 +/- mice displayed no learning deficits and fewer spatial memory deficits (mainly heading errors in nontarget holes). Thus, greater sex-specific temperature hyposensitivity and spatial memory declines were observed in female HIV Tg26 +/- mice, than in male Tg26 +/- mice, or their wild type littermates, that increased with aging. Additionally, tibial bones were examined using ex vivo micro-CT after tissue collection at 11 months. Sex-dependent increases in bone volume and trabecular number were seen in males, matching their greater weights at this age. These results indicate that HIV-1 Tg26 mice is a promising model in which to study neuropathic mechanisms underlying peripheral pathology as well as cognitive deficits seen with HIV.
Collapse
Affiliation(s)
- Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- * E-mail: ,
| | - Regina Loomis
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Adam M. Lepkowsky
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Steven Forman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Jennifer Gordon
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Bozzelli PL, Yin T, Avdoshina V, Mocchetti I, Conant KE, Maguire-Zeiss KA. HIV-1 Tat promotes astrocytic release of CCL2 through MMP/PAR-1 signaling. Glia 2019; 67:1719-1729. [PMID: 31124192 DOI: 10.1002/glia.23642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tao Yin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
5
|
Gofrit SG, Shavit-Stein E. The neuro-glial coagulonome: the thrombin receptor and coagulation pathways as major players in neurological diseases. Neural Regen Res 2019; 14:2043-2053. [PMID: 31397331 PMCID: PMC6788244 DOI: 10.4103/1673-5374.262568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuro-glial interface extends far beyond mechanical support alone and includes interactions through coagulation cascade proteins. Here, we systematically review the evidence indicating that synaptic and node of Ranvier glia cell components modulate synaptic transmission and axonal conduction by a coagulation cascade protein system, leading us to propose the concept of the neuro-glial coagulonome. In the peripheral nervous system, the main thrombin receptor protease activated receptor 1 (PAR1) is located on the Schwann microvilli at the node of Ranvier and at the neuromuscular junction. PAR1 activation effects can be both neuroprotective or harmful, depending on thrombin activity levels. Low physiological levels of thrombin induce neuroprotective effects in the Schwann cells which are mediated by the endothelial protein C receptor. High levels of thrombin induce conduction deficits, as found in experimental autoimmune neuritis, the animal model for Guillaine-Barre syndrome. In the central nervous system, PAR1 is located on the peri-synaptic astrocyte end-feet. Its activation by high thrombin levels is involved in the pathology of primary inflammatory brain diseases such as multiple sclerosis, as well as in other central nervous system insults, including trauma, neoplasms, epilepsy and vascular injury. Following activation of PAR1 by high thrombin levels the seizure threshold is lowered. On the other hand, PAR1 activation by lower levels of thrombin in the central nervous system protects against a future ischemic insult. This review presents the known structure and function of the neuro-glial coagulonome, focusing on coagulation, thrombin and PAR1 in a pathway which may be either physiological (neuroprotective) or detrimental in peripheral nervous system and central nervous system diseases. Understanding the neuro-glial coagulonome may open opportunities for novel pharmacological interventions in neurological diseases.
Collapse
Affiliation(s)
- Shany G Gofrit
- Department of Neurology and Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology and Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Asahchop EL, Branton WG, Krishnan A, Chen PA, Yang D, Kong L, Zochodne DW, Brew BJ, Gill MJ, Power C. HIV-associated sensory polyneuropathy and neuronal injury are associated with miRNA-455-3p induction. JCI Insight 2018; 3:122450. [PMID: 30518697 DOI: 10.1172/jci.insight.122450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Symptomatic distal sensory polyneuropathy (sDSP) is common and debilitating in people with HIV/AIDS, leading to neuropathic pain, although the condition's cause is unknown. To investigate biomarkers and associated pathogenic mechanisms for sDSP, we examined plasma miRNA profiles in HIV/AIDS patients with sDSP or without sDSP in 2 independent cohorts together with assessing related pathogenic effects. Several miRNAs were found to be increased in the Discovery Cohort (sDSP, n = 29; non-DSP, n = 40) by array analyses and were increased in patients with sDSP compared with patients without sDSP. miR-455-3p displayed a 12-fold median increase in the sDSP group, which was confirmed by machine learning analyses and verified by reverse transcription PCR. In the Validation Cohort (sDSP n = 16, non-DSP n = 20, healthy controls n = 15), significant upregulation of miR-455-3p was also observed in the sDSP group. Bioinformatics revealed that miR-455-3p targeted multiple host genes implicated in peripheral nerve maintenance, including nerve growth factor (NGF) and related genes. Transfection of cultured human dorsal root ganglia with miR-455-3p showed a concentration-dependent reduction in neuronal β-III tubulin expression. Human neurons transfected with miR-455-3p demonstrated reduced neurite outgrowth and NGF expression that was reversed by anti-miR-455-3p antagomir cotreatment. miR-455-3p represents a potential biomarker for HIV-associated sDSP and might also exert pathogenic effects leading to sDSP.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Anand Krishnan
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Patricia A Chen
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Dong Yang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce J Brew
- Departments of Neurology and HIV, St. Vincent's Hospital, and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Power C. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. J Neurovirol 2017; 24:220-228. [PMID: 29247305 DOI: 10.1007/s13365-017-0593-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that causes immunosuppression through virus-mediated CD4+ T cell depletion in feline species. FIV infection is complicated by virus-induced disease in the nervous system. FIV enters the brain soon after primary infection and is detected as FIV-encoded RNA, DNA, and proteins in microglia, macrophages, and astrocytes. FIV infection activates neuroinflammatory pathways including cytokines, chemokines, proteases, and ROS with accompanying neuronal injury and loss. Neurobehavioral deficits during FIV infection are manifested as impaired motor and cognitive functions. Several treatment strategies have emerged from studies of FIV neuropathogenesis including the therapeutic benefits of antiretroviral therapies, other protease inhibitors, anti-inflammatory, and neurotrophic compounds. Recently, insulin's antiviral, anti-inflammatory, and neuroprotective effects were investigated in models of lentivirus brain infection. Insulin suppressed HIV-1 replication in human microglia as well as FIV replication of lymphocytes. Insulin treatment diminished cytokine and chemokine activation in HIV-infected microglia while also protecting neurons from HIV-1 Vpr protein-mediated neurotoxicity. Intranasal (IN) insulin delivery for 6 weeks suppressed FIV expression in the brains of treated cats. IN insulin also reduced neuroinflammation and protected neurons in the hippocampus, striatum, and neocortex of FIV-infected animals. These morphological and molecular effects of IN insulin were confirmed by neurobehavioral studies that showed IN insulin-treated FIV-infected animals displayed improved motor and cognitive performance compared to sham-treated FIV-infected animals. Thus, FIV infection of the nervous system provides a valuable comparative in vivo model for discovering and evaluating disease mechanisms as well as developing therapeutic strategies for NeuroAIDS in humans.
Collapse
Affiliation(s)
- Christopher Power
- Department of Medicine (Neurology) and the Neuroscience and Mental Health Institute, University of Alberta, HMRC 6-11, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
9
|
Lee PR, Johnson TP, Gnanapavan S, Giovannoni G, Wang T, Steiner JP, Medynets M, Vaal MJ, Gartner V, Nath A. Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β. J Neuroinflammation 2017; 14:131. [PMID: 28655310 PMCID: PMC5488439 DOI: 10.1186/s12974-017-0901-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background The cause of neurodegeneration in progressive forms of multiple sclerosis is unknown. We investigated the impact of specific neuroinflammatory markers on human neurons to identify potential therapeutic targets for neuroprotection against chronic inflammation. Methods Surface immunocytochemistry directly visualized protease-activated receptor-1 (PAR1) and interleukin-1 (IL-1) receptors on neurons in human postmortem cortex in patients with and without neuroinflammatory lesions. Viability of cultured neurons was determined after exposure to cerebrospinal fluid from patients with progressive multiple sclerosis or purified granzyme B and IL-1β. Inhibitors of PAR1 activation and of PAR1-associated second messenger signaling were used to elucidate a mechanism of neurotoxicity. Results Immunohistochemistry of human post-mortem brain tissue demonstrated cells expressing higher amounts of PAR1 near and within subcortical lesions in patients with multiple sclerosis compared to control tissue. Human cerebrospinal fluid samples containing granzyme B and IL-1β were toxic to human neuronal cultures. Granzyme B was neurotoxic through activation of PAR1 and subsequently the phospholipase Cβ-IP3 second messenger system. Inhibition of PAR1 or IP3 prevented granzyme B toxicity. IL-1β enhanced granzyme B-mediated neurotoxicity by increasing PAR1 expression. Conclusions Neurons within the inflamed central nervous system are imperiled because they express more PAR1 and are exposed to a neurotoxic combination of both granzyme B and IL-1β. The effects of these inflammatory mediators may be a contributing factor in the progressive brain atrophy associated with neuroinflammatory diseases. Knowledge of how exposure to IL-1β and granzyme B act synergistically to cause neuronal death yields potential novel neuroprotective treatments for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Paul R Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA.
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Sharmilee Gnanapavan
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marie Medynets
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Mark J Vaal
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valerie Gartner
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Pompili E, Fabrizi C, Somma F, Correani V, Maras B, Schininà ME, Ciraci V, Artico M, Fornai F, Fumagalli L. PAR1 activation affects the neurotrophic properties of Schwann cells. Mol Cell Neurosci 2017; 79:23-33. [PMID: 28064059 DOI: 10.1016/j.mcn.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 01/02/2023] Open
Abstract
Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Viviana Ciraci
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Radulovic M, Yoon H, Wu J, Mustafa K, Scarisbrick IA. Targeting the thrombin receptor modulates inflammation and astrogliosis to improve recovery after spinal cord injury. Neurobiol Dis 2016; 93:226-42. [PMID: 27145117 PMCID: PMC4930708 DOI: 10.1016/j.nbd.2016.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1β and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
12
|
Patel A, Vasanthan V, Fu W, Fahlman RP, MacTavish D, Jhamandas JH. Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype. Brain Struct Funct 2016; 221:1845-60. [PMID: 25682263 DOI: 10.1007/s00429-015-1007-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Accumulation of β-amyloid (Aβ) protein within the brain is a neuropathological hallmark of Alzheimer's disease (AD). One strategy to facilitate Aβ clearance from the brain is to promote Aβ catabolism. Matrix metalloproteinase-9 (MMP-9), a member of the family of Zn(+2)-containing endoproteases, known to be expressed and secreted by astrocytes, is capable of degrading Aβ. Histamine, a major aminergic brain neurotransmitter, stimulates the production of MMP-9 in keratinocytes through the histamine H1 receptor (H1R). In the present study, we show that histamine evokes a concentration- and calcium-dependent release of MMP-9 from human astrocytic U373 cells and primary cultures of human and rat astrocytes through the H1R subtype. Activation of H1R on astrocytes elevated intracellular levels of Ca(2+) that was accompanied by time-dependent increases in MAP kinase p44/p42 and PKC. In-cell western blots revealed dose-dependent increases in both enzymes, confirming involvement of these signal transduction pathways. We next investigated the extent of recombinant human MMP-9 (rhMMP-9) proteolytic activity on soluble oligomeric Aβ (soAβ). Mass spectrometry demonstrated time-dependent cleavage of soAβ (20 μM), but not another amyloidogenic protein amylin, upon incubation with rhMMP-9 (100 nM) at 1, 4 and 17 h. Furthermore, Western blots showed a shift in soAβ equilibrium toward lower order, less toxic monomeric species. In conclusion, both MAPK p44/p42 and PKC pathways appear to be involved in histamine-upregulated MMP-9 release via H1Rs in astrocytes. Furthermore, MMP-9 appears to cleave soAβ into less toxic monomeric species. Given the key role of histamine in MMP-9 release, this neurotransmitter may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Aarti Patel
- Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Vishnu Vasanthan
- Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Wen Fu
- Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - David MacTavish
- Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Jack H Jhamandas
- Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
13
|
Abstract
Objective: The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. Design: With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. Methods: Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. Results: Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular l-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Cai] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of l-glutamate, l-aspartate and l-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). Conclusion: These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS.
Collapse
|
14
|
Lu L, Dong H, Liu G, Yuan B, Li Y, Liu H. The Protective Effects of IGF-1 on Different Subpopulations of DRG Neurons with Neurotoxicity Induced by gp120 and Dideoxycytidine In Vitro. Biomol Ther (Seoul) 2014; 22:532-9. [PMID: 25489421 PMCID: PMC4256033 DOI: 10.4062/biomolther.2014.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/29/2014] [Accepted: 07/26/2014] [Indexed: 02/06/2023] Open
Abstract
Peripheral neuropathy induced by human immunodeficiency virus (HIV) infection and antiretroviral therapy is not only difficult to distinguish in clinical practice, but also difficult to relieve the pain symptoms by analgesics because of the severity of the disease at the later stage. Hence, to explore the mechanisms of HIV-related neuropathy and find new therapeutic options are particularly important for relieving neuropathic pain symptoms of the patients. In the present study, primary cultured embryonic rat dorsal root ganglion (DRG) neurons were used to determine the neurotoxic effects of HIV-gp120 protein and/or antiretroviral drug dideoxycytidine (ddC) and the therapeutic actions of insulin-like growth factor-1 (IGF-1) on gp120- or ddC-induced neurotoxicity. DRG neurons were exposed to gp120 (500 pmol/L), ddC (50 μmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L), gp120 (500 pmol/L) plus IGF-1 (20 nmol/L), ddC (50 μmol/L) plus IGF-1 (20 nmol/L), gp120 (500 pmol/L) plus ddC (50 μmol/L) plus IGF-1 (20 nmol/L), respectively, for 72 hours. The results showed that gp120 and/or ddC caused neurotoxicity of primary cultured DRG neurons. Interestingly, the severity of neurotoxicity induced by gp120 and ddC was different in different subpopulation of DRG neurons. gp120 mainly affected large diameter DRG neurons (>25 μm), whereas ddC mainly affected small diameter DRG neurons (≤25 μm). IGF-1 could reverse the neurotoxicity induced by gp120 and/or ddC on small, but not large, DRG neurons. These data provide new insights in elucidating the pathogenesis of HIV infection- or antiretroviral therapy-related peripheral neuropathy and facilitating the development of novel treatment strategies.
Collapse
Affiliation(s)
- Lin Lu
- Department of Neurology, Shandong University Affiliated Shandong Provincial Hospital, Jinan 250021
| | - Haixia Dong
- Department of Computer Tomography and Magnetic Resonance Imaging, Weifang Medical College Affiliated Yidu Central Hospital, Qingzhou 262500
| | - Guixiang Liu
- Department of Histology and Embryology, Binzhou Medical College, Binzhou 256603
| | - Bin Yuan
- Department of Internal Medicine, Heze Boai Hospital, Heze 274000
| | - Yizhao Li
- Jinan e-Join Science and Technology, Co., Ltd, Jinan 250100
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| |
Collapse
|
15
|
Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, Baker GB, Power C. HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain Behav Immun 2014; 40:74-84. [PMID: 24607605 DOI: 10.1016/j.bbi.2014.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders during HIV/AIDS are common although the contribution of HIV-1 infection within the brain, and in particular individual HIV-1 proteins, to the development of these brain disorders is unknown. Herein, an in vivo transgenic mouse model was generated in which the HIV-1 Nef protein was expressed in microglia cells, permitting investigation of neurobehavioral phenotypes and associated cellular and molecular properties. METHODS Transgenic (Tg) mice that expressed full length HIV-1 nef under the control of the c-fms promoter and wildtype (Wt) littermates were investigated using different measures of neurobehavioral performance including locomotory, forced swim (FST), elevated plus maze (EPM) and T-maze tests. Host gene and transgene expression were assessed by RT-PCR, immunoblotting, enzymatic activity and immunohistochemistry. Biogenic amine levels were measured by HPLC with electrochemical detection. RESULTS Tg animals exhibited Nef expression in brain microglia and cultured macrophages. Tg males displayed hyperactive behaviors including augmented locomotor activity, decreased immobility in the FST and increased open-arm EPM exploration compared to Wt littermates (p<0.05). Tg animals showed increased CCL2 expression with concurrent IFN-α suppression in striatum compared with Wt littermates (p<0.05). Dopamine levels, MAO activity and the dopamine transporter (DAT) expression were reduced in the striatum of Tg animals (p<0.05). CONCLUSIONS HIV-1 Nef expression in microglia induced CCL2 expression together with disrupting striatal dopaminergic transmission, resulting in hyperactive behaviors which are observed in mania and other psychiatric comorbidities among HIV-infected persons. These findings emphasize the selective effects of individual viral proteins in the brain and their participation in neuropathogenesis.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Physiology and Pharmacology and Hotchkiss Brain Institute, University of Calgary, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | | | - Amber M Paul
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Peter Dickie
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
16
|
Paul AM, Branton WG, Walsh JG, Polyak MJ, Lu JQ, Baker GB, Power C. GABA transport and neuroinflammation are coupled in multiple sclerosis: regulation of the GABA transporter-2 by ganaxolone. Neuroscience 2014; 273:24-38. [PMID: 24814730 DOI: 10.1016/j.neuroscience.2014.04.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Interactions between neurotransmitters and the immune system represent new prospects for understanding neuroinflammation and associated neurological disease. GABA is the chief inhibitory neurotransmitter but its actions on immune pathways in the brain are unclear. In the present study, we investigated GABAergic transport in conjunction with neuroinflammation in models of multiple sclerosis (MS). Protein and mRNA levels of γ-amino butyric acid transporter 2 (GAT-2) were examined in cerebral white matter from MS and control (Non-MS) patients, in cultured human macrophages, microglia and astrocytes, and in spinal cords from mice with and without experimental autoimmune encephalomyelitis (EAE) using western blotting, immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). GABA levels were measured by HPLC. The GAT-2's expression was increased in MS patients' (n=6) white matter, particularly in macrophage lineage cells, compared to Non-MS patients (n=6) (p<0.05). Interferon-γ (IFN-γ) stimulation of human macrophage lineage cells induced GAT-2 expression and reduced extracellular GABA levels (p<0.05) but soluble GABA treatment suppressed HLA-DRα, GAT-2 and XBP-1/s expression in stimulated macrophage lineage cells (p<0.05). Similarly, the synthetic allopregnanolone analog, ganaxolone (GNX), repressed GAT-2, JAK-1 and STAT-1 expression in activated macrophage lineage cells (p<0.05). In vivo GNX treatment reduced Gat-2, Cd3ε, MhcII, and Xbp-1/s expression in spinal cords following EAE induction (p<0.05), which was correlated with improved neurobehavioral outcomes and reduced neuroinflammation, demyelination and axonal injury. These findings highlight altered GABAergic transport through GAT-2 induction during neuroinflammation. GABA transport and neuroinflammation are closely coupled but regulated by GNX, pointing to GABAergic pathways as therapeutic targets in neuroinflammatory diseases.
Collapse
Affiliation(s)
- A M Paul
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - W G Branton
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - J G Walsh
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - M J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - J-Q Lu
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | - G B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - C Power
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Liu H, Liu G, Bi Y. CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro. Neurosci Lett 2014; 569:110-5. [DOI: 10.1016/j.neulet.2014.03.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/15/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022]
|
18
|
Abstract
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Collapse
|
19
|
Van der Watt JJ, Wilkinson KA, Wilkinson RJ, Heckmann JM. Plasma cytokine profiles in HIV-1 infected patients developing neuropathic symptoms shortly after commencing antiretroviral therapy: a case-control study. BMC Infect Dis 2014; 14:71. [PMID: 24512313 PMCID: PMC3928502 DOI: 10.1186/1471-2334-14-71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/30/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In patients infected with human immunodeficiency virus 1 (HIV-1) neuropathic symptoms may develop within weeks of starting combination antiretroviral therapy (cART). This timing coincides with the occurrence of immune reconstitution inflammatory syndrome. Our objective was to investigate the longitudinal association of plasma cytokine and soluble receptor concentrations with incident neuropathic symptoms within 12 weeks of starting programme-based cART in a nested case-control study. METHODS One hundred and twenty adults without neuropathic symptoms and about to initiate cART were followed longitudinally for 24 weeks after cART initiation. Subjects were examined for peripheral neuropathy at baseline (pre-cART) and 2-, 4-, 12- and 24 weeks thereafter. Individuals developing neuropathic symptoms within 12 weeks of starting cART were matched in a nested case-control design with those remaining symptom-free for at least 24 weeks. Plasma was collected at each visit. Cytokines and soluble receptors were quantified using multiplex immunometric assays. RESULTS Incident neuropathic symptoms occurred in 32 (27%) individuals within 12 weeks of starting cART for the first time. Cytokine concentrations increased at 2 weeks, irrespective of symptom-status, returning to baseline concentrations at 12 weeks. Compared to the control group, the symptomatic group had higher baseline levels of interleukin-1 receptor (IL-1R)-antagonist. The symptomatic group also showed greater increases in soluble interleukin-2 receptor-alpha and tumour necrosis factor (TNF) receptor-II levels at week 2 and soluble interleukin-6 receptor levels at week 12. Ratios of pro-inflammatory- vs anti-inflammatory cytokines were higher for TNF-alpha/IL-4 (p = 0.022) and interferon-gamma/IL-10 (p = 0.044) in those developing symptoms. After 24 weeks of cART, the symptomatic group showed higher CD4+ counts (p = 0.002). CONCLUSIONS The initiation of cART in previously treatment naïve individuals was associated with a cytokine 'burst' between 2- and 4 weeks compared with pre-cART levels. Individuals developing neuropathic symptoms within 12 weeks of starting cART showed evidence of altered cytokine concentrations even prior to initiating cART, most notably higher circulating IL-1R-antagonist levels, and altered ratios of "pain-associated" cytokine and soluble receptors shortly after cART initiation.
Collapse
Affiliation(s)
- Johan J Van der Watt
- Division of Neurology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa.
| | | | | | | |
Collapse
|
20
|
Zhu Z, Reiser G. PAR-1 activation rescues astrocytes through the PI3K/Akt signaling pathway from chemically induced apoptosis that is exacerbated by gene silencing of β-arrestin 1. Neurochem Int 2014; 67:46-56. [DOI: 10.1016/j.neuint.2013.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
|
21
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|
22
|
Interleukin-1β increased the expression of protease-activated receptor 4 mRNA and protein in dorsal root ganglion neurons. Neurochem Res 2013; 38:1895-903. [PMID: 23775412 DOI: 10.1007/s11064-013-1095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Protease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear. In the present study, we evaluated in rat dorsal root ganglion (DRG) neurons the influence of IL-1β on PAR4 mRNA and protein levels after IL-1β intraplantar injection into the hind-paw or treatment of cultured DRG neurons. The expression of PAR4 in cultured DRG neurons was also assessed after treatment with IL-1β with pre-addition of phorbol-12-myristate 13-acetate (PMA, a PKC activator) or chelerythrine chloride (a PKC inhibitor). We found that IL-1β intraplantar injection into the hind-paw or long-term exposure of cultured DRG neurons to IL-1β significantly increased the proportion of DRG neurons expressing PAR4 immunoreactivity. Real-time PCR and western blotting showed that IL-1β treatment also significantly elevated PAR4 mRNA and protein levels in DRG neurons. This IL-1β effect was enhanced in DRG neurons when DRG cultures were pre-treatment with the PMA. But pre-incubation with chelerythrine chloride strongly inhibited the IL-1β-induced increase of PAR4 mRNA and protein levels. These results demonstrate that the expression of PAR4 mRNA and protein induced by IL-1β is PKC signaling pathway dependent.
Collapse
|
23
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Peripheral nerve disorders are associated with all stages of HIV infection. Distal sensory polyneuropathy is characterised by often-disabling pain that is difficult to treat. It is prevalent in both high-income and low-income settings. In low-income settings, use of potentially neurotoxic antiretrovirals, which are inexpensive and widely available, contributes substantially to incidence. Research has focused on identification of factors that predict risk of distal sensory polyneuropathy and elucidation of the multifactorial mechanisms behind pathogenesis. Sensorimotor polyneuropathies and polyradiculopathies are less frequent than distal sensory polyneuropathy, but still occur in low-income settings and have potentially devastating consequences. However, many of these diseases can be treated successfully with a combination of antiretroviral and immune-modulating therapies. To distinguish between peripheral nerve disorders that have diverse, overlapping, and frequently atypical presentations can be challenging; a framework based on a clinicoanatomical approach might assist in the diagnosis and management of such disorders.
Collapse
|
25
|
Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 2012; 11:69-86. [PMID: 22212680 DOI: 10.1038/nrd3615] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.
Collapse
|