1
|
Duncan J. Construction and use of mental models: Organizing principles for the science of brain and mind. Neuropsychologia 2025; 207:109062. [PMID: 39645228 DOI: 10.1016/j.neuropsychologia.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
As an organizing framework for questions of mind and brain, I discuss how the brain builds and uses mental models. Mental models provide a complex, structured description of some situation in the world. The role of perception is to build such a model for the current environment; knowledge provides many of the building blocks; in episodic memory, a previous model is reinstated; in cognitive control, the model dictates a choice of action. A model, I suggest, is a compositional, whole brain state, combining information from multiple specialised brain systems into a structured description of entities in the model and their roles and relationships. The default mode network may play an organizational role as parts of a model are combined into a broader whole. The model combines an active attentional foreground with a more extensive, latent background. Foreground is based on active neural firing, orchestrated by the brain's multiple demand network. Background may also include low-intensity neural activity, but with a substantial contribution from both faster and slower aspects of synaptic change. Interplay between foreground and background underlies core aspects of cognition, including cognitive control, problem solving, abstraction, and learning. Together, these proposals suggest how integrated, whole-brain functions build mental models, providing a unifying framework for the diverse concerns of cognitive neuroscience.
Collapse
Affiliation(s)
- John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB27EF, UK.
| |
Collapse
|
2
|
Sen A, Toniolo S, Tai XY, Akinola M, Symmonds M, Mura S, Galloway J, Hallam A, Chan JYC, Koychev I, Butler C, Geddes J, Jones GD, Tabi Y, Maio R, Frangou E, Love S, Thompson S, Van Der Putt R, Manohar SG, McShane R, Husain M. Safety, tolerability, and efficacy outcomes of the Investigation of Levetiracetam in Alzheimer's disease (ILiAD) study: a pilot, double-blind placebo-controlled crossover trial. Epilepsia Open 2024; 9:2353-2364. [PMID: 39400461 PMCID: PMC11633694 DOI: 10.1002/epi4.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE To assess whether the antiseizure medication levetiracetam may improve cognition in individuals with Alzheimer's disease who have not previously experienced a seizure. METHODS We performed a randomized, double-blind, placebo-controlled crossover pilot study in individuals with mild-to-moderate Alzheimer's disease. Electroencephalography was performed at baseline and those with active epileptiform discharges were excluded. Eligible participants were randomized to placebo for 12 weeks or an active arm of oral levetiracetam (4 weeks up-titration to levetiracetam 500 mg twice daily, 4 weeks maintained on this dose followed by 4 weeks down-titration to nil). Participants then crossed over to the other arm. The primary outcome was change in cognitive function assessed by the Oxford Memory Task, a task sensitive to hippocampal memory binding. Secondary outcomes included tolerability, other neuropsychological scales, and general questionnaires. RESULTS Recruitment numbers were severely limited owing to restrictions from the COVID-19 pandemic at the time of the study. Eight participants completed both arms of the study (mean age 68.4 years [SD = 9.2]; 5 females [62.5%]). No participants withdrew from the study and there was no significant difference between reported side effects in the active levetiracetam or placebo arm. Measures of mood and quality of life were also not significantly different between the two arms based on participant or carer reports. In limited data analysis, there was no statistically significant difference between participants in the active levetiracetam and placebo arm on the memory task. SIGNIFICANCE This pilot study demonstrates that levetiracetam was well tolerated in individuals with Alzheimer's disease who do not have a history of seizures and has no detrimental effect on mood or quality of life. Larger studies are needed to assess whether levetiracetam may have a positive effect on cognitive function in subsets of individuals with Alzheimer's disease. PLAIN LANGUAGE SUMMARY Abnormal electrical activity within the brain, such as is seen in seizures, might contribute to memory problems in people with dementia. We completed a clinical trial to see if an antiseizure medication, levetiracetam, could help with memory difficulties in people with Alzheimer's disease (the most common cause of dementia). In this pilot study, we could not prove whether levetiracetam helped memory function. We did show that the drug is safe and well tolerated in people with dementia who have not had a seizure. This work, therefore, offers a platform for future research exploring antiseizure medications in people with dementia.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Sofia Toniolo
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Xin You Tai
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Mary Akinola
- Local Clinical Trials NetworkJohn Radcliffe HospitalOxfordUK
| | - Mkael Symmonds
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
- Department of Clinical NeurophysiologyJohn Radcliffe HospitalOxfordUK
| | - Sergio Mura
- Clinical Trials PharmacyJohn Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Angela Hallam
- St Mary's Pharmaceutical UnitCardiff UniversityCardiffUK
| | - Jane Y. C. Chan
- Freeline TherapeuticsKing's CourtStevenageUK
- Translational MedicineUCB PharmaSloughUK
| | - Ivan Koychev
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Chris Butler
- Faculty of Medicine, Department of Brain SciencesImperial College, Sir Alexander Fleming Building, South Kensington CampusLondonUK
| | - John Geddes
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Gabriel Davis Jones
- Oxford Epilepsy Research Group, Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Women's Health, Women's CentreJohn Radcliffe HospitalOxfordUK
| | - Younes Tabi
- Department of NeurologyUniversity Hospital of KielKielGermany
| | - Raquel Maio
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | - Eleni Frangou
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health SciencesInstitute of Clinical Trials & Methodology, University College LondonLondonUK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Sharon Love
- MRC Clinical Trials Unit at UCL, Faculty of Pop Health SciencesInstitute of Clinical Trials & Methodology, University College LondonLondonUK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Sian Thompson
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
| | | | - Sanjay G. Manohar
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
| | | | - Masud Husain
- Department of NeurologyJohn Radcliffe HospitalOxfordUK
- Nuffield Department of Clinical NeuroscienceUniversity of OxfordOxfordUK
- Cognitive Neurology Research Group, Nuffield Department Clinical Neurosciences & Department of Experimental PsychologyUniversity of Oxford, West Wing, John Radcliffe HospitalOxfordUK
| |
Collapse
|
3
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. Proc Natl Acad Sci U S A 2024; 121:e2411459121. [PMID: 39374383 PMCID: PMC11494333 DOI: 10.1073/pnas.2411459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that for declarative memories, medial temporal lobe (MTL) structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that for sensorimotor memories, the cerebellum may play an analogous role. Here, we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15 to 20 s and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 s or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically worsens with memory window duration over shorter memory windows (<12 s) and near-complete impairment of memory maintenance over longer memory windows (>25 s). This dissociation uncovers a unique role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the MTL for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both the trial-to-trial differences identified in this study and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability.
Collapse
Affiliation(s)
- Alkis M. Hadjiosif
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Tricia L. Gibo
- Philips Medical Systems, Best, Noord-Brabant5684, The Netherlands
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maurice A. Smith
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| |
Collapse
|
4
|
Daly J, De Luca F, Berens SC, Field AP, Rusted JM, Bird CM. The effect of apolipoprotein E genotype on spatial processing in humans: A meta-analysis and systematic review. Cortex 2024; 177:268-284. [PMID: 38878339 DOI: 10.1016/j.cortex.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024]
Abstract
The ε4 allele of the apolipoprotein E (APOE4) gene is an established risk factor for Alzheimer's disease but its impact on cognition in healthy adults across the lifespan is unclear. One cognitive domain that is affected early in the course of Alzheimer's disease is spatial cognition, yet the evidence for APOE-related changes in spatial cognition is mixed. In this meta-analysis we assessed the impact of carrying the APOE4 allele on five subdomains of spatial cognition across the lifespan. We included studies of healthy human participants where an APOE4-carrier group (heterozygous or homozygous) could be compared to a homozygous group of APOE3-carriers. We identified 156 studies in total from three databases (Pubmed, Scopus and Web of Science) as well as through searching cited literature and contacting authors for unpublished data. 122 studies involving 32,547 participants were included in a meta-analysis, and the remaining studies are included in a descriptive review. APOE4 carriers scored significantly lower than APOE3 carriers (θˆ = -.08 [-.14, -.02]) on tests of spatial long-term memory; this effect was very small and was not modulated by age. On other subdomains of spatial cognition (spatial construction, spatial working memory, spatial reasoning, navigation) there were no effects of genotype. Overall, our results demonstrate that the APOE4 allele exerts little influence on spatial cognitive abilities in healthy adults.
Collapse
Affiliation(s)
- Jessica Daly
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Flavia De Luca
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Sam C Berens
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom
| | - Andy P Field
- School of Psychology, University of Sussex, United Kingdom
| | | | - Chris M Bird
- Sussex Neuroscience, School of Psychology, University of Sussex, United Kingdom.
| |
Collapse
|
5
|
Husain M. The human hippocampus contributes to short-term memory. Brain 2024; 147:2593-2594. [PMID: 38978495 DOI: 10.1093/brain/awae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
|
6
|
Dor A, Harrison C, Irani SR, Al-Diwani A, Grogan J, Manohar S. N-Methyl-D-Aspartate Receptor-Antibody Encephalitis Impairs Maintenance of Attention to Items in Working Memory. J Neurosci 2024; 44:e1500232024. [PMID: 38830760 PMCID: PMC11236588 DOI: 10.1523/jneurosci.1500-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
NMDA receptors (NMDARs) may be crucial to working memory (WM). Computational models predict that they sustain neural firing and produce associative memory, which may underpin maintaining and binding information, respectively. We test this in patients with antibodies to NMDAR (n = 10, female) and compare them with healthy control participants (n = 55, 20 male, 35 female). Patients were tested after recovery with a task that separates two aspects of WM: sustaining attention and feature binding. Participants had to remember two colored arrows. Then attention was directed to one of them. After a variable delay, they reported the direction of either the same arrow (congruent cue) or of the other arrow (incongruent cue). We asked how congruency affected recall precision and measured types of error. Patients had difficulty in both sustaining attention to an item over time and feature binding. Controls were less precise after longer delays and incongruent cues. In contrast, patients did not benefit from congruent cues at longer delays [group × congruency (long condition); p = 0.041], indicating they could not sustain attention. Additionally, patients reported the wrong item (misbinding errors) more than controls after congruent cues [group × delay (congruent condition), main effect of group; p ≤ 0.001]. Our results suggest NMDARs are critical for both maintaining attention and feature binding.
Collapse
Affiliation(s)
- Afrose Dor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Corin Harrison
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Adam Al-Diwani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - John Grogan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
7
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
8
|
Toniolo S, Zhao S, Scholcz A, Amein B, Ganse‐Dumrath A, Heslegrave AJ, Thompson S, Manohar S, Zetterberg H, Husain M. Relationship of plasma biomarkers to digital cognitive tests in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12590. [PMID: 38623387 PMCID: PMC11016819 DOI: 10.1002/dad2.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION A major limitation in Alzheimer's disease (AD) research is the lack of the ability to measure cognitive performance at scale-robustly, remotely, and frequently. Currently, there are no established online digital platforms validated against plasma biomarkers of AD. METHODS We used a novel web-based platform that assessed different cognitive functions in AD patients (N = 46) and elderly controls (N = 53) who were also evaluated for plasma biomarkers (amyloid beta 42/40 ratio, phosphorylated tau ([p-tau]181, glial fibrillary acidic protein, neurofilament light chain). Their cognitive performance was compared to a second, larger group of elderly controls (N = 352). RESULTS Patients with AD were significantly impaired across all digital cognitive tests, with performance correlating with plasma biomarker levels, particularly p-tau181. The combination of p-tau181 and the single best-performing digital test achieved high accuracy in group classification. DISCUSSION These findings show how online testing can now be deployed in patients with AD to measure cognitive function effectively and related to blood biomarkers of the disease. Highlights This is the first study comparing online digital testing to plasma biomarkers.Alzheimer's disease patients and two independent cohorts of elderly controls were assessed.Cognitive performance correlated with plasma biomarkers, particularly phosphorylated tau (p-tau)181.Glial fibrillary acidic protein and neurofilament light chain, and less so the amyloid beta 42/40 ratio, were also associated with performance.The best cognitive metric performed at par to p-tau181 in group classification.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
| | - Sijia Zhao
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Anna Scholcz
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Benazir Amein
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Akke Ganse‐Dumrath
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Amanda J. Heslegrave
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Sanjay Manohar
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Henrik Zetterberg
- UK Dementia Research InstituteUCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Cognitive Disorders ClinicJR HospitalOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Jia Y, Woltering S, Deutz NEP, Engelen MPKJ, Coyle KS, Maio MR, Husain M, Liu ZX. Working Memory Precision and Associative Binding in Mild Cognitive Impairment. Exp Aging Res 2024; 50:206-224. [PMID: 36755482 DOI: 10.1080/0361073x.2023.2172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
To better understand working memory (WM) deficits in Mild Cognitive Impairment (MCI), we examined information precision and associative binding in WM in 21 participants with MCI, compared to 16 healthy controls, using an item-location delayed reproduction task. WM, along with other executive functions (i.e. Trail Making Task (TMT) and Stroop task), were measured before and after a 2-h nap. The napping manipulation was intended as an exploratory element to this study exploring potential impacts of napping on executive functions.Compared to healthy participants, participants with MCI exhibited inferior performance not only in identifying encoded WM items but also on item-location associative binding and location precision even when only one item was involved. We also found changes on TMT and Stroop tasks in MCI, reflecting inferior attention and inhibitory control. Post-napping performance improved in most of these WM and other executive measures, both in MCI and their healthy peers.Our study shows that associative binding and WM precision can reliably differentiate MCIs from their healthy peers. Additionally, most measures showed no differential effect of group pre- and post-napping. These findings may contribute to better understanding cognitive deficits in MCI therefore improving the diagnosis of MCI.
Collapse
Affiliation(s)
- Yajun Jia
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
- School of Social Work, Columbia University, New York City, New York, USA
| | - Steven Woltering
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Kimberly S Coyle
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Maria R Maio
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
10
|
Motahharynia A, Pourmohammadi A, Adibi A, Shaygannejad V, Ashtari F, Adibi I, Sanayei M. A mechanistic insight into sources of error of visual working memory in multiple sclerosis. eLife 2023; 12:RP87442. [PMID: 37937840 PMCID: PMC10631758 DOI: 10.7554/elife.87442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Working memory (WM) is one of the most affected cognitive domains in multiple sclerosis (MS), which is mainly studied by the previously established binary model for information storage (slot model). However, recent observations based on the continuous reproduction paradigms have shown that assuming dynamic allocation of WM resources (resource model) instead of the binary hypothesis will give more accurate predictions in WM assessment. Moreover, continuous reproduction paradigms allow for assessing the distribution of error in recalling information, providing new insights into the organization of the WM system. Hence, by utilizing two continuous reproduction paradigms, memory-guided localization (MGL) and analog recall task with sequential presentation, we investigated WM dysfunction in MS. Our results demonstrated an overall increase in recall error and decreased recall precision in MS. While sequential paradigms were better in distinguishing healthy control from relapsing-remitting MS, MGL were more accurate in discriminating MS subtypes (relapsing-remitting from secondary progressive), providing evidence about the underlying mechanisms of WM deficit in progressive states of the disease. Furthermore, computational modeling of the results from the sequential paradigm determined that imprecision in decoding information and swap error (mistakenly reporting the feature of other presented items) was responsible for WM dysfunction in MS. Overall, this study offered a sensitive measure for assessing WM deficit and provided new insight into the organization of the WM system in MS population.
Collapse
Affiliation(s)
- Ali Motahharynia
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Ahmad Pourmohammadi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| | - Armin Adibi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Vahid Shaygannejad
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Fereshteh Ashtari
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Iman Adibi
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
| | - Mehdi Sanayei
- Center for Translational Neuroscience, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical SciencesIsfahanIslamic Republic of Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| |
Collapse
|
11
|
Fallon SJ, Plant O, Tabi YA, Manohar SG, Husain M. Effects of cholinesterase inhibition on attention and working memory in Lewy body dementias. Brain Commun 2023; 5:fcad207. [PMID: 37545547 PMCID: PMC10404008 DOI: 10.1093/braincomms/fcad207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Cholinesterase inhibitors are frequently used to treat cognitive symptoms in Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies). However, the selectivity of their effects remains unclear. In a novel rivastigmine withdrawal design, Parkinson's disease dementia and dementia with Lewy bodies patients were tested twice: once when taking rivastigmine as usual and once when they had missed one dose. In each session, they performed a suite of tasks (sustained attention, simple short-term recall, distractor resistance and manipulating the focus of attention) that allowed us to investigate the cognitive mechanisms through which rivastigmine affects attentional control. Consistent with previous literature, rivastigmine withdrawal significantly impaired attentional efficacy (quicker response latencies without a change in accuracy). However, it had no effects on cognitive control as assessed by the ability to withhold a response (inhibitory control). Worse short-term memory performance was also observed when patients were OFF rivastigmine, but these effects were delay and load independent, likely due to impaired visual attention. In contrast to previous studies that have examined the effects of dopamine withdrawal, cognitively complex tasks requiring control over the contents of working memory (ignoring, updating or shifting the focus of attention) were not significantly impaired by rivastigmine withdrawal. Cumulatively, these data support that the conclusion that cholinesterase inhibition has relatively specific and circumscribed-rather than global-effects on attention that may also affect performance on simple short-term memory tasks, but not when cognitive control over working memory is required. The results also indicate that the withdrawal of a single dose of rivastigmine is sufficient to reveal these impairments, demonstrating that cholinergic withdrawal can be an informative clinical as well as an investigative tool.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Younes A Tabi
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Williams JR, Robinson MM, Brady TF. There Is no Theory-Free Measure of "Swaps" in Visual Working Memory Experiments. COMPUTATIONAL BRAIN & BEHAVIOR 2023; 6:159-171. [PMID: 37332486 PMCID: PMC10270377 DOI: 10.1007/s42113-022-00150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 06/20/2023]
Abstract
Visual working memory is highly limited, and its capacity is tied to many indices of cognitive function. For this reason, there is much interest in understanding its architecture and the sources of its limited capacity. As part of this research effort, researchers often attempt to decompose visual working memory errors into different kinds of errors, with different origins. One of the most common kinds of memory error is referred to as a "swap," where people report a value that closely resembles an item that was not probed (e.g., an incorrect, non-target item). This is typically assumed to reflect confusions, like location binding errors, which result in the wrong item being reported. Capturing swap rates reliably and validly is of great importance because it permits researchers to accurately decompose different sources of memory errors and elucidate the processes that give rise to them. Here, we ask whether different visual working memory models yield robust and consistent estimates of swap rates. This is a major gap in the literature because in both empirical and modeling work, researchers measure swaps without motivating their choice of swap model. Therefore, we use extensive parameter recovery simulations with three mainstream swap models to demonstrate how the choice of measurement model can result in very large differences in estimated swap rates. We find that these choices can have major implications for how swap rates are estimated to change across conditions. In particular, each of the three models we consider can lead to differential quantitative and qualitative interpretations of the data. Our work serves as a cautionary note to researchers as well as a guide for model-based measurement of visual working memory processes.
Collapse
Affiliation(s)
- Jamal R. Williams
- Department of Psychology, University of California San Diego, 9500 Gilman Dr. #0109, La Jolla, CA 92093, USA
| | - Maria M. Robinson
- Department of Psychology, University of California San Diego, 9500 Gilman Dr. #0109, La Jolla, CA 92093, USA
| | - Timothy F. Brady
- Department of Psychology, University of California San Diego, 9500 Gilman Dr. #0109, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Belekou A, Katshu MZUH, Dundon NM, d'Avossa G, Smyrnis N. Spatial and non-spatial feature binding impairments in visual working memory in schizophrenia. Schizophr Res Cogn 2023; 32:100281. [PMID: 36816536 PMCID: PMC9930192 DOI: 10.1016/j.scog.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Working memory (WM) impairments are well recognized in schizophrenia patients (PSZ) and contribute to poor psycho-social outcomes in this population. Distinct neural networks underlay the ability to encode and recall visual and spatial information raising the possibility that profile of visual working memory performance may help pinpoint dysfunctional neural correlates in schizophrenia. This study assessed the resolution and associative aspects of visual working memory deficits in schizophrenia and whether these deficits arise during encoding or maintenance processes. A total of 60 participants (30 PSZ and 30 healthy controls) matched in age, gender and education assessed on a modified object in place (OiPT), a delayed non-match-to-sample (DNMST) and a delayed spatial estimation (DSET) task. Patients demonstrated lower accuracy than controls in binding visual features of the same object and recognizing novel objects as well as lower precision recalling the location of a memorized target. Moreover, response choice set size affected recognition accuracy more in PSZ than controls. However, delay duration affected spatial recall precisions, binding, and recognition accuracy equally in the two groups. Our results suggest that visual working memory (vWM) impairments in schizophrenia predominantly reflect spatial and non-spatial binding deficits, with largely preserved discrete feature information. Moreover, these impairments likely arise more during encoding than during maintenance. These binding deficits may reflect impaired effective neural functional connectivity observed in schizophrenia.
Collapse
Affiliation(s)
- Antigoni Belekou
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Psychiatry Department, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, University of Nottingham, Nottingham NG7 2TU, United Kingdom
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham NG3 6AA, United Kingdom
| | - Neil Michael Dundon
- Dept. of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104 Freiburg, Germany
| | - Giovanni d'Avossa
- School of Human and Behavioural Sciences, Bangor University, Bangor, Gwynedd LL57 2AS, United Kingdom
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
- Corresponding author at: 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, 1 Rimini St., Athens GR-12462, Greece.
| |
Collapse
|
14
|
Fallon SJ, van Rhee C, Kienast A, Manohar SG, Husain M. Mechanisms underlying corruption of working memory in Parkinson's disease. J Neuropsychol 2023. [PMID: 36642965 DOI: 10.1111/jnp.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023]
Abstract
Working memory (WM) impairments are reported to occur in patients with Parkinson's disease (PD). However, the mechanisms are unclear. Here, we investigate several putative factors that might drive poor performance, by examining the precision of recall, the order in which items are recalled and whether memories are corrupted by random guessing (attentional lapses). We used two separate tasks that examined the quality of WM recall under different loads and retention periods, as well as a traditional digit span test. Firstly, on a simple measure of WM recall, where patients were asked to reproduce the orientation of a centrally presented arrow, overall recall was not significantly impaired. However, there was some evidence for increased guessing (attentional lapses). On a new analogue version of the Corsi-span task, where participants had to reproduce on a touchscreen the exact spatial pattern of presented stimuli in the order and locations in which they appeared, there was a reduction in the precision of spatial WM at higher loads. This deficit was due to misremembering item order. At the highest load, there was reduced recall precision, whereas increased guessing was only observed at intermediate set sizes. Finally, PD patients had impaired backward, but not forward, digit spans. Overall, these results reveal the task- and load-dependent nature of WM deficits in PD. On simple low-load tasks, attentional lapses predominate, whereas at higher loads, in the spatial domain, the corruption of mnemonic information-both order item and precision-emerge as the main driver of impairment.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,School of Psychology, University of Plymouth, Plymouth, UK
| | - Chevonne van Rhee
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Murray NWG, Graham PL, Sowman PF, Savage G. Theta tACS impairs episodic memory more than tDCS. Sci Rep 2023; 13:716. [PMID: 36639676 PMCID: PMC9839727 DOI: 10.1038/s41598-022-27190-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Episodic memory deficits are a common consequence of aging and are associated with a number of neurodegenerative disorders (e.g., Alzheimer's disease). Given the importance of episodic memory, a great deal of research has investigated how we can improve memory performance. Transcranial electrical stimulation (TES) represents a promising tool for memory enhancement but the optimal stimulation parameters that reliably boost memory are yet to be determined. In our double-blind, randomised, sham-controlled study, 42 healthy adults (36 females; 23.3 ± 7.7 years of age) received anodal transcranial direct current stimulation (tDCS), theta transcranial alternating current stimulation (tACS) and sham stimulation during a list-learning task, over three separate sessions. Stimulation was applied over the left temporal lobe, as encoding and recall of information is typically associated with mesial temporal lobe structures (e.g., the hippocampus and entorhinal cortex). We measured word recall within each stimulation session, as well as the average number of intrusion and repetition errors. In terms of word recall, participants recalled fewer words during tDCS and tACS, compared to sham stimulation, and significantly fewer words recalled during tACS compared with tDCS. Significantly more memory errors were also made during tACS compared with sham stimulation. Overall, our findings suggest that TES has a deleterious effect on memory processes when applied to the left temporal lobe.
Collapse
Affiliation(s)
- Nicholas W G Murray
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia.
| | - Petra L Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| |
Collapse
|
16
|
Čepukaitytė G, Thom JL, Kallmayer M, Nobre AC, Zokaei N. The Relationship between Short- and Long-Term Memory Is Preserved across the Age Range. Brain Sci 2023; 13:106. [PMID: 36672087 PMCID: PMC9856639 DOI: 10.3390/brainsci13010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Both short- and long-term memories decline with healthy ageing. The aims of the current study were twofold: firstly, to build on previous studies and investigate the presence of a relationship between short- and long-term memories and, secondly, to examine cross-sectionally whether there are changes in this relationship with age. In two experiments, participants across the age range were tested on contextual-spatial memories after short and long memory durations. Experimental control in stimulus materials and task demands enabled the analogous encoding and probing for both memory durations, allowing us to examine the relationship between the two memory systems. Across two experiments, in line with previous studies, we found both short-term memory and long-term memory declined from early to late adulthood. Additionally, there was a significant relationship between short- and long-term memory performance, which, interestingly, persisted throughout the age range. Our findings suggest a significant degree of common vulnerability to healthy ageing for short- and long-term memories sharing the same spatial-contextual associations. Furthermore, our tasks provide a sensitive and promising framework for assessing and comparing memory function at different timescales in disorders with memory deficits at their core.
Collapse
Affiliation(s)
- Giedrė Čepukaitytė
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Jude L. Thom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Melvin Kallmayer
- Department of Psychology, Goethe University, 60323 Frankfurt, Germany
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
17
|
Abstract
In this reflective piece on visual working memory, I depart from the laboriously honed skills of writing a review. Instead of integrating approaches, synthesizing evidence, and building a cohesive perspective, I scratch my head and share niggles and puzzlements. I expose where my scholarship and understanding are stumped by findings and standard views in the literature.
Collapse
|
18
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
19
|
Allen RJ, Atkinson AL, Vargha‐Khadem F, Baddeley AD. Intact high-resolution working memory binding in a patient with developmental amnesia and selective hippocampal damage. Hippocampus 2022; 32:597-609. [PMID: 35736516 PMCID: PMC9542612 DOI: 10.1002/hipo.23452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022]
Abstract
Debate continues regarding the possible role of the hippocampus across short-term and working memory tasks. The current study examined the possibility of a hippocampal contribution to precise, high-resolution cognition and conjunctive memory. We administered visual working memory tasks featuring a continuous response component to a well-established developmental amnesic patient with relatively selective bilateral hippocampal damage (Jon) and healthy controls. The patient was able to produce highly accurate response judgments regarding conjunctions of color and orientation or color and location, using simultaneous or sequential presentation of stimuli, with no evidence of any impairment in working memory binding, categorical accuracy, or continuous precision. These findings indicate that hippocampal damage does not necessarily lead to deficits in high-resolution cognitive performance, even when the damage is severe and bilateral.
Collapse
Affiliation(s)
| | | | - Faraneh Vargha‐Khadem
- Developmental Neurosciences DepartmentUniversity College London Great Ormand Street Institute of Child HealthLondonUK
| | | |
Collapse
|
20
|
Song S, Park J, Park YM, Kim IY, Jang DP. The influence of object-location binding mental load effects on the visual N1 and N2 Event-related Potentials. BMC Res Notes 2022; 15:217. [PMID: 35739605 PMCID: PMC9219235 DOI: 10.1186/s13104-022-06086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to analyze the effect of object-location binding on the visual working memory workload. For this study, thirty healthy subjects were recruited, and they performed the “What was where” task, which was modified to evaluated object-location binding memory. We analyzed their ERP and behavior response. Results Object memory and location memory were preserved during the task, but binding memory decreased significantly when more than four objects were presented. These results indicate that the N1 amplitude is related to the object-only load effect, and the posterior N2 amplitude is a binding-dependent ERP component.
Collapse
Affiliation(s)
- Solwoong Song
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jinsick Park
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Young Min Park
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - In Young Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
21
|
Miller TD, Butler CR. Acute-onset amnesia: transient global amnesia and other causes. Pract Neurol 2022; 22:201-208. [PMID: 35504698 DOI: 10.1136/practneurol-2020-002826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Acute-onset amnesia is a dramatic neurological presentation that can cause considerable concern to both patient and clinician. The patient typically presents with an inability not only to retain new memories but also to access previously acquired memories, suggesting disturbance of hippocampal function. Transient global amnesia (TGA) is the most common cause of acute-onset amnesia, and is characterised by a profound anterograde and retrograde amnesia that typically lasts for up to 24 hours. Although TGA has a strikingly stereotypical presentation, it can be challenging to distinguish from other causes of acute-onset amnesia, including posterior circulation strokes, transient epileptic amnesia, psychogenic amnesia, post-traumatic amnesia, and toxic/drug-related amnesia. Here, we describe the general approach to the patient with acute amnesia; summarise the clinical and neuropsychological differences between the potential causes; and, provide practical recommendations to aid diagnosis and management of acute amnesia. Regardless of cause and the dramatic presentation, non-ischaemic acute-onset amnesia generally has a favourable prognosis.
Collapse
Affiliation(s)
- Thomas D Miller
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK .,National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
22
|
Boran E, Hilfiker P, Stieglitz L, Sarnthein J, Klaver P. Persistent neuronal firing in the medial temporal lobe supports performance and workload of visual working memory in humans. Neuroimage 2022; 254:119123. [PMID: 35321857 DOI: 10.1016/j.neuroimage.2022.119123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
The involvement of the medial temporal lobe (MTL) in working memory is controversially discussed. Recent findings suggest that persistent neural firing in the hippocampus during maintenance in verbal working memory is associated with workload. Here, we recorded single neuron firing in 13 epilepsy patients (7 male) while they performed a visual working memory task. The number of coloured squares in the stimulus set determined the workload of the trial. Performance was almost perfect for low workload (1 and 2 squares) and dropped at high workload (4 and 6 squares), suggesting that high workload exceeded working memory capacity. We identified maintenance neurons in MTL neurons that showed persistent firing during the maintenance period. More maintenance neurons were found in the hippocampus for trials with correct compared to incorrect performance. Maintenance neurons increased and decreased firing in the hippocampus and increased firing in the entorhinal cortex for high compared to low workload. Population firing predicted workload particularly during the maintenance period. Prediction accuracy of workload based on single-trial activity during maintenance was strongest for neurons in the entorhinal cortex and hippocampus. The data suggest that persistent neural firing in the MTL reflects a domain-general process of maintenance supporting performance and workload of multiple items in working memory below and beyond working memory capacity. Persistent neural firing during maintenance in the entorhinal cortex may be associated with its preference to process visual-spatial arrays.
Collapse
Affiliation(s)
- Ece Boran
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland
| | | | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich, 8057 Zurich, Switzerland.
| | - Peter Klaver
- University of Teacher Education in Special Needs, 8050 Zurich, Switzerland; Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland; School of Psychology, University of Surrey, GU2 7XH Guildford, UK.
| |
Collapse
|
23
|
Spatial Binding Impairments in Visual Working Memory following Temporal Lobectomy. eNeuro 2022; 9:ENEURO.0278-21.2022. [PMID: 35168952 PMCID: PMC8906795 DOI: 10.1523/eneuro.0278-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Disorders of the medial temporal lobe (MTL) adversely affect visual working memory (vWM) performance, including feature binding. It is unclear whether these impairments generalize across visual dimensions or are specifically spatial. To address this issue, we compared performance in two tasks of 13 epilepsy patients, who had undergone a temporal lobectomy, and 15 healthy controls. In the vWM task, participants recalled the color of one of two polygons, previously displayed side by side. At recall, a location or shape probe identified the target. In the perceptual task, participants estimated the centroid of three visible disks. Patients recalled the target color less accurately than healthy controls because they frequently swapped the nontarget with the target color. Moreover, healthy controls and right temporal lobectomy patients made more swap errors following shape than space probes. Left temporal lobectomy patients, showed the opposite pattern of errors instead. Patients and controls performed similarly in the perceptual task. We conclude that left MTL damage impairs spatial binding in vWM, and that this impairment does not reflect a perceptual or attentional deficit.
Collapse
|
24
|
Effects of item distinctiveness on the retrieval of objects and object-location bindings from visual working memory. Atten Percept Psychophys 2022; 84:2236-2254. [PMID: 35199322 DOI: 10.3758/s13414-022-02451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Abstract
Visual working memory (VWM) is prone to interference from stored items competing for its limited capacity. Distinctiveness or similarity of the items is acknowledged to affect this competition, such that poor item distinctiveness causes a failure to discriminate between items sharing common features. In three experiments, we studied how the distinctiveness of studied real-world objects (i.e., whether the objects belong to the same or different basic categories) affects the retrieval of objects themselves (simple recognition) and object-location conjunctions (information about which object was where in a display, cued recall). In Experiments 1 and 2, we found that distinctiveness did not affect memories for objects or for locations, but low-distinctive objects were more frequently reported at "swapped" locations that originally contained other objects, showing object-location memory swaps. In Experiments 3 we found that observers swapped the location of a tested object with another object from the same category more frequently than with any of the objects from another category. This suggests that more similar studied objects cause more retrieval competition in object-location judgments than in simple recognition. Additionally, we discuss a possible role of categorical labeling of locations that can support object-location retrieval when the studied objects are highly distinct.
Collapse
|
25
|
Cohen-Dallal H, Rahamim Elyakim N, Soroker N, Pertzov Y. Verbal tagging can impair memory of object location: Evidence from aphasia. Neuropsychologia 2022; 167:108162. [DOI: 10.1016/j.neuropsychologia.2022.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
|
26
|
Abstract
Since the first description of the case of H.M. in the mid-1950s, the debate over the contribution of the mesial temporal lobe (MTL) to human memory functioning has not ceased to stimulate new experimental work and the development of new theoretical models. The early demonstration that despite their devastating memory loss patients with hippocampal damage are still able to learn a number of visuo-motor and visuo-perceptual skills at a normal rate and to be normally primed by verbal and visual material suggested that the term "memory" is actually an umbrella concept that includes very different brain plasticity phenomena and that MTL damage actually impairs only one of these. Subsequent research, which capitalized on a detailed anatomical description of MTL structures and on the close analysis of memory-related phenomena, tried to define the unique role of the MTL structures in brain plasticity and in the government of human behavior. A first hypothesis identified this role in the conscious forms of memory as opposed to implicit ones. In the last two decades, the emphasis has moved to the relational role of the hippocampus in binding together different pieces of unimodal information to provide unitary, multimodal representations of personal experiences.
Collapse
Affiliation(s)
- Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Clinical and Behavioral Neurology Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
27
|
Pollmann S, Schneider WX. Working memory and active sampling of the environment: Medial temporal contributions. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:339-357. [PMID: 35964982 DOI: 10.1016/b978-0-12-823493-8.00029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Working memory (WM) refers to the ability to maintain and actively process information-either derived from perception or long-term memory (LTM)-for intelligent thought and action. This chapter focuses on the contributions of the temporal lobe, particularly medial temporal lobe (MTL) to WM. First, neuropsychological evidence for the involvement of MTL in WM maintenance is reviewed, arguing for a crucial role in the case of retaining complex relational bindings between memorized features. Next, MTL contributions at the level of neural mechanisms are covered-with a focus on WM encoding and maintenance, including interactions with ventral temporal cortex. Among WM use processes, we focus on active sampling of environmental information, a key input source to capacity-limited WM. MTL contributions to the bidirectional relationship between active sampling and memory are highlighted-WM control of active sampling and sampling as a way of selecting input to WM. Memory-based sampling studies relying on scene and object inspection, visual-based exploration behavior (e.g., vicarious behavior), and memory-guided visual search are reviewed. The conclusion is that MTL serves an important function in the selection of information from perception and transfer from LTM to capacity-limited WM.
Collapse
Affiliation(s)
- Stefan Pollmann
- Department of Psychology and Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Werner X Schneider
- Department of Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
28
|
Abstract
Limbic encephalitis (LE) is a clinical syndrome defined by subacutely evolving limbic signs and symptoms with structural and functional evidence of mediotemporal damage in the absence of a better explanation than an autoimmune (or paraneoplastic) cause. There are features common to all forms of LE. In recent years, antibody(ab)-defined subtypes have been established. They are distinct regarding underlying pathophysiologic processes, clinical and magnetic resonance imaging courses, cerebrospinal fluid signatures, treatment responsivity, and likelihood of a chronic course. With immunotherapy, LE with abs against surface antigens has a better outcome than LE with abs to intracellular antigens. Diagnostic and treatment challenges are, on the one hand, to avoid overlooking and undertreatment and, on the other hand, to avoid overdiagnoses and overtreatment. LE can be conceptualized as a model disease for the consequences of new onset mediotemporal damage by different mechanisms in adult life. It may be studied as an example of mediotemporal epileptogenesis.
Collapse
Affiliation(s)
- Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Bielefeld, Germany; Laboratory Krone, Bad Salzuflen, Germany.
| |
Collapse
|
29
|
Tabi YA, Maio MR, Attaallah B, Dickson S, Drew D, Idris MI, Kienast A, Klar V, Nobis L, Plant O, Saleh Y, Sandhu TR, Slavkova E, Toniolo S, Zokaei N, Manohar SG, Husain M. Vividness of visual imagery questionnaire scores and their relationship to visual short-term memory performance. Cortex 2022; 146:186-199. [PMID: 34894605 PMCID: PMC8776564 DOI: 10.1016/j.cortex.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Mechanisms underlying visual imagery, the ability to create vivid mental representations of a scene in the absence of sensory input, remain to be fully understood. Some previous studies have proposed that visual imagery might be related to visual short-term memory (STM), with a common mechanism involving retention of visual information over short periods of time. Other observations have shown a strong relationship between visual imagery and functional activity in the hippocampus and primary visual cortex, both regions also associated with visual STM. Here we examined the relationship of visual imagery to STM and hippocampal and primary visual cortex volumes, first in a large sample of healthy people across a large age range (N = 229 behavioural data; N = 56 MRI data in older participants) and then in patients with Alzheimer's disease and Parkinson's disease (N = 19 in each group compared to 19 age-matched healthy controls). We used a variant of the "What was where?" visual object-location binding task to assess the quality of remembered information over short delays. In healthy people, no evidence of a relationship between the vividness of visual imagery and any visual STM performance parameter was found. However, there was a significant positive correlation between visual imagery and the volumes of the hippocampus and primary visual cortex. Although visual STM performance was significantly impaired in patients with Alzheimer's disease, their vividness of visual imagery scores were comparable to those of age-matched elderly controls and patients with Parkinson's disease. Despite hippocampal volumes also being reduced in Alzheimer's patients, there appeared to be no impact on their self-reported visual imagery. In conclusion, visual imagery was not significantly related to visual STM performance, either in healthy controls or Alzheimer's or Parkinson's disease but it was related to hippocampal and visual cortex volume in healthy people.
Collapse
Affiliation(s)
- Younes Adam Tabi
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Shannon Dickson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Mohamad Imran Idris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Verena Klar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lisa Nobis
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Timothy Ravinder Sandhu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, Oxford, UK
| |
Collapse
|
30
|
Borders AA, Ranganath C, Yonelinas AP. The hippocampus supports high-precision binding in visual working memory. Hippocampus 2021; 32:217-230. [PMID: 34957640 DOI: 10.1002/hipo.23401] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022]
Abstract
It is well established that the hippocampus is critical for long-term episodic memory, but a growing body of research suggests that it also plays a critical role in supporting memory over very brief delays as measured in tests of working memory (WM). However, the circumstances under which the hippocampus is necessary for WM and the specific processes that it supports remain controversial. We propose that the hippocampus supports WM by binding together high-precision properties of an event, and we test this claim by examining the precision of color-location bindings in a visual WM task in which participants report the precise color of studied items using a continuous color wheel. Amnestic patients with hippocampal damage were significantly impaired at retrieving these colors after a 1-s delay, and these impairments reflected a reduction in the precision of those memories rather than increases in total memory failures or binding errors. Moreover, a parallel fMRI study in healthy subjects revealed that neural activity in the head and body of the hippocampus was directly related to the precision of visual WM decisions. Together, these results indicate that the hippocampus is critical in complex high-precision binding that supports memory over brief delays.
Collapse
Affiliation(s)
- Alyssa A Borders
- Department of Psychology, University of California, Davis, Davis, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, Davis, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, Davis, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
31
|
Pavisic IM, Nicholas JM, Pertzov Y, O'Connor A, Liang Y, Collins JD, Lu K, Weston PSJ, Ryan NS, Husain M, Fox NC, Crutch SJ. Visual short-term memory impairments in presymptomatic familial Alzheimer's disease: A longitudinal observational study. Neuropsychologia 2021; 162:108028. [PMID: 34560142 PMCID: PMC8589962 DOI: 10.1016/j.neuropsychologia.2021.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022]
Abstract
Visual short-term memory (VSTM) deficits including VSTM binding have been associated with Alzheimer's disease (AD) from preclinical to dementia stages, cross-sectionally. Yet, longitudinal investigations are lacking. The objective of this study was to evaluate VSTM function longitudinally and in relation to expected symptom onset in a cohort of familial Alzheimer's disease. Ninety-nine individuals (23 presymptomatic; 9 symptomatic and 67 controls) were included in an extension cross-sectional study and a sub-sample of 48 (23 presymptomatic carriers, 6 symptomatic and 19 controls), attending two to five visits with a median interval of 1.3 years, included in the longitudinal study. Participants completed the “What was where?” relational binding task (which measures memory for object identification, localisation and object-location binding under different conditions of memory load and delay), neuropsychology assessments and genetic testing. Compared to controls, presymptomatic carriers within 8.5 years of estimated symptom onset showed a faster rate of decline in localisation performance in long-delay conditions (4s) and in traditional neuropsychology measures of verbal episodic memory. This study represents the first longitudinal VSTM investigation and shows that changes in memory resolution may be sensitive to tracking cognitive decline in preclinical AD at least as early as changes in the more traditional verbal episodic memory tasks. VSTM function was investigated in presymptomatic and symptomatic FAD carriers. PMCs showed faster decline in VSTM function (target localisation) than controls. Target localisation accuracy decreased with proximity to expected symptom onset. “What was where?” may be sensitive to tracking preclinical cognitive decline.
Collapse
Affiliation(s)
- Ivanna M Pavisic
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK.
| | - Jennifer M Nicholas
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - Antoinette O'Connor
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Yuying Liang
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Jessica D Collins
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Philip S J Weston
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at University College London, London, UK.
| |
Collapse
|
32
|
Lu K, Nicholas JM, Pertzov Y, Grogan J, Husain M, Pavisic IM, James SN, Parker TD, Lane CA, Keshavan A, Keuss SE, Buchanan SM, Murray-Smith H, Cash DM, Malone IB, Sudre CH, Coath W, Wong A, Henley SM, Fox NC, Richards M, Schott JM, Crutch SJ. Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory. NATURE AGING 2021; 1:1002-1009. [PMID: 34806027 PMCID: PMC7612005 DOI: 10.1038/s43587-021-00117-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Although APOE-ε4 carriers are at significantly higher risk of developing Alzheimer's disease than non-carriers1, controversial evidence suggests that APOE-ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy)2,3. In a population-based cohort born in one week in 1946 (assessed aged 69-71), we assessed differential effects of APOE-ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object-location binding). In 398 cognitively normal participants, APOE-ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall respectively. ε4-carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4-carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- Department of Experimental Psychology, University of Oxford, UK
| | - Ivanna M. Pavisic
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher A. Lane
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah E. Keuss
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah M. Buchanan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - William Coath
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Susie M.D. Henley
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
33
|
Twick M, Levy DA. Fractionating the episodic buffer. Brain Cogn 2021; 154:105800. [PMID: 34563762 DOI: 10.1016/j.bandc.2021.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The episodic buffer is a putative component of working memory proposed to account for several short-term memory functions, including unexpectedly preserved immediate prose recall by amnesic patients. Over the course of time, this component has increasingly become associated with binding functions. Considering recent findings regarding the performance of both memory-impaired and healthy individuals on the range of tasks purported to require the contribution of the episodic buffer, we suggest that it should be fractionated into two functional systems. One is a schematic store instantiated in brain areas responsible for conceptual and schema representations, which is likely to be hippocampus-independent, and preserved in the face of amnesia. In contrast, short-term maintenance of novel associative binding is likely to require the contribution of the hippocampus and may therefore not be functionally dissociable from long-term memory.
Collapse
Affiliation(s)
- Moran Twick
- Ashkelon Academic College, Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel.
| |
Collapse
|
34
|
Sen A, Akinola M, Tai XY, Symmonds M, Davis Jones G, Mura S, Galloway J, Hallam A, Chan JYC, Koychev I, Butler C, Geddes J, Van Der Putt R, Thompson S, Manohar SG, Frangou E, Love S, McShane R, Husain M. An Investigation of Levetiracetam in Alzheimer's Disease (ILiAD): a double-blind, placebo-controlled, randomised crossover proof of concept study. Trials 2021; 22:508. [PMID: 34332638 PMCID: PMC8325256 DOI: 10.1186/s13063-021-05404-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/27/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although Alzheimer's disease affects around 800,000 people in the UK and costs almost £23 billion per year, currently licenced treatments only offer modest benefit at best. Seizures, which are more common in patients with Alzheimer's disease than age matched controls, may contribute to the loss of nerve cells and abnormal brain discharges can disrupt cognition. This aberrant electrical activity may therefore present potentially important drug targets. The anti-seizure medication levetiracetam can reduce abnormal cortical discharges and reverse memory deficits in a mouse model of Alzheimer's disease. Levetiracetam has also been shown to improve memory difficulties in patients with mild cognitive impairment, a precursor to Alzheimer's disease. Clinical use of levetiracetam is well-established in treatment of epilepsy and extensive safety data are available. Levetiracetam thus has the potential to provide safe and efficacious treatment to help with memory difficulties in Alzheimer's disease. METHODS The proposed project is a proof of concept study to test whether levetiracetam can help cognitive function in people with dementia. We plan to recruit thirty patients with mild to moderate Alzheimer's disease with no history of previous seizures or other significant co-morbidity. Participants will be allocated to a double-blind placebo-controlled crossover trial that tests levetiracetam against placebo. Standardised scales to assess cognition and a computer-based touchscreen test that we have developed to better detect subtle improvements in hippocampal function will be used to measure changes in memory. All participants will have an electroencephalogram (EEG) at baseline. The primary outcome measure is a change in the computer-based touchscreen cognitive task while secondary outcomes include the effect of levetiracetam on mood, quality of life and modelling of the EEG, including time series measures and feature-based analysis to see whether the effect of levetiracetam can be predicted. The effect of levetiracetam and placebo will be compared within a given patient using the paired t-test and the analysis of covariance adjusting for baseline values. DISCUSSION This is the first study to evaluate if an anti-seizure medication can offer meaningful benefit to patients with Alzheimer's disease. If this study demonstrates at least stabilisation of memory function and/or good tolerability, the next step will be to rapidly progress to a larger study to establish whether levetiracetam may be a useful and cost-effective treatment for patients with Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov NCT03489044 . Registered on April 5, 2018.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK.
| | - Mary Akinola
- Local Clinical Trials Network, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Xin You Tai
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mkael Symmonds
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Gabriel Davis Jones
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
| | - Sergio Mura
- Clinical Trials Pharmacy, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | | | - Angela Hallam
- St Mary's Pharmaceutical Unit, Cardiff University, Cardiff, 20 Fieldway, Cardiff, CF14 4HY, UK
| | - Jane Y C Chan
- Freeline Therapeutics, King's Court, London Road, Stevenage, SG1 2NG, UK
- Translational Medicine, UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Chris Butler
- Faculty of Medicine, Department of Brain Sciences, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2BU, UK
| | - John Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Rohan Van Der Putt
- Memory and Cognition Research Delivery Team, Warneford Hospital, Warneford Lane, Headington, Oxford, OX3 7JX, UK
| | - Sian Thompson
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sanjay G Manohar
- Department of Neurology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
| | - Eleni Frangou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Faculty of Pop Health Sciences, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Sharon Love
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Faculty of Pop Health Sciences, University College London, London, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Rupert McShane
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Masud Husain
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Cognitive Neurology Research Group, Nuffield Dept Clinical Neurosciences & Department of Experimental Psychology, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
35
|
Zimmerman KA, Laverse E, Samra R, Yanez Lopez M, Jolly AE, Bourke NJ, Graham NSN, Patel MC, Hardy J, Kemp S, Morris HR, Sharp DJ. White matter abnormalities in active elite adult rugby players. Brain Commun 2021; 3:fcab133. [PMID: 34435188 PMCID: PMC8381344 DOI: 10.1093/braincomms/fcab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Etienne Laverse
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - Ravjeet Samra
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College
London, London SE1 7EH, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Neil S N Graham
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS
Trust, Charing Cross Hospital, London W6 8RF, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila
Weston Laboratories, Queen Square Genomics, UCL Dementia Research
Institute, London WC1N 3BG, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham,
London TW2 7BA, UK
- Faculty of Epidemiology and Public Health, London
School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
- The Royal British Legion Centre for Blast Injury
Studies, Imperial College London SW7 2AZ, UK
| |
Collapse
|
36
|
Gellersen HM, Coughlan G, Hornberger M, Simons JS. Memory precision of object-location binding is unimpaired in APOE ε4-carriers with spatial navigation deficits. Brain Commun 2021; 3:fcab087. [PMID: 33987536 PMCID: PMC8108563 DOI: 10.1093/braincomms/fcab087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Research suggests that tests of memory fidelity, feature binding and spatial navigation are promising for early detection of subtle behavioural changes related to Alzheimer's disease. In the absence of longitudinal data, one way of testing the early detection potential of cognitive tasks is through the comparison of individuals at different genetic risk for Alzheimer's dementia. Most studies have done so using samples aged 70 years or older. Here, we tested whether memory fidelity of long-term object-location binding may be a sensitive marker even among cognitively healthy individuals in their mid-60s by comparing participants at low and higher risk based on presence of the ε4-allele of the apolipoprotein gene (n = 26 ε3ε3, n = 20 ε3ε4 carriers). We used a continuous report paradigm in a visual memory task that required participants to recreate the spatial position of objects in a scene. We employed mixture modelling to estimate the two distinct memory processes that underpin the trial-by-trial variation in localization errors: retrieval success which indexes the proportion of trials where participants recalled any information about an object's position and the precision with which participants retrieved this information. Prior work has shown that these memory paradigms that separate retrieval success from precision are capable of detecting subtle differences in mnemonic fidelity even when retrieval success could not. Nonetheless, Bayesian analyses found good evidence that ε3ε4 carriers did not remember fewer object locations [F(1, 42) = 0.450, P = 0.506, BF01 = 3.02], nor was their precision for the spatial position of objects reduced compared to ε3ε3 carriers [F(1, 42) = 0.12, P = 0.726, BF01 = 3.19]. Because the participants in the sample presented here were a subset of a study on apolipoprotein ε4-carrier status and spatial navigation in the Sea Hero Quest game [Coughlan et al., 2019. PNAS, 116(9)], we obtained these data to contrast genetic effects on the two tasks within the same sample (n = 33). Despite the smaller sample size, wayfinding deficits among ε3ε4 carriers could be replicated [F(1, 33) = 5.60, P = 0.024, BF10 = 3.44]. Object-location memory metrics and spatial navigation scores were not correlated (all r < 0.25, P > 0.1, 0 < BF10 < 3). These findings show spared object-location binding in the presence of a detrimental apolipoprotein ε4 effect on spatial navigation. This suggests that the sensitivity of memory fidelity and binding tasks may not extend to individuals with one ε4-allele in their early to mid-60s. The results provide further support to prior proposals that spatial navigation may be a sensitive marker for the earliest cognitive changes in Alzheimer's disease, even before episodic memory.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 1W1, Canada
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
37
|
Manga A, Madurka P, Vakli P, Kirwan CB, Vidnyánszky Z. Investigation of the relationship between visual feature binding in short- and long-term memory in healthy aging. Learn Mem 2021; 28:109-113. [PMID: 33723030 PMCID: PMC7970738 DOI: 10.1101/lm.052548.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/16/2021] [Indexed: 11/24/2022]
Abstract
Binding visual features into coherent object representations is essential both in short- and long-term memory. However, the relationship between feature binding processes at different memory delays remains unexplored. Here, we addressed this question by using the Mnemonic Similarity Task and a delayed-estimation working memory task on a large sample of older adults. The results revealed that higher propensity to misbind object features in working memory is associated with lower lure discrimination performance in the mnemonic similarity task, suggesting that shared feature binding processes underlie the formation of coherent short- and long-term visual object memory representations.
Collapse
Affiliation(s)
- Annamária Manga
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Petra Madurka
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Pál Vakli
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - C Brock Kirwan
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
38
|
Age-related changes in visual encoding strategy preferences during a spatial memory task. PSYCHOLOGICAL RESEARCH 2021; 86:404-420. [PMID: 33755797 PMCID: PMC8885492 DOI: 10.1007/s00426-021-01495-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/16/2021] [Indexed: 10/26/2022]
Abstract
Ageing is associated with declines in spatial memory, however, the source of these deficits remains unclear. Here we used eye-tracking to investigate age-related differences in spatial encoding strategies and the cognitive processes underlying the age-related deficits in spatial memory tasks. To do so we asked young and older participants to encode the locations of objects in a virtual room shown as a picture on a computer screen. The availability and utility of room-based landmarks were manipulated by removing landmarks, presenting identical landmarks rendering them uninformative, or by presenting unique landmarks that could be used to encode object locations. In the test phase, participants viewed a second picture of the same room taken from the same (0°) or a different perspective (30°) and judged whether the objects occupied the same or different locations in the room. We found that the introduction of a perspective shift and swapping of objects between encoding and testing impaired performance in both age groups. Furthermore, our results revealed that although older adults performed the task as well as younger participants, they relied on different visual encoding strategies to solve the task. Specifically, gaze analysis revealed that older adults showed a greater preference towards a more categorical encoding strategy in which they formed relationships between objects and landmarks.
Collapse
|
39
|
Consequence of stroke for feature recall and binding in visual working memory. Neurobiol Learn Mem 2021; 179:107387. [PMID: 33460791 DOI: 10.1016/j.nlm.2021.107387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Visual memory for objects involves the integration, or binding, of individual features into a coherent representation. We used a novel approach to assess feature binding, using a delayed-reproduction task in combination with computational modeling and lesion analysis. We assessed stroke patients and neurotypical controls on a visual working memory task in which spatial arrays of colored disks were presented. After a brief delay, participants either had to report the color of one disk cued by its location or the location of one disk cued by its color. Our results demonstrate that, in the controls, report imprecision and swap errors (non-target reports) can be explained by a single source of variability. Stroke patients showed an overall decrease in memory precision for both color and location, with only limited evidence for deviations from the predicted relationship between report precision and swap errors. These deviations were primarily deficits in reporting items rather than selecting items based on the cue. Atlas-based lesion-symptom mapping showed that selection and reporting deficits, precision in reporting color, and precision in reporting location were associated with different lesion profiles. Deficits in binding are associated with lesions in the left somatosensory cortex, deficits in the precision of reporting color with bilateral fronto-parietal regions, and no anatomical substrates were identified for precision in reporting location. Our results converge with previous reports that working memory representations are widely distributed in the brain and can be found across sensory, parietal, temporal, and prefrontal cortices. Stroke patients demonstrate mostly subtle impairments in visual working memory, perhaps because representations from different areas in the brain can partly compensate for impaired encoding in lesioned areas. These findings contribute to understanding of the relation between memorizing features and their bound representations.
Collapse
|
40
|
Grogan JP, Fallon SJ, Zokaei N, Husain M, Coulthard EJ, Manohar SG. A new toolbox to distinguish the sources of spatial memory error. J Vis 2020; 20:6. [PMID: 33289797 PMCID: PMC7726590 DOI: 10.1167/jov.20.13.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.
Collapse
Affiliation(s)
- John P Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sean J Fallon
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Elizabeth J Coulthard
- Translational Health Sciences, University of Bristol, Bristol, UK
- North Bristol NHS Trust, Bristol, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Avraham E, Smolikov A, Smolyakov R, Azriel A, Sufaro Y, Kaisman-Elbaz T, Zlatin G, Melamed I. Minimally Invasive Subtemporal Intradural Approach for Penetrating Orbitocranial Injury by Wooden Foreign Body Into the Lateral Wall of the Cavernous Sinus. Front Surg 2020; 7:533567. [PMID: 33195384 PMCID: PMC7536401 DOI: 10.3389/fsurg.2020.533567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Non-missile transorbital penetrating head injuries are relatively rare, though potentially fatal injuries. Trajectory for intracranial entrance is typically via the orbital roof, the superior orbital fissure (SOF), or the optic canal. Non-metallic intracranial penetrating injuries are even scarcer and may pose unusual diagnostic and surgical challenges. Here we present and discuss a unique case of a penetrating injury by a wooden foreign body (FB) which entered and expanded the inter-dural space of the lateral cavernous sinus (CS) sinus wall without intracavernous or intradural involvement. The patient was a 71 year-old male who fell face-down and sustained a penetrating transorbital injury by a dry twig fragment, which passed through the SOF and into the interdural space of lateral wall of the ipsilateral CS. The patient was fully conscious (GCS15) at presentation but had severe ocular injury (complete ophthalmoplegia and blindness of the injured eye). The wooden FB was successfully removed via a minimally invasive subtemporal intradural approach with no apparent immediate or long-term complications. We emphasize the unusual diagnostic and surgical challenges related to this kind of rare injuries as reflected by the decision-making considerations taken in the presented case.
Collapse
Affiliation(s)
- Elad Avraham
- Department of Neurosurgery, Soroka University Medical Center, Beersheba, Israel
| | - Alexander Smolikov
- Department of Radiology, Soroka University Medical Center, Beersheba, Israel
| | - Rozalia Smolyakov
- Infectious Diseases Unit, Soroka University Medical Center, Beersheba, Israel
| | - Amit Azriel
- Department of Neurosurgery, Soroka University Medical Center, Beersheba, Israel
| | - Yuval Sufaro
- Department of Neurosurgery, Soroka University Medical Center, Beersheba, Israel
| | | | - Gregory Zlatin
- Department of Otorhinolaryngology (ENT), Soroka University Medical Center, Beersheba, Israel
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Beersheba, Israel
| |
Collapse
|
42
|
Zokaei N, Sillence A, Kienast A, Drew D, Plant O, Slavkova E, Manohar SG, Husain M. Different patterns of short-term memory deficit in Alzheimer's disease, Parkinson's disease and subjective cognitive impairment. Cortex 2020; 132:41-50. [PMID: 32919108 PMCID: PMC7651994 DOI: 10.1016/j.cortex.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
It has recently been proposed that short-term memory (STM) binding deficits might be an important feature of Alzheimer's disease (AD), providing a potential avenue for earlier detection of this disorder. By contrast, work in Parkinson's disease (PD), using different tasks, has suggested that the STM impairment in this condition is characterised by increased random guessing, possibly due to fluctuating attention. In the present study, to establish whether a misbinding impairment is present in sporadic late-onset AD (LOAD) and increased guessing is a feature of PD, we compared the performance of these patient groups to two control populations: healthy age-matched controls and individuals with subjective cognitive impairment (SCI) with comparable recruitment history as patients. All participants performed a sensitive task of STM that required high resolution retention of object-location bindings. This paradigm also enabled us to explore the underlying sources of error contributing to impaired STM in patients with LOAD and PD using computational modelling of response error. Patients with LOAD performed significantly worse than other groups on this task. Importantly their impaired memory was associated with increased misbinding errors. This was in contrast to patients with PD who made significantly more guessing responses. These findings therefore provide additional support for the presence of two doubly dissociable signatures of STM deficit in AD and PD, with binding impairment in AD and increased random guessing characterising the STM deficit in PD. The task used to measure memory precision here provides an easy-to-administer assessment of STM that is sensitive to the different types of deficit in AD and PD and hence has the potential to inform clinical practice.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - Annie Sillence
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Sanjay G Manohar
- Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
43
|
Cohen-Dallal H, Soroker N, Pertzov Y. Working Memory in Unilateral Spatial Neglect: Evidence for Impaired Binding of Object Identity and Object Location. J Cogn Neurosci 2020; 33:46-62. [PMID: 32985947 DOI: 10.1162/jocn_a_01631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Working memory (WM) is known to be impaired in patients with stroke experiencing unilateral spatial neglect (USN). Here, we examined in a systematic manner three WM components: memory of object identity, memory of object location, and binding between object identity and location. Moreover, we used two different retention intervals to isolate maintenance from other mnemonic and perceptual processes. Fourteen USN first-event stroke patients with right-hemisphere damage were tested in two different WM experiments using long and short retention intervals and an analog response scale. Patients exhibited more identification errors for items displayed on the contralesional side. Localization errors were also more prominent in the contralesional side, especially after a long retention interval. These localization errors were often a result of swap errors, that is, erroneous localizations of correctly identified contralesional objects in correctly memorized locations of ipsilesional objects. We conclude that a key WM deficit in USN is a lateralized impairment in binding between the identity of an object and its spatial tag.
Collapse
Affiliation(s)
| | - Nachum Soroker
- Loewenstein Hospital, Raanana, Israel.,Tel-Aviv University
| | | |
Collapse
|
44
|
Superior short-term memory in APOE ε2 carriers across the age range. Behav Brain Res 2020; 397:112918. [PMID: 32961217 PMCID: PMC7732594 DOI: 10.1016/j.bbr.2020.112918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/20/2022]
Abstract
The Apolipoprotein-E (APOE) ε2 allele is known to be protective against Alzheimer’s disease. We tested the effect of this allele on cognitive performance, as measured by a sensitive short-term memory task. A large cohort of genotyped participants performed this task remotely. ε2 carriers demonstrated superior memory performance in young, middle-aged, and older participants.
The Apolipoprotein-E (APOE) gene is now known to be associated with individual differences in cognitive health in ageing. However, while the APOE ε4 allele confers significantly increased risk of developing Alzheimer’s disease (AD), the APOE ε2 allele is hypothesized to be protective against the development of AD. This is in line with neuroimaging and pathological findings associated with ε2 APOE allele, which go in the opposite direction to those observed in AD-related pathology. However, the precise impact of this allele on cognition remains inconclusive, with some small-cohort studies raising the possibility of an advantageous memory performance in these individuals. Here, we tested short-term memory (STM) performance in a large cohort of individuals, 300 of which were ε2/ε3 carriers. Their performance was compared to 554 ε3/ε3 carriers. We included participants from a wide age range spanning young, middle-aged and elderly adults. All of them performed a STM task that has previously been shown to be sensitive to subtle changes in memory in various patient and at-risk cohorts. Individuals carrying the APOE-ε2 allele exhibited a significant memory advantage, regardless of STM task difficulty and across all ages. The observed memory advantage was present across the age range, suggestive of a phenotypical effect of this allele on cognition, possibly independent of any effects of this genetic allele that occur later life in these individuals.
Collapse
|
45
|
Schurgin MW, Wixted JT, Brady TF. Psychophysical scaling reveals a unified theory of visual memory strength. Nat Hum Behav 2020; 4:1156-1172. [DOI: 10.1038/s41562-020-00938-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022]
|
46
|
Gamoran A, Greenwald-Levin M, Siton S, Halunga D, Sadeh T. It's about time: Delay-dependent forgetting of item- and contextual-information. Cognition 2020; 205:104437. [PMID: 32861981 DOI: 10.1016/j.cognition.2020.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022]
Abstract
Once fiercely rejected, the notion of delay-dependent forgetting from long-term memory has recently resurfaced. By this notion, the duration of the study-test delay predicts the magnitude of memory degradation. Our Representation Theory of Forgetting adopts the notion of delay-dependent forgetting, alongside interference due to similarity of representations as an additional cause of forgetting-rather than its sole cause, as has been largely argued in the past. This theory maintains that the causes of forgetting depend on the underlying memory representations. Because hippocampus-based memory representations are relatively distinct from one another, by the virtue of being associated with distinct contexts, they are not as likely as non-hippocampus representations to be forgotten due to interference from similar memories. Instead, as neurobiological evidence suggests, these representations may be forgotten over the passage of time. Thus, contextual-information should be particularly sensitive to delay-dependent forgetting in comparison to item-information. In the current study we tested this hypothesis by comparing the effects of short study-test delay (~2 min) to long delay (~15 min) on forgetting. In three experiments using three different memory paradigms, we obtained various measures of item- and contextual-information. Results converged to support our predictions: whereas most measures of contextual-information showed forgetting over time, item-information was less affected by delay and, at times, was not affected at all. Finally, different patterns of time-dependent forgetting of contextual-information were observed in recall and recognition, in line with the different roles of context in these tests. Our results provide novel evidence for the specific effects of delay on hippocampus-based, contextual memory representations.
Collapse
Affiliation(s)
- Avi Gamoran
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Stav Siton
- The Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Halunga
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Talya Sadeh
- The Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
47
|
Uwisengeyimana JDD, Nguchu BA, Wang Y, Zhang D, Liu Y, Qiu B, Wang X. Cognitive function and cerebellar morphometric changes relate to abnormal intra-cerebellar and cerebro-cerebellum functional connectivity in old adults. Exp Gerontol 2020; 140:111060. [PMID: 32814097 DOI: 10.1016/j.exger.2020.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Numerous structural studies have already reported volumetric reduction in cerebellum with aging. However, there are still limited studies particularly focusing on analysis of the cerebellar resting state FC in old adults. Even so, the least related studies were unable to include some important cerebellar lobules due to limited cerebellum segmentation methods. OBJECTIVE The purpose of this study is to explore cognitive function in relation to cerebellar lobular morphometry and cortico-cerebellar connectivity changes in old adults' lifespan by incorporating previously undetected cerebellar lobules. METHODS This study includes a sample of 264 old adults subdivided into five cognitively normal age groups (G1 through G5). Cerebellum Segmentation (CERES) software was used to obtain morphometric measures and brain masks of all the 24 cerebellar lobules. We then defined individual lobules as seed regions and mapped the whole-brain to get functional connectivity maps. To analyze age group differences in cortico-cerebellar connectivity and cerebellar lobular volume, we used one way ANOVA and post hoc analysis was performed for multiple comparisons using Bonferroni method. RESULTS Our results report cerebellar lobular volumetric reduction, disrupted intra-cerebellar connectivity and significant differences in cortico-cerebellar resting state FC across age groups. In addition, our results show that disrupted FC between left Crus-II and right ACC relates to well emotion regulation and cognitive decline and is associated with poor performance on TMT-B and logical memory tests in older adults. CONCLUSION Overall, our findings confirm that as humans get older and older, the cerebellar lobular volumes as well as the cortico-cerebellar functional connectivity are affected and hence reduces cognition.
Collapse
Affiliation(s)
- Jean de Dieu Uwisengeyimana
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Electrical and Electronics Engineering, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Benedictor Alexander Nguchu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanming Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Du Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanpeng Liu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
48
|
Zokaei N, Grogan J, Fallon SJ, Slavkova E, Hadida J, Manohar S, Nobre AC, Husain M. Short-term memory advantage for brief durations in human APOE ε4 carriers. Sci Rep 2020; 10:9503. [PMID: 32528115 PMCID: PMC7289888 DOI: 10.1038/s41598-020-66114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
The Apolipoprotein-E (APOE) ε4 gene allele, the highest known genetic risk factor for Alzheimer's disease, has paradoxically been well preserved in the human population. One possible explanation offered by evolutionary biology for survival of deleterious genes is antagonistic pleiotropy. This theory proposes that such genetic variants might confer an advantage, even earlier in life when humans are also reproductively fit. The results of some small-cohort studies have raised the possibility of such a pleiotropic effect for the ε4 allele in short-term memory (STM) but the findings have been inconsistent. Here, we tested STM performance in a large cohort of individuals (N = 1277); nine hundred and fifty-nine of which included carrier and non-carriers of the APOE ε4 gene, those at highest risk of developing Alzheimer's disease. We first confirm that this task is sensitive to subtle deterioration in memory performance across ageing. Importantly, individuals carrying the APOE ε4 gene actually exhibited a significant memory advantage across all ages, specifically for brief retention periods but crucially not for longer durations. Together, these findings present the strongest evidence to date for a gene having an antagonistic pleiotropy effect on human cognitive function across a wide age range, and hence provide an explanation for the survival of the APOE ε4 allele in the gene pool.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Sean James Fallon
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS foundation Trust and University of Bristol, Oxford, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Jonathan Hadida
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
49
|
Pavisic IM, Suarez-Gonzalez A, Pertzov Y. Translating Visual Short-Term Memory Binding Tasks to Clinical Practice: From Theory to Practice. Front Neurol 2020; 11:458. [PMID: 32587567 PMCID: PMC7297911 DOI: 10.3389/fneur.2020.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ivanna M Pavisic
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom.,UK Dementia Research Institute at University College London, UCL, London, United Kingdom
| | - Aida Suarez-Gonzalez
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
50
|
Berens SC, Richards BA, Horner AJ. Dissociating memory accessibility and precision in forgetting. Nat Hum Behav 2020; 4:866-877. [PMID: 32514041 DOI: 10.1038/s41562-020-0888-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Forgetting involves the loss of information over time; however, we know little about what form this information loss takes. Do memories become less precise over time, or do they instead become less accessible? Here we assessed memory for word-location associations across four days, testing whether forgetting involves losses in precision versus accessibility and whether such losses are modulated by learning a generalizable pattern. We show that forgetting involves losses in memory accessibility with no changes in memory precision. When participants learned a set of related word-location associations that conformed to a general pattern, we saw a strong trade-off; accessibility was enhanced, whereas precision was reduced. However, this trade-off did not appear to be modulated by time or confer a long-term increase in the total amount of information maintained in memory. Our results place theoretical constraints on how models of forgetting and generalization account for time-dependent memory processes. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 4 June 2019. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.c.4368464.v1 .
Collapse
Affiliation(s)
- Sam C Berens
- Department of Psychology, University of York, York, UK. .,School of Psychology, University of Sussex, Brighton, UK.
| | - Blake A Richards
- Mila, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Montreal, Quebec, Canada.,Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Aidan J Horner
- Department of Psychology, University of York, York, UK. .,York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|