1
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
2
|
Sakurai M, Kuwahara T. Canonical and noncanonical autophagy: involvement in Parkinson's disease. Front Cell Dev Biol 2025; 13:1518991. [PMID: 39949604 PMCID: PMC11821624 DOI: 10.3389/fcell.2025.1518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Vidyadhara DJ, Bäckström D, Chakraborty R, Ruan J, Park JM, Mistry PK, Chandra SS. Synaptic vesicle endocytosis deficits underlie GBA-linked cognitive dysfunction in Parkinson's disease and Dementia with Lewy bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619548. [PMID: 39484386 PMCID: PMC11527026 DOI: 10.1101/2024.10.23.619548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology. Conversely, SNCA tg mice displayed age-related motor deficits, without cognitive abnormalities. Gba-SNCA mice exhibited both cognitive decline and exacerbated motor deficits, accompanied by greater cortical phospho-α-synuclein pathology, especially in layer 5 neurons. Single-nucleus RNA sequencing of the cortex uncovered synaptic vesicle (SV) endocytosis defects in excitatory neurons of Gba mutant and Gba-SNCA mice, via robust downregulation of genes regulating SV cycle and synapse assembly. Immunohistochemistry and electron microscopy validated these findings. Our results indicate that Gba mutations, while exacerbating pre-existing α-synuclein aggregation and PD-like motor deficits, contribute to cognitive deficits through α-synuclein-independent mechanisms, involving dysfunction in SV endocytosis.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Discipline of Neuroscience and Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago IL, USA
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - David Bäckström
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Risha Chakraborty
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
| | - Jiapeng Ruan
- Department of Internal Medicine, Yale University, CT, USA
| | - Jae-Min Park
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Van Andel Institute, MI, USA
| | | | - Sreeganga. S. Chandra
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| |
Collapse
|
4
|
Vidyadhara DJ, Bäckström D, Chakraborty R, Ruan J, Park JM, Mistry PK, Chandra SS. Synaptic vesicle endocytosis deficits underlie GBA-linked cognitive dysfunction in Parkinson's disease and Dementia with Lewy bodies. RESEARCH SQUARE 2024:rs.3.rs-5649173. [PMID: 39764119 PMCID: PMC11703330 DOI: 10.21203/rs.3.rs-5649173/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology. Conversely, SNCA tg mice displayed age-related motor deficits, without cognitive abnormalities. Gba-SNCA mice exhibited both cognitive decline and exacerbated motor deficits, accompanied by greater cortical phospho-α-synuclein pathology, especially in layer 5 neurons. Single-nucleus RNA sequencing of the cortex uncovered synaptic vesicle (SV) endocytosis defects in excitatory neurons of Gba mutant and Gba-SNCA mice, via robust downregulation of genes regulating SV cycle and synapse assembly. Immunohistochemistry and electron microscopy validated these findings. Our results indicate that Gba mutations, while exacerbating pre-existing α-synuclein aggregation and PD-like motor deficits, contribute to cognitive deficits through α-synuclein-independent mechanisms, involving dysfunction in SV endocytosis.
Collapse
Affiliation(s)
- D J Vidyadhara
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Discipline of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - David Bäckström
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Risha Chakraborty
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
| | - Jiapeng Ruan
- Department of Internal Medicine, Yale University, CT, USA
| | - Jae-Min Park
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Van Andel Institute, MI, USA
| | | | - Sreeganga. S. Chandra
- Departments of Neurology, Yale University, CT, USA
- Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| |
Collapse
|
5
|
Orimo K, Mitsui J, Matsukawa T, Tanaka M, Nomoto J, Ishiura H, Omae Y, Kawai Y, Tokunaga K, Toda T, Tsuji S. Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome. J Hum Genet 2024; 69:613-621. [PMID: 39020124 PMCID: PMC11599039 DOI: 10.1038/s10038-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/19/2024]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P-p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 - 7.76, p = 0.0400).
Collapse
Affiliation(s)
- Kenta Orimo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Tanaka
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan
| | - Junko Nomoto
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan.
| |
Collapse
|
6
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Somerville EN, James A, Beetz C, Schwieger R, Barrel G, Kandaswamy KK, Iurascu MI, Bauer P, Ta M, Iwaki H, Senkevich K, Yu E, Alcalay RN, Gan-Or Z. Plasma glucosylceramide levels are regulated by ATP10D and are not involved in Parkinson's disease pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313644. [PMID: 39371176 PMCID: PMC11451666 DOI: 10.1101/2024.09.13.24313644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
GBA1 variants and decreased glucocerebrosidase (GCase) activity are implicated in Parkinson's disease (PD). We investigated the hypothesis that increased levels of glucosylceramide (GlcCer), one of GCase main substrates, are involved in PD pathogenesis. Using multiple genetic methods, we show that ATP10D, not GBA1, is the main regulator of plasma GlcCer levels, yet it is not involved in PD pathogenesis. Plasma GlcCer levels were associated with PD, but not in a causative manner, and are not predictive of disease status. These results argue against targeting GlcCer in GBA1-PD and underscore the need to explore alternative mechanisms and biomarkers for PD.
Collapse
Affiliation(s)
- Emma N. Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | | | | | | | | | - Krishna K. Kandaswamy
- CENTOGENE GmbH, Rostock, Germany
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marius I. Iurascu
- CENTOGENE GmbH, Rostock, Germany
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael Ta
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Konstantin Senkevich
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
10
|
Westenberger A, Skrahina V, Usnich T, Beetz C, Vollstedt EJ, Laabs BH, Paul JJ, Curado F, Skobalj S, Gaber H, Olmedillas M, Bogdanovic X, Ameziane N, Schell N, Aasly JO, Afshari M, Agarwal P, Aldred J, Alonso-Frech F, Anderson R, Araújo R, Arkadir D, Avenali M, Balal M, Benizri S, Bette S, Bhatia P, Bonello M, Braga-Neto P, Brauneis S, Cardoso FEC, Cavallieri F, Classen J, Cohen L, Coletta D, Crosiers D, Cullufi P, Dashtipour K, Demirkiran M, de Carvalho Aguiar P, De Rosa A, Djaldetti R, Dogu O, dos Santos Ghilardi MG, Eggers C, Elibol B, Ellenbogen A, Ertan S, Fabiani G, Falkenburger BH, Farrow S, Fay-Karmon T, Ferencz GJ, Fonoff ET, Fragoso YD, Genç G, Gorospe A, Grandas F, Gruber D, Gudesblatt M, Gurevich T, Hagenah J, Hanagasi HA, Hassin-Baer S, Hauser RA, Hernández-Vara J, Herting B, Hinson VK, Hogg E, Hu MT, Hummelgen E, Hussey K, Infante J, Isaacson SH, Jauma S, Koleva-Alazeh N, Kuhlenbäumer G, Kühn A, Litvan I, López-Manzanares L, Luxmore M, Manandhar S, Marcaud V, Markopoulou K, Marras C, McKenzie M, Matarazzo M, Merello M, Mollenhauer B, Morgan JC, Mullin S, Musacchio T, Myers B, Negrotti A, Nieves A, Nitsan Z, Oskooilar N, Öztop-Çakmak Ö, Pal G, Pavese N, Percesepe A, Piccoli T, Pinto de Souza C, Prell T, Pulera M, Raw J, Reetz K, Reiner J, Rosenberg D, Ruiz-Lopez M, Ruiz Martinez J, Sammler E, Santos-Lobato BL, Saunders-Pullman R, Schlesinger I, Schofield CM, Schumacher-Schuh AF, Scott B, Sesar Á, Shafer SJ, Sheridan R, Silverdale M, Sophia R, Spitz M, Stathis P, Stocchi F, Tagliati M, Tai YF, Terwecoren A, Thonke S, Tönges L, Toschi G, Tumas V, Urban PP, Vacca L, Vandenberghe W, Valente EM, Valzania F, Vela-Desojo L, Weill C, Weise D, Wojcieszek J, Wolz M, Yahalom G, Yalcin-Cakmakli G, Zittel S, Zlotnik Y, Kandaswamy KK, Balck A, Hanssen H, Borsche M, Lange LM, Csoti I, Lohmann K, Kasten M, Brüggemann N, Rolfs A, Klein C, Bauer P. Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study. Brain 2024; 147:2652-2667. [PMID: 39087914 PMCID: PMC11292909 DOI: 10.1093/brain/awae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 08/02/2024] Open
Abstract
Estimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.
Collapse
Affiliation(s)
- Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Volha Skrahina
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Christian Beetz
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Eva-Juliane Vollstedt
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Jefri J Paul
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Filipa Curado
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Snezana Skobalj
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Hanaa Gaber
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Clinical Project Management, IQVIA, 60549 Frankfurt am Main, Hessen, Germany
| | | | | | - Najim Ameziane
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
| | - Nathalie Schell
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Jan Olav Aasly
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Trøndelag, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Pinky Agarwal
- Evergreen Health Neuroscience Institute, Kirkland, WA 98034, USA
| | - Jason Aldred
- Inland Northwest Research, Spokane, WA 99202, USA
| | - Fernando Alonso-Frech
- Department of Neurology, Movement Disorders Unit, Hospital Clínico San Carlos, 28040 Madrid, Madrid, Spain
| | | | - Rui Araújo
- Department of Neurology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Porto District, Portugal
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, 4200-319 Porto, Porto District, Portugal
| | - David Arkadir
- Department of Neurology, Faculty of Medicine, Hadassah Medical Organization, Hebrew University, 91120 Jerusalem, Jerusalem District, Israel
| | - Micol Avenali
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Lombardy, Italy
| | - Mehmet Balal
- Department of Neurology, School of Medicine, Çukurova University, 01330 Adana, Adana, Turkey
| | - Sandra Benizri
- Movement Disorders Unit, Assuta Ramat Ha Hayal Hospital, 69710 Tel Aviv, Tel Aviv District, Israel
| | - Sagari Bette
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL 33486, USA
| | | | - Michael Bonello
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, Merseyside L9 7LJ, UK
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, 60430-140 Fortaleza, Brazil
- Center of Health Science, Universidade Estadual do Ceará, 60714-903 Fortaleza, Ceará, Brazil
| | | | - Francisco Eduardo Costa Cardoso
- Movement Disorders Unit, Neurology Service, Department of Internal Medicine, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Saxony, Germany
| | | | - Della Coletta
- Department of Neurology, Universidade do Estado do Amazonas, 69050-010 Manaus AM, Amazonas, Brazil
| | - David Crosiers
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Flemish, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Flemish, Belgium
| | - Paskal Cullufi
- Pediatric Department, University Hospital ‘Mother Teresa’, 1001 Tirana, Tirana County, Albania
| | - Khashayar Dashtipour
- Department of Neurology, Division of Movement Disorders, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Meltem Demirkiran
- Department of Neurology, School of Medicine, Çukurova University, 01330 Adana, Adana, Turkey
| | - Patricia de Carvalho Aguiar
- Department of Neurology and Neurosurgery, Hospital Israelita Albert Einstein, 05651-901 Sao Paulo, Sao Paulo, Brazil
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Campania Region, Italy
| | - Ruth Djaldetti
- Department of Neurology, Movement Disorders Clinic, Rabin Medical Center-Beilinson Hospital, 49100 Petach Tikva, Central District, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
| | - Okan Dogu
- Department of Neurology, Mersin University, 33343 Mersin, Mersin Province, Turkey
| | - Maria Gabriela dos Santos Ghilardi
- Laboratory of Neuroscience, Hospital Sírio-Libanês, 01308-050 São Paulo, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, 01246-903 São Paulo, São Paulo, Brazil
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, 35037 Marburg, Hesse, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, 46242 Bottrop, North Rhine-Westphalia, Germany
| | - Bulent Elibol
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Ankara, Turkey
| | - Aaron Ellenbogen
- Michigan Institute for Neurological Disorders, Farmington Hills, MI 48334, USA
- Quest Research Institute, Farmington Hills, MI 48334, USA
| | - Sibel Ertan
- Department of Neurology, Koç University, 34450 Istanbul, Istanbul, Turkey
| | - Giorgio Fabiani
- Movement Disorders Unit, Hospital Angelina Caron, 83430-000 Curitiba, Paraná, Brazil
| | - Björn H Falkenburger
- Department of Neurology, University Hospital and Faculty of Medicine Carl Gustav Carus, 01307 Dresden, Saxony, Germany
| | - Simon Farrow
- Clinical Research Center of Nevada, Las Vegas, NV 89119, USA
| | - Tsviya Fay-Karmon
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, 52621 Ramat-Gan, Tel Aviv District, Israel
| | - Gerald J Ferencz
- Shore Neurology, RWJBarnabas Health Medical Group, Toms River, NJ 08755, USA
| | - Erich Talamoni Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, 01308-050 São Paulo, São Paulo, Brazil
- Department of Neurology, University of São Paulo Medical School, 01246-903 São Paulo, São Paulo, Brazil
| | - Yara Dadalti Fragoso
- Department of Neurology, Universidade Metropolitana de Santos, 11070-100 Santos SP, São Paulo, Brazil
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, University of Health Sciences, 34371 Istanbul, Istanbul, Turkey
| | - Arantza Gorospe
- Department of Neurology, de Navarra University Hospital, 31008 Pamplona, Navarre, Spain
| | - Francisco Grandas
- Movement Disorders Unit, University General Hospital Gregorio Marañón, 28007 Madrid, Madrid, Spain
| | - Doreen Gruber
- Movement Disorders Clinic, 14547 Beelitz-Heilstätten, Brandenburg, Germany
| | - Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, Islip, NY 11751, USA
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6423906 Tel Aviv, Tel Aviv District, Israel
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, 25746 Heide, Schleswig-Holstein, Germany
| | - Hasmet A Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Istanbul, Turkey
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
- Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, 52621 Ramat-Gan, Tel Aviv District, Israel
| | - Robert A Hauser
- University of South Florida Parkinson’s Disease and Movement Disorders Center of Excellence, Tampa, FL 33612, USA
| | - Jorge Hernández-Vara
- Neurology Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Catalonia, Spain
| | - Birgit Herting
- Neurological Clinic, Diakonie-Klinikum Schwäbisch Hall, 74523 Schwäbisch Hall, Baden-Württemberg, Germany
| | - Vanessa K Hinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elliot Hogg
- Department of Neurosurgery, Cedars-Sinai Medical Center, Movement Disorder Program, Los Angeles, CA 90048, USA
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
| | - Eduardo Hummelgen
- Neurology Service, Hospital Angelina Caron, 83430-000 Curitiba, Paraná, Brazil
| | - Kelly Hussey
- University of South Florida Parkinson’s Disease and Movement Disorders Center of Excellence, Tampa, FL 33612, USA
| | - Jon Infante
- Service of Neurology, University Hospital ‘Marqués de Valdecilla (IDIVAL)’, University of Cantabria, and ‘Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)’, 39008 Santander, Cantabria, Spain
| | - Stuart H Isaacson
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL 33486, USA
| | - Serge Jauma
- Neurology Service, Hospital Universitari de Bellvitge, 08907 Barcelona, Catalonia, Spain
| | | | - Gregor Kuhlenbäumer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Schleswig-Holstein, Germany
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, 10117 Berlin, Berlin, Germany
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, University of California San Diego Health, La Jolla, San Diego, CA 92037, USA
| | - Lydia López-Manzanares
- Department of Neurology, Movement Disorders Unit, La Princesa University Hospital, 28006 Madrid, Madrid, Spain
| | - McKenzie Luxmore
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Veronique Marcaud
- Department of Neurology, Saint Joseph Hospital, 75014 Paris, Île-de-France, France
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Fundación Hospitales de Madrid, Hospital Universitario HM Puerta del Sur, HM Hospitales, 28938 Madrid, Madrid, Spain
| | - Marcelo Merello
- Movement Disorders Service FLENI, CONICET, C1428 Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, 34128 Kassel, Hesse, Germany
- Department of Neurology, University Medical Centre Göttingen, 37075 Göttingen, Lower Saxony, Germany
| | - John C Morgan
- Movement & Memory Disorder Programs, Department of Neurology, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Stephen Mullin
- Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, Devon PL6 8BU, UK
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Bavaria, Germany
| | | | - Anna Negrotti
- Department of General and Specialized Medicine, Neurology Unit, University Hospital of Parma, 43126 Parma, Emilia-Romagna, Italy
| | | | - Zeev Nitsan
- Department of Neurology, Barzilai Medical Center, 78278 Ashkelon, Southern District, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer-Sheva, Southern District, Israel
| | - Nader Oskooilar
- Pharmacology Research Institute, Newport Beach, CA 92660, USA
| | - Özgür Öztop-Çakmak
- Department of Neurology, Koç University, 34450 Istanbul, Istanbul, Turkey
| | - Gian Pal
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, Tyne and Wear NE4 5PL, UK
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Emilia-Romagna, Italy
| | - Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Sicily, Italy
| | - Carolina Pinto de Souza
- Department of Neurology, São Francisco Hospital, University of São Paulo, 01236-030 São Paulo, São Paulo, Brazil
| | - Tino Prell
- Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Department of Geriatrics, Halle University Hospital, 06120 Halle, Saxony-Anhalt, Germany
| | - Mark Pulera
- Pharmacology Research Institute, Encino, CA 91316, USA
| | - Jason Raw
- Clinical Research Unit, Pennine Acute Hospitals NHS Trust, Oldham, Greater Manchester OL1 2JH, UK
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, 52074 Aachen, North Rhine-Westphalia, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, 52428 Jülich, North Rhine-Westphalia, Germany
| | - Johnathan Reiner
- Department of Neurology, Movement Disorders Clinic, Rabin Medical Center-Beilinson Hospital, 49100 Petach Tikva, Central District, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Tel Aviv District, Israel
| | - David Rosenberg
- Pharmacology Research Institute, Los Alamitos, CA 90720, USA
| | - Marta Ruiz-Lopez
- Department of Neurology, University Hospital Cruces, Biocruces Research Institute, 48903 Barakaldo, Basque Country, Spain
| | - Javier Ruiz Martinez
- Department of Neurology, Hospital Universitario Donostia, 20014 San Sebastian, Basque Country, Spain
| | - Esther Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | | - Ilana Schlesinger
- Rambam Health Care Campus, Technion Faculty of Medicine, 31096 Haifa, Haifa District, Israel
| | - Christine M Schofield
- Research and Development Unit, Royal Cornwall Hospitals Trust, Truro, Cornwall TR1 3LJ, UK
| | - Artur F Schumacher-Schuh
- Neurological Services, Clinical Hospital of Porto Alegre, 90035-903 Porto Alegre, Rio Grande do Sul, Brazil
| | - Burton Scott
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ángel Sesar
- Department of Neurology, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
| | - Stuart J Shafer
- Vero Beach Neurology and Research Institute, Vero Beach, FL 32960, USA
| | - Ray Sheridan
- Geriatric Medicine, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, Devon EX2 5DW, UK
| | - Monty Silverdale
- Division of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, Greater Manchester M6 8HD, UK
| | - Rani Sophia
- Department of Geriatric Medicine, Yeovil Hospital, Yeovil, Somerset BA21 4AT, UK
| | - Mariana Spitz
- Neurology, Pedro Ernesto University Hospital, 20551-030 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pantelis Stathis
- Department of Neurology, Mediterraneo Hospital, 166 75 Glyfada-Athens, Attica, Greece
| | - Fabrizio Stocchi
- University and Institute for Research and Medical Care, IRCCS San Raffaele, 00166 Rome, Lazio, Italy
| | - Michele Tagliati
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
| | - Yen F Tai
- Division of Medicine and Integrated Care, Charing Cross Hospital, Imperial College Healthcare Trust, London W6 8RF, UK
| | | | - Sven Thonke
- Department of Neurology, Klinikum Hanau, 63450 Hanau, Hesse, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital and Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, North Rhine-Westphalia, Germany
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, North Rhine-Westphalia, Germany
| | - Giulia Toschi
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School of University of São Paulo, 14049-900 São Paulo, São Paulo, Brazil
| | - Peter Paul Urban
- Department of Neurology, Asklepios Klinik Barmbek, 22307 Hamburg, Hamburg, Germany
| | - Laura Vacca
- University and Institute for Research and Medical Care, IRCCS San Raffaele, 00166 Rome, Lazio, Italy
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Flanders, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Flanders, Belgium
| | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Lombardy, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Emilia-Romagna, Italy
| | - Lydia Vela-Desojo
- Neurology Unit, Hospital Fundación Alcorcón, 28922 Madrid, Madrid, Spain
| | - Caroline Weill
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, 07646 Stadtroda, Thuringia, Germany
- Department of Neurology, University of Leipzig, 04103 Leipzig, Saxony, Germany
| | | | - Martin Wolz
- Department of Neurology, Elblandklinikum Meißen, 01662 Meißen, Saxony, Germany
| | - Gilad Yahalom
- Department of Neurology and the Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Jerusalem District, Israel
| | - Gul Yalcin-Cakmakli
- Department of Neurology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Ankara, Turkey
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Hamburg, Germany
| | - Yair Zlotnik
- Neurology Department, Soroka University Medical Center, 84101 Beer Sheva, Southern District, Israel
| | | | - Alexander Balck
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Ilona Csoti
- Neurology Service, Hospital Universitari de Bellvitge, 08907 Barcelona, Catalonia, Spain
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Arndt Rolfs
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Neurology, University of Rostock, 18057 Rostock, Mecklenburg-Vorpommern, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, University Medical Center Schleswig-Holstein, 23538 Lübeck, Schleswig-Holstein, Germany
| | - Peter Bauer
- CENTOGENE GmbH, 18055 Rostock, Mecklenburg-Vorpommern, Germany
- Department of Internal Medicine, University of Rostock, 18057 Rostock, Mecklenburg-Vorpommern, Germany
| |
Collapse
|
11
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
12
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
13
|
Marano M, Zizzo C, Malaguti MC, Bacchin R, Cavallieri F, De Micco R, Spagnolo F, Bentivoglio AR, Schirinzi T, Bovenzi R, Ramat S, Erro R, Sorrentino C, Sucapane P, Pilotto A, Lupini A, Magliozzi A, Di Vico I, Carecchio M, Bonato G, Cilia R, Colucci F, Tamma F, Caputo E, Mostile G, Arabia G, Modugno N, Zibetti M, Ceravolo MG, Tambasco N, Cossu G, Valzania F, Manganotti P, Di Lazzaro V, Zappia M, Fabbrini G, Tinazzi M, Tessitore A, Duro G, Di Fonzo A. Increased glucosylsphingosine levels and Gaucher disease in GBA1-associated Parkinson's disease. Parkinsonism Relat Disord 2024; 124:107023. [PMID: 38843618 DOI: 10.1016/j.parkreldis.2024.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Gaucher's disease (GD) is caused by biallelic mutations in the GBA1 gene, leading to reduced glucocerebrosidase (GCase) activity and substrate (glucosylceramide and glucosylsphingosine, GlcSph) accumulation. GBA1 variant carriers are at risk of Parkinson's disease (PD), but only those with biallelic mutations cross the threshold of GCase reduction, leading to substrate accumulation and GD. The link between GBA1 mutations, GD and PD is not fully understood. Here we aimed at reporting the results of a large PD population screening with dried blood spot tests for GD. METHODS We measured GCase activity and GlcSph levels in 1344 PD patients with dried blood spot tests, and performed GBA1 genetic sequencing. RESULTS While the GCase activity was reduced in GBA1-PD carriers compared to wild type PD, GlcSph was increased in GBA1-PD compared to GBA1-controls, regardless of the underlying type of GBA1 variant. 13.6 % and 0.4 % of PD patients had mono- or biallelic GBA1 mutations respectively. GCase deficiency, lipid accumulation and clinical manifestations of GD was detected in five PD patients with biallelic GBA1 mutations, of whom four had a risk combined with a GD causing variant. CONCLUSIONS GlcSph appearing higher in PD may represent a reliable biomarker of the disease and deserves to be further investigated. This study highlights the importance of screening PD patients for possible underlying GD, which is a treatable condition that should not be missed. We diagnosed GD cases carrying a "risk" variant in one allele, which is an unprecedented finding deserving further investigation.
Collapse
Affiliation(s)
- Massimo Marano
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Maria Chiara Malaguti
- Department of Neurology, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Ruggero Bacchin
- Department of Neurology, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Anna Rita Bentivoglio
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS - UOC Neurologia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Roberta Bovenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Silvia Ramat
- Parkinson Unit, Neuromuscular-Skeletal and Sensory Organs Department, AOU Careggi, Florence, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Neuroscience Section, University of Salerno, Salerno, Italy
| | - Cristiano Sorrentino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Neuroscience Section, University of Salerno, Salerno, Italy
| | | | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Alessandro Magliozzi
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Ilaria Di Vico
- Movement Disorders Division, Department of Neurosciences, Neurology Unit, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Miryam Carecchio
- Parkinson's disease and movement disorders Unit, ERN-RND Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Giulia Bonato
- Parkinson's disease and movement disorders Unit, ERN-RND Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Fabiana Colucci
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy; Dept. of Neuroscience and Rehabilitation, University of Ferrara, Italy; S. Anna University Hospital, Ferrara, Italy
| | - Filippo Tamma
- Department of Neurology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Elena Caputo
- Department of Neurology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Giovanni Mostile
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Gennarina Arabia
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | | | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; Neurology 2 Unit, A.O.U., Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | | | - Nicola Tambasco
- Movement Disorders Center, Perugia General Hospital and University of Perugia, Perugia, Italy
| | - Giovanni Cossu
- S. C. Neurology and Stroke Unit, AOBrotzu, Cagliari, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Manganotti
- Clinical Neurology Unit, Department of Medical, Surgical and Health Services, University of Trieste, Trieste, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Giovanni Fabbrini
- Oasi Research Institute-IRCCS, Troina, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Michele Tinazzi
- Movement Disorders Division, Department of Neurosciences, Neurology Unit, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Alessio Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
14
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
15
|
Somerville EN, Krohn L, Senkevich K, Yu E, Ahmad J, Asayesh F, Ruskey JA, Speigelman D, Fahn S, Waters C, Sardi SP, Alcalay RN, Gan-Or Z. Genome-wide association study of glucocerebrosidase activity modifiers. RESEARCH SQUARE 2024:rs.3.rs-4425669. [PMID: 38883744 PMCID: PMC11177962 DOI: 10.21203/rs.3.rs-4425669/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Lynne Krohn
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | | | - Eric Yu
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jamil Ahmad
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Farnaz Asayesh
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jennifer A Ruskey
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Dan Speigelman
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| |
Collapse
|
16
|
Avenali M, Cerri S, Palmieri I, Ongari G, Stiuso R, Buongarzone G, Tassorelli C, Biagini T, Valente M, Cereda C, Mazza T, Gana S, Pacchetti C, Valente EM. Functional Study of SNCA p.V15A Variant: Further Linking α-Synuclein and Glucocerebrosidase. Mov Disord 2024; 39:1060-1065. [PMID: 38436488 DOI: 10.1002/mds.29736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND SNCA p.V15A was reported in five families. In vitro models showed increased aggregation and seeding activity, mitochondrial damage, and apoptosis. Mutant flies had reduced flying ability and survival. OBJECTIVES To clinically and functionally evaluate SNCA p.V15A in a large Italian family with Parkinson's disease (PD). METHODS Genetic diagnosis was reached through next-generation sequencing. Pathogenicity was assessed by molecular dynamics simulation and biochemical studies on peripheral blood mononuclear cells (PBMCs). RESULTS Five siblings carried SNCA p.V15A; three developed bradykinetic-rigid PD in their 50s with rapid motor progression and variable cognitive impairment. A fourth sibling had isolated mood disturbance, whereas the fifth was still unaffected at age 47. The mutant protein showed decreased stability and an unstable folded structure. Proband's PBMCs showed elevated total and phosphorylated α-synuclein (α-syn) levels and significantly reduced glucocerebrosidase activity. CONCLUSION This study demonstrates accumulation of α-synV15A in PBMCs and strengthens the link between α-syn pathophysiology and glucocerebrosidase dysfunction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Micol Avenali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Section, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Gerardo Ongari
- Cellular and Molecular Neurobiology Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Rita Stiuso
- Cellular and Molecular Neurobiology Section, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marialuisa Valente
- Clinical Pathology Unit, Medical Genetics Section, SS. Annunziata Hospital, ASL Taranto, Taranto, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Simone Gana
- Neurogenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Lu C, Cai X, Zhi S, Wen X, Shen J, Ercoli T, Simula ER, Masala C, Sechi LA, Solla P. Exploring the Association between Cathepsin B and Parkinson's Disease. Brain Sci 2024; 14:482. [PMID: 38790460 PMCID: PMC11119263 DOI: 10.3390/brainsci14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the association between Cathepsin B and Parkinson's Disease (PD), with a particular focus on determining the role of N-acetylaspartate as a potential mediator. METHODS We used summary-level data from Genome-Wide Association Studies (GWAS) for a two-sample Mendelian randomization (MR) analysis, exploring the association between Cathepsin B (3301 cases) and PD (4681 cases). A sequential two-step MR approach was applied (8148 cases) to study the role of N-acetylaspartate. RESULTS The MR analysis yielded that genetically predicted elevated Cathepsin B levels correlated with a reduced risk of developing PD (p = 0.0133, OR: 0.9171, 95% CI: 0.8563-0.9821). On the other hand, the analysis provided insufficient evidence to determine that PD affected Cathepsin B levels (p = 0.8567, OR: 1.0035, 95% CI: 0.9666-1.0418). The estimated effect of N-acetylaspartate in this process was 7.52% (95% CI = -3.65% to 18.69%). CONCLUSIONS This study suggested that elevated Cathepsin B levels decreased the risk of developing PD, with the mediation effect of N-acetylaspartate. Further research is needed to better understand this relationship.
Collapse
Affiliation(s)
- Changhao Lu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Xinyi Cai
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China;
| | - Shilin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Tommaso Ercoli
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP 8 Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| |
Collapse
|
18
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Almelegy A, Gunda S, Buyske S, Rosenbaum M, Sani S, Afshari M, Metman LV, Goetz CG, Hall D, Mouradian MM, Pal G. NIH Toolbox performance of persons with Parkinson's disease according to GBA1 and STN-DBS status. Ann Clin Transl Neurol 2024; 11:899-904. [PMID: 38337113 PMCID: PMC11021616 DOI: 10.1002/acn3.52005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE Mutations in the glucocerebrosidase (GBA1) gene and subthalamic nucleus deep brain stimulation (STN-DBS) are independently associated with cognitive dysfunction in persons with Parkinson's disease (PwP). We hypothesized that PwP with both GBA1 mutations and STN-DBS are at greater risk of cognitive dysfunction than PwP with only GBA1 mutations or STN-DBS, or neither. In this study, we determined the pattern of cognitive dysfunction in PwP based on GBA1 mutation status and STN-DBS treatment. METHODS PwP who are GBA1 mutation carriers with or without DBS (GBA1+DBS+, GBA1+DBS-), and noncarriers with or without DBS (GBA1-DBS+, GBA1-DBS-) were included. Using the NIH Toolbox, cross-sectional differences in response inhibition, processing speed, and episodic memory were compared using analysis of variance with adjustment for relevant covariates. RESULTS Data were available for 9 GBA1+DBS+, 14 GBA1+DBS-, 17 GBA1-DBS+, and 26 GBA1-DBS- PwP. In this cross-sectional study, after adjusting for covariates, we found that performance on the Flanker test (measure of response inhibition) was lower in GBA1+DBS+ PwP compared with GBA1-DBS+ PwP (P = 0.030). INTERPRETATION PwP who carry GBA1 mutations and have STN-DBS have greater impaired response inhibition compared with PwP with STN-DBS but without GBA1 mutations. Longitudinal data, including preoperative scores, are required to definitively determine whether GBA1 mutation carriers respond differently to STN-DBS, particularly in the domain of response inhibition.
Collapse
Affiliation(s)
- Ahmad Almelegy
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Srujanesh Gunda
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Steven Buyske
- Department of StatisticsRutgers UniversityPiscatawayNew JerseyUSA
| | - Marc Rosenbaum
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sepehr Sani
- Department of NeurosurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Mitra Afshari
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Leo V. Metman
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher G. Goetz
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Deborah Hall
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - M. Maral Mouradian
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health SciencesPiscatawayNew JerseyUSA
| | - Gian Pal
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| |
Collapse
|
21
|
Reynoso A, Torricelli R, Jacobs BM, Shi J, Aslibekyan S, Norcliffe-Kaufmann L, Noyce AJ, Heilbron K. Gene-Environment Interactions for Parkinson's Disease. Ann Neurol 2024; 95:677-687. [PMID: 38113326 DOI: 10.1002/ana.26852] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.
Collapse
Affiliation(s)
| | - Roberta Torricelli
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin Meir Jacobs
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Alastair J Noyce
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
22
|
Yarkova ES, Grigor’eva EV, Medvedev SP, Tarasevich DA, Pavlova SV, Valetdinova KR, Minina JM, Zakian SM, Malakhova AA. Detection of ER Stress in iPSC-Derived Neurons Carrying the p.N370S Mutation in the GBA1 Gene. Biomedicines 2024; 12:744. [PMID: 38672099 PMCID: PMC11047942 DOI: 10.3390/biomedicines12040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathogenesis of many human diseases, such as cancer, type 2 diabetes, kidney disease, atherosclerosis and neurodegenerative diseases, in particular Parkinson's disease (PD). Since there is currently no treatment for PD, a better understanding of the molecular mechanisms underlying its pathogenesis, including the mechanisms of the switch from adaptation in the form of unfolded protein response (UPR) to apoptosis under ER stress conditions, may help in the search for treatment methods. Genetically encoded biosensors based on fluorescent proteins are suitable tools that facilitate the study of living cells and visualization of molecular events in real time. The combination of technologies to generate patient-specific iPSC lines and genetically encoded biosensors allows the creation of cell models with new properties. Using CRISPR-Cas9-mediated homologous recombination at the AAVS1 locus of iPSC with the genetic variant p.N370S (rs76763715) in the GBA1 gene, we created a cell model designed to study the activation conditions of the IRE1-XBP1 cascade of the UPR system. The cell lines obtained have a doxycycline-dependent expression of the genetically encoded biosensor XBP1-TagRFP, possess all the properties of human pluripotent cells, and can be used to test physical conditions and chemical compounds that affect the development of ER stress, the functioning of the UPR system, and in particular, the IRE1-XBP1 cascade.
Collapse
Affiliation(s)
- Elena S. Yarkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Denis A. Tarasevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Kamila R. Valetdinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (S.P.M.); (S.V.P.); (K.R.V.); (J.M.M.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
23
|
Kojima R, Paslawski W, Lyu G, Arenas E, Zhang X, Svenningsson P. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson's Disease Patients with GBA1 Mutations. Int J Mol Sci 2024; 25:683. [PMID: 38203854 PMCID: PMC10779269 DOI: 10.3390/ijms25010683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.
Collapse
Affiliation(s)
- Rika Kojima
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| |
Collapse
|
24
|
Davighi MG, Matassini C, Clemente F, Paoli P, Morrone A, Cacciarini M, Goti A, Cardona F. pH-Responsive Trihydroxylated Piperidines Rescue The Glucocerebrosidase Activity in Human Fibroblasts Bearing The Neuronopathic Gaucher-Related L444P/L444P Mutations in GBA1 Gene. Chembiochem 2024; 25:e202300730. [PMID: 37877519 DOI: 10.1002/cbic.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Current address: BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, 10029, New York, USA
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Meyer Children's Hospital, IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| |
Collapse
|
25
|
Pal G, Corcos DM, Metman LV, Israel Z, Bergman H, Arkadir D. Cognitive Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease with GBA1 Pathogenic Variants. Mov Disord 2023; 38:2155-2162. [PMID: 37916476 PMCID: PMC10990226 DOI: 10.1002/mds.29647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Leo Verhagen Metman
- Parkinson’s Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zvi Israel
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel–Canada (IMRIC), The Hebrew University–Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Faculty of Medicine, The Hebrew University and Hadassah, Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Atilano ML, Hull A, Romila CA, Adams ML, Wildfire J, Ureña E, Dyson M, Ivan-Castillo-Quan J, Partridge L, Kinghorn KJ. Autophagic dysfunction and gut microbiota dysbiosis cause chronic immune activation in a Drosophila model of Gaucher disease. PLoS Genet 2023; 19:e1011063. [PMID: 38127816 PMCID: PMC10734978 DOI: 10.1371/journal.pgen.1011063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Mutations in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD) and are the greatest known genetic risk factors for Parkinson's disease (PD). Communication between the gut and brain and immune dysregulation are increasingly being implicated in neurodegenerative disorders such as PD. Here, we show that flies lacking the Gba1b gene, the main fly orthologue of GBA1, display widespread NF-kB signalling activation, including gut inflammation, and brain glial activation. We also demonstrate intestinal autophagic defects, gut dysfunction, and microbiome dysbiosis. Remarkably, modulating the microbiome of Gba1b knockout flies, by raising them under germ-free conditions, partially ameliorates lifespan, locomotor and immune phenotypes. Moreover, we show that modulation of the immune deficiency (IMD) pathway is detrimental to the survival of Gba1 deficient flies. We also reveal that direct stimulation of autophagy by rapamycin treatment achieves similar benefits to germ-free conditions independent of gut bacterial load. Consistent with this, we show that pharmacologically blocking autophagosomal-lysosomal fusion, mimicking the autophagy defects of Gba1 depleted cells, is sufficient to stimulate intestinal immune activation. Overall, our data elucidate a mechanism whereby an altered microbiome, coupled with defects in autophagy, drive chronic activation of NF-kB signaling in a Gba1 loss-of-function model. It also highlights that elimination of the microbiota or stimulation of autophagy to remove immune mediators, rather than prolonged immunosuppression, may represent effective therapeutic avenues for GBA1-associated disorders.
Collapse
Affiliation(s)
- Magda L. Atilano
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alexander Hull
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Catalina-Andreea Romila
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mirjam L. Adams
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jacob Wildfire
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enric Ureña
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Miranda Dyson
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jorge Ivan-Castillo-Quan
- Section on Islet Cell & Regenerative Biology, Joslin Diabetes Center and Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Linda Partridge
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kerri J. Kinghorn
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
27
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
28
|
Colucci F, Avenali M, De Micco R, Fusar Poli M, Cerri S, Stanziano M, Bacila A, Cuconato G, Franco V, Franciotta D, Ghezzi C, Gastaldi M, Elia AE, Romito L, Devigili G, Leta V, Garavaglia B, Golfrè Andreasi N, Cazzaniga F, Reale C, Galandra C, Germani G, Mitrotti P, Ongari G, Palmieri I, Picascia M, Pichiecchio A, Verri M, Esposito F, Cirillo M, Di Nardo F, Aloisio S, Siciliano M, Prioni S, Amami P, Piacentini S, Bruzzone MG, Grisoli M, Moda F, Eleopra R, Tessitore A, Valente EM, Cilia R. Ambroxol as a disease-modifying treatment to reduce the risk of cognitive impairment in GBA-associated Parkinson's disease: a multicentre, randomised, double-blind, placebo-controlled, phase II trial. The AMBITIOUS study protocol. BMJ Neurol Open 2023; 5:e000535. [PMID: 38027469 PMCID: PMC10679992 DOI: 10.1136/bmjno-2023-000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme β-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers NCT05287503, EudraCT 2021-004565-13.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Rosita De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fusar Poli
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | | | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Franco
- IRCCS Mondino Foundation, Pavia, Italy
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | - Antonio Emanuele Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Grazia Devigili
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valentina Leta
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Parkinson's Centre of Excellence, King's College London, London, UK
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nico Golfrè Andreasi
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Federico Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Chiara Reale
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | | | | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mattia Verri
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Aloisio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Sara Prioni
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Amami
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sylvie Piacentini
- Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milano, Italy
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
29
|
Alizadeh P, Terroba-Chambi C, Achen B, Bruno V. Pain in monogenic Parkinson's disease: a comprehensive review. Front Neurol 2023; 14:1248828. [PMID: 38020640 PMCID: PMC10643218 DOI: 10.3389/fneur.2023.1248828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pain, a challenging symptom experienced by individuals diagnosed with Parkinson's disease (PD), still lacks a comprehensive understanding of its underlying pathophysiological mechanisms. A systematic investigation of its prevalence and impact on the quality of life in patients affected by monogenic forms of PD has yet to be undertaken. This comprehensive review aims to provide an overview of the association between pain and monogenic forms of PD, specifically focusing on pathogenic variants in SNCA, PRKN, PINK1, PARK7, LRRK2, GBA1, VPS35, ATP13A2, DNAJC6, FBXO7, and SYNJ1. Sixty-three articles discussing pain associated with monogenic PD were identified and analyzed. The included studies exhibited significant heterogeneity in design, sample size, and pain outcome measures. Nonetheless, the findings of this review suggest that patients with monogenic PD may experience specific types of pain depending on the pathogenic variant present, distinguishing them from non-carriers. For instance, individuals with SNCA pathogenic variants have reported painful dystonia, lower extremity pain, dorsal pain, and upper back pain. However, these observations are primarily based on case reports with unclear prevalence. Painful lower limb dystonia and lower back pain are prominent symptoms in PRKN carriers. A continual correlation has been noted between LRRK2 mutations and the emergence of pain, though the conflicting research outcomes pose challenges in reaching definitive conclusions. Individuals with PINK1 mutation carriers also frequently report experiencing pain. Pain has been frequently reported as an initial symptom and the most troublesome one in GBA1-PD patients compared to those with idiopathic PD. The evidence regarding pain in ATP13A2, PARK7, VPS35, DNAJC6, FBXO7, and SYNJ1pathogenic variants is limited and insufficient. The potential linkage between genetic profiles and pain outcomes holds promising clinical implications, allowing for the potential stratification of patients in clinical trials and the development of personalized treatments for pain in monogenic PD. In conclusion, this review underscores the need for further research to unravel the intricate relationship between pain and monogenic forms of PD. Standardized methodologies, larger sample sizes, and longitudinal studies are essential to elucidate the underlying mechanisms and develop targeted therapeutic interventions for pain management in individuals with monogenic PD.
Collapse
Affiliation(s)
- Parisa Alizadeh
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | | | - Beatrice Achen
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Veronica Bruno
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
30
|
Usenko TS, Senkevich KA, Basharova KS, Bezrukova AI, Baydakova GV, Tyurin AA, Beletskaya MV, Kulabukhova DG, Grunina MN, Emelyanov AK, Miliukhina IV, Timofeeva AA, Zakharova EY, Pchelina SN. LRRK2 exonic variants are associated with lysosomal hydrolase activities and lysosphingolipid alterations in Parkinson's disease. Gene 2023; 882:147639. [PMID: 37473971 DOI: 10.1016/j.gene.2023.147639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Last data demonstrated that exonic variants of LRRK2 (p.G2019S, p.M1646T) may affect the catalytic activity of lysosomal enzyme glucocerebrosidase (GCase) probably through the phosphorylation of Rab10 protein. We aimed to evaluate an association of LRRK2 exonic variants previously associated with alteration of phosphorylation levels for Rab10Thr73 with PD risk in Russian population and analyze an impact of p.G2019S mutation and selected LRRK2 variants on lysosomal hydrolase activities. LRRK2 variants were determined by full sequencing of LRRK2 in 508 PD patients and 470 controls from Russian population. Activity of lysosomal enzymes (glucocerebrosidase (GCase), alpha-galactosidase A (GLA), acid sphingomyelinase (ASMase) and concentrations of their corresponded substrates (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), lysosphingomyelin (LysoSM), respectively) were estimated in 211 PD patients and 179 controls by liquid chromatography with tandem mass spectrometry (LC-MS-MS) in dry blood spots. p.M1646T and p.N2081D were associated with PD (OR = 2.33, CI 95%: 1.1215 to 4.8253, p = 0.023; OR = 1.89, 95%CI: 1.0727 to 3.3313, p = 0.028, respectively) in Russian population. An increased LysoGb3 concentration was found in p.G2019S and p.N2081D LRRK2 carriers among PD patients compared to both PD patients and controls (p.G2019S: p = 0.00086, p = 0.0004, respectively; p.N2081D: p = 0.012, p = 0.0076, respectively). A decreased ASMase activity in p.G2019S LRRK2 carriers among PD patients (p = 0.014) was demonstrated as well. Our study supported possible involvement of LRRK2 dysfunction in an alteration of sphingolipid metabolism in PD.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia.
| | - K A Senkevich
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - K S Basharova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - G V Baydakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Research Center for Medical Genetics, Moscow, Russia
| | - A A Tyurin
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M V Beletskaya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - D G Kulabukhova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M N Grunina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - I V Miliukhina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; Institute of the Human Brain of RAS, Saint-Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moscow, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| |
Collapse
|
31
|
Wilke MVMB, Poswar F, Borelli WV, Michelin Tirelli K, Randon DN, Lopes FF, Pasetto FB, Sebastião FM, Iop GD, Faqueti L, da Silva LA, Kubaski F, Schuh AFS, Giugliani R, Schwartz IVD. Follow-up of pre-motor symptoms of Parkinson's disease in adult patients with Gaucher disease type 1 and analysis of their lysosomal enzyme profiles in the CSF. Orphanet J Rare Dis 2023; 18:309. [PMID: 37784132 PMCID: PMC10546662 DOI: 10.1186/s13023-023-02875-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Its classic motor symptoms may be preceded by non-motor symptoms (NMS). Population studies have identified GBA variants as risk factors for idiopathic PD. The increased risk of PD has also been suggested in other Lysosomal Storage Disorders (LSDs). OBJECTIVE To assess the evolution of the prevalence of NMS compatible with PD in a cohort of South Brazilian adult patients with Gaucher Disease (GD) type 1, already evaluated 3 years ago (2018). Cerebrospinal Fluid (CSF) was collected to assess the levels of LSD enzymes (beta-hexosaminidases, beta-glucuronidase) and biomarker of macrophage activation (chitotriosidase, ChT), compared to controls (metachromatic leukodystrophy, MLD). Cognition was evaluated by the Montreal Cognitive Assessment (MoCA) questionnaire, daytime sleepiness by the Epworth Sleepiness Scale (ESS), depression by Beck´s Inventory, constipation by the Unified Multiple System Atrophy Rating Scale (UMSARS) scale, and REM sleep behavior disorder by the single-question screen. Hyposmia was assessed with Sniffin' Sticks (SST). RESULTS Nineteen patients completed the follow-up (mean age of the sample was 44 years; range, 26-71). The patient with the highest number of NMS at the baseline (4 including the lowest SST score) was diagnosed with PD four years later. Apart from an improvement in the ESS score, no other statistical significance was found between the number of NMS between the first and second evaluation, nor between patients with one L444P variant (n = 5) and the rest of the cohort. CSF was collected in five patients (mean age of the sample was 40 years, range 30-53. A significant difference was found in the mean CSF activity levels of beta-hexosaminidases and beta-glucuronidase between GD1 and MLD patients. Mean ChT (CSF) was 62 nmol/h/mL in GD patients and 142 in MLD (n = 6) patients. CONCLUSIONS The patient with the highest number of NMS in our 2018 cohort was the one that developed PD, corroborating with the importance of this longitudinal follow-up. CSF and plasma analysis might allow a better understanding of the neurodegenerative processes connecting PD and the lysosomal environment. Further analysis is needed to understand this relationship.
Collapse
Affiliation(s)
- Matheus Vernet Machado Bressan Wilke
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos St., 2350, 3Rd Floor, Porto Alegre, RS, 90035-007, Brazil
- Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos St., 2350, 3Rd Floor, Porto Alegre, RS, 90035-007, Brazil
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Wyllians Vendramini Borelli
- Neurology Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
- Pharmacology and Therapeutics research program, UFRGS, Porto Alegre, Brazil
| | - Kristiane Michelin Tirelli
- LEIM- Genetics Laboratory - Serviço de Genética Médica, Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
| | | | - Franciele Fátima Lopes
- LEIM- Genetics Laboratory - Serviço de Genética Médica, Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
| | - Fernanda Bender Pasetto
- LEIM- Genetics Laboratory - Serviço de Genética Médica, Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
| | - Fernanda Medeiros Sebastião
- LEIM- Genetics Laboratory - Serviço de Genética Médica, Medical Genetics Service, HCPA, Porto Alegre, RS, Brazil
| | | | | | | | - Francyne Kubaski
- Biochemical Genetics Laboratory, Greenwood Genetics Center, Greenwood, SC, USA
| | - Artur Francisco Schumacher Schuh
- Neurology Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
- Department of Pharmacology, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- BRAIN Laboratory, HCPA, Porto Alegre, RS, Brazil
- Biodiscovery Laboratory, HCPA, Porto Alegre, RS, Brazil
- Department of Genetics, UFRGS, Porto Alegre, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos St., 2350, 3Rd Floor, Porto Alegre, RS, 90035-007, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil.
- BRAIN Laboratory, HCPA, Porto Alegre, RS, Brazil.
- Department of Genetics, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Giladi N, Alcalay RN, Cutter G, Gasser T, Gurevich T, Höglinger GU, Marek K, Pacchetti C, Schapira AHV, Scherzer CR, Simuni T, Minini P, Sardi SP, Peterschmitt MJ. Safety and efficacy of venglustat in GBA1-associated Parkinson's disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2023; 22:661-671. [PMID: 37479372 DOI: 10.1016/s1474-4422(23)00205-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid. We aimed to assess the safety, efficacy, and target engagement of venglustat in people with early-stage Parkinson's disease carrying pathogenic GBA1 variants. METHODS MOVES-PD part 2 was a randomised, double-blinded, placebo-controlled phase 2 study done at 52 centres (academic sites, specialty clinics, and general neurology centres) in 16 countries. Eligible adults aged 18-80 years with Parkinson's disease (Hoehn and Yahr stage ≤2) and one or more GBA1 variants were randomly assigned using an interactive voice-response system (1:1) to 52 weeks of treatment with oral venglustat (15 mg/day) or matching placebo. Investigators, site personnel, participants, and their caregivers were masked to treatment allocation. The primary outcome measure was the change from baseline to 52 weeks in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III combined score (a higher score indicates greater impairment), and it was analysed in a modified intention-to-treat population (ie, all randomly assigned participants with a baseline and at least one post-baseline measurement during the treatment period). This study was registered with ClinicalTrials.gov (NCT02906020) and is closed to recruitment. FINDINGS Between Dec 15, 2016, and May 27, 2021, 221 participants were randomly assigned to venglustat (n=110) or placebo (n=111). The least squares mean change in MDS-UPDRS parts II and III combined score was 7·29 (SE 1·36) for venglustat (n=96) and 4·71 (SE 1·27) for placebo (n=105); the absolute difference between groups was 2·58 (95% CI -1·10 to 6·27; p=0·17). The most common treatment-emergent adverse events (TEAEs) were constipation and nausea (both were reported by 23 [21%] of 110 participants in the venglustat group and eight [7%] of 111 participants in the placebo group). Serious TEAEs were reported for 12 (11%) participants in each group. There was one death in the venglustat group owing to an unrelated cardiopulmonary arrest and there were no deaths in the placebo group. INTERPRETATION In people with GBA1-associated Parkinson's disease in our study, venglustat had a satisfactory safety profile but showed no beneficial treatment effect compared with placebo. These findings indicate that glucosylceramide synthase inhibition with venglustat might not be a viable therapeutic approach for GBA1-associated Parkinson's disease. FUNDING Sanofi.
Collapse
Affiliation(s)
- Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY, USA
| | - Gary Cutter
- University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA
| | - Thomas Gasser
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Günter U Höglinger
- Department of Neurology, Ludwig Maximilian University, Munich, Germany; German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clemens R Scherzer
- Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Simuni
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
34
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
35
|
Gabbert C, Schaake S, Lüth T, Much C, Klein C, Aasly JO, Farrer MJ, Trinh J. GBA1 in Parkinson's disease: variant detection and pathogenicity scoring matters. BMC Genomics 2023; 24:322. [PMID: 37312046 DOI: 10.1186/s12864-023-09417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND GBA1 variants are the strongest genetic risk factor for Parkinson's disease (PD). However, the pathogenicity of GBA1 variants concerning PD is still not fully understood. Additionally, the frequency of GBA1 variants varies widely across populations. OBJECTIVES To evaluate Oxford Nanopore sequencing as a strategy, to determine the frequency of GBA1 variants in Norwegian PD patients and controls, and to review the current literature on newly identified variants that add to pathogenicity determination. METHODS We included 462 Norwegian PD patients and 367 healthy controls. We sequenced the full-length GBA1 gene on the Oxford Nanopore GridION as an 8.9 kb amplicon. Six analysis pipelines were compared using two aligners (NGMLR, Minimap2) and three variant callers (BCFtools, Clair3, Pepper-Margin-Deepvariant). Confirmation of GBA1 variants was performed by Sanger sequencing and the pathogenicity of variants was evaluated. RESULTS We found 95.8% (115/120) true-positive GBA1 variant calls, while 4.2% (5/120) variant calls were false-positive, with the NGMLR/Minimap2-BCFtools pipeline performing best. In total, 13 rare GBA1 variants were detected: two were predicted to be (likely) pathogenic and eleven were of uncertain significance. The odds of carrying one of the two common GBA1 variants, p.L483P or p.N409S, in PD patients were estimated to be 4.11 times the odds of carrying one of these variants in controls (OR = 4.11 [1.39, 12.12]). CONCLUSIONS In conclusion, we have demonstrated that Oxford long-read Nanopore sequencing, along with the NGMLR/Minimap2-BCFtools pipeline is an effective tool to investigate GBA1 variants. Further studies on the pathogenicity of GBA1 variants are needed to assess their effect on PD.
Collapse
Affiliation(s)
- Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany.
| |
Collapse
|
36
|
Peng Y, Liou B, Lin Y, Mayhew CN, Fleming SM, Sun Y. iPSC-derived neural precursor cells engineering GBA1 recovers acid β-glucosidase deficiency and diminishes α-synuclein and neuropathology. Mol Ther Methods Clin Dev 2023; 29:185-201. [PMID: 37063480 PMCID: PMC10102010 DOI: 10.1016/j.omtm.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Mutations in GBA1, encoding the lysosomal acid β-glucosidase (GCase), cause neuronopathic Gaucher disease (nGD) and promote Parkinson disease (PD). The mutations on GBA1 include deletion and missense mutations that are pathological and lead to GCase deficiency in Gaucher disease. Both nGD and PD lack disease-modifying treatments and are critical unmet medical needs. In this study, we evaluated a cell therapy treatment using mouse iPSC-derived neural precursor cells (NPCs) engineered to overexpress GCase (termed hGBA1-NPCs). The hGBA1-NPCs secreted GCase that was taken up by adjacent mouse Gba -/- neurons and improved GCase activity, reduced GCase substrate accumulation, and improved mitochondrial function. Short-term in vivo effects were evaluated in 9H/PS-NA mice, an nGD mouse model exhibiting neuropathology and α-synuclein aggregation, the typical PD phenotypes. Intravenously administrated hGBA1-NPCs were engrafted throughout the brain and differentiated into neural lineages. GCase activity was increased in various brain regions of treated 9H/PS-NA mice. Compared with vehicle, hGBA1-NPC-transplanted mice showed ∼50% reduction of α-synuclein aggregates in the substantia nigra, significant reduction of neuroinflammation and neurodegeneration in the regions of NPC migration, and increased expression of neurotrophic factors that support neural cell function. Together, these results support the therapeutic benefit of intravenous delivery of iPSC-derived NPCs overexpressing GCase in mitigating nGD and PD phenotypes and establish the feasibility of combined cell and gene therapy for GBA1-associated PD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Lin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sheila M. Fleming
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Sosero YL, Gan‐Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy. Ann Clin Transl Neurol 2023; 10:850-864. [PMID: 37021623 PMCID: PMC10270275 DOI: 10.1002/acn3.51776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD has a generally benign clinical presentation and variable pathology, with inconsistent presence of Lewy bodies and marked Alzheimer's disease pathology. The mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among others. As novel therapies targeting LRRK2 are under development, understanding the role and function of LRRK2 in PD is becoming increasingly important. Here, we outline the epidemiological, pathophysiological, and clinical features of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2 and possible future directions for research.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
| | - Ziv Gan‐Or
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Neurology and NeurosurgeryMcGill UniversityMontréalQuébecH3A 0G4Canada
| |
Collapse
|
38
|
Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, Hagemeier M, Lingor P. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna) 2023; 130:793-820. [PMID: 37147404 PMCID: PMC10199869 DOI: 10.1007/s00702-023-02641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
Collapse
Affiliation(s)
- Andreas Wolff
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas U Schumacher
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Gerrit Machetanz
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Emily Feneberg
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maike Hagemeier
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
39
|
Leyns CEG, Prigent A, Beezhold B, Yao L, Hatcher NG, Tao P, Kang J, Suh E, Van Deerlin VM, Trojanowski JQ, Lee VMY, Kennedy ME, Fell MJ, Henderson MX. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:74. [PMID: 37169750 PMCID: PMC10175254 DOI: 10.1038/s41531-023-00517-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are progressive neurodegenerative diseases characterized by the accumulation of misfolded α-synuclein in the form of Lewy pathology. While most cases are sporadic, there are rare genetic mutations that cause disease and more common variants that increase incidence of disease. The most prominent genetic mutations for PD and DLB are in the GBA1 and LRRK2 genes. GBA1 mutations are associated with decreased glucocerebrosidase activity and lysosomal accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Previous studies have shown a link between this enzyme and lipids even in sporadic PD. However, it is unclear how the protein pathologies of disease are related to enzyme activity and glycosphingolipid levels. To address this gap in knowledge, we examined quantitative protein pathology, glucocerebrosidase activity and lipid substrates in parallel from 4 regions of 91 brains with no neurological disease, idiopathic, GBA1-linked, or LRRK2-linked PD and DLB. We find that several biomarkers are altered with respect to mutation and progression to dementia. We found mild association of glucocerebrosidase activity with disease, but a strong association of glucosylsphingosine with α-synuclein pathology, irrespective of genetic mutation. This association suggests that Lewy pathology precipitates changes in lipid levels related to progression to dementia.
Collapse
Affiliation(s)
- Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alice Prigent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Brenna Beezhold
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Lihang Yao
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Nathan G Hatcher
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Peining Tao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - John Kang
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - EunRan Suh
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
40
|
Senkevich K, Zorca CE, Dworkind A, Rudakou U, Somerville E, Yu E, Ermolaev A, Nikanorova D, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Grenn FP, Chiang MSR, Sardi SP, Vanderperre B, Blauwendraat C, Trempe JF, Fon EA, Durcan TM, Alcalay RN, Gan-Or Z. GALC variants affect galactosylceramidase enzymatic activity and risk of Parkinson's disease. Brain 2023; 146:1859-1872. [PMID: 36370000 PMCID: PMC10151180 DOI: 10.1093/brain/awac413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal H3A 1A1, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Emma Somerville
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Alexey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
- ȃResearch Department, Bioinformatics Institute, Saint-Petersburg 194100, Russia
| | - Daria Nikanorova
- ȃResearch Department, Bioinformatics Institute, Saint-Petersburg 194100, Russia
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary T2N 1N4, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary T2N 4N1, Canada
| | - Yves Dauvilliers
- ȃNational Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, 34090 Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec—Université Laval, Quebec City G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada
| | - Lior Greenbaum
- ȃThe Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer 52621, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ming Sum Ruby Chiang
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - Benoît Vanderperre
- Département des sciences biologiques, Université du Québec à Montréal, Montréal H2X 1Y4, Canada
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal H3A 1A3, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032-3784, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal H3A 1A1, Canada
| |
Collapse
|
41
|
Blauwendraat C, Tayebi N, Woo EG, Lopez G, Fierro L, Toffoli M, Limbachiya N, Hughes D, Pitz V, Patel D, Vitale D, Koretsky MJ, Hernandez D, Real R, Alcalay RN, Nalls MA, Morris HR, Schapira AHV, Balwani M, Sidransky E. Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease. Mov Disord 2023; 38:899-903. [PMID: 36869417 PMCID: PMC10271962 DOI: 10.1002/mds.29342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Geena Woo
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Derralynn Hughes
- Lysosomal Storage Diseases Unit, Royal Free London Hospital NHS Foundation Trust, and Department of Hematology , UCL, London, UK
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dhairya Patel
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mike A Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
43
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
44
|
den Heijer JM, Cullen VC, Pereira DR, Yavuz Y, de Kam ML, Grievink HW, Moerland M, Leymarie N, Khatri K, Sollomoni I, Spitalny L, Dungeon L, Hilt DC, Justman C, Lansbury P, Groeneveld GJ. A Biomarker Study in Patients with GBA1-Parkinson's Disease and Healthy Controls. Mov Disord 2023. [PMID: 36916660 DOI: 10.1002/mds.29360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD). OBJECTIVES Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs). METHODS Data from five studies were combined. Variability was assessed of glucosylceramide (various isoforms), lactosylceramide (various isoforms), glucosylsphingosine, galactosylsphingosine, GCase activity (using fluorescent 4-methylumbeliferryl-β-glucoside), and GCase protein (using enzyme-linked immunosorbent assay) in plasma, PBMCs, and CSF if available, in GBA-PD, iPD, and HVs. GSLs in leukocyte subtypes were compared in HVs. Principal component analysis was used to explore global patterns in GSLs, clinical characteristics (Movement Disorder Society - Unified Parkinson's Disease Rating Scale Part 3 [MDS-UPDRS-3], Mini-Mental State Examination [MMSE], GBA1 mutation type), and participant status (GBA-PD, iPD, HVs). RESULTS Within-subject between-day variability ranged from 5.8% to 44.5% and was generally lower in plasma than in PBMCs. Extracellular glucosylceramide levels (plasma) were slightly higher in GBA-PD compared with both iPD and HVs, while intracellular levels were comparable. GSLs in the different matrices (plasma, PBMCs, CSF) did not correlate. Both lactosylceramide and glucosylsphingosine were more abundant in granulocytes compared with monocytes and lymphocytes. Absolute levels of GSL isoforms differed greatly. GBA1 mutation types could not be differentiated based on GSL data. CONCLUSIONS Glucosylceramide can stably be measured over days in both plasma and PBMCs and may be used as a biomarker in clinical trials targeting GBA-PD. Glucosylsphingosine and lactosylceramide are stable in plasma but are strongly affected by leukocyte subtypes in PBMCs. GBA-PD could be differentiated from iPD and HVs, primarily based on glucosylceramide levels in plasma. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jonas M den Heijer
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Yalcin Yavuz
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Nancy Leymarie
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Kshitij Khatri
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Dana C Hilt
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Craig Justman
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
LRRK2 and GBA1 variant carriers have higher urinary bis(monacylglycerol) phosphate concentrations in PPMI cohorts. NPJ Parkinsons Dis 2023; 9:30. [PMID: 36854767 PMCID: PMC9974978 DOI: 10.1038/s41531-023-00468-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/26/2023] [Indexed: 03/02/2023] Open
Abstract
We quantified concentrations of three isoforms of the endolysosomal lipid, bis(monoacylglycerol) phosphate (BMP) in the urine of deeply phenotyped cohorts in the Parkinson's Progression Markers Initiative: LRRK2 G2019S PD (N = 134) and non-manifesting carriers (NMC) (G2019S+ NMC; N = 182), LRRK2 R1441G PD (N = 15) and R1441G+ NMC (N = 15), GBA1 N409S PD (N = 76) and N409S+ NMC (N = 178), sporadic PD (sPD, N = 379) and healthy controls (HC) (N = 190). The effects of each mutation and disease status were analyzed using nonparametric methods. Longitudinal changes in BMP levels were analyzed using linear mixed models. At baseline, all LRRK2 carriers had 3-7× higher BMP levels compared to HC, irrespective of the disease status. GBA1 N409S carriers also showed significant, albeit smaller, elevation (~30-40%) in BMP levels compared to HC. In LRRK2 G2019S PD, urinary BMP levels remained stable over two years. Furthermore, baseline BMP levels did not predict disease progression as measured by striatal DaT imaging, MDS-UPDRS III Off, or MoCA in any of the cohorts. These data support the utility of BMP as a target modulation biomarker in therapeutic trials of genetic and sPD but not as a prognostic or disease progression biomarker.
Collapse
|
46
|
Grigor’eva EV, Kopytova AE, Yarkova ES, Pavlova SV, Sorogina DA, Malakhova AA, Malankhanova TB, Baydakova GV, Zakharova EY, Medvedev SP, Pchelina SN, Zakian SM. Biochemical Characteristics of iPSC-Derived Dopaminergic Neurons from N370S GBA Variant Carriers with and without Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054437. [PMID: 36901867 PMCID: PMC10002967 DOI: 10.3390/ijms24054437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
GBA variants increase the risk of Parkinson's disease (PD) by 10 times. The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase). The p.N370S substitution causes a violation of the enzyme conformation, which affects its stability in the cell. We studied the biochemical characteristics of dopaminergic (DA) neurons generated from induced pluripotent stem cells (iPSCs) from a PD patient with the GBA p.N370S mutation (GBA-PD), an asymptomatic GBA p.N370S carrier (GBA-carrier), and two healthy donors (control). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we measured the activity of six lysosomal enzymes (GCase, galactocerebrosidase (GALC), alpha-glucosidase (GAA), alpha-galactosidase (GLA), sphingomyelinase (ASM), and alpha-iduronidase (IDUA)) in iPSC-derived DA neurons from the GBA-PD and GBA-carrier. DA neurons from the GBA mutation carrier demonstrated decreased GCase activity compared to the control. The decrease was not associated with any changes in GBA expression levels in DA neurons. GCase activity was more markedly decreased in the DA neurons of GBA-PD patient compared to the GBA-carrier. The amount of GCase protein was decreased only in GBA-PD neurons. Additionally, alterations in the activity of the other lysosomal enzymes (GLA and IDUA) were found in GBA-PD neurons compared to GBA-carrier and control neurons. Further study of the molecular differences between the GBA-PD and the GBA-carrier is essential to investigate whether genetic factors or external conditions are the causes of the penetrance of the p.N370S GBA variant.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alena E. Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena S. Yarkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Diana A. Sorogina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tuyana B. Malankhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sofia N. Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Scientific and Research Centre, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
47
|
Olszewska DA, Lang AE. The definition of precision medicine in neurodegenerative disorders and the one disease-many diseases tension. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:3-20. [PMID: 36796946 DOI: 10.1016/b978-0-323-85538-9.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Precision medicine is a patient-centered approach that aims to translate new knowledge to optimize the type and timing of interventions for the greatest benefit to individual patients. There is considerable interest in applying this approach to treatments designed to slow or halt the progression of neurodegenerative diseases. Indeed, effective disease-modifying treatment (DMT) remains the greatest unmet therapeutic need in this field. In contrast to the enormous progress in oncology, precision medicine in the field of neurodegeneration faces multiple challenges. These are related to major limitations in our understanding of many aspects of the diseases. A critical barrier to advances in this field is the question of whether the common sporadic neurodegenerative diseases (of the elderly) are single uniform disorders (particularly related to their pathogenesis) or whether they represent a collection of related but still very distinct disease states. In this chapter, we briefly touch on lessons from other fields of medicine that might be applied to the development of precision medicine for DMT in neurodegenerative diseases. We discuss why DMT trials may have failed to date, and particularly the importance of appreciating the multifaceted nature of disease heterogeneity and how this has and will impact on these efforts. We conclude with comments on how we can move from this complex disease heterogeneity to the successful application of precision medicine principles in DMT for neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana A Olszewska
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
48
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
49
|
Chahine LM, Simuni T. Role of novel endpoints and evaluations of response in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:325-345. [PMID: 36803820 DOI: 10.1016/b978-0-323-85555-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With progress in our understanding of Parkinson disease (PD) and other neurodegenerative disorders, from clinical features to imaging, genetic, and molecular characterization comes the opportunity to refine and revise how we measure these diseases and what outcome measures are used as endpoints in clinical trials. While several rater-, patient-, and milestone-based outcomes for PD exist that may serve as clinical trial endpoints, there remains an unmet need for endpoints that are clinically meaningful, patient centric while also being more objective and quantitative, less susceptible to effects of symptomatic therapy (for disease-modification trials), and that can be measured over a short period and yet accurately represent longer-term outcomes. Several novel outcomes that may be used as endpoints in PD clinical trials are in development, including digital measures of signs and symptoms, as well a growing array of imaging and biospecimen biomarkers. This chapter provides an overview of the state of PD outcome measures as of 2022, including considerations for selection of clinical trial endpoints in PD, advantages and limitations of existing measures, and emerging potential novel endpoints.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
50
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|