1
|
Zhang X, Li T, Zhang R, Li J, Wang K, Wu J. Downregulation of SARM1 Protects Retinal Ganglion Cell Axonal and Somal Degeneration Via JNK Activation in a Glaucomatous Model of Ocular Hypertension. Invest Ophthalmol Vis Sci 2024; 65:7. [PMID: 39499508 PMCID: PMC11540032 DOI: 10.1167/iovs.65.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose This study aimed to assess the expression of sterile alpha and TIR motif containing protein 1 (SARM1) in both chronic and acute glaucomatous animal models and investigate the underlying SARM1-JNK signaling mechanism responsible for the protective effects of SARM1 downregulation on retinal ganglion cell (RGC) soma and axons in a chronic intraocular hypertension (COH) model. Methods The COH model was induced by injecting magnetic microbeads into the anterior chamber, whereas the acute model was created through ischemia-reperfusion (I/R) injury. Immunohistochemistry and Western blot were used to assess SARM1 expression and JNK phosphorylation in the retina and optic nerve. SARM1 downregulation was achieved through the intravitreal injection of adeno-associated virus (AAV)2-shRNA. Quantitative analysis of RGC survival was performed by the counting of Brn3A-positive RGCs, and surviving axons were assessed through optic nerve toluidine blue stain. Results The expression of SARM1 increased 1 week after microbead injection in the optic nerve, whereas the retinal SARM1 expression decreased at 3 days post-injection in the COH model. After 24 hours of reperfusion, SARM1 expression increased in both the optic nerves and the retinas in the I/R injury model. SARM1 downregulation led to increased survival of RGC soma and axons in the COH model. In this model, JNK phosphorylation was significantly reduced concomitant with decreased SARM1 expression. Conclusions Elevated SARM1 expression was observed in the optic nerves in both the COH and I/R injury models. Downregulation of SARM1 exhibited a protective effect on RGC soma and axons in the COH model, with JNK identified as a downstream regulator of SARM1 in this context.
Collapse
Affiliation(s)
- Xuejin Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ting Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Junfeng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Kaidi Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
2
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Chen J, Li H. Characterization of Novel SARM1 Inhibitors for the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Biomedicines 2024; 12:2123. [PMID: 39335636 PMCID: PMC11428815 DOI: 10.3390/biomedicines12092123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1) is a central regulator of programmed axon death and a crucial nicotinamide adenine dinucleotide (NAD+) hydrolase (NADase) in mammalian tissues, hydrolyzing NAD+ and playing an important role in cellular NAD+ recycling. Abnormal SARM1 expression is linked to axon degeneration, which causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. METHODS In this study, we use PC6 assay of hydrolase activity, DRG axon regeneration and CIPN model to screen for potent SARM1 Inhibitors. RESULTS Two novel SARM1 inhibitors (compound 174 and 331P1) are charcterized for its high potency for SARM1 NADase. In a chemotherapy-induced peripheral neuropathy (CIPN) myopathy model, compound 331P1 treatment prevented the decline in neurofilament light chain (NfL) levels caused by axonal injury in a dose-dependent manner, associated with elevated intraepidermal nerve fiber (IENF) intensity in mouse foot paw tissue, suggesting its functionality in reversing axon degeneration. CONCLUSIONS The newly designed SARM1 inhibitor 331P1 is a promising candidate due to its excellent in vivo efficacy, favorable CYP inhibition properties, and attractive safety profiles. The 331P1 compound possesses the potential to be developed as a novel neuroprotective therapy that can prevent or halt the neurodegenerative process in CIPN.
Collapse
Affiliation(s)
- Jiayu Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Alkaslasi MR, Lloyd EYH, Gable AS, Silberberg H, Yarur HE, Tsai VS, Sohn M, Margolin G, Tejeda HA, Le Pichon CE. The transcriptional response of cortical neurons to concussion reveals divergent fates after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.581939. [PMID: 38463961 PMCID: PMC10925231 DOI: 10.1101/2024.02.26.581939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how different neuron types respond to this kind of injury. In this study, we follow neuronal populations over several months after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI. We show that neurons that activate ATF3 upregulate stress-related genes while repressing many genes, including commonly used markers for these cell types. Using an inducible reporter linked to ATF3, we genetically mark damaged cells to track them over time. Notably, we find that a population in layer V undergoes cell death acutely after injury, while another in layer II/III survives long term and retains the ability to fire action potentials. To investigate the mechanism controlling layer V neuron death, we genetically silenced candidate stress response pathways. We found that the axon injury responsive kinase MAP3K12, also known as dual leucine zipper kinase (DLK), is required for the layer V neuron death. This work provides a rationale for targeting the DLK signaling pathway as a therapeutic intervention for traumatic brain injury. Beyond this, our novel approach to track neurons after a mild, subclinical injury can inform our understanding of neuronal susceptibility to repeated impacts.
Collapse
Affiliation(s)
- Mor R. Alkaslasi
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Eliza Y. H. Lloyd
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Austin S. Gable
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Silberberg
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Valerie S. Tsai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Claire E. Le Pichon
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Armstrong RC, Sullivan GM, Perl DP, Rosarda JD, Radomski KL. White matter damage and degeneration in traumatic brain injury. Trends Neurosci 2024; 47:677-692. [PMID: 39127568 DOI: 10.1016/j.tins.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.
Collapse
Affiliation(s)
- Regina C Armstrong
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA.
| | - Genevieve M Sullivan
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Defense - Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
| | - Jessica D Rosarda
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kryslaine L Radomski
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
6
|
Tang Q, Yin H. Pyridine-based small molecule inhibitors of SARM1 alleviate cell death caused by NADase activity. Chem Commun (Camb) 2024; 60:8724-8727. [PMID: 39072360 DOI: 10.1039/d4cc02650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our investigation has unveiled a series of pyridine-based SARM1 inhibitors, with the lead compound TH-408 exhibiting remarkable potency, achieving an IC50 value of 0.46 μM. This exceptional inhibitory effect significantly curtailed SARM1-mediated cell death across diverse biological models. This finding highlights the promising therapeutic potential for neurodegenerative disorders by disrupting SARM1 activation and advances our understanding of molecular interventions in these complex disorders, including the regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Qingxuan Tang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
8
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
9
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Zhou K, Tan Y, Zhang G, Li J, Xing S, Chen X, Wen J, Li G, Fan Y, Zeng J, Zhang J. Loss of SARM1 ameliorates secondary thalamic neurodegeneration after cerebral infarction. J Cereb Blood Flow Metab 2024; 44:224-238. [PMID: 37898107 PMCID: PMC10993876 DOI: 10.1177/0271678x231210694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023]
Abstract
Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Yan Tan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Guofen Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Xinran Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jiali Wen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| |
Collapse
|
12
|
Brazill JM, Shen IR, Craft CS, Magee KL, Park JS, Lorenz M, Strickland A, Wee NK, Zhang X, Beeve AT, Meyer GA, Milbrandt J, DiAntonio A, Scheller EL. Sarm1 knockout prevents type 1 diabetic bone disease in females independent of neuropathy. JCI Insight 2024; 9:e175159. [PMID: 38175722 PMCID: PMC11143934 DOI: 10.1172/jci.insight.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.
Collapse
Affiliation(s)
| | - Ivana R. Shen
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | | | | | - Jay S. Park
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Madelyn Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natalie K. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | - Alec T. Beeve
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
14
|
Dogan EO, Bouley J, Zhong J, Harkins AL, Keeler AM, Bosco DA, Brown RH, Henninger N. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun 2023; 11:206. [PMID: 38124145 PMCID: PMC10731794 DOI: 10.1186/s40478-023-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI), particularly when moderate-to-severe and repetitive, is a strong environmental risk factor for several progressive neurodegenerative disorders. Mislocalization and deposition of transactive response DNA binding protein 43 (TDP-43) has been reported in both TBI and TBI-associated neurodegenerative diseases. It has been hypothesized that axonal pathology, an early event after TBI, may promote TDP-43 dysregulation and serve as a trigger for neurodegenerative processes. We sought to determine whether blocking the prodegenerative Sarm1 (sterile alpha and TIR motif containing 1) axon death pathway attenuates TDP-43 pathology after TBI. We subjected 111 male Sarm1 wild type, hemizygous, and knockout mice to moderate-to-severe repetitive TBI (rTBI) using a previously established injury paradigm. We conducted serial neurological assessments followed by histological analyses (NeuN, MBP, Iba-1, GFAP, pTDP-43, and AT8) at 1 month after rTBI. Genetic ablation of the Sarm1 gene attenuated the expression and mislocalization of phosphorylated TDP-43 (pTDP-43) and accumulation of pTau. In addition, Sarm1 knockout mice had significantly improved cortical neuronal and axonal integrity, functional deficits, and improved overall survival after rTBI. In contrast, removal of one Sarm1 allele delayed, but did not prevent, neurological deficits and neuroaxonal loss. Nevertheless, Sarm1 haploinsufficient mice showed significantly less microgliosis, pTDP-43 pathology, and pTau accumulation when compared to wild type mice. These data indicate that the Sarm1-mediated prodegenerative pathway contributes to pathogenesis in rTBI including the pathological accumulation of pTDP-43. This suggests that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after moderate-to-severe rTBI.
Collapse
Affiliation(s)
- Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ashley L Harkins
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Icso JD, Thompson PR. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. J Biol Chem 2023; 299:105284. [PMID: 37742918 PMCID: PMC10624580 DOI: 10.1016/j.jbc.2023.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Axonal degeneration is a hallmark feature of neurodegenerative diseases. Activation of the NAD(P)ase sterile alpha and toll-interleukin receptor motif containing protein 1 (SARM1) is critical for this process. In resting neurons, SARM1 activity is inhibited, but upon damage, SARM1 is activated and catalyzes one of three NAD(P)+ dependent reactions: (1) NAD(P)+ hydrolysis to form ADP-ribose (ADPR[P]) and nicotinamide; (2) the formation of cyclic-ADPR (cADPR[P]); or (3) a base exchange reaction with nicotinic acid (NA) and NADP+ to form NA adenine dinucleotide phosphate. Production of these metabolites triggers axonal death. Two activation mechanisms have been proposed: (1) an increase in the nicotinamide mononucleotide (NMN) concentration, which leads to the allosteric activation of SARM1, and (2) a phase transition, which stabilizes the active conformation of the enzyme. However, neither of these mechanisms have been shown to occur at the same time. Using in vitro assay systems, we show that the liquid-to-solid phase transition lowers the NMN concentration required to activate the catalytic activity of SARM1 by up to 140-fold. These results unify the proposed activation mechanisms and show for the first time that a phase transition reduces the threshold for NMN-based SARM1 activation to physiologically relevant levels. These results further our understanding of SARM1 activation and will be important for the future development of therapeutics targeting SARM1.
Collapse
Affiliation(s)
- Janneke Doedée Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA
| | - Paul Ryan Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts, USA.
| |
Collapse
|
17
|
Yang Q, Zhang L, Li M, Xu Y, Chen X, Yuan R, Ou X, He M, Liao M, Zhang L, Dai H, Lv M, Xie X, Liang W, Chen X. Single-nucleus transcriptomic mapping uncovers targets for traumatic brain injury. Genome Res 2023; 33:1818-1832. [PMID: 37730437 PMCID: PMC10691476 DOI: 10.1101/gr.277881.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Min He
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Lin Zhang
- Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China;
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| |
Collapse
|
18
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
20
|
Icso JD, Barasa L, Thompson PR. SARM1, an Enzyme Involved in Axon Degeneration, Catalyzes Multiple Activities through a Ternary Complex Mechanism. Biochemistry 2023; 62:2065-2078. [PMID: 37307562 DOI: 10.1021/acs.biochem.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sterile alpha and toll/interleukin receptor (TIR) motif containing protein 1 (SARM1) is an NAD+ hydrolase and cyclase involved in axonal degeneration. In addition to NAD+ hydrolysis and cyclization, SARM1 catalyzes a base exchange reaction between nicotinic acid (NA) and NADP+ to generate NAADP, which is a potent calcium signaling molecule. Herein, we describe efforts to characterize the hydrolysis, cyclization, and base exchange activities of TIR-1, the Caenorhabditis elegans ortholog of SARM1; TIR-1 also catalyzes NAD(P)+ hydrolysis and/or cyclization and regulates axonal degeneration in worms. We show that the catalytic domain of TIR-1 undergoes a liquid-to-solid phase transition that regulates not only the hydrolysis and cyclization reactions but also the base exchange reaction. We define the substrate specificities of the reactions, demonstrate that cyclization and base exchange reactions occur within the same pH range, and establish that TIR-1 uses a ternary complex mechanism. Overall, our findings will aid drug discovery efforts and provide insight into the mechanism of recently described inhibitors.
Collapse
Affiliation(s)
- Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| | - Leonard Barasa
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medial School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
21
|
Berman R, Spencer H, Boese M, Kim S, Radford K, Choi K. Loss of Consciousness and Righting Reflex Following Traumatic Brain Injury: Predictors of Post-Injury Symptom Development (A Narrative Review). Brain Sci 2023; 13:brainsci13050750. [PMID: 37239222 DOI: 10.3390/brainsci13050750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying predictors for individuals vulnerable to the adverse effects of traumatic brain injury (TBI) remains an ongoing research pursuit. This is especially important for patients with mild TBI (mTBI), whose condition is often overlooked. TBI severity in humans is determined by several criteria, including the duration of loss of consciousness (LOC): LOC < 30 min for mTBI and LOC > 30 min for moderate-to-severe TBI. However, in experimental TBI models, there is no standard guideline for assessing the severity of TBI. One commonly used metric is the loss of righting reflex (LRR), a rodent analogue of LOC. However, LRR is highly variable across studies and rodents, making strict numeric cutoffs difficult to define. Instead, LRR may best be used as predictor of symptom development and severity. This review summarizes the current knowledge on the associations between LOC and outcomes after mTBI in humans and between LRR and outcomes after experimental TBI in rodents. In clinical literature, LOC following mTBI is associated with various adverse outcome measures, such as cognitive and memory deficits; psychiatric disorders; physical symptoms; and brain abnormalities associated with the aforementioned impairments. In preclinical studies, longer LRR following TBI is associated with greater motor and sensorimotor impairments; cognitive and memory impairments; peripheral and neuropathology; and physiologic abnormalities. Because of the similarities in associations, LRR in experimental TBI models may serve as a useful proxy for LOC to contribute to the ongoing development of evidence-based personalized treatment strategies for patients sustaining head trauma. Analysis of highly symptomatic rodents may shed light on the biological underpinnings of symptom development after rodent TBI, which may translate to therapeutic targets for mTBI in humans.
Collapse
Affiliation(s)
- Rina Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - Haley Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Sharon Kim
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kennett Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kwang Choi
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Zhong J, Gunner G, Henninger N, Schafer DP, Bosco DA. Intravital Imaging of Fluorescent Protein Expression in Mice with a Closed-Skull Traumatic Brain Injury and Cranial Window Using a Two-Photon Microscope. J Vis Exp 2023:10.3791/64701. [PMID: 37154548 PMCID: PMC11093183 DOI: 10.3791/64701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The goal of this protocol is to demonstrate how to longitudinally visualize the expression and localization of a protein of interest within specific cell types of an animal's brain, upon exposure to exogenous stimuli. Here, the administration of a closed-skull traumatic brain injury (TBI) and simultaneous implantation of a cranial window for subsequent longitudinal intravital imaging in mice is shown. Mice are intracranially injected with an adeno-associated virus (AAV) expressing enhanced green fluorescent protein (EGFP) under a neuronal specific promoter. After 2 to 4 weeks, the mice are subjected to a repetitive TBI using a weight drop device over the AAV injection location. Within the same surgical session, the mice are implanted with a metal headpost and then a glass cranial window over the TBI impacting site. The expression and cellular localization of EGFP is examined using a two-photon microscope in the same brain region exposed to trauma over the course of months.
Collapse
Affiliation(s)
- Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University
| | - Georgia Gunner
- Department of Neurobiology, University of Massachusetts Chan Medical School
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School
| | - Dorothy P Schafer
- Department of Neurobiology, University of Massachusetts Chan Medical School
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School;
| |
Collapse
|
23
|
Fazal SV, Mutschler C, Chen CZ, Turmaine M, Chen CY, Hsueh YP, Ibañez-Grau A, Loreto A, Casillas-Bajo A, Cabedo H, Franklin RJM, Barker RA, Monk KR, Steventon BJ, Coleman MP, Gomez-Sanchez JA, Arthur-Farraj P. SARM1 detection in myelinating glia: sarm1/ Sarm1 is dispensable for PNS and CNS myelination in zebrafish and mice. Front Cell Neurosci 2023; 17:1158388. [PMID: 37091921 PMCID: PMC10113485 DOI: 10.3389/fncel.2023.1158388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Since SARM1 mutations have been identified in human neurological disease, SARM1 inhibition has become an attractive therapeutic strategy to preserve axons in a variety of disorders of the peripheral (PNS) and central nervous system (CNS). While SARM1 has been extensively studied in neurons, it remains unknown whether SARM1 is present and functional in myelinating glia? This is an important question to address. Firstly, to identify whether SARM1 dysfunction in other cell types in the nervous system may contribute to neuropathology in SARM1 dependent diseases? Secondly, to ascertain whether therapies altering SARM1 function may have unintended deleterious impacts on PNS or CNS myelination? Surprisingly, we find that oligodendrocytes express sarm1 mRNA in the zebrafish spinal cord and that SARM1 protein is readily detectable in rodent oligodendrocytes in vitro and in vivo. Furthermore, activation of endogenous SARM1 in cultured oligodendrocytes induces rapid cell death. In contrast, in peripheral glia, SARM1 protein is not detectable in Schwann cells and satellite glia in vivo and sarm1/Sarm1 mRNA is detected at very low levels in Schwann cells, in vivo, in zebrafish and mouse. Application of specific SARM1 activators to cultured mouse Schwann cells does not induce cell death and nicotinamide adenine dinucleotide (NAD) levels remain unaltered suggesting Schwann cells likely contain no functionally relevant levels of SARM1. Finally, we address the question of whether SARM1 is required for myelination or myelin maintenance. In the zebrafish and mouse PNS and CNS, we show that SARM1 is not required for initiation of myelination and myelin sheath maintenance is unaffected in the adult mouse nervous system. Thus, strategies to inhibit SARM1 function to treat neurological disease are unlikely to perturb myelination in humans.
Collapse
Affiliation(s)
- Shaline V. Fazal
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clara Mutschler
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Civia Z. Chen
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Andrea Ibañez-Grau
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández, Alicante, Spain
| | - Andrea Loreto
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Robin J. M. Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Altos Labs - Cambridge Institute of Science, Cambridge, United Kingdom
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | | | - Michael P. Coleman
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jose A. Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Peter Arthur-Farraj
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Wang Z, Zeng S, Jing Y, Mao W, Li H. Sarm1 Regulates Circadian Rhythm Disorder in Alzheimer's Disease in Mice. J Alzheimers Dis 2023; 92:713-722. [PMID: 36776065 DOI: 10.3233/jad-221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Sarm1 (Sterile alpha and TIR motif-containing 1) is a key protein that regulates neurodegenerative pathologies. Alzheimer's disease (AD) is highly associated with neurodegenerative lesions and biorhythmic disturbances. OBJECTIVE This study aims to decipher the role of Sarm1 in AD-induced circadian rhythm disturbances and AD progression. METHODS Open field and water maze tests were used to assess the cognitive function of mice. Thioflavin-S staining was used to assess amyloid-β (Aβ) plaque deposition in the hippocampus and cortex. Rhythmic waveform of home cage activity and temperature was recorded to evaluate circadian rhythm. Expression of clock molecules including Bmal1 and Per2 in the hippocampus were analyzed using western blot and real-time PCR. Further, HT22 cells with Sam1 knockout were treated with Aβ 31-35 treatment to initiate circadian rhythm disorder in the cellular level to assess the changes in Bmal1 and Per2. RESULTS Our data suggested that Sarm1 deficiency rescued cognitive disorder, decreased Aβ plaque deposition in the hippocampus and cortex, inhibited astrocyte activation, improved circadian rhythm, altered clock molecule expression in the cortex and hippocampus in APP/PS1 mice. CONCLUSION Sarm1 attenuates circadian rhythm disturbances and reduces AD progression. These data support the potential use of Sarm1 as a therapeutic target to improve circadian rhythm to impede AD progression.
Collapse
Affiliation(s)
- Zebin Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shan Zeng
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Jing
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjuan Mao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hongyan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
25
|
Li M, Chen X, Yang Q, Cao S, Wyler S, Yuan R, Zhang L, Liao M, Lv M, Wang F, Guo Y, Zhou J, Zhang L, Xie X, Liang W. Single-nucleus profiling of adult mice sub-ventricular zone after blast-related traumatic brain injury. Sci Data 2023; 10:13. [PMID: 36604452 PMCID: PMC9814753 DOI: 10.1038/s41597-022-01925-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Explosive blast-related traumatic brain injuries (bTBI) are common in war zones and urban terrorist attacks. These bTBIs often result in complex neuropathologic damage and neurologic complications. However, there is still a lack of specific strategies for diagnosing and/or treating bTBIs. The sub-ventricular zone (SVZ), which undergoes adult neurogenesis, is critical for the neurological maintenance and repair after brain injury. However, the cellular responses and mechanisms that trigger and modulate these activities in the pathophysiological processes following bTBI remain poorly understood. Here we employ single-nucleus RNA-sequencing (snRNA-seq) of the SVZ from mice subjected to a bTBI. This data-set, including 15272 cells (7778 bTBI and 7494 control) representing all SVZ cell types and is ideally suited for exploring the mechanisms underlying the pathogenesis of bTBIs. Additionally, it can serve as a reference for future studies regarding the diagnosis and treatment of bTBIs.
Collapse
Affiliation(s)
- Manrui Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, 200000, China
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Steven Wyler
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, Sichuan University, Chengdu, 610041, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jihong Zhou
- Army Medical University, Chongqing, 404000, China.
| | - Lin Zhang
- Sichuan University, Chengdu, 610041, China.
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu, 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Lassetter AP, Corty MM, Barria R, Sheehan AE, Hill JQ, Aicher SA, Fox AN, Freeman MR. Glial TGFβ activity promotes neuron survival in peripheral nerves. J Cell Biol 2023; 222:e202111053. [PMID: 36399182 PMCID: PMC9679965 DOI: 10.1083/jcb.202111053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Maintaining long, energetically demanding axons throughout the life of an animal is a major challenge for the nervous system. Specialized glia ensheathe axons and support their function and integrity throughout life, but glial support mechanisms remain poorly defined. Here, we identified a collection of secreted and transmembrane molecules required in glia for long-term axon survival in vivo. We showed that the majority of components of the TGFβ superfamily are required in glia for sensory neuron maintenance but not glial ensheathment of axons. In the absence of glial TGFβ signaling, neurons undergo age-dependent degeneration that can be rescued either by genetic blockade of Wallerian degeneration or caspase-dependent death. Blockade of glial TGFβ signaling results in increased ATP in glia that can be mimicked by enhancing glial mitochondrial biogenesis or suppressing glial monocarboxylate transporter function. We propose that glial TGFβ signaling supports axon survival and suppresses neurodegeneration through promoting glial metabolic support of neurons.
Collapse
Affiliation(s)
| | - Megan M. Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Romina Barria
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jo Q. Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - A. Nicole Fox
- University of Massachusetts Medical School, Worcester, MA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
27
|
Traumatic axonopathy in spinal tracts after impact acceleration head injury: Ultrastructural observations and evidence of SARM1-dependent axonal degeneration. Exp Neurol 2023; 359:114252. [PMID: 36244414 DOI: 10.1016/j.expneurol.2022.114252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Traumatic axonal injury (TAI) and the associated axonopathy are common consequences of traumatic brain injury (TBI) and contribute to significant neurological morbidity. It has been previously suggested that TAI activates a highly conserved program of axonal self-destruction known as Wallerian degeneration (WD). In the present study, we utilize our well-established impact acceleration model of TBI (IA-TBI) to characterize the pathology of injured myelinated axons in the white matter tracks traversing the ventral, lateral, and dorsal spinal columns in the mouse and assess the effect of Sterile Alpha and TIR Motif Containing 1 (Sarm1) gene knockout on acute and subacute axonal degeneration and myelin pathology. In silver-stained preparations, we found that IA-TBI results in white matter pathology as well as terminal field degeneration across the rostrocaudal axis of the spinal cord. At the ultrastructural level, we found that traumatic axonopathy is associated with diverse types of axonal and myelin pathology, ranging from focal axoskeletal perturbations and focal disruption of the myelin sheath to axonal fragmentation. Several morphological features such as neurofilament compaction, accumulation of organelles and inclusions, axoskeletal flocculation, myelin degeneration and formation of ovoids are similar to profiles encountered in classical examples of WD. Other profiles such as excess myelin figures and inner tongue evaginations are more typical of chronic neuropathies. Stereological analysis of pathological axonal and myelin profiles in the ventral, lateral, and dorsal columns of the lower cervical cord (C6) segments from wild type and Sarm1 KO mice at 3 and 7 days post IA-TBI (n = 32) revealed an up to 90% reduction in the density of pathological profiles in Sarm1 KO mice after IA-TBI. Protection was evident across all white matter tracts assessed, but showed some variability. Finally, Sarm1 deletion ameliorated the activation of microglia associated with TAI. Our findings demonstrate the presence of severe traumatic axonopathy in multiple ascending and descending long tracts after IA-TBI with features consistent with some chronic axonopathies and models of WD and the across-tract protective effect of Sarm1 deletion.
Collapse
|
28
|
Sato-Yamada Y, Strickland A, Sasaki Y, Bloom J, DiAntonio A, Milbrandt J. A SARM1-mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model. J Clin Invest 2022; 132:e161566. [PMID: 36287202 PMCID: PMC9711878 DOI: 10.1172/jci161566] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is an axonal neuropathy caused by mutations in the mitofusin 2 (MFN2) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying the axonal pathology is unknown. Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1), the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation (Mfn2H361Y) that exhibits progressive dying-back axonal degeneration, neuromuscular junction (NMJ) abnormalities, muscle atrophy, and mitochondrial abnormalities - all hallmarks of the human disease. We generated Sarm1-KO (Sarm1-/-) and Mfn2H361Y Sarm1 double-mutant rats and found that deletion of Sarm1 rescued axonal, synaptic, muscle, and functional phenotypes, demonstrating that SARM1 was responsible for much of the neuropathology in this model. Despite the presence of mutant MFN2 protein in these double-mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activated SARM1 and that activated SARM1 fed back on mitochondria to exacerbate the mitochondrial pathology. As such, this work identifies SARM1 inhibition as a therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.
Collapse
Affiliation(s)
- Yurie Sato-Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Science, Niigata City, Japan
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- Department of Developmental Biology and
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Lai MY, Li J, Zhang XX, Wu W, Li ZP, Sun ZX, Zhao MY, Yang DM, Wang DD, Li W, Zhao DM, Zhou XM, Yang LF. SARM1 participates in axonal degeneration and mitochondrial dysfunction in prion disease. Neural Regen Res 2022; 17:2293-2299. [PMID: 35259852 PMCID: PMC9083142 DOI: 10.4103/1673-5374.337051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prion disease represents a group of fatal neurogenerative diseases in humans and animals that are associated with energy loss, axonal degeneration, and mitochondrial dysfunction. Axonal degeneration is an early hallmark of neurodegeneration and is triggered by SARM1. We found that depletion or dysfunctional mutation of SARM1 protected against NAD+ loss, axonal degeneration, and mitochondrial functional disorder induced by the neurotoxic peptide PrP106-126. NAD+ supplementation rescued prion-triggered axonal degeneration and mitochondrial dysfunction and SARM1 overexpression suppressed this protective effect. NAD+ supplementation in PrP106-126-incubated N2a cells, SARM1 depletion, and SARM1 dysfunctional mutation each blocked neuronal apoptosis and increased cell survival. Our results indicate that the axonal degeneration and mitochondrial dysfunction triggered by PrP106-126 are partially dependent on SARM1 NADase activity. This pathway has potential as a therapeutic target in the early stages of prion disease.
Collapse
Affiliation(s)
- Meng-Yu Lai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi-Xi Zhang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Wu
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Ping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Xin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Meng-Yang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Ming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Dong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - De-Ming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang-Mei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li-Feng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022:10.1007/s10571-022-01287-4. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
|
31
|
Unraveling axonal mechanisms of traumatic brain injury. Acta Neuropathol Commun 2022; 10:140. [PMID: 36131329 PMCID: PMC9494812 DOI: 10.1186/s40478-022-01414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Axonal swellings (AS) are one of the neuropathological hallmark of axonal injury in several disorders from trauma to neurodegeneration. Current evidence proposes a role of perturbed Ca2+ homeostasis in AS formation, involving impaired axonal transport and focal distension of the axons. Mechanisms of AS formation, in particular moments following injury, however, remain unknown. Here we show that AS form independently from intra-axonal Ca2+ changes, which are required primarily for the persistence of AS in time. We further show that the majority of axonal proteins undergoing de/phosphorylation immediately following injury belong to the cytoskeleton. This correlates with an increase in the distance of the actin/spectrin periodic rings and with microtubule tracks remodeling within AS. Observed cytoskeletal rearrangements support axonal transport without major interruptions. Our results demonstrate that the earliest axonal response to injury consists in physiological adaptations of axonal structure to preserve function rather than in immediate pathological events signaling axonal destruction.
Collapse
|
32
|
Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D, Venkatesan A, Koliatsos VE. Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Neurobiol Dis 2022; 171:105808. [PMID: 35779777 PMCID: PMC10621467 DOI: 10.1016/j.nbd.2022.105808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 01/23/2023] Open
Abstract
Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.
Collapse
Affiliation(s)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Harlan
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - James McKenney
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Aja
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - David Graham
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vassilis E Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Feldman HC, Merlini E, Guijas C, DeMeester KE, Njomen E, Kozina EM, Yokoyama M, Vinogradova E, Reardon HT, Melillo B, Schreiber SL, Loreto A, Blankman JL, Cravatt BF. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc Natl Acad Sci U S A 2022; 119:e2208457119. [PMID: 35994671 PMCID: PMC9436332 DOI: 10.1073/pnas.2208457119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.
Collapse
Affiliation(s)
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Carlos Guijas
- Lundbeck La Jolla Research Center Inc, San Diego, CA 92121
| | | | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| | | | - Minoru Yokoyama
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| | | | | | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | | | | |
Collapse
|
34
|
Ademi M, Yang X, Coleman MP, Gilley J. Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival. Sci Rep 2022; 12:13846. [PMID: 35974060 PMCID: PMC9381744 DOI: 10.1038/s41598-022-18052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
SARM1 is a central executioner of programmed axon death, and this role requires intrinsic NAD(P)ase or related enzyme activity. A complete absence of SARM1 robustly blocks axon degeneration in mice, but even a partial depletion confers meaningful protection. Since axon loss contributes substantially to the onset and progression of multiple neurodegenerative disorders, lower inherent SARM1 activity is expected to reduce disease susceptibility in some situations. We, therefore, investigated whether there are naturally occurring SARM1 alleles within the human population that encode SARM1 variants with loss-of-function. Out of the 18 natural SARM1 coding variants we selected as candidates, we found that 10 display loss-of-function in three complimentary assays: they fail to robustly deplete NAD in transfected HEK 293T cells; they lack constitutive and NMN-induced NADase activity; and they fail to promote axon degeneration in primary neuronal cultures. Two of these variants are also able to block axon degeneration in primary culture neurons in the presence of endogenous, wild-type SARM1, indicative of dominant loss-of-function. These results demonstrate that SARM1 loss-of-function variants occur naturally in the human population, and we propose that carriers of these alleles will have different degrees of reduced susceptibility to various neurological conditions.
Collapse
Affiliation(s)
- Mirlinda Ademi
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Xiuna Yang
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Michael P Coleman
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Jonathan Gilley
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
35
|
Collins JM, Atkinson RAK, Matthews LM, Murray IC, Perry SE, King AE. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1 G93A mouse model of ALS. Neurobiol Dis 2022; 172:105821. [PMID: 35863521 DOI: 10.1016/j.nbd.2022.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Lyzette M Matthews
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Isabella C Murray
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Sharn E Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| |
Collapse
|
36
|
Essuman K, Milbrandt J, Dangl JL, Nishimura MT. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science 2022; 377:eabo0001. [DOI: 10.1126/science.abo0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20th century, researchers studying animal and plant signaling pathways discovered a protein domain shared across diverse innate immune systems: the Toll/Interleukin-1/Resistance-gene (TIR) domain. The TIR domain is found in several protein architectures and was defined as an adaptor mediating protein-protein interactions in animal innate immunity and developmental signaling pathways. However, studies of nerve degeneration in animals, and subsequent breakthroughs in plant, bacterial and archaeal systems, revealed that TIR domains possess enzymatic activities. We provide a synthesis of TIR functions and the role of various related TIR enzymatic products in evolutionarily diverse immune systems. These studies may ultimately guide interventions that would span the tree of life, from treating human neurodegenerative disorders and bacterial infections, to preventing plant diseases.
Collapse
Affiliation(s)
- Kow Essuman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
37
|
Icso JD, Thompson PR. The chemical biology of NAD + regulation in axon degeneration. Curr Opin Chem Biol 2022; 69:102176. [PMID: 35780654 PMCID: PMC10084848 DOI: 10.1016/j.cbpa.2022.102176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
During axon degeneration, NAD+ levels are largely controlled by two enzymes: nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and toll interleukin motif containing protein 1 (SARM1). NMNAT2, which catalyzes the formation of NAD+ from NMN and ATP, is actively degraded leading to decreased NAD+ levels. SARM1 activity further decreases the concentration of NAD+ by catalyzing its hydrolysis to form nicotinamide and a mixture of ADPR and cADPR. Notably, SARM1 knockout mice show decreased neurodegeneration in animal models of axon degeneration, highlighting the therapeutic potential of targeting this novel NAD+ hydrolase. This review discusses recent advances in the SARM1 field, including SARM1 structure, regulation, and catalysis as well as the identification of the first SARM1 inhibitors.
Collapse
Affiliation(s)
- Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Brace EJ, Essuman K, Mao X, Palucki J, Sasaki Y, Milbrandt J, DiAntonio A. Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity. PLoS Genet 2022; 18:e1010246. [PMID: 35737728 PMCID: PMC9223315 DOI: 10.1371/journal.pgen.1010246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions. SARM1 is the central executioner of axon loss, and inhibition of SARM1 is a therapeutic target for many devastating neurodegenerative disorders. SARM1 is the founding member of the TIR-domain family of NAD+ cleaving enzymes, destroying the essential metabolite NAD+ and inducing an energetic crisis in the axon. This was a surprising finding, as previously studied TIR-domain proteins were characterized as scaffolds that bind signaling proteins to coordinate signal transduction cascades. Indeed, before the discovery of the role of SARM1 in axon degeneration, SARM1 was studied as a regulator of intracellular signaling in immunity and neurodevelopment where it was assumed to act as a scaffold. Here we investigate whether the recently described SARM1 enzymatic activity also regulates such signal transduction pathways. Indeed, we show that a developmental signaling pathway scales with the amount of NADase activity, suggesting an instructive role for NAD+ cleavage. While degenerative and developmental SARM1 signaling share a requirement for NAD+ cleavage, they utilize distinct upstream and downstream mechanisms. With these findings, SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kow Essuman
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Palucki
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeff Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
39
|
Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, Saikot FK, Adams SE, Mosaiab T, Masic V, Mao X, Rose F, Vasquez E, Furrer M, Cunnea K, Brearley A, Gu W, Luo Z, Brillault L, Landsberg MJ, DiAntonio A, Kobe B, Milbrandt J, Hughes RO, Ve T. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol Cell 2022; 82:1643-1659.e10. [PMID: 35334231 PMCID: PMC9188649 DOI: 10.1016/j.molcel.2022.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Philip S Kerry
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Todd Bosanac
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Raul Krauss
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA
| | - Forhad K Saikot
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Sarah E Adams
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Faith Rose
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Marieke Furrer
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Katie Cunnea
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Andrew Brearley
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Lou Brillault
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Robert O Hughes
- Disarm Therapeutics, a wholly-owned subsidiary of Eli Lilly & Co., Cambridge, MA, USA.
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
40
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
41
|
Moss KR, Johnson AE, Bopp TS, Yu ATY, Perry K, Chung T, Höke A. SARM1 knockout does not rescue neuromuscular phenotypes in a Charcot-Marie-Tooth disease Type 1A mouse model. J Peripher Nerv Syst 2022; 27:58-66. [PMID: 35137510 PMCID: PMC8940700 DOI: 10.1111/jns.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Charcot-Marie-Tooth disease Type 1A (CMT1A) is caused by duplication of the PMP22 gene and is the most common inherited peripheral neuropathy. Although CMT1A is a dysmyelinating peripheral neuropathy, secondary axon degeneration has been suggested to drive functional deficits in patients. Given that SARM1 knockout is a potent inhibitor of the programmed axon degeneration pathway, we asked whether SARM1 knockout rescues neuromuscular phenotypes in CMT1A model (C3-PMP) mice. CMT1A mice were bred with SARM1 knockout mice to generate CMT1A/SARM1-/- mice. A series of behavioral assays were employed to evaluate motor and sensorimotor function. Electrophysiological and histological studies of the tibial branch of the sciatic nerve were performed. Additionally, gastrocnemius and soleus muscle morphology were evaluated histologically. Although clear behavioral and electrophysiological deficits were observed in CMT1A model mice, genetic deletion of SARM1 conferred no significant improvement. Nerve morphometry revealed predominantly myelin deficits in CMT1A model mice and SARM1 knockout yielded no improvement in all nerve morphometry measures. Similarly, muscle morphometry deficits in CMT1A model mice were not improved by SARM1 knockout. Our findings demonstrate that programmed axon degeneration pathway inhibition does not provide therapeutic benefit in C3-PMP CMT1A model mice. Our results indicate that the clinical phenotypes observed in CMT1A mice are likely caused primarily by prolonged dysmyelination, motivate further investigation into mechanisms of dysmyelination in these mice and necessitate the development of improved CMT1A rodent models that recapitulate the secondary axon degeneration observed in patients.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anna E. Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Taylor S. Bopp
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrew T-Y. Yu
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ken Perry
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,Corresponding Author: Ahmet Höke MD, PhD, Johns Hopkins School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, Tel: 410-955-2227, Fax: 410-502-5459,
| |
Collapse
|
42
|
Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci 2022; 79:161. [PMID: 35224705 PMCID: PMC11072485 DOI: 10.1007/s00018-022-04195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 01/03/2023]
Abstract
Injury to the spinal cord is devastating. Studies have implicated Wallerian degeneration as the main cause of axonal destruction in the wake of spinal cord injury. Therefore, the suppression of Wallerian degeneration could be beneficial for spinal cord injury treatment. Sterile alpha and armadillo motif-containing protein 1 (SARM1) is a key modulator of Wallerian degeneration, and its impediment can improve spinal cord injury to a significant degree. In this report, we analyze the various signaling domains of SARM1, the recent findings on Wallerian degeneration and its relation to axonal insults, as well as its connection to SARM1, the mitogen-activated protein kinase (MAPK) signaling, and the survival factor, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). We then elaborate on the possible role of SARM1 in spinal cord injury and explicate how its obstruction could potentially alleviate the injury.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|
43
|
Kahriman A, Bouley J, Bosco DA, Salman Shazeeb M, Henninger N. Differential association of baseline body weight and body-weight loss with neurological deficits, histology, and death after repetitive closed head traumatic brain injury. Neurosci Lett 2022; 771:136430. [PMID: 34973374 PMCID: PMC8821174 DOI: 10.1016/j.neulet.2021.136430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022]
Abstract
Clinical observations indicate that body weight (BW) extremes are associated with worse outcome after traumatic brain injury (TBI); yet, it is uncertain whether the baseline BW (bBW) may affect outcome after mouse TBI. We retrospectively analyzed 129 similarly aged (9-12 weeks) male C57BL6/J mice that were subjected to repetitive closed head TBI (rTBI) using an established weight drop paradigm as well as 55 sham injured mice. We sought to determine whether the bBW as well as the post-TBI weight relative to baseline (%BW) were associated with a variety of post-rTBI outcomes, including acute model complications (skull fractures and macroscopic hemorrhage), impact seizures, return of the righting reflex (RR), the neurological severity score (NSS), post-rTBI BW-change, and 28-day mortality. In a subset of rTBI mice, we also assessed for potential associations between the bBW and %BW and performance in the novel object recognition (NOR) task and various histological outcomes at 28 days. We found no association between the bBW with acute model complications, impact seizure burden, RR, NSS, and NOR performance at 28 days, as well as cerebral microbleed burden, presence of hyperphosphorylated tau, and TDP-43 pathology after rTBI. However, a higher bBW was associated with a longer time to first impact seizure, a greater microglial activation, astrocytosis, and neuronal loss in the injured cerebral cortex at 28 days. A greater %BW-loss was associated with a shorter impact seizure-free survival, longer time to return of the righting reflex, greater neurological deficit severity as assessed by the NSS and NOR, and worse mortality. On multiple linear regression there was no independent association of the %BW-loss with neuronal loss and neuroinflammation after adjustment for the bBW. These observations indicate that the bBW and %BW-loss may be important biological variables in certain experimental mouse TBI investigations, depending on the outcome measures of interest.
Collapse
Affiliation(s)
- Aydan Kahriman
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - James Bouley
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Mohammed Salman Shazeeb
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, United States,Department of Psychiatry University of Massachusetts Medical School, Worcester, MA 01655, United States,Correspondence to: Nils Henninger, MD, PhD, Dr med, Departments of Neurology and Psychiatry, University of Massachusetts Medical School, 55 Lake Ave, North, Worcester, MA 01655, Tel: (774) 455-3760, Fax: (508) 856-2811,
| |
Collapse
|
44
|
Peterson ND, Icso JD, Salisbury JE, Rodríguez T, Thompson PR, Pukkila-Worley R. Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition. eLife 2022; 11:e74206. [PMID: 35098926 PMCID: PMC8923663 DOI: 10.7554/elife.74206] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - J Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Tomás Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
45
|
Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener 2022; 17:1. [PMID: 34991663 PMCID: PMC8739729 DOI: 10.1186/s13024-021-00511-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/17/2021] [Indexed: 03/31/2023] Open
Abstract
Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00511-x.
Collapse
Affiliation(s)
- A Joseph Bloom
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Amy Strickland
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
46
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
47
|
Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration. Cell Rep 2021; 37:110108. [PMID: 34910914 PMCID: PMC8692746 DOI: 10.1016/j.celrep.2021.110108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Activation of the pro-degenerative protein SARM1 after diverse physical and disease-relevant injuries causes programmed axon degeneration. Original studies indicate that substantially decreased SARM1 levels are required for neuroprotection. However, we demonstrate, in Sarm1 haploinsufficient mice, that lowering SARM1 levels by 50% delays programmed axon degeneration in vivo after sciatic nerve transection and partially prevents neurite outgrowth defects in mice lacking the pro-survival factor NMNAT2. In vitro, the rate of degeneration in response to traumatic, neurotoxic, and genetic triggers of SARM1 activation is also slowed. Finally, we demonstrate that Sarm1 antisense oligonucleotides decrease SARM1 levels by more than 50% in vitro, which delays or prevents programmed axon degeneration. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injury. These data demonstrate that axon protection occurs in a Sarm1 gene dose-responsive manner and that SARM1-lowering agents have therapeutic potential, making Sarm1-targeting antisense oligonucleotides a promising therapeutic strategy. SARM1-dependent axon degeneration occurs after diverse neurotoxic triggers Silencing one allele of pro-degenerative SARM1 slows programmed axon degeneration Sarm1 ASOs can mimic this, delaying axon degeneration in multiple contexts Decreasing SARM1 expression even partially may be therapeutically valuable
Collapse
|
48
|
Doran CG, Sugisawa R, Carty M, Roche F, Fergus C, Hokamp K, Kelly VP, Bowie AG. CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages. J Biol Chem 2021; 297:101417. [PMID: 34793837 DOI: 10.1016/j.jbc.2021.101417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022] Open
Abstract
SARM1 is a toll/interleukin-1 receptor -domain containing protein, with roles proposed in both innate immunity and neuronal degeneration. Murine SARM1 has been reported to regulate the transcription of chemokines in both neurons and macrophages; however, the extent to which SARM1 contributes to transcription regulation remains to be fully understood. Here, we identify differential gene expression in bone-marrow-derived macrophages (BMDMs) from C57BL/6 congenic 129 ES cell-derived Sarm1-/- mice compared with wild type (WT). However, we found that passenger genes, which are derived from the 129 donor strain of mice that flank the Sarm1 locus, confound interpretation of the results, since many of the identified differentially regulated genes come from this region. To re-examine the transcriptional role of SARM1 in the absence of passenger genes, here we generated three Sarm1-/- mice using CRISPR/Cas9. Treatment of neurons from these mice with vincristine, a chemotherapeutic drug causing axonal degeneration, confirmed SARM1's function in that process; however, these mice also showed that lack of SARM1 has no impact on transcription of genes previously shown to be affected such as chemokines. To gain further insight into SARM1 function, we generated an epitope-tagged SARM1 mouse. In these mice, we observed high SARM1 protein expression in the brain and brainstem and lower but detectable levels in macrophages. Overall, the generation of these SARM1 knockout and epitope-tagged mice has clarified that SARM1 is expressed in mouse macrophages yet has no general role in macrophage transcriptional regulation and has provided important new models to further explore SARM1 function.
Collapse
Affiliation(s)
- Ciara G Doran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ryoichi Sugisawa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona Roche
- School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Claire Fergus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
49
|
Ko KW, Devault L, Sasaki Y, Milbrandt J, DiAntonio A. Live imaging reveals the cellular events downstream of SARM1 activation. eLife 2021; 10:e71148. [PMID: 34779400 PMCID: PMC8612704 DOI: 10.7554/elife.71148] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
SARM1 is an inducible NAD+ hydrolase that triggers axon loss and neuronal cell death in the injured and diseased nervous system. While SARM1 activation and enzyme function are well defined, the cellular events downstream of SARM1 activity but prior to axonal demise are much less well understood. Defects in calcium, mitochondria, ATP, and membrane homeostasis occur in injured axons, but the relationships among these events have been difficult to disentangle because prior studies analyzed large collections of axons in which cellular events occur asynchronously. Here, we used live imaging of mouse sensory neurons with single axon resolution to investigate the cellular events downstream of SARM1 activity. Our studies support a model in which SARM1 NADase activity leads to an ordered sequence of events from loss of cellular ATP, to defects in mitochondrial movement and depolarization, followed by calcium influx, externalization of phosphatidylserine, and loss of membrane permeability prior to catastrophic axonal self-destruction.
Collapse
Affiliation(s)
- Kwang Woo Ko
- Washington University School of MedicineSt LouisUnited States
| | - Laura Devault
- Washington University School of MedicineSt LouisUnited States
| | - Yo Sasaki
- Genetics, Washington University School of MedicineSt LouisUnited States
| | - Jeffrey Milbrandt
- Genetics, Hope Center for Neurological Disorders, Washington University School of MedicineSt LouisUnited States
| | - Aaron DiAntonio
- Developmental Biology, Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
50
|
Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, DiAntonio A, Milbrandt J. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp Neurol 2021; 345:113842. [PMID: 34403688 PMCID: PMC8571713 DOI: 10.1016/j.expneurol.2021.113842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022]
Abstract
SARM1 is an inducible NAD+ hydrolase that is the central executioner of pathological axon loss. Recently, we elucidated the molecular mechanism of SARM1 activation, demonstrating that SARM1 is a metabolic sensor regulated by the levels of NAD+ and its precursor, nicotinamide mononucleotide (NMN), via their competitive binding to an allosteric site within the SARM1 N-terminal ARM domain. In healthy neurons with abundant NAD+, binding of NAD+ blocks access of NMN to this allosteric site. However, with injury or disease the levels of the NAD+ biosynthetic enzyme NMNAT2 drop, increasing the NMN/ NAD+ ratio and thereby promoting NMN binding to the SARM1 allosteric site, which in turn induces a conformational change activating the SARM1 NAD+ hydrolase. Hence, NAD+ metabolites both regulate the activation of SARM1 and, in turn, are regulated by the SARM1 NAD+ hydrolase. This dual upstream and downstream role for NAD+ metabolites in SARM1 function has hindered mechanistic understanding of axoprotective mechanisms that manipulate the NAD+ metabolome. Here we reevaluate two methods that potently block axon degeneration via modulation of NAD+ related metabolites, 1) the administration of the NMN biosynthesis inhibitor FK866 in conjunction with the NAD+ precursor nicotinic acid riboside (NaR) and 2) the neuronal expression of the bacterial enzyme NMN deamidase. We find that these approaches not only lead to a decrease in the levels of the SARM1 activator NMN, but also an increase in the levels of the NAD+ precursor nicotinic acid mononucleotide (NaMN). We show that NaMN inhibits SARM1 activation, and demonstrate that this NaMN-mediated inhibition is important for the long-term axon protection induced by these treatments. Analysis of the NaMN-ARM domain co-crystal structure shows that NaMN competes with NMN for binding to the SARM1 allosteric site and promotes the open, autoinhibited configuration of SARM1 ARM domain. Together, these results demonstrate that the SARM1 allosteric pocket can bind a diverse set of metabolites including NMN, NAD+, and NaMN to monitor cellular NAD+ homeostasis and regulate SARM1 NAD+ hydrolase activity. The relative promiscuity of the allosteric site may enable the development of potent pharmacological inhibitors of SARM1 activation for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yo Sasaki
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA.
| | - Jian Zhu
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| | - Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Aaron DiAntonio
- Washington University School of Medicine in Saint Louis, Department of Developmental Biology, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| | - Jeffrey Milbrandt
- Washington University School of Medicine in Saint Louis, Department of Genetics, St. Louis, MO, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, USA
| |
Collapse
|