1
|
Meli A, Montano V, Palermo G, Fogli A, Rocchi A, Gerfo AL, Maltomini R, Cori L, Siniscalchi A, Bernardini C, Cecchi G, Siciliano G, Ceravolo R, Caligo MA, Mancuso M, Lopriore P. Diagnosis of hereditary ataxias: a real-world single center experience. J Neurol 2025; 272:111. [PMID: 39812846 DOI: 10.1007/s00415-024-12772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario. STUDY DESIGN This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing. RESULT A definitive diagnosis was reached in 36.7% of the cases. TREs testing was diagnostic in 30.4% of patients. The three most common TREs ataxias were FRDA (36.1%), SCA2 (27.8%), and RFC1-related ataxia/CANVAS (11.1%). In five patients, the molecular diagnosis was achieved by single gene sequencing and causative mutations were identified in POLG (2), SACS (1), DARS2 (1), MT-ATP6 (1). Of 94 patients with a suspicion of HAs of indeterminate genetic origin, 68 underwent new molecular evaluation using the NGS approach. In 28 of these cases, CES was performed after the TP sequencing resulted negative. In 13 patients, the diagnosis was achieved by NGS approach. In 7 of these 13 patients, the diagnosis was made by CES. Genes mutations identified as causative of HAs were found in SPG7 (4), SACS (1), CACNA1A (1), CACNA1G (1), EEF2 (1), PRKCG (1), KCNC3 (1), ADCK3 (1), SYNE1 (1), ITPR1 (1). A positive family history of ataxia and early onset of symptoms were associated with a higher likelihood of obtaining a definite diagnosis. CONCLUSION The molecular diagnosis of HAs remains a significant challenge for neurologists. Our data indicate that, in most cases, a diagnosis of HA can be established through first line genetic testing, particularly TREs testing. However, for patients with a clinical diagnosis of HA who do not achieve a molecular diagnosis through initial genetic tests, the use of NGS proves to be a valuable tool, providing a definitive diagnosis in approximately 20% of cases. Therefore, when feasible in clinical practice, integrating NGS testing, especially exome sequencing, into the diagnostic decision-making process for unsolved cases is crucial.
Collapse
Affiliation(s)
- Adriana Meli
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Parkinson's Disease and Movement Disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonella Fogli
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Anna Rocchi
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Rossella Maltomini
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Ludovica Cori
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Parkinson's Disease and Movement Disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Clara Bernardini
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Cecchi
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Parkinson's Disease and Movement Disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Singh S, Dransfeld UE, Ambaw YA, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. Cell 2024; 187:6820-6834.e24. [PMID: 39423811 DOI: 10.1016/j.cell.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer's disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich E Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes A Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA.
| | - Tobias C Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
3
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Wang Y, Rieschick P, Romero-Fernandez W, Appelbaum N, Carvajal-Tapia C, Shostak A, Schrag M. Phospholipase D3 regulates TFEB/TFE3 metabolism to maintain lysosomal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615214. [PMID: 39386459 PMCID: PMC11463584 DOI: 10.1101/2024.09.26.615214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A coding variant in Phospholipase D3 ( PLD3 ) increases the risk of Alzheimer's disease (AD). PLD3 is a lysosomal protein, and endosomal and lysosomal abnormalities are linked to AD; however, the role of PLD3 in lysosomal homeostasis and its implications in AD remain poorly understood. To address this knowledge gap, we conducted comprehensive studies integrating transcriptomics, proteomics, and cell biology approaches. We observed significant enlargement of lysosomes in neurons lacking PLD3, accompanied by increased endocytosis and autophagy, but a decline in lysosomal proteolytic activity. Lysosomes of PLD3-deficient cells underwent proteome remodeling, manifested by an enrichment of proteins involved in lysosomal biogenesis, endocytosis and calcium signaling. Mechanistically, we discovered that PLD3 mediates TFEB/TFE3 degradation through the proteasome, and as a result, PLD3 deficiency leads to increased TFEB/TFE3 levels, nuclear translocation, and transcriptional activities. Notably, variants in PLD3, e.g., V232M or K486R, do not alter its impact on TFEB/TFE3 metabolism. Transcriptomic profiling further confirmed the enrichment of transcripts involved in lysosomal biogenesis, endocytosis, autophagy, mTOR signaling and AD in response to PLD3 loss. Additionally, PLD3 ablation has synergistic effects with β-amyloid in causing lysosomal abnormalities and modifying TFEB/TFE3 signaling. In conclusion, our findings demonstrate that PLD3 is involved in regulating lysosomal biogenesis via TFEB/TFE3 signaling, and lysosomal abnormalities resulting from PLD3 deficiency are potentially a risk factor for AD.
Collapse
|
5
|
Bérouti M, Lammens K, Heiss M, Hansbauer L, Bauernfried S, Stöckl J, Pinci F, Piseddu I, Greulich W, Wang M, Jung C, Fröhlich T, Carell T, Hopfner KP, Hornung V. Lysosomal endonuclease RNase T2 and PLD exonucleases cooperatively generate RNA ligands for TLR7 activation. Immunity 2024; 57:1482-1496.e8. [PMID: 38697119 PMCID: PMC11470960 DOI: 10.1016/j.immuni.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.
Collapse
Affiliation(s)
- Marleen Bérouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias Heiss
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Larissa Hansbauer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jan Stöckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ignazio Piseddu
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany; Department of Medicine II, University Hospital Munich, Munich, Germany
| | - Wilhelm Greulich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
6
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. Structure 2024; 32:766-779.e7. [PMID: 38537643 PMCID: PMC11162324 DOI: 10.1016/j.str.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Sharma S, Mahadevan A, Narayanappa G, Debnath M, Govindaraj P, Shivaram S, Seshagiri DV, Siram R, Shroti A, Bindu PS, Chickabasaviah YT, Taly AB, Nagappa M. Exploring the evidence for mitochondrial dysfunction and genetic abnormalities in the etiopathogenesis of tropical ataxic neuropathy. J Neurogenet 2024; 38:27-34. [PMID: 38975939 DOI: 10.1080/01677063.2024.2373363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sumanth Shivaram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun B Taly
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
8
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
9
|
Woolley PR, Wen X, Conway OM, Ender NA, Lee JH, Paull TT. Regulation of transcription patterns, poly(ADP-ribose), and RNA-DNA hybrids by the ATM protein kinase. Cell Rep 2024; 43:113896. [PMID: 38442018 PMCID: PMC11022685 DOI: 10.1016/j.celrep.2024.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.
Collapse
Affiliation(s)
- Phillip R Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olivia M Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicolette A Ender
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Singh S, Dransfeld U, Ambaw Y, Lopez-Scarim J, Farese RV, Walther TC. PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586175. [PMID: 38562702 PMCID: PMC10983895 DOI: 10.1101/2024.03.21.586175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, in particular gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including Alzheimer's disease risk, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
Collapse
Affiliation(s)
- Shubham Singh
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Ulrich Dransfeld
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohannes Ambaw
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Joshua Lopez-Scarim
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Robert V. Farese
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
| | - Tobias C. Walther
- Cell Biology Program, Sloan Kettering Institute, MSKCC, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
11
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Mušálková D, Přistoupilová A, Jedličková I, Hartmannová H, Trešlová H, Nosková L, Hodaňová K, Bittmanová P, Stránecký V, Jiřička V, Langmajerová M, Woodbury‐Smith M, Zarrei M, Trost B, Scherer SW, Bleyer AJ, Vevera J, Kmoch S. Increased burden of rare protein-truncating variants in constrained, brain-specific and synaptic genes in extremely impulsively violent males with antisocial personality disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12882. [PMID: 38359179 PMCID: PMC10869132 DOI: 10.1111/gbb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.
Collapse
Affiliation(s)
- Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Petra Bittmanová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Václav Jiřička
- Department of PsychologyPrison Service of the Czech RepublicPragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Marc Woodbury‐Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Faculty of Medical Sciences, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Molecular Genetics and McLaughlin CentreUniversity of TorontoTorontoOntarioCanada
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Section on Nephrology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Department of PsychiatryUniversity Hospital PilsenPilsenCzech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| |
Collapse
|
13
|
Lee JC, Shirey RJ, Turner LD, Park H, Lairson LL, Janda KD. Discovery of PLD4 modulators by high-throughput screening and kinetic analysis. RESULTS IN CHEMISTRY 2024; 7:101349. [PMID: 38560090 PMCID: PMC10977906 DOI: 10.1016/j.rechem.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen (N = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library (N = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan J. Shirey
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lewis D. Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke L. Lairson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Maier M, Weiß L, Zeh N, Schmieder-Todtenhaupt V, Dehghani A, Felix MN, Heinzelmann D, Lindner B, Schmidt M, Studts J, Schulz P, Reisinger B, Otte K, Franzreb M, Lakatos D, Fischer S. Illuminating a biologics development challenge: systematic characterization of CHO cell-derived hydrolases identified in monoclonal antibody formulations. MAbs 2024; 16:2375798. [PMID: 38984665 PMCID: PMC11238916 DOI: 10.1080/19420862.2024.2375798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.
Collapse
Affiliation(s)
- Melanie Maier
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Linus Weiß
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Nikolas Zeh
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Alireza Dehghani
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
15
|
Woolley PR, Wen X, Conway OM, Ender NA, Lee JH, Paull TT. Regulation of transcription patterns, poly-ADP-ribose, and RNA-DNA hybrids by the ATM protein kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570417. [PMID: 38106035 PMCID: PMC10723464 DOI: 10.1101/2023.12.06.570417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The ATM protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in Ataxia-telangiectasia patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with expression level and GC content of transcribed genes. In human neuron-like cells in culture we map locations of poly-ADP-ribose and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of ROS in promoting these lesions. Based on these results we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.
Collapse
Affiliation(s)
- Phillip R. Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Xuemei Wen
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Olivia M. Conway
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Nicolette A. Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tanya T. Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| |
Collapse
|
16
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567917. [PMID: 38045427 PMCID: PMC10690185 DOI: 10.1101/2023.11.20.567917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a 'link-and-release' two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3' phosphistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
- Present address: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Sowmini PR, Yellaturi S, Velayutham SS, Krishnan M. Spinocerebellar ataxia 46 in a young female. J Neurosci Rural Pract 2023; 14:747-749. [PMID: 38059248 PMCID: PMC10696334 DOI: 10.25259/jnrp_75_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/25/2023] [Indexed: 12/08/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of both clinically and genetically heterogeneous neurodegenerative disorders. SCA 46 is a rare autosomal dominant ataxia initially described in a Dutch family, clinically characterized by ataxia, peripheral neuropathy, cerebellar dysarthria, and varied oculomotor abnormalities. SCA 46 has recently been discovered to be associated with a mutation in phospholipase D 3 gene.
Collapse
Affiliation(s)
- P. R. Sowmini
- Department of Neurology, Stanley Medical College, Chennai, Tamil Nadu, India
| | - Sivaroja Yellaturi
- Department of Neurology, Stanley Medical College, Chennai, Tamil Nadu, India
| | | | - Mugundhan Krishnan
- Department of Neurology, Stanley Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Cunha P, Petit E, Coutelier M, Coarelli G, Mariotti C, Faber J, Van Gaalen J, Damasio J, Fleszar Z, Tosi M, Rocca C, De Michele G, Minnerop M, Ewenczyk C, Santorelli FM, Heinzmann A, Bird T, Amprosi M, Indelicato E, Benussi A, Charles P, Stendel C, Romano S, Scarlato M, Le Ber I, Bassi MT, Serrano M, Schmitz-Hübsch T, Doss S, Van Velzen GAJ, Thomas Q, Trabacca A, Ortigoza-Escobar JD, D'Arrigo S, Timmann D, Pantaleoni C, Martinuzzi A, Besse-Pinot E, Marsili L, Cioffi E, Nicita F, Giorgetti A, Moroni I, Romaniello R, Casali C, Ponger P, Casari G, De Bot ST, Ristori G, Blumkin L, Borroni B, Goizet C, Marelli C, Boesch S, Anheim M, Filla A, Houlden H, Bertini E, Klopstock T, Synofzik M, Riant F, Zanni G, Magri S, Di Bella D, Nanetti L, Sequeiros J, Oliveira J, Van de Warrenburg B, Schöls L, Taroni F, Brice A, Durr A. Extreme phenotypic heterogeneity in non-expansion spinocerebellar ataxias. Am J Hum Genet 2023; 110:1098-1109. [PMID: 37301203 PMCID: PMC10357418 DOI: 10.1016/j.ajhg.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Collapse
Affiliation(s)
- Paulina Cunha
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Emilien Petit
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Marie Coutelier
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Caterina Mariotti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jennifer Faber
- German Center for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany; Department of Neurology, University Hospital of Bonn, 53111 Bonn, Germany
| | - Judith Van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Joana Damasio
- Neurology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal; CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Zofia Fleszar
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michele Tosi
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Giovanna De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology and Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claire Ewenczyk
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Filippo M Santorelli
- Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy
| | - Anna Heinzmann
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Thomas Bird
- University of Washington, Seattle, WA 98195, USA
| | - Matthias Amprosi
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elisabetta Indelicato
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Perrine Charles
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Claudia Stendel
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Silvia Romano
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Marina Scarlato
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Maria Teresa Bassi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Mercedes Serrano
- Pediatric Neurology Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
| | - Tanja Schmitz-Hübsch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sarah Doss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gijs A J Van Velzen
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Quentin Thomas
- Department of Clinical Genetics, Dijon University Hospital, 21000 Dijon, France
| | - Antonio Trabacca
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | | | - Stefano D'Arrigo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Chiara Pantaleoni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Martinuzzi
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Elsa Besse-Pinot
- Department of Neurology, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ettore Cioffi
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Department of Biotechnology, Università degli Studi di Verona, 37134 Verona, Italy
| | - Isabella Moroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Romina Romaniello
- Scientific Institute I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy
| | - Carlo Casali
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, 04100 Latina, Italy
| | - Penina Ponger
- Neurology Department, Tel-Aviv Sourasky Medical Center, 6329302 Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Giorgio Casari
- San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Susanne T De Bot
- Department of Neurology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giovanni Ristori
- Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, S. Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Lubov Blumkin
- Sackler School of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel; Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, 5822012 Holon, Israel
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Cyril Goizet
- University Bordeaux, Equipe « Neurogénétique Translationnelle - NRGEN », INCIA CNRS UMR5287 Université Bordeaux and Centre de Reference Maladies Rares « Neurogénétique », Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), 33000 Bordeaux, France
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM and Expert Center for Neurogenetic Diseases, CHU, 34095 Montpellier, France
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mathieu Anheim
- Department of Neurology, Strasbourg University Hospital, 67098 Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964; CNRS-UMR7104; University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Alessandro Filla
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen's Square Institute of Neurology, Queen's Square House, Queen's Square, WC1N 3BG London, UK
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Thomas Klopstock
- German Center for Neurodegenerative Disease (DZNE), München, Germany; Department of Neurology, Friedrich-Baur Institute, University Hospital of Ludwig-Maximilians-University, Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Florence Riant
- Department of Neurovascular Molecular Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, 00165 Rome, Italy
| | - Stefania Magri
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniela Di Bella
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Nanetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jorge Sequeiros
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jorge Oliveira
- CGPP, IBMC-Institute for Molecular and Cell Biology & UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bart Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Ludger Schöls
- German Center for Neurodegenerative Disease (DZNE), 72076 Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Franco Taroni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, CS21414, 75646 PARIS Cedex 13, France.
| |
Collapse
|
19
|
Ganguly J, Mukherjee S, Basu P, Mondal B, Chatterjee K, Roy A, Pande P, Kumar H. Think of SCA45 in Late-Onset Familial Ataxias: The First Report from the Indian Subcontinent with a Novel Variant. Mov Disord Clin Pract 2022; 9:1140-1143. [PMID: 36339299 PMCID: PMC9631847 DOI: 10.1002/mdc3.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jacky Ganguly
- Movement Disorder CentreInstitute of Neurosciences KolkataKolkataIndia
| | - Soumava Mukherjee
- Department of NeurologyInstitute of Neurosciences KolkataKolkataIndia
| | - Purba Basu
- Movement Disorder CentreInstitute of Neurosciences KolkataKolkataIndia
| | - Banashree Mondal
- Movement Disorder CentreInstitute of Neurosciences KolkataKolkataIndia
| | | | - Akash Roy
- Movement Disorder CentreInstitute of Neurosciences KolkataKolkataIndia
| | | | - Hrishikesh Kumar
- Movement Disorder CentreInstitute of Neurosciences KolkataKolkataIndia
| |
Collapse
|
20
|
Vansenne F, Fock JM, Stolte-Dijkstra I, Meiners LC, van den Boogaard MJH, Jaeger B, Boven L, Vos YJ, Sinke RJ, Verbeek DS. Phenotypic expansion of EGP5-related Vici syndrome: 15 Dutch patients carrying a founder variant. Eur J Paediatr Neurol 2022; 41:91-98. [PMID: 36410285 DOI: 10.1016/j.ejpn.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Vici syndrome (OMIM 242840) is a very rare autosomal recessive multisystem disorder first described in 1988. In 2013, bi-allelic loss-of-function mutations in EPG5 were reported to cause Vici syndrome. Five principal diagnostic features of Vici syndrome have been proposed: agenesis of the corpus callosum, cataracts, cardiomyopathy, hypopigmentation, and combined immunodeficiency. We identified 15 patients carrying a homozygous founder missense variant in EPG5 who all exhibit a less severe clinical phenotype than classic Vici syndrome. All 15 show typical brain abnormalities on MRI. The homozygous founder variant in EPG5 they carry results in a shorter in-frame transcript and truncated, but likely still residual, EPG5 protein. We speculate that the residual EPG5 protein explains their attenuated phenotype, which is consistent with two previous observations that low expression of EPG5 can lead to an attenuated Vici syndrome phenotype. We propose renaming this condition EPG5-related neurodevelopmental disorder to emphasize the clinical variability of patients with bi-allelic mutations in EPG5.
Collapse
Affiliation(s)
- Fleur Vansenne
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Johanna M Fock
- Department of Pediatric Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Linda C Meiners
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bregje Jaeger
- Department of Pediatric Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ludolf Boven
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yvonne J Vos
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Pilo CA, Baffi TR, Kornev AP, Kunkel MT, Malfavon M, Chen DH, Rossitto LA, Chen DX, Huang LC, Longman C, Kannan N, Raskind WH, Gonzalez DJ, Taylor SS, Gorrie G, Newton AC. Mutations in protein kinase Cγ promote spinocerebellar ataxia type 14 by impairing kinase autoinhibition. Sci Signal 2022; 15:eabk1147. [PMID: 36166510 PMCID: PMC9810342 DOI: 10.1126/scisignal.abk1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Timothy R. Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maya T. Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Daniel X. Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl Longman
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wendy H. Raskind
- Department of Medicine/Medical Genetics, University of Washington Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA 98195, USA
- Mental Illness Research, Education and Clinical Center, Department of Veterans Affairs, Seattle, WA 98108, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - George Gorrie
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Balseiro-Gómez S, Park J, Yue Y, Ding C, Shao L, Ҫetinkaya S, Kuzoian C, Hammarlund M, Verhey KJ, Yogev S. Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Dev Cell 2022; 57:1802-1816.e4. [PMID: 35809561 PMCID: PMC9378695 DOI: 10.1016/j.devcel.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023]
Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C. elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Collapse
Affiliation(s)
- Santiago Balseiro-Gómez
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chen Ding
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Selim Ҫetinkaya
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Caroline Kuzoian
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Novel Genetic Diagnoses in Septo-Optic Dysplasia. Genes (Basel) 2022; 13:genes13071165. [PMID: 35885948 PMCID: PMC9320703 DOI: 10.3390/genes13071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Septo-optic dysplasia (SOD) is a developmental phenotype characterized by midline neuroradiological anomalies, optic nerve hypoplasia, and pituitary anomalies, with a high degree of variability and additional systemic anomalies present in some cases. While disruption of several transcription factors has been identified in SOD cohorts, most cases lack a genetic diagnosis, with multifactorial risk factors being thought to play a role. Exome sequencing in a cohort of families with a clinical diagnosis of SOD identified a genetic diagnosis in 3/6 families, de novo variants in SOX2, SHH, and ARID1A, and explored variants of uncertain significance in the remaining three. The outcome of this study suggests that investigation for a genetic etiology is warranted in individuals with SOD, particularly in the presence of additional syndromic anomalies and when born to older, multigravida mothers. The identification of causative variants in SHH and ARID1A further expands the phenotypic spectra associated with these genes and reveals novel pathways to explore in septo-optic dysplasia.
Collapse
|
24
|
Miyake K, Shibata T, Fukui R, Sato R, Saitoh SI, Murakami Y. Nucleic Acid Sensing by Toll-Like Receptors in the Endosomal Compartment. Front Immunol 2022; 13:941931. [PMID: 35812450 PMCID: PMC9259784 DOI: 10.3389/fimmu.2022.941931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and functional studies have shown that recognition of NAs by TLRs depends on NA processing by RNases and DNases. DNase II-dependent DNA degradation is required for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA degradation enables TLR7 and TLR8 to respond to nucleosides and oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the endosomal compartments affects the endosomal TLR responses. Dysregulation of NA metabolism in the endosomal compartment drives the TLR-dependent pathologies in human diseases.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- *Correspondence: Kensuke Miyake,
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
25
|
A set of gene knockouts as a resource for global lipidomic changes. Sci Rep 2022; 12:10533. [PMID: 35732804 PMCID: PMC9218125 DOI: 10.1038/s41598-022-14690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.
Collapse
|
26
|
Pilo CA, Newton AC. Two Sides of the Same Coin: Protein Kinase C γ in Cancer and Neurodegeneration. Front Cell Dev Biol 2022; 10:929510. [PMID: 35800893 PMCID: PMC9253466 DOI: 10.3389/fcell.2022.929510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Protein kinase C (PKC) isozymes transduce myriad signals within the cell in response to the generation of second messengers from membrane phospholipids. The conventional isozyme PKCγ reversibly binds Ca2+ and diacylglycerol, which leads to an open, active conformation. PKCγ expression is typically restricted to neurons, but evidence for its expression in certain cancers has emerged. PKC isozymes have been labeled as oncogenes since the discovery that they bind tumor-promoting phorbol esters, however, studies of cancer-associated PKC mutations and clinical trial data showing that PKC inhibitors have worsened patient survival have reframed PKC as a tumor suppressor. Aberrant expression of PKCγ in certain cancers suggests a role outside the brain, although whether PKCγ also acts as a tumor suppressor remains to be established. On the other hand, PKCγ variants associated with spinocerebellar ataxia type 14 (SCA14), a neurodegenerative disorder characterized by Purkinje cell degeneration, enhance basal activity while preventing phorbol ester-mediated degradation. Although the basis for SCA14 Purkinje cell degeneration remains unknown, studies have revealed how altered PKCγ activity rewires cerebellar signaling to drive SCA14. Importantly, enhanced basal activity of SCA14-associated mutants inversely correlates with age of onset, supporting that enhanced PKCγ activity drives SCA14. Thus, PKCγ activity should likely be inhibited in SCA14, whereas restoring PKC activity should be the goal in cancer therapies. This review describes how PKCγ activity can be lost or gained in disease and the overarching need for a PKC structure as a powerful tool to predict the effect of PKCγ mutations in disease.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
27
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
28
|
Wei Y, Zhang D, Zuo Y. Whole-exome sequencing reveals genetic variations in humans with differential sensitivity to sevoflurane:A prospective observational study. Biomed Pharmacother 2022; 148:112724. [PMID: 35202912 DOI: 10.1016/j.biopha.2022.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The anesthesia sensitivity is heterogeneous both in animals and humans, while the underlying molecular mechanism has not yet been determined. Here, for the first time, we conducted a prospective observational study to test whether genetic variations contribute to the differential sensitivity to sevoflurane in humans. METHODS Five hundred patients who underwent abdominal surgeries were included. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain Bispectral index (BIS) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. These patients were further divided into high sensitivity group (mean - SD, H group) and low sensitivity group (mean + SD, L group) to investigate the genetic variants related to the differential sensitivity to sevoflurane by whole-exome sequencing (WES) and genome-wide association study (GWAS) in karyocyte from peripheral blood. RESULTS The mean ETsevo of these 500 patients was 1.60% ± 0.34%. After pairing, 55 patients from H group and 59 patients from L group were selected for WES (ETsevo of H group: 1.06% ± 0.13% vs. ETsevo of L group: 2.17% ± 0.16%, P < 0.001), respectively. Finally, FAT atypical cadherin 2 (FAT2, SNP rs174272, rs174271, and rs174261), acireductone dioxygenase 1 (ADI1, SNP rs117278), NEDD4 E3 ubiquitin protein ligase (NEDD4, SNP rs70048, rs70049, and rs70056), and FAD dependent oxidoreductase domain containing 2 (FOXRED2, SNP rs144281) were found to be associated with sevoflurane sensitivity. CONCLUSIONS Genetic variations may contribute to the differential sensitivity to sevoflurane among humans.
Collapse
Affiliation(s)
- Yiyong Wei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Ghorbani F, Alimohamed MZ, Vilacha JF, Van Dijk KK, De Boer-Bergsma J, Fokkens MR, Lemmink H, Sijmons RH, Sikkema-Raddatz B, Groves MR, Verschuuren-Bemelmans CC, Verbeek DS, Van Diemen CC, Westers H. Feasibility of Follow-Up Studies and Reclassification in Spinocerebellar Ataxia Gene Variants of Unknown Significance. Front Genet 2022; 13:782685. [PMID: 35401678 PMCID: PMC8990126 DOI: 10.3389/fgene.2022.782685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed Z. Alimohamed
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania
| | - Juliana F. Vilacha
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Krista K. Van Dijk
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelkje De Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michiel R. Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny Lemmink
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolf H. Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthew R. Groves
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | | | - Dineke S. Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Dineke S. Verbeek,
| | - Cleo C. Van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Helga Westers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Sharma P, Sonakar AK, Tyagi N, Suroliya V, Kumar M, Kutum R, Asokchandran V, Ambawat S, Shamim U, Anand A, Ahmad I, Shakya S, Uppili B, Mathur A, Parveen S, Jain S, Singh J, Seth M, Zahra S, Joshi A, Goel D, Sahni S, Kamai A, Wadhwa S, Murali A, Saifi S, Chowdhury D, Pandey S, Anand KS, Narasimhan RL, Laskar S, Kushwaha S, Kumar M, Shaji CV, Srivastava MVP, Srivastava AK, Faruq M. Genetics of Ataxias in Indian Population: A Collative Insight from a Common Genetic Screening Tool. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100078. [PMID: 36618024 PMCID: PMC9744545 DOI: 10.1002/ggn2.202100078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/11/2023]
Abstract
Cerebellar ataxias (CAs) represent a group of autosomal dominant and recessive neurodegenerative disorders affecting cerebellum with or without spinal cord. Overall, CAs have preponderance for tandem nucleotide repeat expansions as an etiological factor (10 TREs explain nearly 30-40% of ataxia cohort globally). The experience of 10 years of common genetic ataxia subtypes for ≈5600 patients' referrals (Pan-India) received at a single center is shared herein. Frequencies (in %, n) of SCA types and FRDA in the sample cohort are observed as follows: SCA12 (8.6%, 490); SCA2 (8.5%, 482); SCA1 (4.8%, 272); SCA3 (2%, 113); SCA7 (0.5%, 28); SCA6 (0.1%, 05); SCA17 (0.1%, 05), and FRDA (2.2%, 127). A significant amount of variability in TRE lengths at each locus is observed, we noted presence of biallelic expansion, co-occurrence of SCA-subtypes, and the presence of premutable normal alleles. The frequency of mutated GAA-FRDA allele in healthy controls is 1/158 (0.63%), thus an expected FRDA prevalence of 1:100 000 persons. The data of this study are relevant not only for clinical decision making but also for guidance in direction of genetic investigations, transancestral comparison of genotypes, and lastly provide insight for policy decision for the consideration of SCAs under rare disease category.
Collapse
Affiliation(s)
- Pooja Sharma
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | | - Nishu Tyagi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Varun Suroliya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Manish Kumar
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Rintu Kutum
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Vivekananda Asokchandran
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Sakshi Ambawat
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Avni Anand
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Ishtaq Ahmad
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Sunil Shakya
- Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Bharathram Uppili
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aradhana Mathur
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shaista Parveen
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Jain
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Jyotsna Singh
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Neurology DepartmentNeuroscience CentreNew Delhi110029India
| | - Malika Seth
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sana Zahra
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aditi Joshi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Divya Goel
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Shweta Sahni
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Asangla Kamai
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Saruchi Wadhwa
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | - Aparna Murali
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | - Sheeba Saifi
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India
| | | | - Sanjay Pandey
- Department of NeurologyGB Pant HospitalDelhi110002India
| | - Kuljeet Singh Anand
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchDr. Ram Manohar Lohia HospitalNew Delhi110001India
| | | | | | - Suman Kushwaha
- Department of NeurologyInstitute of Human Behaviour and Allied SciencesDelhi110095India
| | | | | | | | | | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB)Mall RoadDelhi110007India,Academy for Scientific and Innovative ResearchGhaziabadUttar Pradesh201002India
| | | |
Collapse
|
31
|
Strafella C, Caputo V, Termine A, Fabrizio C, Calvino G, Megalizzi D, Ruffo P, Toppi E, Banaj N, Bassi A, Bossù P, Caltagirone C, Spalletta G, Giardina E, Cascella R. Identification of Genetic Networks Reveals Complex Associations and Risk Trajectory Linking Mild Cognitive Impairment to Alzheimer’s Disease. Front Aging Neurosci 2022; 14:821789. [PMID: 35250545 PMCID: PMC8892382 DOI: 10.3389/fnagi.2022.821789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) and sporadic Alzheimer’s disease (AD) are multifactorial conditions resulting from a complex crosstalk among multiple molecular and biological processes. The present study investigates the association of variants localized in genes and miRNAs with aMCI and AD, which may represent susceptibility, prognostic biomarkers or multi-target treatment options for such conditions. We included 371 patients (217 aMCI and 154 AD) and 503 healthy controls, which were genotyped for a panel of 120 single nucleotide polymorphisms (SNPs) and, subsequently, analyzed by statistical, bioinformatics and machine-learning approaches. As a result, 21 SNPs were associated with aMCI and 13 SNPs with sporadic AD. Interestingly, a set of variants shared between aMCI and AD displayed slightly higher Odd Ratios in AD with respect to aMCI, highlighting a specific risk trajectory linking aMCI to AD. Some of the associated genes and miRNAs were shown to interact within the signaling pathways of APP (Amyloid Precursor Protein), ACE2 (Angiotensin Converting Enzyme 2), miR-155 and PPARG (Peroxisome Proliferator Activated Receptor Gamma), which are known to contribute to neuroinflammation and neurodegeneration. Overall, results of this study increase insights concerning the genetic factors contributing to the neuroinflammatory and neurodegenerative mechanisms underlying aMCI and sporadic AD. They have to be exploited to develop personalized approaches based on the individual genetic make-up and multi-target treatments.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- *Correspondence: Claudia Strafella,
| | - Valerio Caputo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Paola Ruffo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elisa Toppi
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Bassi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Emiliano Giardina,
| | - Raffaella Cascella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
32
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
33
|
Khang R, Jo A, Kang H, Kim H, Kwag E, Lee JY, Koo O, Park J, Kim HK, Jo DG, Hwang I, Ahn JY, Lee Y, Choi JY, Lee YS, Shin JH. Loss of zinc-finger protein 212 leads to Purkinje cell death and locomotive abnormalities with phospholipase D3 downregulation. Sci Rep 2021; 11:22745. [PMID: 34815492 PMCID: PMC8610974 DOI: 10.1038/s41598-021-02218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Although Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212–PLD3 relationship is important for Purkinje cell survival.
Collapse
Affiliation(s)
- Rin Khang
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Areum Jo
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Hojin Kang
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Hanna Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Eunsang Kwag
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Okjae Koo
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,ToolGen, Seoul, 08501, South Korea
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Inwoo Hwang
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Jee-Yin Ahn
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Yunjong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong-Yun Choi
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Yun-Song Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
34
|
Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat Commun 2021; 12:5874. [PMID: 34620855 PMCID: PMC8497607 DOI: 10.1038/s41467-021-26150-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Phospholipase D3 (PLD3) and PLD4 polymorphisms have been associated with several important inflammatory diseases. Here, we show that PLD3 and PLD4 digest ssRNA in addition to ssDNA as reported previously. Moreover, Pld3−/−Pld4−/− mice accumulate small ssRNAs and develop spontaneous fatal hemophagocytic lymphohistiocytosis (HLH) characterized by inflammatory liver damage and overproduction of Interferon (IFN)-γ. Pathology is rescued in Unc93b13d/3dPld3−/−Pld4−/− mice, which lack all endosomal TLR signaling; genetic codeficiency or antibody blockade of TLR9 or TLR7 ameliorates disease less effectively, suggesting that both RNA and DNA sensing by TLRs contributes to inflammation. IFN-γ made a minor contribution to pathology. Elevated type I IFN and some other remaining perturbations in Unc93b13d/3dPld3−/−Pld4−/− mice requires STING (Tmem173). Our results show that PLD3 and PLD4 regulate both endosomal TLR and cytoplasmic/STING nucleic acid sensing pathways and have implications for the treatment of nucleic acid-driven inflammatory disease. Loss of function polymorphisms of phospholipase D3 and D4 are associated with inflammatory diseases and their function is unclear. Here the authors show that PLD3/4 function as RNAses and deletion of these proteins in mice leads to accumulation of ssRNA which exacerbates inflammation through TLR signalling.
Collapse
|
35
|
Abstract
The term SCA refers to a phenotypically and genetically heterogeneous group of autosomal dominant spinocerebellar ataxias. Phenotypically they present as gait ataxia frequently in combination with dysarthria and oculomotor problems. Additional signs and symptoms are common and can include various pyramidal and extrapyramidal signs and intellectual impairment. Genetic causes of SCAs are either repeat expansions within disease genes or common mutations (point mutations, deletions, insertions etc.). Frequently the two types of mutations cause indistinguishable phenotypes (locus heterogeneity). This article focuses on SCAs caused by common mutations. It describes phenotype and genotype of the presently 27 types known and discusses the molecular pathogenesis in those 21 types where the disease gene has been identified. Apart from the dominant types, the article also summarizes findings in a variant caused by mutations in a mitochondrial gene. Possible common disease mechanisms are considered based on findings in the various SCAs described.
Collapse
Affiliation(s)
- Ulrich Müller
- Institute of Human Genetics, JLU-Gießen, Schlangenzahl 14, 35392, Giessen, Germany.
| |
Collapse
|
36
|
Raslan IR, Barsottini OG, Pedroso JL. A Proposed Clinical Classification and a Diagnostic Approach for Congenital Ataxias. Neurol Clin Pract 2021; 11:e328-e336. [PMID: 34484907 DOI: 10.1212/cpj.0000000000000966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023]
Abstract
Purpose of Review This review proposes a clinical classification for congenital ataxias based on clinical features, neuroimaging, and course of the disease. Recent Findings Congenital ataxias are an unusual group of neurologic disorders, with heterogeneous clinical and genetic presentation. Typical clinical features of congenital ataxias include variable degrees of motor developmental delay, very early onset cerebellar ataxia, cognitive impairment, and hypotonia, frequently mistakenly diagnosed as cerebral palsy. Congenital ataxias are usually nonprogressive. Neuroimaging plays an important role in the characterization of congenital ataxias. Despite the development of genetics with exome sequencing, several congenital ataxias remain undetermined, and medical literature on this topic is scarce. Summary A didactic classification based on the clinical and neuroimaging features for congenital ataxias include the following 4 main groups: cerebellar malformation, syndromic congenital ataxias, congenital cerebellar hypoplasia, and pontocerebellar hypoplasia. A diagnostic approach for congenital ataxias is proposed, and its differential diagnosis is also discussed.
Collapse
Affiliation(s)
- Ivana Rocha Raslan
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Potter JHT, Davies KTJ, Yohe LR, Sanchez MKR, Rengifo EM, Struebig M, Warren K, Tsagkogeorga G, Lim BK, dos Reis M, Dávalos LM, Rossiter SJ. Dietary Diversification and Specialization in Neotropical Bats Facilitated by Early Molecular Evolution. Mol Biol Evol 2021; 38:3864-3883. [PMID: 34426843 PMCID: PMC8382914 DOI: 10.1093/molbev/msab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.
Collapse
Affiliation(s)
- Joshua H T Potter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Earth and Planetary Science, Yale University, 210 Whitney Ave, New Haven, CT, USA
| | - Miluska K R Sanchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo M Rengifo
- Escola Superior de Agricultura ‘Luiz de Queiroz,’ Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Centro de Investigación Biodiversidad Sostenible (BioS), Lima, Peru
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kim Warren
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Mario dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci 2021; 22:ijms22168490. [PMID: 34445196 PMCID: PMC8395181 DOI: 10.3390/ijms22168490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.
Collapse
|
39
|
Briscione MA, Dinasarapu AR, Bagchi P, Donsante Y, Roman KM, Downs AM, Fan X, Hoehner J, Jinnah HA, Hess EJ. Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Mol Genet Metab 2021; 133:352-361. [PMID: 34092491 PMCID: PMC8292208 DOI: 10.1016/j.ymgme.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Collapse
Affiliation(s)
- Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jessica Hoehner
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Shirey RJ, Turner LD, Lairson LL, Janda KD. Modulators of immunoregulatory exonucleases PLD3 and PLD4 identified by high-throughput screen. Bioorg Med Chem Lett 2021; 49:128293. [PMID: 34332037 DOI: 10.1016/j.bmcl.2021.128293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers. To aid in delineating the therapeutic potential of these targets, we have developed a high-throughput fluorescence enzymatic assay to identify modulators of PLD3 and PLD4. Screening of a diversity library (N = 17952) yielded preferential inhibitors of PLD3 and PLD4 in addition to a PLD3 selective activator. The modulation models of these compounds were delineated by kinetic analysis. This work presents an inexpensive and simple method to identify modulators of these immunoregulatory exonucleases.
Collapse
Affiliation(s)
- Ryan J Shirey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Lewis D Turner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
41
|
Liu YH, Zhang HF, Jin JY, Wei YQ, Wang CY, Fan LL, Liu L. Case Report: A Homozygous Mutation (p.Y62X) of Phospholipase D3 May Lead to a New Leukoencephalopathy Syndrome. Front Aging Neurosci 2021; 13:671296. [PMID: 34267643 PMCID: PMC8276716 DOI: 10.3389/fnagi.2021.671296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of inherited disorders with highly variable clinical manifestations and pathogenetic backgrounds. At present, variants in more than 20 genes have been described and may be responsible for different types of leukodystrophies. Members of the phospholipase D family of enzymes catalyze the hydrolysis of membrane phospholipids. Meanwhile, phospholipase D3 (PLD3) has also been found to exhibit single stranded DNA (ssDNA) acid 5' exonuclease activity. Variants in phospholipase D3 (PLD3) may increase the risk of Alzheimer's disease and spinocerebellar ataxia, but this hypothesis has not been fully confirmed. In this study, we identified a novel homozygous mutation (NM_012268.3: c.186C>G/ p.Y62X) of PLD3 in a consanguineous family with white matter lesions, hearing and vision loss, and kidney disease by whole exome sequencing. Real-time PCR revealed that the novel mutation may lead to non-sense-mediated messenger RNA (mRNA) decay. This may be the first case report on the homozygous mutation of PLD3 in patients worldwide. Our studies indicated that homozygous mutation of PLD3 may result in a novel leukoencephalopathy syndrome with white matter lesions, hearing and vision loss, and kidney disease.
Collapse
Affiliation(s)
- Yi-Hui Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hai-Feng Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jie-Yuan Jin
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan-Qiu Wei
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Chen-Yu Wang
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Lv Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
42
|
Gannamani R, van der Veen S, van Egmond M, de Koning TJ, Tijssen MAJ. Challenges in Clinicogenetic Correlations: One Phenotype - Many Genes. Mov Disord Clin Pract 2021; 8:311-321. [PMID: 33816658 PMCID: PMC8015914 DOI: 10.1002/mdc3.13163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next‐generation sequencing (NGS) has facilitated an exponential increase in disease‐causing genes and genotype–phenotype correlations, and the “one‐phenotype‐many‐genes” paradigm has become prominent. Objectives To highlight the “one‐phenotype‐many‐genes” paradigm by discussing the main challenges, perspectives on how to address them, and future directions. Methods We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype. Results The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up‐to‐date gene lists. Perspectives to address these include (1) deep phenotyping and genotype–phenotype integration, (2) adherence to phenotype‐specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical‐molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data. Conclusions Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post‐NGS phenotyping and cohort analyses enriched by genotype–phenotype integration and gene networks, ought to be pursued to accelerate identification of disease‐causing genes and further improve our understanding of disease biology.
Collapse
Affiliation(s)
- Rahul Gannamani
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Sterre van der Veen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Martje van Egmond
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Tom J de Koning
- Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands.,Pediatrics, Department of Clinical Sciences Lund University Lund Sweden
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| |
Collapse
|
43
|
Tonholo Silva TY, Rosa ABR, Quaio CR, Verbeek D, Pedroso JL, Barsottini O. Does SCA45 Cause Very Late-Onset Pure Cerebellar Ataxia? NEUROLOGY-GENETICS 2021; 7:e581. [PMID: 33884300 PMCID: PMC8054959 DOI: 10.1212/nxg.0000000000000581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Thiago Y Tonholo Silva
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| | - Augusto B R Rosa
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| | - Caio R Quaio
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| | - Dineke Verbeek
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| | - José Luiz Pedroso
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| | - Orlando Barsottini
- Universidade Federal de São Paulo (T.Y.T.S., A.B.R.R., J.L.P., O.B.); Fleury Medicina Diagnóstica (C.R.Q.), São Paulo, Brazil; and University of Groningen (D.S.V.), Groningen, the Netherlands
| |
Collapse
|
44
|
Miura S, Shimojo T, Morikawa T, Kamada T, Uchiyama Y, Kurata S, Fujioka R, Shibata H. Familial paroxysmal kinesigenic dyskinesia with a novel missense variant (Arg2866Trp) in NBEA. J Hum Genet 2021; 66:805-811. [PMID: 33692494 DOI: 10.1038/s10038-021-00914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by episodic involuntary movement attacks triggered by sudden movements, acceleration, or intention to move. We ascertained two Japanese familial cases with PKD. The proband is a 22-year-old woman who had noted sudden brief (<30 s) of involuntary movements provoked by kinesigenic trigger such as starting to run, getting on a train, picking up a telephone receiver and so on at the age of 14. Interictal brain single photon emission computed tomography (SPECT) showed hyperperfusion in the left thalamus. A 46-year-old woman, the mother of the proband was also suffering from brief attacks triggered by starting to run in her high school days. On neurological examination, both showed no abnormality. Whole exome sequencing combined with rigorous filtering revealed two heterozygous nonsynonymous variants (NM_001447: c.8976G > C [p.Gln2992His] in FAT2 and NM_015678: c.8596C > T [p.Arg2866Trp] in NBEA). Real time quantitative PCR analysis of Nbea mRNA levels in the developing rat brain revealed peak at postnatal day 28 and decline at postnatal day 56. This result might match the most common clinical course of PKD from the point of view of the most common age at remission. NBEA has been reported to be responsible for neurodevelopmental disease accompanied by epilepsy. We concluded the variant in NBEA most likely to be responsible for our familial cases of PKD.
Collapse
Affiliation(s)
- Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan.,Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomofumi Shimojo
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuya Morikawa
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Kamada
- Department of Neurology, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Yusuke Uchiyama
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Seiji Kurata
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Ryuta Fujioka
- Department of Food and Nutrition, Beppu University Junior College, Beppu, 874-8501, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
45
|
Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:671-685. [PMID: 33564930 DOI: 10.1007/s00249-021-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.
Collapse
|
46
|
Sato M, Ohta T, Morikawa Y, Konno A, Hirai H, Kurauchi Y, Hisatsune A, Katsuki H, Seki T. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol 2021; 47:198-209. [PMID: 32722888 DOI: 10.1111/nan.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
AIMS Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Japan
| | - Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuri Morikawa
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Huang M, Nibbeling EAR, Lagrand TJ, Souza IA, Groen JL, Gandini MA, Zhang FX, Koelman JHTM, Adir N, Sinke RJ, Zamponi GW, Tijssen MAJ, Verbeek DS. Rare functional missense variants in CACNA1H: What can we learn from Writer's cramp? Mol Brain 2021; 14:18. [PMID: 33478561 PMCID: PMC7819179 DOI: 10.1186/s13041-021-00736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
Writer's cramp (WC) is a task-specific focal dystonia that occurs selectively in the hand and arm during writing. Previous studies have shown a role for genetics in the pathology of task-specific focal dystonia. However, to date, no causal gene has been reported for task-specific focal dystonia, including WC. In this study, we investigated the genetic background of a large Dutch family with autosomal dominant‒inherited WC that was negative for mutations in known dystonia genes. Whole exome sequencing identified 4 rare variants of unknown significance that segregated in the family. One candidate gene was selected for follow-up, Calcium Voltage-Gated Channel Subunit Alpha1 H, CACNA1H, due to its links with the known dystonia gene Potassium Channel Tetramerization Domain Containing 17, KCTD17, and with paroxysmal movement disorders. Targeted resequencing of CACNA1H in 82 WC cases identified another rare, putative damaging variant in a familial WC case that did not segregate. Using structural modelling and functional studies in vitro, we show that both the segregating p.Arg481Cys variant and the non-segregating p.Glu1881Lys variant very likely cause structural changes to the Cav3.2 protein and lead to similar gains of function, as seen in an accelerated recovery from inactivation. Both mutant channels are thus available for re-activation earlier, which may lead to an increase in intracellular calcium and increased neuronal excitability. Overall, we conclude that rare functional variants in CACNA1H need to be interpreted very carefully, and additional studies are needed to prove that the p.Arg481Cys variant is the cause of WC in the large Dutch family.
Collapse
Affiliation(s)
- Miaozhen Huang
- Department of Genetics, University Medical Center Groningen, University of Groningen, P.O. box 30 001, 9700 RB, Groningen, The Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjerk J Lagrand
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Justus L Groen
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maria A Gandini
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fang-Xiong Zhang
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes H T M Koelman
- Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion, Israel
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, P.O. box 30 001, 9700 RB, Groningen, The Netherlands
| | - Gerald W Zamponi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, P.O. box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
48
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Han F, Su D, Qu C. Spinocerebellar ataxia type 40: A case report and literature review. Transl Neurosci 2021; 12:379-384. [PMID: 34721893 PMCID: PMC8525662 DOI: 10.1515/tnsci-2020-0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases with ataxia as the main clinical manifestation. The phenotypes, gene mutations, and involved sites of different subtypes show a high degree of heterogeneity. The incidence of SCA varies greatly among different subtypes and the case of SCA40 is extremely rare. The aim of this study is to report a rare case of SCA40 and systematically review the incidence, gene mutation, and phenotype of SCAs, especially SCA40.
Collapse
Affiliation(s)
- Fengyue Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Dan Su
- Department of Neurology, Jinan Shizhong District People's Hospital, Jinan, Shandong, 250100, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
50
|
Roy A, Earley CJ, Allen RP, Kaminsky ZA. Developing a biomarker for restless leg syndrome using genome wide DNA methylation data. Sleep Med 2020; 78:120-127. [PMID: 33422814 DOI: 10.1016/j.sleep.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
This study reports on an epigenetic biomarker for restless leg syndrome (RLS) developed using whole genome DNA methylation data. Lymphocyte-derived DNA methylation was examined in 15 subjects with and without RLS (discovery cohort). T-tests and linear regressions were used followed by a principal component analysis (PCA). The principal component model from the discovery cohort was used to predict RLS status in a peripheral blood (N = 24; including 12 cases and 12 controls) and a post-mortem neural tissue (N = 71; including 36 cases and 35 controls) replication cohort as well as iron deficiency anemia status in a publicly available dataset (N = 71, 59 cases with iron deficiency anemia, 12 controls). Using receiver-operating characteristic analysis the optimum biomarker model - that included 49 probes - predicted RLS status in the blood-based replication cohort with an area under the curve (AUC) of 87.5% (confidence interval = 71.9%-100%). In the neural tissue samples, the model predicted RLS status with an AUC of 73.4% (confidence interval = 61.5%-85.3%). An AUC of 83% was found for predictions of iron deficiency anemia. Thus, the blood-based biomarker model reported here and built with epigenome-wide data showed reasonable replicability in lymphocytes and neural tissue samples. A limitation of this study is that we could not determine the metabolic or neurobiological pathways linking epigenetic changes with RLS. Further research is needed to fine-tune this model for prospective predictions of RLS and to enable translation for clinical use.
Collapse
Affiliation(s)
- Arunima Roy
- The Royal's Institute of Mental Health Research, University of Ottawa, Canada
| | - Christopher J Earley
- Department of Neurology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21209, USA
| | - Richard P Allen
- Department of Neurology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21209, USA
| | - Zachary A Kaminsky
- The Royal's Institute of Mental Health Research, University of Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa Ontario Canada; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|