1
|
van Nifterick AM, de Haan W, Stam CJ, Hillebrand A, Scheltens P, van Kesteren RE, Gouw AA. Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study. Brain Commun 2024; 6:fcae423. [PMID: 39713236 PMCID: PMC11660908 DOI: 10.1093/braincomms/fcae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease. Using high spatial resolution source-reconstructed magnetoencephalography, we investigated regional and whole-brain neurophysiological changes in a unique cohort of 11 cognitively unimpaired individuals with pathogenic mutations in the presenilin-1 or amyloid precursor protein gene and a 1:3 matched control group (n = 33) with a median age of 49 years. We examined several quantitative magnetoencephalography measures that have been shown robust in detecting differences in sporadic Alzheimer's disease patients and are sensitive to excitation-inhibition imbalance. This includes spectral power and functional connectivity in different frequency bands. We also investigated hub vulnerability using the hub disruption index. To understand how magnetoencephalography measures change as the disease progresses through its pre-clinical stage, correlations between magnetoencephalography outcomes and various clinical variables like age were analysed. A comparison of spectral power between mutation carriers and controls revealed oscillatory slowing, characterized by widespread higher theta (4-8 Hz) power, a lower posterior peak frequency and lower occipital alpha 2 (10-13 Hz) power. Functional connectivity analyses presented a lower whole-brain (amplitude-based) functional connectivity in the alpha (8-13 Hz) and beta (13-30 Hz) bands, predominantly located in parieto-temporal hub regions. Furthermore, we found a significant hub disruption index for (phase-based) functional connectivity in the theta band, attributed to both higher functional connectivity in 'non-hub' regions alongside a hub disruption. Neurophysiological changes did not correlate with indicators of pre-clinical disease progression in mutation carriers after multiple comparisons correction. Our findings provide evidence that oscillatory slowing and functional connectivity differences occur before cognitive impairment in individuals with autosomal dominant mutations leading to early onset Alzheimer's disease. The nature and direction of these alterations are comparable to those observed in the clinical stages of Alzheimer's disease, suggest an early excitation-inhibition imbalance, and fit with the activity-dependent functional degeneration hypothesis. These insights may prove useful for early diagnosis and intervention in the future.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Gallego-Rudolf J, Wiesman AI, Pichet Binette A, Villeneuve S, Baillet S. Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults. Nat Neurosci 2024; 27:2130-2137. [PMID: 39294489 PMCID: PMC11537964 DOI: 10.1038/s41593-024-01763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
Animal and computational models of Alzheimer's disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD. In these asymptomatic individuals, we found that Aβ depositions colocalize with accelerated neurophysiological activity. In those also presenting medial-temporal tau pathology, linear mixed effects of Aβ and tau depositions indicate a shift toward slower neurophysiological activity, which was also linked to cognitive decline. We conclude that early Aβ and tau depositions relate synergistically to human cortical neurophysiology and subsequent cognitive decline. Our findings provide insight into the multifaceted neurophysiological mechanisms engaged in the preclinical phases of AD.
Collapse
Affiliation(s)
- Jonathan Gallego-Rudolf
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Trabado-Fernández A, García-Colomo A, Cuadrado-Soto E, Peral-Suárez Á, Salas-González MD, Lorenzo-Mora AM, Aparicio A, Delgado-Losada ML, Maestú-Unturbe F, López-Sobaler AM. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01361-3. [PMID: 39354239 DOI: 10.1007/s11357-024-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
This study explored how adherence to the DASH diet relates to electrophysiological measures in individuals at varying Alzheimer's disease (AD) risk due to family history (FH). There were 179 dementia-free subjects. DASH index was calculated, and participants were classified into different DASH adherence groups. Tertiles of relative alpha power in default mode network (DMN) regions were calculated. Multivariate logistic regression models were used to examine the association. Lower DASH adherence was associated with decreased odds of higher relative alpha power in the DMN, observed across the entire sample and specifically among those without a FH of AD. Logistic regression models indicated that participants with poorer DASH adherence had a reduced likelihood of elevated DMN alpha power, potentially influenced by vascular and amyloid-beta mechanisms. These findings underscore the dietary pattern's potential role in neural activity modulation, particularly in individuals not genetically predisposed to AD.
Collapse
Affiliation(s)
- Alfredo Trabado-Fernández
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
| | - Alejandra García-Colomo
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
| | - Esther Cuadrado-Soto
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain.
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain.
| | - África Peral-Suárez
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Dolores Salas-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana María Lorenzo-Mora
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Aránzazu Aparicio
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María Luisa Delgado-Losada
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Fernando Maestú-Unturbe
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Ana M López-Sobaler
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| |
Collapse
|
4
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
5
|
Wiesman AI, Gallego‐Rudolf J, Villeneuve S, Baillet S, Wilson TW. Neurochemical organization of cortical proteinopathy and neurophysiology along the Alzheimer's disease continuum. Alzheimers Dement 2024; 20:6316-6331. [PMID: 39001629 PMCID: PMC11497661 DOI: 10.1002/alz.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Despite parallel research indicating amyloid-β accumulation, alterations in cortical neurophysiological signaling, and multi-system neurotransmitter disruptions in Alzheimer's disease (AD), the relationships between these phenomena remains unclear. METHODS Using magnetoencephalography, positron emission tomography, and an atlas of 19 neurotransmitters, we studied the alignment between neurophysiological alterations, amyloid-β deposition, and the neurochemical gradients of the cortex. RESULTS In patients with mild cognitive impairment and AD, changes in cortical rhythms were topographically aligned with cholinergic, serotonergic, and dopaminergic systems. These alignments correlated with the severity of clinical impairments. Additionally, cortical amyloid-β plaques were preferentially deposited along neurochemical boundaries, influencing how neurophysiological alterations align with muscarinic acetylcholine receptors. Most of the amyloid-β-neurochemical and alpha-band neuro-physio-chemical alignments replicated in an independent dataset of individuals with asymptomatic amyloid-β accumulation. DISCUSSION Our findings demonstrate that AD pathology aligns topographically with the cortical distribution of chemical neuromodulator systems and scales with clinical severity, with implications for potential pharmacotherapeutic pathways. HIGHLIGHTS Changes in cortical rhythms in Alzheimer's are organized along neurochemical boundaries. The strength of these alignments is related to clinical symptom severity. Deposition of amyloid-β (Aβ) is aligned with similar neurotransmitter systems. Aβ deposition mediates the alignment of beta rhythms with cholinergic systems. Most alignments replicate in participants with pre-clinical Alzheimer's pathology.
Collapse
Affiliation(s)
- Alex I. Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of Biomedical Physiology & KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Jonathan Gallego‐Rudolf
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Douglas Mental Health University InstituteMontrealQuebecCanada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalOmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | | |
Collapse
|
6
|
Park K, Shin JH, Byun JI, Jeong E, Kim HJ, Jung KY. Electroencephalographic spectro-spatial covariance patterns related to phenoconversion in isolated rapid eye movement sleep behavior disorder and their longitudinal trajectories in α-synucleinopathies. Sleep 2024; 47:zsae052. [PMID: 38482885 DOI: 10.1093/sleep/zsae052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/05/2024] [Indexed: 06/14/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to identify electroencephalographic (EEG) spectro-spatial covariance patterns associated with phenoconversion in isolated rapid eye movement sleep behavior disorder (iRBD) patients and explore their longitudinal trajectories within α-synucleinopathies. METHODS We assessed 47 participants, including 35 patients with iRBD and 12 healthy controls (HC), through baseline eye-closed resting EEGs. Patients with iRBD underwent follow-up EEG assessments and 18 patients with iRBD converted (12 to Parkinson's disease (PD), 6 to dementia with Lewy bodies [DLB]) during follow-up. We derived EEG spectro-spatial covariance patterns for PD-RBD and DLB-RBD from converters and HC. Correlations with motor and cognitive function, baseline distinctions among iRBD converters and nonconverters, and longitudinal trajectories were examined. RESULTS At baseline, converters exhibited higher PD-RBD and DLB-RBD beta2 pattern scores compared to nonconverters (each area under curve [AUC] = 0.7751). The delta and alpha spatial patterns effectively distinguished both PD and DLB converters from HC, with the alpha pattern showing high discriminative power (AUC = 0.9097 for PD-RBD, 0.9306 for DLB-RBD). Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III scores correlated positively with PD-RBD and DLB-RBD delta patterns (Spearman's rho = 0.688, p = 0.00014; rho = 0.539, p = 0.0055, respectively), with age and sex as cofactors. Distinct trajectories emerged during follow-up among PD converters, DLB converters, and iRBD nonconverters. CONCLUSIONS Unique EEG spectro-spatial patterns specific to PD-RBD and DLB-RBD offer potential as predictive markers for phenoconversion to α-synucleinopathies in iRBD.
Collapse
Affiliation(s)
- Kyoungeun Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
García-Colomo A, Nebreda A, Carrasco-Gómez M, de Frutos-Lucas J, Ramirez-Toraño F, Spuch C, Comis-Tuche M, Bruña R, Alfonsín S, Maestú F. Longitudinal changes in the functional connectivity of individuals at risk of Alzheimer's disease. GeroScience 2024; 46:2989-3003. [PMID: 38172488 PMCID: PMC11009204 DOI: 10.1007/s11357-023-01036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
First-degree relatives of Alzheimer's disease patients constitute a key population in the search for early markers. Our group identified functional connectivity differences between cognitively unimpaired individuals with and without a family history. In this unprecedented follow-up study, we examine whether family history is associated with a longitudinal increase in the functional connectivity of those regions. Moreover, this is the first work to correlate electrophysiological measures with plasma p-tau231 levels, a known pathology marker, to interpret the nature of the change. We evaluated 69 cognitively unimpaired individuals with a family history of Alzheimer's disease and 28 without, at two different time points, approximately 3 years apart, including resting state magnetoencephalography recordings and plasma p-tau231 determinations. Functional connectivity changes in both precunei and left anterior cingulate cortex in the high-alpha band were studied using non-parametric cluster-based permutation tests. Connectivity values were correlated with p-tau231 levels. Three clusters emerged in individuals with family history, exhibiting a longitudinal increase of connectivity. Notably, the clusters for both precunei bore a striking resemblance to those found in previous cross-sectional studies. The connectivity values at follow-up and the change in connectivity in the left precuneus cluster showed significant positive correlations with p-tau231. This study consolidates the use of electrophysiology, in combination with plasma biomarkers, to monitor healthy individuals at risk of Alzheimer's disease and emphasizes the value of combining noninvasive markers to understand the underlying mechanisms and track disease progression. This could facilitate the design of more effective intervention strategies and accurate progression assessment tools.
Collapse
Affiliation(s)
- Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain.
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Martín Carrasco-Gómez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Electronic Engineering, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Federico Ramirez-Toraño
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - María Comis-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
| |
Collapse
|
8
|
Patterson RA, Brooks H, Mirjalili M, Rashidi-Ranjbar N, Zomorrodi R, Blumberger DM, Fischer CE, Flint AJ, Graff-Guerrero A, Herrmann N, Kennedy JL, Kumar S, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Wang W, Rajji TK. Neurophysiological and other features of working memory in older adults at risk for dementia. Cogn Neurodyn 2024; 18:795-811. [PMID: 38826646 PMCID: PMC11143125 DOI: 10.1007/s11571-023-09938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
Collapse
Affiliation(s)
| | - Heather Brooks
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Corinne E. Fischer
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B, 1T8 Canada
| | - Alastair J. Flint
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- University Health Network, Toronto, ON M5G 1L7 Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Nathan Herrmann
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Krista L. Lanctôt
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1 Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| |
Collapse
|
9
|
Torres-Simón L, Cuesta P, Del Cerro A, Doval S, Chino B, Hernández L, Marsh EB, Maestú F. The effects of white matter hyperintensities on MEG power spectra in cognitively healthy aging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307438. [PMID: 38798609 PMCID: PMC11118657 DOI: 10.1101/2024.05.15.24307438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective This study sought to identify magnetoencephalography (MEG) power spectra patterns associated with cerebrovascular damage (white matter hyperintensities - WMH) and their relationship with cognitive performance and brain structure integrity in aging individuals without cognitive impairment. Methods We hypothesized a "slowness" pattern characterized by increased power in δ and θ bands and decreased power in the β band associated with the severity of vascular damage. MEG signals were analyzed in cognitively healthy older adults to investigate these associations. Results Contrary to expectations, we did not observe an increase in δ and θ power. However, we found a significant negative correlation between β band power and WMH volume. This β power reduction was linked to structural brain changes, such as larger lateral ventricles, reduced white matter volume, and decreased fractional anisotropy in critical white matter tracts, but not to cognitive performance. This suggests that β band power reduction may serve as an early marker of vascular damage before the onset of cognitive symptoms. Conclusion Our findings partially confirm our initial hypothesis by demonstrating a decrease in β band power with increased vascular damage but not the anticipated increase in slow band power. The lack of correlation between the βpow marker and cognitive performance suggests its potential utility in early identification of at-risk individuals for future cognitive impairment due to vascular origins. These results contribute to understanding the electrophysiological signatures of preclinical vascular damage and highlight the importance of MEG in detecting subtle brain changes associated with aging.
Collapse
|
10
|
Yuan D, Zhou Z, Song M, Zhang Y, Zhang Y, Ren P, Chen Z, Fu Y. Role of GABA B receptors in cognition and EEG activity in aged APP and PS1 transgenic mice. Neurochem Int 2024; 175:105718. [PMID: 38490487 DOI: 10.1016/j.neuint.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Recent evidence suggests that gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition is a major contributor to AD pathobiology, and GABAB receptors have been hypothesized to be a potential target for AD treatment. The aim of this study is to determine how GABAB regulation alters cognitive function and brain activity in an AD mouse model. Early, middle and late stage (8-23 months) amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice were used for the study. The GABAB agonist baclofen (1 and 2.5 mg/kg, i. p.) and the antagonist phaclofen (0.5 mg/kg, i. p.) were used. Primarily, we found that GABAB activation was able to improve spatial and/or working memory performance in early and late stage AD animals. In addition, GABAB activation and inhibition could regulate global and local EEG oscillations in AD animals, with activation mainly regulating low-frequency activity (delta-theta bands) and inhibition mainly regulating mid- and high-frequency activity (alpha-gamma bands), although the regulated magnitude at some frequencies was reduced in AD. The cognitive improvements in AD animals may be explained by the reduced EEG activity in the theta frequency band (2-4 Hz). This study provides evidence for a potential therapeutic effect of baclofen in the elderly AD brain and for GABAB receptor-mediated inhibition as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dong Yuan
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Zheng Zhou
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Meihui Song
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yunbin Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, 518020, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
11
|
Wiesman AI, Gallego-Rudolf J, Villeneuve S, Baillet S, Wilson TW. Alignments between cortical neurochemical systems, proteinopathy and neurophysiological alterations along the Alzheimer's disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.13.24305551. [PMID: 38645027 PMCID: PMC11030470 DOI: 10.1101/2024.04.13.24305551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Two neuropathological hallmarks of Alzheimer's disease (AD) are the accumulation of amyloid-β (Aβ) proteins and alterations in cortical neurophysiological signaling. Despite parallel research indicating disruption of multiple neurotransmitter systems in AD, it has been unclear whether these two phenomena are related to the neurochemical organization of the cortex. We leveraged task-free magnetoencephalography and positron emission tomography, with a cortical atlas of 19 neurotransmitters to study the alignment and interactions between alterations of neurophysiological signaling, Aβ deposition, and the neurochemical gradients of the human cortex. In patients with amnestic mild cognitive impairment (N = 18) and probable AD (N = 20), we found that changes in rhythmic, but not arrhythmic, cortical neurophysiological signaling relative to healthy controls (N = 20) are topographically aligned with cholinergic, serotonergic, and dopaminergic neurochemical systems. These neuro-physio-chemical alignments are related to the severity of cognitive and behavioral impairments. We also found that cortical Aβ plaques are preferentially deposited along neurochemical boundaries, and mediate how beta-band rhythmic cortical activity maps align with muscarinic acetylcholine receptors. Finally, we show in an independent dataset that many of these alignments manifest in the asymptomatic stages of cortical Aβ accumulation (N = 33; N = 71 healthy controls), particularly the Aβ-neurochemical alignments (57.1%) and neuro-physio-chemical alignments in the alpha frequency band (62.5%). Overall, the present study demonstrates that the expression of pathology in pre-clinical and clinical AD aligns topographically with the cortical distribution of chemical neuromodulator systems, scaling with clinical severity and with implications for potential pharmacotherapeutic pathways.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jonathan Gallego-Rudolf
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
12
|
Cabrera-Álvarez J, Stefanovski L, Martin L, Susi G, Maestú F, Ritter P. A Multiscale Closed-Loop Neurotoxicity Model of Alzheimer's Disease Progression Explains Functional Connectivity Alterations. eNeuro 2024; 11:ENEURO.0345-23.2023. [PMID: 38565295 PMCID: PMC11026343 DOI: 10.1523/eneuro.0345-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 04/04/2024] Open
Abstract
The accumulation of amyloid-β (Aβ) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aβ effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aβ and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aβ and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid 28040, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28040, Spain
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin 10115, Germany
| |
Collapse
|
13
|
Fernández A, Cuesta P, Marcos A, Montenegro-Peña M, Yus M, Rodríguez-Rojo IC, Bruña R, Maestú F, López ME. Sex differences in the progression to Alzheimer's disease: a combination of functional and structural markers. GeroScience 2024; 46:2619-2640. [PMID: 38105400 PMCID: PMC10828170 DOI: 10.1007/s11357-023-01020-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Mild cognitive impairment (MCI) has been frequently interpreted as a transitional phase between healthy cognitive aging and dementia, particularly of the Alzheimer's disease (AD) type. Of note, few studies explored that transition from a multifactorial perspective, taking into consideration the effect of basic factors such as biological sex. In the present study 96 subjects with MCI (37 males and 59 females) were followed-up and divided into two subgroups according to their clinical outcome: "progressive" MCI (pMCI = 41), if they fulfilled the diagnostic criteria for AD at the end of follow-up; and "stable" MCI (sMCI = 55), if they remained with the initial diagnosis. Different markers were combined to characterize sex differences between groups, including magnetoencephalography recordings, cognitive performance, and brain volumes derived from magnetic resonance imaging. Results indicated that the pMCI group exhibited higher low-frequency activity, lower scores in neuropsychological tests and reduced brain volumes than the sMCI group, being these measures significantly correlated. When sex was considered, results revealed that this pattern was mainly due to the influence of the females' sample. Overall, females exhibited lower cognitive scores and reduced brain volumes. More interestingly, females in the pMCI group showed an increased theta activity that correlated with a more abrupt reduction of cognitive and volumetric scores as compared with females in the sMCI group and with males in the pMCI group. These findings suggest that females' brains might be more vulnerable to the effects of AD pathology, since regardless of age, they showed signs of more pronounced deterioration than males.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Marcos
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Mercedes Montenegro-Peña
- Centre for the Prevention of Cognitive Impairment, Madrid Salud, Madrid City Council, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Yus
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Inmaculada Concepción Rodríguez-Rojo
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Nursing and Psysiotherapy, Universidad de Alcalá, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - María Eugenia López
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain.
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Kudo K, Ranasinghe KG, Morise H, Syed F, Sekihara K, Rankin KP, Miller BL, Kramer JH, Rabinovici GD, Vossel K, Kirsch HE, Nagarajan SS. Neurophysiological trajectories in Alzheimer's disease progression. eLife 2024; 12:RP91044. [PMID: 38546337 PMCID: PMC10977971 DOI: 10.7554/elife.91044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh Company LtdKanazawaJapan
| | - Kamalini G Ranasinghe
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh Company LtdKanazawaJapan
| | - Faatimah Syed
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | | | - Katherine P Rankin
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Bruce L Miller
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Joel H Kramer
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Gil D Rabinovici
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Keith Vossel
- Memory and Aging Center,UCSF Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan SS, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. Alzheimers Res Ther 2024; 16:62. [PMID: 38504361 PMCID: PMC10953266 DOI: 10.1186/s13195-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Kudo K, Ranasinghe KG, Morise H, Syed F, Sekihara K, Rankin KP, Miller BL, Kramer JH, Rabinovici GD, Vossel K, Kirsch HE, Nagarajan SS. Neurophysiological trajectories in Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541379. [PMID: 37293044 PMCID: PMC10245777 DOI: 10.1101/2023.05.18.541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Kamalini G Ranasinghe
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, 920-0177, Japan
| | - Faatimah Syed
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | | | - Katherine P Rankin
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Keith Vossel
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heidi E Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Hoshi H, Hirata Y, Fukasawa K, Kobayashi M, Shigihara Y. Oscillatory characteristics of resting-state magnetoencephalography reflect pathological and symptomatic conditions of cognitive impairment. Front Aging Neurosci 2024; 16:1273738. [PMID: 38352236 PMCID: PMC10861731 DOI: 10.3389/fnagi.2024.1273738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Background Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets. Therefore, this study aimed to investigate the relationships among MEG oscillatory parameters, clinically validated biomarkers computed from rCBF, and NPAs using outpatient data retrieved from hospital records. Methods Clinical data from 64 individuals with mixed pathological backgrounds were retrieved and analysed. MEG oscillatory parameters, including relative power (RP) from delta to high gamma bands, mean frequency, individual alpha frequency, and Shannon's spectral entropy, were computed for each cortical region. For SPECT data, three pathological parameters-'severity', 'extent', and 'ratio'-were computed using an easy z-score imaging system (eZIS). As for NPAs, the MMSE and FAB scores were retrieved. Results MEG oscillatory parameters were correlated with eZIS parameters. The eZIS parameters associated with Alzheimer's disease pathology were reflected in theta power augmentation and slower shift of the alpha peak. Moreover, MEG oscillatory parameters were found to reflect NPAs. Global slowing and loss of diversity in neural oscillatory components correlated with MMSE and FAB scores, whereas the associations between eZIS parameters and NPAs were sparse. Conclusion MEG oscillatory parameters correlated with both SPECT (i.e. eZIS) parameters and NPAs, supporting the clinical validity of MEG oscillatory parameters as pathological and symptomatic indicators. The findings indicate that various components of MEG oscillatory characteristics can provide valuable pathological and symptomatic information, making MEG data a rich resource for clinical examinations of patients with cognitive impairments. SPECT (i.e. eZIS) parameters showed no correlations with NPAs. The results contributed to a better understanding of the characteristics of electrophysiological and pathological examinations for patients with cognitive impairments, which will help to facilitate their co-use in clinical application, thereby improving patient care.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Yoko Hirata
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya, Japan
| | | | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
20
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan S, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2579392. [PMID: 36993350 PMCID: PMC10055509 DOI: 10.21203/rs.3.rs-2579392/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, progressively impairing memory and cognition. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify abnormal biophysical mechanisms underlying these abnormal electrophysiological patterns, we estimated the parameters of a spectral graph-theory model (SGM). SGM is an analytic model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. The long-range excitatory time scale was associated with greater deficits in global cognition and was able to distinguish AD patients from controls with high accuracy. These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the spatiospectral signatures and cognition in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan S, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2579392. [PMID: 36993350 PMCID: PMC10055509 DOI: 10.21203/rs.3.rs-2579392/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, progressively impairing memory and cognition. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify abnormal biophysical mechanisms underlying these abnormal electrophysiological patterns, we estimated the parameters of a spectral graph-theory model (SGM). SGM is an analytic model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. The long-range excitatory time scale was associated with greater deficits in global cognition and was able to distinguish AD patients from controls with high accuracy. These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the spatiospectral signatures and cognition in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Arizono E, Sato N, Shigemoto Y, Kimura Y, Chiba E, Maki H, Matsuda H, Takeshita E, Shimizu-Motohashi Y, Sasaki M, Saito K. Brain structural changes in alternating hemiplegia of childhood using single-case voxel-based morphometry analysis. Int J Dev Neurosci 2023; 83:665-673. [PMID: 37604479 DOI: 10.1002/jdn.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by ATP1A3 mutations. Using voxel-based morphometry (VBM) analysis, we compared an AHC patient cohort with controls. Additionally, with single-case VBM analysis, we assessed the associations between clinical severity and brain volume in patients with AHC. MATERIALS AND METHODS To investigate structural brain changes in gray matter (GM) and white matter (WM) volumes between 9 patients with AHC and 20 age-matched controls, VBM analysis was performed using three-dimensional T1-weighted magnetic resonance imaging. Single-case VBM analysis was also performed on nine patients with AHC to investigate the associations between the respective volumes of GM/WM differences and the motor level, cognitive level, and status epilepticus severity in patients with AHC. RESULTS Compared with controls, patients with AHC showed significant GM volume reductions in both hippocampi and diffuse cerebellum, and there were WM reductions in both cerebral hemispheres. In patients with AHC, cases with more motor dysfunction, the less GM/WM volume of cerebellum was shown. Three of the six cases with cognitive dysfunction showed a clear GM volume reduction in the insulae. Five of the six cases with status epilepticus showed the GM volume reduction in hippocampi. One case had severe status epilepticus without motor dysfunction and showed no cerebellar atrophy. CONCLUSION With single-case VBM analysis, we could show the association between region-specific changes in brain volume and the severity of various clinical symptoms even in a small sample of subjects.
Collapse
Affiliation(s)
- Elly Arizono
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Hinkley LBN, Thompson M, Miller ZA, Borghesani V, Mizuiri D, Shwe W, Licata A, Ninomiya S, Lauricella M, Mandelli ML, Miller BL, Houde J, Gorno‐Tempini ML, Nagarajan SS. Distinct neurophysiology during nonword repetition in logopenic and non-fluent variants of primary progressive aphasia. Hum Brain Mapp 2023; 44:4833-4847. [PMID: 37516916 PMCID: PMC10472914 DOI: 10.1002/hbm.26408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 06/11/2023] [Indexed: 07/31/2023] Open
Abstract
Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.
Collapse
Affiliation(s)
- Leighton B. N. Hinkley
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Megan Thompson
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Zachary A. Miller
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Danielle Mizuiri
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Wendy Shwe
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Abigail Licata
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Seigo Ninomiya
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael Lauricella
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Bruce L. Miller
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - John Houde
- Department of Otolaryngology – Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
24
|
Antón Toro LF, Salto F, Requena C, Maestú F. Electrophysiological connectivity of logical deduction: Early cortical MEG study. Cortex 2023; 166:365-376. [PMID: 37499565 DOI: 10.1016/j.cortex.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
Complex human reasoning involves minimal abilities to extract conclusions implied in the available information. These abilities are considered "deductive" because they exemplify certain abstract relations among propositions or probabilities called deductive arguments. However, the electrophysiological dynamics which supports such complex cognitive processes has not been addressed yet. In this work we consider typically deductive logico-probabilistically valid inferences and aim to verify or refute their electrophysiological functional connectivity differences from invalid inferences with the same content (same relational variables, same stimuli, same relevant and salient features). We recorded the brain electrophysiological activity of 20 participants (age = 20.35 ± 3.23) by means of an MEG system during two consecutive reasoning tasks: a search task (invalid condition) without any specific deductive rules to follow, and a logically valid deductive task (valid condition) with explicit deductive rules as instructions. We calculated the functional connectivity (FC) for each condition and conducted a seed-based analysis in a set of cortical regions of interest. Finally, we used a cluster-based permutation test to compare the differences between logically valid and invalid conditions in terms of FC. As a first novel result we found higher FC for valid condition in beta band between regions of interest and left prefrontal, temporal, parietal, and cingulate structures. FC analysis allows a second novel result which is the definition of a propositional network with operculo-cingular, parietal and medial nodes, specifically including disputed medial deductive "core" areas. The experiment discloses measurable cortical processes which do not depend on content but on truth-functional propositional operators. These experimental novelties may contribute to understand the cortical bases of deductive processes.
Collapse
Affiliation(s)
- Luis F Antón Toro
- Research Group on Aging, Neuroscience and Applied Logic, Department of Psychology, Sociology and Philosophy, University of León, Campus Vegazana S/n 24171, León, Spain; Center for Cognitive and Computational Neuroscience (C3N), Complutense University of Madrid, Campus Somosaguas, 28223 Pozuelo, Madrid, Spain; Department of Psychology, Health Faculty, Camilo José Cela University (UCJC), C. Castillo de Alarcón, 49, 28692 Villafranca Del Castillo, Madrid, Spain.
| | - Francisco Salto
- Research Group on Aging, Neuroscience and Applied Logic, Department of Psychology, Sociology and Philosophy, University of León, Campus Vegazana S/n 24171, León, Spain.
| | - Carmen Requena
- Research Group on Aging, Neuroscience and Applied Logic, Department of Psychology, Sociology and Philosophy, University of León, Campus Vegazana S/n 24171, León, Spain.
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience (C3N), Complutense University of Madrid, Campus Somosaguas, 28223 Pozuelo, Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Campus Somosaguas, 28223 Pozuelo, Madrid, Spain.
| |
Collapse
|
25
|
Hidisoglu E, Chiantia G. Frontal EEG alterations induced by hippocampal amyloid pathology in rats. Adv Med Sci 2023; 68:353-358. [PMID: 37757662 DOI: 10.1016/j.advms.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE In this study, it was aimed to determine the dose-dependent effects of hippocampal amyloid beta (Aβ) on frontal EEG activity and to elucidate the possible non-invasive biomarkers by recording spontaneous EEG in free-moving rats. MATERIAL AND METHODS Male albino Wistar rats aged 3 months were randomly divided into 4 groups (n = 8 for each group), obtained by intrahippocampal injection of saline or different doses of Aβ1-42 i.e. 0.01 μg/μl, 0.1 μg/μl, and 1 μg/μl. After two weeks of recovery period, spontaneous EEG recordings were obtained from frontal regions and spectral power analyses were performed. RESULTS We detected a general slowdown in the brain activity two weeks after Aβ1-42 injection. We observed significant increases in frontal alpha power (p = 0.0021) and significant decreases in frontal beta power (p = 0.0003) between the Sh and Aβ1-42-injected groups. More specifically, the ratio of the frontal EEG beta and alpha power (rFBA) was significantly affected by the intrahippocampal injection of Aβ1-42 (p < 0.0001). Also, we observed that rFBA was negatively and strongly correlated with hippocampal Aβ1-42 peptide levels (r = -0.781, p < 0.0001). CONCLUSION Our findings indicate that spontaneous frontal EEG beta and alpha activity were significantly affected by the intrahippocampal injection of Aβ1-42. However, the results suggest that the power ratios of these bands are more sensitive to the hippocampal amyloid pathology. As such, it is proposed that the rFBA may be a more effective biomarker for diagnosing hippocampal pathology induced by Aβ1-42.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, University of Turin, Turin, Italy; Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey.
| | | |
Collapse
|
26
|
van Heusden FC, van Nifterick AM, Souza BC, França ASC, Nauta IM, Stam CJ, Scheltens P, Smit AB, Gouw AA, van Kesteren RE. Neurophysiological alterations in mice and humans carrying mutations in APP and PSEN1 genes. Alzheimers Res Ther 2023; 15:142. [PMID: 37608393 PMCID: PMC10464047 DOI: 10.1186/s13195-023-01287-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Bryan C Souza
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
| | - Arthur S C França
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| | - Ilse M Nauta
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.
| |
Collapse
|
27
|
Chu KT, Lei WC, Wu MH, Fuh JL, Wang SJ, French IT, Chang WS, Chang CF, Huang NE, Liang WK, Juan CH. A holo-spectral EEG analysis provides an early detection of cognitive decline and predicts the progression to Alzheimer's disease. Front Aging Neurosci 2023; 15:1195424. [PMID: 37674782 PMCID: PMC10477374 DOI: 10.3389/fnagi.2023.1195424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Aims Our aim was to differentiate patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from cognitively normal (CN) individuals and predict the progression from MCI to AD within a 3-year longitudinal follow-up. A newly developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state EEG (rsEEG), and features were extracted and subjected to machine learning algorithms. Methods A total of 205 participants were recruited from three hospitals, with CN (n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1, MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3, MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients (CDR = 0.5) were longitudinally followed up with two rsEEG recordings within 3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG data, and features were extracted and subjected to machine-learning algorithms. Results (a) At the group level analysis, the HHSA contrast of MCI and different stages of AD showed augmented amplitude modulation (AM) power of lower-frequency oscillations (LFO; delta and theta bands) with attenuated AM power of higher-frequency oscillations (HFO; beta and gamma bands) compared with cognitively normal elderly controls. The alpha frequency oscillation showed augmented AM power across MCI to AD1 with a reverse trend at AD2. (b) At the individual level of cross-sectional analysis, implementation of machine learning algorithms discriminated between groups with good sensitivity (Sen) and specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs. AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3: 0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted HHSA between MCI-S and MCI-C groups showed significantly attenuated AM power of alpha and beta band oscillations. (d) At the individual level analysis of longitudinal MCI groups, deploying machine learning algorithms with the best seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM) classifier, with a specificity of 0.8 yielded by the decision tree classifier. Conclusion Integrating HHSA into EEG signals and machine learning algorithms can differentiate between CN and MCI as well as also predict AD progression at the MCI stage.
Collapse
Affiliation(s)
- Kwo-Ta Chu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Yang-Ming Hospital, Taoyuan, Taiwan
| | - Weng-Chi Lei
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Ming-Hsiu Wu
- Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Long-Term Care and Health Promotion, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Isobel T. French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Central University and Academia Sinica, Taipei, Taiwan
| | - Wen-Sheng Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Norden E. Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Key Laboratory of Data Analysis and Applications, First Institute of Oceanography, SOA, Qingdao, China
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Liu Z, Shu K, Geng Y, Cai C, Kang H. Deep brain stimulation of fornix in Alzheimer's disease: From basic research to clinical practice. Eur J Clin Invest 2023; 53:e13995. [PMID: 37004153 DOI: 10.1111/eci.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases associated with the degradation of memory and cognitive ability. Current pharmacotherapies show little therapeutic effect in AD treatment and still cannot prevent the pathological progression of AD. Deep brain stimulation (DBS) has shown to enhance memory in morbid obese, epilepsy and traumatic brain injury patients, and cognition in Parkinson's disease (PD) patients deteriorates during DBS off. Some relevant animal studies and clinical trials have been carried out to discuss the DBS treatment for AD. Reviewing the fornix trials, no unified conclusion has been reached about the clinical benefits of DBS in AD, and the dementia ratings scale has not been effectively improved in the long term. However, some patients have presented promising results, such as improved glucose metabolism, increased connectivity in cognition-related brain regions and even elevated cognitive function rating scale scores. The fornix plays an important regulatory role in memory, attention, and emotion through its complex fibre projection to cognition-related structures, making it a promising target for DBS for AD treatment. Moreover, the current stereotaxic technique and various evaluation methods have provided references for the operator to select accurate stimulation points. Related adverse events and relatively higher costs in DBS have been emphasized. In this article, we summarize and update the research progression on fornix DBS in AD and seek to provide a reliable reference for subsequent experimental studies on DBS treatment of AD.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yumei Geng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Cai
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei Province, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
29
|
Casagrande CC, Rempe MP, Springer SD, Wilson TW. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer's disease using electrophysiological methods. Ageing Res Rev 2023; 88:101950. [PMID: 37156399 PMCID: PMC10261850 DOI: 10.1016/j.arr.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
With an aging population, cognitive decline and neurodegenerative disorders are an emerging public health crises with enormous, yet still under-recognized burdens. Alzheimer's disease (AD) is the most common type of dementia, and the number of cases is expected to dramatically rise in the upcoming decades. Substantial efforts have been placed into understanding the disease. One of the primary avenues of research is neuroimaging, and while positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are most common, crucial recent advancements in electrophysiological methods such as magnetoencephalography (MEG) and electroencephalography (EEG) have provided novel insight into the aberrant neural dynamics at play in AD pathology. In this review, we outline task-based M/EEG studies published since 2010 using paradigms probing the cognitive domains most affected by AD, including memory, attention, and executive functioning. Furthermore, we provide important recommendations for adapting cognitive tasks for optimal use in this population and adjusting recruitment efforts to improve and expand future neuroimaging work.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
30
|
Pusil S, Zegarra-Valdivia J, Cuesta P, Laohathai C, Cebolla AM, Haueisen J, Fiedler P, Funke M, Maestú F, Cheron G. Effects of spaceflight on the EEG alpha power and functional connectivity. Sci Rep 2023; 13:9489. [PMID: 37303002 DOI: 10.1038/s41598-023-34744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.
Collapse
Affiliation(s)
- Sandra Pusil
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Universidad Señor de Sipán, Chiclayo, Peru
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitario, Hospital Clínico San Carlos, Madrid, Spain
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
31
|
Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W. The electrophysiological and neuropathological profiles of cerebellum in APP swe /PS1 ΔE9 mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023; 19:2365-2375. [PMID: 36469008 DOI: 10.1002/alz.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022]
Abstract
We propose the hypothesis that the cerebellar electrophysiology and sleep-wake cycles may be altered at the early stage of Alzheimer's disease (AD), proceeding the amyloid-β neuropathological hallmarks. The electrophysiologic characteristics of cerebellum thereby might be served as a biomarker in the prepathological detection of AD. Sleep disturbances are common in preclinical AD patients, and the cerebellum has been implicated in sleep-wake regulation by several pioneer studies. Additionally, recent studies suggest that the structure and function of the cerebellum may be altered at the early stages of AD, indicating that the cerebellum may be involved in the disease's progression. We used APPswe /PS1ΔE9 mice as a model of AD, monitored and analyzed electroencephalogram data, and assessed neuropathological profiles in the cerebellum of AD mice. Our hypothesis may establish a linkage between the cerebellum and AD, thereby potentially providing new perspectives on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Manli Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rong Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
32
|
Rempe MP, Wiesman AI, Murman DL, May PE, Christopher-Hayes NJ, Wolfson SL, Johnson CM, Wilson TW. Sleep quality differentially modulates neural oscillations and proteinopathy in Alzheimer's disease. EBioMedicine 2023; 92:104610. [PMID: 37182265 PMCID: PMC10200835 DOI: 10.1016/j.ebiom.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Alterations in resting-state neural activity have been reported in people with sleep disruptions and in patients with Alzheimer's disease, but the direct impact of sleep quality on Alzheimer's disease-related neurophysiological aberrations is unclear. METHODS We collected cross-sectional resting-state magnetoencephalography and extensive neuropsychological and clinical data from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal older control participants. Sleep efficiency was quantified using the Pittsburgh Sleep Quality Index. FINDINGS Neural activity in the delta frequency range was differentially affected by poor sleep in patients on the Alzheimer's disease spectrum. Such neural changes were related to processing speed abilities and regional amyloid accumulation, and these associations were mediated and moderated, respectively, by sleep quality. INTERPRETATION Together, our results point to a mechanistic role for sleep disturbances in the widely reported neurophysiological aberrations seen in patients on the Alzheimer's disease spectrum, with implications for basic research and clinical intervention. FUNDING National Institutes of Health, USA.
Collapse
Affiliation(s)
- Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA; University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 0G4, Canada.
| | - Daniel L Murman
- University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA
| | - Pamela E May
- University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA
| | - Nicholas J Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA; Center for Mind and Brain, University of California, Davis, CA, 95618, USA
| | - Sara L Wolfson
- University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA
| | - Craig M Johnson
- University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA; University of Nebraska Medical Center (UNMC), College of Medicine, Omaha, NE, 68198, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, 68178 USA
| |
Collapse
|
33
|
Stam CJ, van Nifterick AM, de Haan W, Gouw AA. Network Hyperexcitability in Early Alzheimer's Disease: Is Functional Connectivity a Potential Biomarker? Brain Topogr 2023:10.1007/s10548-023-00968-7. [PMID: 37173584 DOI: 10.1007/s10548-023-00968-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Network hyperexcitability (NH) is an important feature of the pathophysiology of Alzheimer's disease. Functional connectivity (FC) of brain networks has been proposed as a potential biomarker for NH. Here we use a whole brain computational model and resting-state MEG recordings to investigate the relation between hyperexcitability and FC. Oscillatory brain activity was simulated with a Stuart Landau model on a network of 78 interconnected brain regions. FC was quantified with amplitude envelope correlation (AEC) and phase coherence (PC). MEG was recorded in 18 subjects with subjective cognitive decline (SCD) and 18 subjects with mild cognitive impairment (MCI). Functional connectivity was determined with the corrected AECc and phase lag index (PLI), in the 4-8 Hz and the 8-13 Hz bands. The excitation/inhibition balance in the model had a strong effect on both AEC and PC. This effect was different for AEC and PC, and was influenced by structural coupling strength and frequency band. Empirical FC matrices of SCD and MCI showed a good correlation with model FC for AEC, but less so for PC. For AEC the fit was best in the hyperexcitable range. We conclude that FC is sensitive to changes in E/I balance. The AEC was more sensitive than the PLI, and results were better for the thetaband than the alpha band. This conclusion was supported by fitting the model to empirical data. Our study justifies the use of functional connectivity measures as surrogate markers for E/I balance.
Collapse
Affiliation(s)
- C J Stam
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - A M van Nifterick
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - W de Haan
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - A A Gouw
- Department of Neurology, Amsterdam Neuroscience, Clinical Neurophysiology and MEG Center, Vrij Universiteit Amsterdam, Amsterdam UMC, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
34
|
van Nifterick AM, Mulder D, Duineveld DJ, Diachenko M, Scheltens P, Stam CJ, van Kesteren RE, Linkenkaer-Hansen K, Hillebrand A, Gouw AA. Resting-state oscillations reveal disturbed excitation-inhibition ratio in Alzheimer's disease patients. Sci Rep 2023; 13:7419. [PMID: 37150756 PMCID: PMC10164744 DOI: 10.1038/s41598-023-33973-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
An early disruption of neuronal excitation-inhibition (E-I) balance in preclinical animal models of Alzheimer's disease (AD) has been frequently reported, but is difficult to measure directly and non-invasively in humans. Here, we examined known and novel neurophysiological measures sensitive to E-I in patients across the AD continuum. Resting-state magnetoencephalography (MEG) data of 86 amyloid-biomarker-confirmed subjects across the AD continuum (17 patients diagnosed with subjective cognitive decline, 18 with mild cognitive impairment (MCI) and 51 with dementia due to probable AD (AD dementia)), 46 healthy elderly and 20 young control subjects were reconstructed to source-space. E-I balance was investigated by detrended fluctuation analysis (DFA), a functional E/I (fE/I) algorithm, and the aperiodic exponent of the power spectrum. We found a disrupted E-I ratio in AD dementia patients specifically, by a lower DFA, and a shift towards higher excitation, by a higher fE/I and a lower aperiodic exponent. Healthy subjects showed lower fE/I ratios (< 1.0) than reported in previous literature, not explained by age or choice of an arbitrary threshold parameter, which warrants caution in interpretation of fE/I results. Correlation analyses showed that a lower DFA (E-I imbalance) and a lower aperiodic exponent (more excitation) was associated with a worse cognitive score in AD dementia patients. In contrast, a higher DFA in the hippocampi of MCI patients was associated with a worse cognitive score. This MEG-study showed E-I imbalance, likely due to increased excitation, in AD dementia, but not in early stage AD patients. To accurately determine the direction of shift in E-I balance, validations of the currently used markers and additional in vivo markers of E-I are required.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands.
| | - Danique Mulder
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Denise J Duineveld
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Marina Diachenko
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
36
|
Torres-Simon L, Cuesta P, del Cerro-Leon A, Chino B, Orozco LH, Marsh EB, Gil P, Maestu F. The effects of white matter hyperintensities on MEG power spectra in population with mild cognitive impairment. Front Hum Neurosci 2023; 17:1068216. [PMID: 36875239 PMCID: PMC9977191 DOI: 10.3389/fnhum.2023.1068216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Cerebrovascular disease is responsible for up to 20% of cases of dementia worldwide, but also it is a major comorbid contributor to the progression of other neurodegenerative diseases, like Alzheimer's disease. White matter hyperintensities (WMH) are the most prevalent imaging marker in cerebrovascular disease. The presence and progression of WMH in the brain have been associated with general cognitive impairment and the risk to develop all types of dementia. The aim of this piece of work is the assessment of brain functional differences in an MCI population based on the WMH volume. One-hundred and twenty-nine individuals with mild cognitive impairment (MCI) underwent a neuropsychological evaluation, MRI assessment (T1 and Flair), and MEG recordings (5 min of eyes closed resting state). Those participants were further classified into vascular MCI (vMCI; n = 61, mean age 75 ± 4 years, 35 females) or non-vascular MCI (nvMCI; n = 56, mean age 72 ± 5 years, 36 females) according to their WMH total volume, assessed with an automatic detection toolbox, LST (SPM12). We used a completely data-driven approach to evaluate the differences in the power spectra between the groups. Interestingly, three clusters emerged: One cluster with widespread larger theta power and two clusters located in both temporal regions with smaller beta power for vMCI compared to nvMCI. Those power signatures were also associated with cognitive performance and hippocampal volume. Early identification and classification of dementia pathogenesis is a crucially important goal for the search for more effective management approaches. These findings could help to understand and try to palliate the contribution of WMH to particular symptoms in mixed dementia progress.
Collapse
Affiliation(s)
- Lucia Torres-Simon
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Pablo Cuesta
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Alberto del Cerro-Leon
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Brenda Chino
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Lucia H. Orozco
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Pedro Gil
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Geriatric Medicine, Hospital Universitario San Carlos, Madrid, Spain
| | - Fernando Maestu
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
37
|
Early visual alterations in individuals at-risk of Alzheimer's disease: a multidisciplinary approach. Alzheimers Res Ther 2023; 15:19. [PMID: 36694201 PMCID: PMC9872347 DOI: 10.1186/s13195-023-01166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND The earliest pathological features of Alzheimer's disease (AD) appear decades before the clinical symptoms. The pathology affects the brain and the eye, leading to retinal structural changes and functional visual alterations. Healthy individuals at high risk of developing AD present alterations in these ophthalmological measures, as well as in resting-state electrophysiological activity. However, it is unknown whether the ophthalmological alterations are related to the visual-related electrophysiological activity. Elucidating this relationship is paramount to understand the mechanisms underlying the early deterioration of the system and an important step in assessing the suitability of these measures as early biomarkers of disease. METHODS In total, 144 healthy subjects: 105 with family history of AD and 39 without, underwent ophthalmologic analysis, magnetoencephalography recording, and genotyping. A subdivision was made to compare groups with less demographic and more risk differences: 28 high-risk subjects (relatives/APOEɛ4 +) and 16 low-risk (non-relatives/APOEɛ4 -). Differences in visual acuity, contrast sensitivity, and macular thickness were evaluated. Correlations between each variable and visual-related electrophysiological measures (M100 latency and time-frequency power) were calculated for each group. RESULTS High-risk groups showed increased visual acuity. Visual acuity was also related to a lower M100 latency and a greater power time-frequency cluster in the high-risk group. Low-risk groups did not show this relationship. High-risk groups presented trends towards a greater contrast sensitivity that did not remain significant after correction for multiple comparisons. The highest-risk group showed trends towards the thinning of the inner plexiform and inner nuclear layers that did not remain significant after correction. The correlation between contrast sensitivity and macular thickness, and the electrophysiological measures were not significant after correction. The difference between the high- and low- risk groups correlations was no significant. CONCLUSIONS To our knowledge, this paper is the first of its kind, assessing the relationship between ophthalmological and electrophysiological measures in healthy subjects at distinct levels of risk of AD. The results are novel and unexpected, showing an increase in visual acuity among high-risk subjects, who also exhibit a relationship between this measure and visual-related electrophysiological activity. These results have not been previously explored and could constitute a useful object of research as biomarkers for early detection and the evaluation of potential interventions' effectiveness.
Collapse
|
38
|
Meehan CE, Schantell M, Wiesman AI, Wolfson SL, O’Neill J, Bares SH, Johnson CM, May PE, Murman DL, Wilson TW. Oscillatory markers of neuroHIV-related cognitive impairment and Alzheimer's disease during attentional interference processing. Aging (Albany NY) 2023; 15:524-541. [PMID: 36656738 PMCID: PMC9925679 DOI: 10.18632/aging.204496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
People with HIV (PWH) frequently experience mild cognitive decline, which is typically attributed to HIV-associated neurocognitive disorder (HAND). However, such declines could also be a sign of early Alzheimer's disease (AD) in older PWH. Distinguishing these two pathologies in PWH is exceedingly difficult, as there is a major knowledge gap regarding their neural and neuropsychological bases. In the current study, we begin to address this knowledge gap by recording magnetoencephalography (MEG) during a flanker interference task in 31 biomarker-confirmed patients on the AD spectrum (ADS), 25 older participants with HAND, and 31 cognitively-normal controls. MEG data was examined in the time-frequency domain using a data-driven approach. Our results indicated that the clinical groups (ADS/HAND) performed significantly worse than controls on the task and exhibited aberrations in interference-related theta and alpha oscillations, some of which were disease-specific. Specifically, patients (ADS/HAND) exhibited weaker interference activity in frontoparietal and cingulate cortices compared to controls, while the ADS group exhibited stronger theta interference than those with HAND in frontoparietal, occipital, and temporal cortices. These results reveal overlapping and distinct patterns of neurophysiological alterations among those with ADS and HAND in attentional processing centers and suggest the existence of unique oscillatory markers of each condition.
Collapse
Affiliation(s)
- Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, CA
| | | | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H. Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Pamela E. May
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
| | - Daniel L. Murman
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
- Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
39
|
Morrone CD, Tsang AA, Giorshev SM, Craig EE, Yu WH. Concurrent behavioral and electrophysiological longitudinal recordings for in vivo assessment of aging. Front Aging Neurosci 2023; 14:952101. [PMID: 36742209 PMCID: PMC9891465 DOI: 10.3389/fnagi.2022.952101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophysiological and behavioral alterations, including sleep and cognitive impairments, are critical components of age-related decline and neurodegenerative diseases. In preclinical investigation, many refined techniques are employed to probe these phenotypes, but they are often conducted separately. Herein, we provide a protocol for one-time surgical implantation of EMG wires in the nuchal muscle and a skull-surface EEG headcap in mice, capable of 9-to-12-month recording longevity. All data acquisitions are wireless, making them compatible with simultaneous EEG recording coupled to multiple behavioral tasks, as we demonstrate with locomotion/sleep staging during home-cage video assessments, cognitive testing in the Barnes maze, and sleep disruption. Time-course EEG and EMG data can be accurately mapped to the behavioral phenotype and synchronized with neuronal frequencies for movement and the location to target in the Barnes maze. We discuss critical steps for optimizing headcap surgery and alternative approaches, including increasing the number of EEG channels or utilizing depth electrodes with the system. Combining electrophysiological and behavioral measurements in preclinical models of aging and neurodegeneration has great potential for improving mechanistic and therapeutic assessments and determining early markers of brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,*Correspondence: Christopher Daniel Morrone,
| | - Arielle A. Tsang
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sarah M. Giorshev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Emily E. Craig
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Wai Haung Yu,
| |
Collapse
|
40
|
Choi J, Ku B, Doan DNT, Park J, Cha W, Kim JU, Lee KH. Prefrontal EEG slowing, synchronization, and ERP peak latency in association with predementia stages of Alzheimer's disease. Front Aging Neurosci 2023; 15:1131857. [PMID: 37032818 PMCID: PMC10076640 DOI: 10.3389/fnagi.2023.1131857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background Early screening of elderly individuals who are at risk of dementia allows timely medical interventions to prevent disease progression. The portable and low-cost electroencephalography (EEG) technique has the potential to serve it. Objective We examined prefrontal EEG and event-related potential (ERP) variables in association with the predementia stages of Alzheimer's disease (AD). Methods One hundred elderly individuals were recruited from the GARD cohort. The participants were classified into four groups according to their amyloid beta deposition (A+ or A-) and neurodegeneration status (N+ or N-): cognitively normal (CN; A-N-, n = 27), asymptomatic AD (aAD; A + N-, n = 15), mild cognitive impairment (MCI) with AD pathology (pAD; A+N+, n = 16), and MCI with non-AD pathology (MCI(-); A-N+, n = 42). Prefrontal resting-state eyes-closed EEG measurements were recorded for five minutes and auditory ERP measurements were recorded for 8 min. Three variables of median frequency (MDF), spectrum triangular index (STI), and positive-peak latency (PPL) were employed to reflect EEG slowing, temporal synchrony, and ERP latency, respectively. Results Decreasing prefrontal MDF and increasing PPL were observed in the MCI with AD pathology. Interestingly, after controlling for age, sex, and education, we found a significant negative association between MDF and the aAD and pAD stages with an odds ratio (OR) of 0.58. Similarly, PPL exhibited a significant positive association with these AD stages with an OR of 2.36. Additionally, compared with the MCI(-) group, significant negative associations were demonstrated by the aAD group with STI and those in the pAD group with MDF with ORs of 0.30 and 0.42, respectively. Conclusion Slow intrinsic EEG oscillation is associated with MCI due to AD, and a delayed ERP peak latency is likely associated with general cognitive impairment. MCI individuals without AD pathology exhibited better cortical temporal synchronization and faster EEG oscillations than those with aAD or pAD. Significance The EEG/ERP variables obtained from prefrontal EEG techniques are associated with early cognitive impairment due to AD and non-AD pathology. This result suggests that prefrontal EEG/ERP metrics may serve as useful indicators to screen elderly individuals' early stages on the AD continuum as well as overall cognitive impairment.
Collapse
Affiliation(s)
- Jungmi Choi
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Republic of Korea
| | - Boncho Ku
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dieu Ni Thi Doan
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- School of Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Junwoo Park
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Wonseok Cha
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, Republic of Korea
| | - Jaeuk U. Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- School of Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
- *Correspondence: Jaeuk U. Kim,
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Kun Ho Lee,
| |
Collapse
|
41
|
Caravaglios G, Muscoso EG, Blandino V, Di Maria G, Gangitano M, Graziano F, Guajana F, Piccoli T. EEG Resting-State Functional Networks in Amnestic Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:36-50. [PMID: 35758261 DOI: 10.1177/15500594221110036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Alzheimer's cognitive-behavioral syndrome is the result of impaired connectivity between nerve cells, due to misfolded proteins, which accumulate and disrupt specific brain networks. Electroencephalography, because of its excellent temporal resolution, is an optimal approach for assessing the communication between functionally related brain regions. Objective. To detect and compare EEG resting-state networks (RSNs) in patients with amnesic mild cognitive impairment (aMCI), and healthy elderly (HE). Methods. We recruited 125 aMCI patients and 70 healthy elderly subjects. One hundred and twenty seconds of artifact-free EEG data were selected and compared between patients with aMCI and HE. We applied standard low-resolution brain electromagnetic tomography (sLORETA)-independent component analysis (ICA) to assess resting-state networks. Each network consisted of a set of images, one for each frequency (delta, theta, alpha1/2, beta1/2). Results. The functional ICA analysis revealed 17 networks common to groups. The statistical procedure demonstrated that aMCI used some networks differently than HE. The most relevant findings were as follows. Amnesic-MCI had: i) increased delta/beta activity in the superior frontal gyrus and decreased alpha1 activity in the paracentral lobule (ie, default mode network); ii) greater delta/theta/alpha/beta in the superior frontal gyrus (i.e, attention network); iii) lower alpha in the left superior parietal lobe, as well as a lower delta/theta and beta, respectively in post-central, and in superior frontal gyrus(ie, attention network). Conclusions. Our study confirms sLORETA-ICA method is effective in detecting functional resting-state networks, as well as between-groups connectivity differences. The findings provide support to the Alzheimer's network disconnection hypothesis.
Collapse
Affiliation(s)
- G Caravaglios
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - E G Muscoso
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - V Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - G Di Maria
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - M Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - F Graziano
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - F Guajana
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - T Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| |
Collapse
|
42
|
Maldjian JA, Lee R, Jordan J, Davenport EM, Proskovec AL, Wintermark M, Stufflebeam S, Anderson J, Mukherjee P, Nagarajan SS, Ferrari P, Gaetz W, Schwartz E, Roberts TPL. ACR White Paper on Magnetoencephalography and Magnetic Source Imaging: A Report from the ACR Commission on Neuroradiology. AJNR Am J Neuroradiol 2022; 43:E46-E53. [PMID: 36456085 DOI: 10.3174/ajnr.a7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Magnetoencephalography, the extracranial detection of tiny magnetic fields emanating from intracranial electrical activity of neurons, and its source modeling relation, magnetic source imaging, represent a powerful functional neuroimaging technique, able to detect and localize both spontaneous and evoked activity of the brain in health and disease. Recent years have seen an increased utilization of this technique for both clinical practice and research, in the United States and worldwide. This report summarizes current thinking, presents recommendations for clinical implementation, and offers an outlook for emerging new clinical indications.
Collapse
Affiliation(s)
- J A Maldjian
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.) .,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - R Lee
- Department of Neuroradiology (R.L.), University of California San Diego, San Diego, California
| | - J Jordan
- ACR Commission on Neuroradiology (J.J.), American College of Radiology, Reston, Virginia.,Stanford University School of Medicine (J.J.), Stanford, California
| | - E M Davenport
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.).,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - A L Proskovec
- From the Advanced Neuroscience Imaging Research Laboratory (J.A.M., E.M.D., A.L.P.).,MEG Center of Excellence (J.A.M., E.M.D., A.L.P.).,Department of Radiology (J.A.M., E.M.D., A.L.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - M Wintermark
- Department of Neuroradiology (M.W.), University of Texas MD Anderson Center, Houston, Texas
| | - S Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging (S.S.), Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - J Anderson
- Department of Radiology and Imaging Sciences (J.A.), University of Utah School of Medicine, Salt Lake City, Utah
| | - P Mukherjee
- Department of Radiology and Biomedical Imaging (P.M., S.S.N.), University of California, San Francisco, San Francisco, California
| | - S S Nagarajan
- Department of Radiology and Biomedical Imaging (P.M., S.S.N.), University of California, San Francisco, San Francisco, California
| | - P Ferrari
- Pediatric Neurosciences (P.F.), Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Department of Pediatrics and Human Development (P.F.), College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - W Gaetz
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E Schwartz
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - T P L Roberts
- Department of Radiology (W.G., E.S., T.P.L.R.), Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther 2022; 14:101. [PMID: 35879779 PMCID: PMC9310500 DOI: 10.1186/s13195-022-01041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2022] [Indexed: 01/30/2023]
Abstract
Background Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients. Methods To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline. Results All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD. Conclusions Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01041-4.
Collapse
|
44
|
Cortical electrical activity changes in healthy aging using EEG-eLORETA analysis. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
45
|
Mondino A, Gutiérrez M, González C, Mateos D, Torterolo P, Olby N, Delucchi L. Electroencephalographic signatures of dogs with presumptive diagnosis of canine cognitive dysfunction. Res Vet Sci 2022; 150:36-43. [DOI: 10.1016/j.rvsc.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
46
|
González-López M, Gonzalez-Moreira E, Areces-González A, Paz-Linares D, Fernández T. Who's driving? The default mode network in healthy elderly individuals at risk of cognitive decline. Front Neurol 2022; 13:1009574. [PMID: 36530633 PMCID: PMC9749402 DOI: 10.3389/fneur.2022.1009574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction Age is the main risk factor for the development of neurocognitive disorders, with Alzheimer's disease being the most common. Its physiopathological features may develop decades before the onset of clinical symptoms. Quantitative electroencephalography (qEEG) is a promising and cost-effective tool for the prediction of cognitive decline in healthy older individuals that exhibit an excess of theta activity. The aim of the present study was to evaluate the feasibility of brain connectivity variable resolution electromagnetic tomography (BC-VARETA), a novel source localization algorithm, as a potential tool to assess brain connectivity with 19-channel recordings, which are common in clinical practice. Methods We explored differences in terms of functional connectivity among the nodes of the default mode network between two groups of healthy older participants, one of which exhibited an EEG marker of risk for cognitive decline. Results The risk group exhibited increased levels of delta, theta, and beta functional connectivity among nodes of the default mode network, as well as reversed directionality patterns of connectivity among nodes in every frequency band when compared to the control group. Discussion We propose that an ongoing pathological process may be underway in healthy elderly individuals with excess theta activity in their EEGs, which is further evidenced by changes in their connectivity patterns. BC-VARETA implemented on 19-channels EEG recordings appears to be a promising tool to detect dysfunctions at the connectivity level in clinical settings.
Collapse
Affiliation(s)
- Mauricio González-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Eduardo Gonzalez-Moreira
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Ariosky Areces-González
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Technical Sciences, University of Pinar del Río “Hermanos Saiz Montes de Oca, ” Pinar del Rio, Cuba
| | - Deirel Paz-Linares
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
47
|
Fernández A, Ramírez-Toraño F, Bruña R, Zuluaga P, Esteba-Castillo S, Abásolo D, Moldenhauer F, Shumbayawonda E, Maestú F, García-Alba J. Brain signal complexity in adults with Down syndrome: Potential application in the detection of mild cognitive impairment. Front Aging Neurosci 2022; 14:988540. [PMID: 36337705 PMCID: PMC9631477 DOI: 10.3389/fnagi.2022.988540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Down syndrome (DS) is considered the most frequent cause of early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs are present in almost all individuals with DS by the age of 40. Despite of this evidence, the investigation on the pre-dementia stages in DS is scarce. In the present study we analyzed the complexity of brain oscillatory patterns and neuropsychological performance for the characterization of mild cognitive impairment (MCI) in DS. Materials and methods Lempel-Ziv complexity (LZC) values from resting-state magnetoencephalography recordings and the neuropsychological performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment (CN-no-DS) were analyzed. Results Lempel-Ziv complexity was lowest in the frontal region within the MCI-DS group, while the CN-DS group showed reduced values in parietal areas when compared with the CN-no-DS group. Also, the CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while MCI-DS cases showed a decrease. The combination of reduced LZC values and a divergent trajectory of complexity evolution with age, allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic impairment was significantly associated in MCI-DS cases with the significant reduction of LZC values in frontal and parietal regions (p = 0.01). Conclusion Brain signal complexity measured with LZC is reduced in DS and its development with age is also disrupted. The combination of both features might assist in the detection of MCI within this population.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), Hospital Universitario San Carlos, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
- Department of Industrial Engineering & IUNE & ITB, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Zuluaga
- Statistics & Operations Research Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Neurodevelopmental Group, Girona Biomedical Research Institute-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Daniel Abásolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Internal Medicine Department, Health Research Institute, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elizabeth Shumbayawonda
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Department of Research and Psychology in Education, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Javier García-Alba,
| |
Collapse
|
48
|
Hidisoglu E, Kantar D, Ozdemir S, Yargicoglu P. Cognitive dysfunctions and spontaneous EEG alterations induced by hippocampal amyloid pathology in rats. Adv Med Sci 2022; 67:328-337. [PMID: 36058175 DOI: 10.1016/j.advms.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to determine the effects of different doses of amyloid-beta (Aβ) peptide on learning and memory, and whether the changes in brain oscillations induced by dose-dependent accumulation of Aβ could be used as biomarkers to detect early stages of Alzheimer's disease (AD). MATERIAL AND METHODS Male albino Wistar rats aged 3 months were randomly divided into four groups (n = 12/group) obtained by i. h. Injection (to the dorsal hippocampus) of saline or different doses of 0.01 μg/μl, 0.1 μg/μl, and 1 μg/μl of Aβ. After two weeks of recovery period, open field and novel object recognition tests were performed and spontaneous EEG recordings were obtained. Later, hippocampus tissues were collected for Western blot and ELISA analysis. RESULTS A significant decrement in recognition memory was observed in 0.1 μg/μl, and 1 μg/μl injected groups. In addition, Aβ accumulation induced significant decrement of the expression of NeuN, SNAP-25, SYP, and PSD-95 proteins, and led to the increment of GFAP expression in hippocampus. Moreover, we detected remarkable alterations in spontaneous brain activity. The hippocampal Aβ levels were negatively correlated with hippocampal gamma power and positively correlated with hippocampal theta power. Also, we observed significant changes in coherence values, indicating the functional connectivity between different brain regions, after the accumulation of Aβ. Especially, there was a significant correlation between changes in frontohippocampal theta coherence and in frontotemporal theta coherence. CONCLUSIONS Our findings indicate that Aβ peptide induces AD-like molecular changes at certain doses, and these changes could be detected by evaluating brain oscillations.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, Turin University, Corso Raffaello 30, 10125, Torino, Italy; Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey.
| | - Deniz Kantar
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Semir Ozdemir
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Piraye Yargicoglu
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| |
Collapse
|
49
|
Yu M, Guan H, Fang Y, Yue L, Liu M. Domain-Prior-Induced Structural MRI Adaptation for Clinical Progression Prediction of Subjective Cognitive Decline. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13431:24-33. [PMID: 36173603 PMCID: PMC9513533 DOI: 10.1007/978-3-031-16431-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Growing evidence shows that subjective cognitive decline (SCD) among elderly individuals is the possible pre-clinical stage of Alzheimer's disease (AD). To prevent the potential disease conversion, it is critical to investigate biomarkers for SCD progression. Previous learning-based methods employ T1-weighted magnetic resonance imaging (MRI) data to aid the future progression prediction of SCD, but often fail to build reliable models due to the insufficient number of subjects and imbalanced sample classes. A few studies suggest building a model on a large-scale AD-related dataset and then applying it to another dataset for SCD progression via transfer learning. Unfortunately, they usually ignore significant data distribution gaps between different centers/domains. With the prior knowledge that SCD is at increased risk of underlying AD pathology, we propose a domain-prior-induced structural MRI adaptation (DSMA) method for SCD progression prediction by mitigating the distribution gap between SCD and AD groups. The proposed DSMA method consists of two parallel feature encoders for MRI feature learning in the labeled source domain and unlabeled target domain, an attention block to locate potential disease-associated brain regions, and a feature adaptation module based on maximum mean discrepancy (MMD) for cross-domain feature alignment. Experimental results on the public ADNI dataset and an SCD dataset demonstrate the superiority of our method over several state-of-the-arts.
Collapse
Affiliation(s)
- Minhui Yu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hao Guan
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuqi Fang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Wiesman AI, Murman DL, Losh RA, Schantell M, Christopher-Hayes NJ, Johnson HJ, Willett MP, Wolfson SL, Losh KL, Johnson CM, May PE, Wilson TW. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain 2022; 145:2177-2189. [PMID: 35088842 PMCID: PMC9246709 DOI: 10.1093/brain/awab430] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
An extensive electrophysiological literature has proposed a pathological 'slowing' of neuronal activity in patients on the Alzheimer's disease spectrum. Supported by numerous studies reporting increases in low-frequency and decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its relation to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially overlapping populations of neurons has not been empirically validated. In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoencephalography from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer's disease spectrum. Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer's disease spectrum exhibit robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices significantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language and processing speed) cognitive function. Further, regional amyloid-β accumulation, as measured by quantitative 18F florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this relationship between amyloid-β burden and neural slowing also predicted attentional impairments across patients. These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-confirmed patients on the Alzheimer's disease spectrum, and link this effect to both regional proteinopathy and cognitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing has also been extensively documented in other patient populations, most notably Parkinson's disease, with divergent spectral and spatial features.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Rebecca A Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Kathryn L Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|