1
|
Wang Y, Wang Y, Yue G, Lin J, Liu X, Wang L, Zhao Y. Effects of ligustrazine on energy metabolism in migraine rats based on mitochondria-inflammation pathway. Neurosci Lett 2025; 844:138035. [PMID: 39505199 DOI: 10.1016/j.neulet.2024.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To evaluate the effects of Ligustrazine (Lig) on nitroglycerin-induced migraine and explore the mechanism through the mitochondria-inflammation pathway. METHODS Rats were divided into control, model, Lig(50 mg/kg) + Erastin, Lig(100 mg/kg), Lig(50 mg/kg), and Zolmitriptan groups. Nitroglycerin (NTG) was administered through injection to trigger a migraine. The following parameters were measured: mechanical pain threshold, mitochondrial morphology, levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), Adenosine triphosphate (ATP), and Nitric oxide (NO). The neuronal nitric oxide synthase (nNOS), transient receptor potential A1 (TRPA1), interleukin 1 beta (IL-1β), nuclear factor-kappaB (NF-κB), and calcitonin gene-related peptide (CGRP) were detected by Western blotting and immunohistochemistry. RESULTS Compared with the model group, the Lig(100 mg/kg) and Lig(50 mg/kg) groups increased mechanical pain threshold as well as improved abnormal mitochondrial morphology. Moreover, compared with the model group, the Lig(100 mg/kg) and Lig(50 mg/kg) groups demonstrated reduced levels of ROS, and NO, and increased MMP, and ATP. Lig(100 mg/kg) and Lig(50 mg/kg) groups reduced inflammation and oxidative stress by inhibiting certain gene expressions. When Erastin was injected, the effectiveness of Lig decreased, indicating that Lig's therapeutic effect was related to the extent of mPTP opening. CONCLUSION The mitochondria-inflammation pathway plays a critical role in regulating migraine. Lig exerts anti-migraine effects primarily by modulating the mitochondria-inflammation pathway providing a novel perspective on migraine research that is beneficial for its clinical application.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Lin
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xueying Liu
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liwei Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Titiz M, Landini L, Souza Monteiro de Araujo D, Marini M, Seravalli V, Chieca M, Pensieri P, Montini M, De Siena G, Pasquini B, Vannuccini S, Iannone LF, Cunha TM, Brancolini G, Bellantoni E, Scuffi I, Mastricci A, Tesi M, Di Tommaso M, Petraglia F, Geppetti P, Nassini R, De Logu F. Schwann cell C5aR1 co-opts inflammasome NLRP1 to sustain pain in a mouse model of endometriosis. Nat Commun 2024; 15:10142. [PMID: 39587068 PMCID: PMC11589863 DOI: 10.1038/s41467-024-54486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Over 60% of women with endometriosis experience abdominopelvic pain and broader pain manifestations, including chronic back pain, fibromyalgia, chronic fatigue, vulvodynia, and migraine. Although the imbalance of proinflammatory mediators, including the complement component C5a, is associated with endometriosis-related pain, the mechanisms causing widespread pain and the C5a role remain unclear. Female mice and women with endometriosis exhibit increased plasma C5a levels and pain. We hypothesize the Schwann cells involvement in endometriotic pain. Here, we show that silencing the C5a receptor (C5aR1) in Schwann cells blocks the C5a-induced activation of the NLRP1 inflammasome and subsequent release of interleukin-1β (IL-1β). Macrophages, recruited to sciatic/trigeminal nerves by IL-1β from Schwann cells, increase oxidative stress, which activates the proalgesic TRPA1 pathway, resulting in widespread pain. These findings reveal a pathway involving Schwann cell C5aR1, NLRP1/IL-1β activation, macrophage recruitment, oxidative stress, and TRPA1 engagement, contributing to pain in a mouse model of endometriosis.
Collapse
Affiliation(s)
- Mustafa Titiz
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | | | - Matilde Marini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Viola Seravalli
- Department of Health Science, Obstetrics and Gynecology Section, University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pasquale Pensieri
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Benedetta Pasquini
- Department of Chemistry "U.Schiff", University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology Unit, University of Florence, Florence, Italy
| | - Luigi Francesco Iannone
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Elisa Bellantoni
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Irene Scuffi
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Alessandra Mastricci
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Martina Tesi
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Mariarosaria Di Tommaso
- Department of Health Science, Obstetrics and Gynecology Section, University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology Unit, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Pain Research Center, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Romina Nassini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| | - Francesco De Logu
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Evangelista BG, Giardini AC, Hösch NG, Sant'Anna MB, Martins BB, Neto BS, Chacur M, Pagano RL, Picolo G, Zambelli VO. Aldehyde dehydrogenase-2 deficiency aggravates neuroinflammation, nociception, and motor impairment in a mouse model of multiple sclerosis. Free Radic Biol Med 2024; 225:767-775. [PMID: 39481766 DOI: 10.1016/j.freeradbiomed.2024.10.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Aldehyde dehydrogenase-2 deficiency (ALDH2∗2) found in 36 % of Han Chinese, affects approximately 8 % of the world population. ALDH2 is a mitochondrial key enzyme in detoxifying reactive aldehydes to less reactive forms. Studies demonstrate a potential link between ALDH2∗2 mutation and neurodegenerative diseases. Multiple sclerosis (MS) is an incurable and disabling neurodegenerative autoimmune disease that induces motor, and cognitive impairment, and hypersensitivity, including chronic pain. Accumulating evidence suggests that reactive aldehydes, such as 4-hydroxynonenal (4-HNE), contribute to MS pathogenesis. Here, using knock-in mice carrying the inactivating point mutation in ALDH2, identical to the mutation found in Han Chinese, we showed that the impairment in ALDH2 activity heightens motor disabilities, and hypernociception induced by experimental autoimmune encephalomyelitis (EAE). The deleterious clinical signs are followed by glial cell activation in the spinal cord and increased 4-HNE levels in the spinal cord and serum. Importantly, the pharmacological ALDH2 activation by Alda-1 ameliorates EAE-induced hypernociception and motor impairment in both wild-type and ALDH2∗2KI mice. Reduced hypernociception was associated with less early growth response protein 1 (EGR1), neuronal and glial activation, and reactive aldehyde accumulation in the spinal cord and serum. Taken together, our data suggest that the mitochondrial enzyme ALDH2 plays a role in regulating clinical, cellular, and molecular responses associated with EAE. This indicates that ALDH2 could serve as a molecular target for MS control, with ALDH2 activators, like Alda-1 as potential neuroprotective candidates. Furthermore, ALDH2∗2 carriers may be at increased risk of developing more accentuated MS symptoms.
Collapse
MESH Headings
- Animals
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Mice
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Disease Models, Animal
- Aldehydes/metabolism
- Nociception
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Neuroinflammatory Diseases/etiology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Benzamides/pharmacology
- Gene Knock-In Techniques
- Humans
- Mice, Inbred C57BL
- Female
- Benzodioxoles/pharmacology
Collapse
Affiliation(s)
- Bianca G Evangelista
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Aline C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Natália G Hösch
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Morena B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Bárbara B Martins
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Beatriz S Neto
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Marucia Chacur
- Department of Anatomy, University of São Paulo, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
4
|
Zhang J, Simoes R, Guo T, Cao YQ. Neuroimmune interactions in the development and chronification of migraine headache. Trends Neurosci 2024; 47:819-833. [PMID: 39271369 DOI: 10.1016/j.tins.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Roli Simoes
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Espada-Rubio S, Agúndez JAG. Oxidative Stress and Migraine. Mol Neurobiol 2024; 61:8344-8360. [PMID: 38499906 DOI: 10.1007/s12035-024-04114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The pathogenesis of migraine is not completely understood, but inflammation and oxidative stress seem to be involved, according to data from an experimental model of the disease. This narrative review summarizes data from studies on oxidative stress markers in migraine patients, case-control association studies on the possible association of candidate genes related to oxidative stress with the risk for migraine, studies showing the presence of oxidative stress in experimental models of migraine, and studies on the efficacy of antioxidant drugs in migraine therapy. Many studies have addressed the value of concentrations of prooxidant and antioxidant substances or the activity of antioxidant enzymes in different tissues (mainly in serum/plasma or in blood cells) as possible biomarkers for migraine, being thiobarbituric acid (TBA) reactive substances (TBARS) such as malonyl dialdehyde acid (MDA) and 4-hydroxynonenal, and nitric oxide (this at least during migraine attacks in patients with migraine with aura (MWA) the most reliable. In addition, the possible usefulness of antioxidant treatment is not well established, although preliminary short-term studies suggest a beneficial action of some of them such as Coenzyme Q10 and riboflavin. Both topics require further prospective, multicenter studies with a long-term follow-up period involving a large number of migraine patients and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain.
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Silvina Espada-Rubio
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
6
|
Geng D, Liu H, Wang H, Wang H. Telomere length exhibits inverse association with migraine among Americans aged 20-50 years, without implications beyond age 50: a cross-sectional study. Sci Rep 2024; 14:22597. [PMID: 39349547 PMCID: PMC11443084 DOI: 10.1038/s41598-024-72675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Migraine, common in individuals under 50 years, is linked to oxidative stress. The association between telomere length shortening and migraine, along with potential age-related influences, has not been comprehensively studied. This cross-sectional study included data from 6169 participants in the National Health and Nutrition Survey (NHANES) from 1999 to 2002, encompassing information on peripheral blood leukocyte telomere length, severe headache or migraine, and potential confounders. Stratifying by age (20-50 years, > 50 years), we employed multivariable logistic regression, restricted cubic splines and interaction test to investigate age-influenced telomere length in relation to migraine. In participants aged 20-50 years, the odds ratio (OR) for migraine in the shortest telomere length group T1 (0.39-0.89) was 1.35 (95% confidence interval [95% CI] 1.01, 1.79) compared to the longest group T3 (1.10-9.42), whereas in those aged > 50 years, the OR of T1 was 0.93 (95% CI 0.60, 1.43). Additionally, telomere length and age interacted in the development of migraine (p for interaction: 0.010). In individuals aged 20-50, an L-shaped relationship was found between telomere length and migraine, with an inflection point at 1.02T/S ratio. The OR was 9.34 (95% CI 1.56, 55.99) for telomere lengths < 1.02T/S ratio. These findings suggest age influences the association between telomere length and migraine in U.S. adults.
Collapse
Affiliation(s)
- Dandan Geng
- Department of Neurology, Hebei General Hospital affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huanxian Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Haoyuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Cerebral Network and Cognitive Disorders, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
7
|
Ernstsen C, Obelitz-Ryom K, Kristensen DMB, Olesen J, Christensen SL, Guo S. Mechanisms of GTN-induced migraine: Role of NOS isoforms, sGC and peroxynitrite in a migraine relevant mouse model. Cephalalgia 2024; 44:3331024241277542. [PMID: 39314067 DOI: 10.1177/03331024241277542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Migraine research has highlighted the pivotal role of nitric oxide (NO) in migraine pathophysiology. Nitric oxide donors such as glyceryl trinitrate (GTN) induce migraine attacks in humans, whereas spontaneous migraine attacks can be aborted by inhibiting NO production. The present study aimed to investigate how GTN triggers migraine through its three nitric oxide synthase (NOS) isoforms (neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)) via a suspected feed-forward phenomenon. METHODS Migraine-relevant hypersensitivity was induced by repeated injection of GTN in an in vivo mouse model. Cutaneous tactile sensitivity was assessed using von Frey filaments. Signaling pathways involved in this model were dissected using non-selective and selective NOS inhibitors, knockout mice lacking eNOS or nNOS and their wild-type control mice. Also, we tested a soluble guanylate cyclase inhibitor and a peroxynitrite decomposition catalyst (Ntotal = 312). RESULTS Non-selective NOS inhibition blocked GTN-induced hypersensitivity. This response was partially associated with iNOS, and potentially nNOS and eNOS conjointly. Furthermore, we found that the GTN response was largely dependent on the generation of peroxynitrite and partly soluble guanylate cyclase. CONCLUSIONS Migraine-relevant hypersensitivity induced by GTN is mediated by a possible feed-forward phenomenon of NO driven mainly by iNOS but with contributions from other isoforms. The involvement of peroxynitrite adds to the notion that oxidative stress reactions are also involved.
Collapse
Affiliation(s)
- Charlotte Ernstsen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Karina Obelitz-Ryom
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - David Møbjerg B Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- University Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S, 1085, Rennes, France
| | - Jes Olesen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
8
|
Brum ES, Fialho MFP, Souza Monteiro de Araújo D, Landini L, Marini M, Titiz M, Kuhn BL, Frizzo CP, Araújo PHS, Guimarães RM, Cunha TM, Silva CR, Trevisan G, Geppetti P, Nassini R, De Logu F, Oliveira SM. Schwann cell TRPA1 elicits reserpine-induced fibromyalgia pain in mice. Br J Pharmacol 2024; 181:3445-3461. [PMID: 38772415 DOI: 10.1111/bph.16413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/30/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Fibromyalgia is a complex clinical disorder with an unknown aetiology, characterized by generalized pain and co-morbid symptoms such as anxiety and depression. An imbalance of oxidants and antioxidants is proposed to play a pivotal role in the pathogenesis of fibromyalgia symptoms. However, the precise mechanisms by which oxidative stress contributes to fibromyalgia-induced pain remain unclear. The transient receptor potential ankyrin 1 (TRPA1) channel, known as both a pain sensor and an oxidative stress sensor, has been implicated in various painful conditions. EXPERIMENTAL APPROACH The feed-forward mechanism that implicates reactive oxygen species (ROS) driven by TRPA1 was investigated in a reserpine-induced fibromyalgia model in C57BL/6J mice employing pharmacological interventions and genetic approaches. KEY RESULTS Reserpine-treated mice developed pain-like behaviours (mechanical/cold hypersensitivity) and early anxiety-depressive-like disorders, accompanied by increased levels of oxidative stress markers in the sciatic nerve tissues. These effects were not observed upon pharmacological blockade or global genetic deletion of the TRPA1 channel and macrophage depletion. Furthermore, we demonstrated that selective silencing of TRPA1 in Schwann cells reduced reserpine-induced neuroinflammation (NADPH oxidase 1-dependent ROS generation and macrophage increase in the sciatic nerve) and attenuated fibromyalgia-like behaviours. CONCLUSION AND IMPLICATIONS Activated Schwann cells expressing TRPA1 promote an intracellular pathway culminating in the release of ROS and recruitment of macrophages in the mouse sciatic nerve. These cellular and molecular events sustain mechanical and cold hypersensitivity in the reserpine-evoked fibromyalgia model. Targeting TRPA1 channels on Schwann cells could offer a novel therapeutic approach for managing fibromyalgia-related behaviours.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Bruna Luiza Kuhn
- Heterocycle Chemistry Nucleus (NUQUIMHE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Clarissa Piccinin Frizzo
- Heterocycle Chemistry Nucleus (NUQUIMHE), Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Rafaela Mano Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cássia Regina Silva
- Department of Genetic and Biochemistry, University of Uberlândia, Uberlândia, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Fila M, Przyslo L, Derwich M, Sobczuk P, Pawlowska E, Blasiak J. The TRPA1 Ion Channel Mediates Oxidative Stress-Related Migraine Pathogenesis. Molecules 2024; 29:3385. [PMID: 39064963 PMCID: PMC11280075 DOI: 10.3390/molecules29143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Although the introduction of drugs targeting calcitonin gene-related peptide (CGRP) revolutionized migraine treatment, still a substantial proportion of migraine patients do not respond satisfactorily to such a treatment, and new therapeutic targets are needed. Therefore, molecular studies on migraine pathogenesis are justified. Oxidative stress is implicated in migraine pathogenesis, as many migraine triggers are related to the production of reactive oxygen and nitrogen species (RONS). Migraine has been proposed as a superior mechanism of the brain to face oxidative stress resulting from energetic imbalance. However, the precise mechanism behind the link between migraine and oxidative stress is not known. Nociceptive primary afferent nerve fiber endings express ion channel receptors that change harmful stimuli into electric pain signals. Transient receptor potential cation channel subfamily A member 1 (TRPA1) is an ion channel that can be activated by oxidative stress products and stimulate the release of CGRP from nerve endings. It is a transmembrane protein with ankyrin repeats and conserved cysteines in its N-terminus embedded in the cytosol. TRPA1 may be a central element of the signaling pathway from oxidative stress and NO production to CGRP release, which may play a critical role in headache induction. In this narrative review, we present information on the role of oxidative stress in migraine pathogenesis and provide arguments that TRPA1 may be "a missing link" between oxidative stress and migraine and therefore a druggable target in this disease.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (M.F.); (L.P.)
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (M.F.); (L.P.)
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, 92-209 Lodz, Poland;
- Department of Orthopaedics and Traumatology, Polish Mothers’ Memorial Hospital–Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| |
Collapse
|
10
|
Gao N, Li M, Wang W, Liu Z, Guo Y. Visual analysis of global research on the transient receptor potential ankyrin 1 channel: A literature review from 2002 to 2022. Heliyon 2024; 10:e31001. [PMID: 38770319 PMCID: PMC11103542 DOI: 10.1016/j.heliyon.2024.e31001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aims The transient receptor potential ankyrin 1 (TRPA1) channel has become a focus in pain research. However, there are no bibliometric studies that systematically analyze the existing research in this area. This study aimed to provide a systematic review of the existing literature on TRPA1 using a bibliometric analysis. Methods Published literature in the field of TRPA1 was collected from the Web of Science Core Collection database. Quantitative and qualitative analyses of publications, countries, institutions, authors, journals, and other entries were conducted using Excel, VOSview, and Citespace software to provide insight into global research hotspots and trends in the TRPA1 field. Results This study included 1189 scientific products published in 398 journals from 52 countries. The United States of America (n = 367) had the most publications, ahead of Japan (n = 212) and China (n = 199). The University of Florence (n = 55) was the most productive institution and Pierangelo Geppetti (n = 46) was the most productive author. PLoS One (n = 40) published the most articles on TRPA1. Pain, cold, inflammation, covalent modification, hyperalgesia, and oxidative stress were the most common keywords used in the studies. Conclusion This study provides the first bibliometric analysis of TRPA1 publications. The physiological functions of TRPA1, TRPA1, and neuropathic pain, TRPA1 as a therapeutic target, and agonists of TRPA1 are trending in TRPA1 research. Neuropathic pain, apoptosis, and sensitization could be focus areas of future research. This study provides important insight in the field of TRPA1 research.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
11
|
Yao K, Chen Z, Li Y, Dou B, Xu Z, Ma Y, Du S, Wang J, Fu J, Liu Q, Fan Z, Liu Y, Lin X, Xu Y, Fang Y, Wang S, Guo Y. TRPA1 Ion Channel Mediates the Analgesic Effects of Acupuncture at the ST36 Acupoint in Mice Suffering from Arthritis. J Inflamm Res 2024; 17:1823-1837. [PMID: 38523680 PMCID: PMC10961083 DOI: 10.2147/jir.s455699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Acupuncture (ACU) has been demonstrated to alleviate inflammatory pain. Mechanoreceptors are present in acupuncture points. When acupuncture exerts mechanical force, these ion channels open and convert the mechanical signals into biochemical signals. TRPA1 (T ransient receptor potential ankyrin 1) is capable of sensing various physical and chemical stimuli and serves as a sensor for inflammation and pain. This protein is expressed in immune cells and contributes to local defense mechanisms during early tissue damage and inflammation. In this study, we investigated the role of TRPA1 in acupuncture analgesia. Patients and Methods We injected complete Freund's adjuvant (CFA) into the mouse plantars to establish a hyperalgesia model. Immunohistochemistry and immunofluorescence analyses were performed to determine the effect of acupuncture on the TRPA1 expression in the Zusanli (ST36). We used TRPA1-/- mouse and pharmacological methods to antagonize TRPA1 to observe the effect on acupuncture analgesia. On this basis, collagenase was used to destroy collagen fibers at ST36 to observe the effect on TRPA1. Results We found that the ACU group vs the CFA group, the number of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 increased significantly. In CFA- inflammatory pain models, the TRPA1-/- ACU vs TRPA1+/+ ACU groups, the paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) downregulated significantly. In the ACU + high-, ACU + medium-, ACU + low-dose HC-030031 vs ACU groups, the PWL and PWT were downregulated, and in carrageenan-induced inflammatory pain models were consistent with these results. We further found the ACU + collagenase vs ACU groups, the numbers of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 were downregulated. Conclusion These findings together imply that TRPA1 plays a significant role in the analgesic effects produced via acupuncture at the ST36. This provides new evidence for acupuncture treatment of painful diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangjiang Fu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Qi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuan Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| |
Collapse
|
12
|
Ardizzone A, Capra AP, Repici A, Lanza M, Bova V, Palermo N, Paterniti I, Esposito E. Rebalancing NOX2/Nrf2 to limit inflammation and oxidative stress across gut-brain axis in migraine. Free Radic Biol Med 2024; 213:65-78. [PMID: 38244728 DOI: 10.1016/j.freeradbiomed.2024.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Migraine is one of the most common neurological illnesses, and it is characterized by complicated neurobiology. It was confirmed the influence of inflammation and oxidative stress in migraines and also in distal organs such as the intestine. Indeed, the constant bidirectional communication between the Central Nervous System (CNS) and the gastrointestinal (GI) tract, known as the gut-brain axis, has become an attractive target involved in different human disorders. Herein, we explored the role of NADPH oxidase 2 (NOX2) in nitroglycerin (NTG)-induced migraine in mice models to discover the mechanism by which, during migraine attack, oxidative stress is sustained within trigeminal neurons and GI. Considering the inverse relationship between NOX2 and Nrf2, Nrf2 upregulation seems to be a promising approach to decrease NOX2 expression and consequently limit oxidative stress and inflammation spread in neurological and non-neurological diseases. With this aim, we exploited tempol's Nrf2-inducer ability to better understand the involvement of Nrf2/NOX2 axis in migraine and associated GI comorbidities. Behavioral tests confirmed that tempol, in a dose-dependent manner, moderated clinical signs of migraine and abdominal pain. Moreover, we demonstrated that the decrease in migraine-related symptomatology was strongly linked to the modulation of Nrf2/NOX2 signaling pathway in the brain and colon. In the brain, the rebalancing of Nrf2/NOX2 prevented neuronal loss, decreased glia reactivity while inhibiting NF-κB and NLRP3 inflammasome activation. In the colon, Nrf2 upregulation and consequent NOX2 decrease reduced the histological damage, mast cells infiltration as well as tumor necrosis factor (TNF)-α and interleukin (IL)-1β release. Furthermore, the attenuation of inflammation and oxidative stress led to the restoration of the intestinal barrier through TJs replacement. Taken as a whole, data suggested that the regulation of Nrf2/NOX2 balance is a successful way to reduce neurological and related intestinal impairments during migraine and could be of relevance for migraine-like attacks in humans.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Nicoletta Palermo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy.
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166, Messina, Italy
| |
Collapse
|
13
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
14
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
15
|
Ryu S, Liu X, Guo T, Guo Z, Zhang J, Cao YQ. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain 2023; 146:4274-4291. [PMID: 37284790 PMCID: PMC10545624 DOI: 10.1093/brain/awad191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Xuemei Liu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Huang W, Zhang Y, Zhou Y, Zong J, Qiu T, Hu L, Pan S, Xiao Z. Glymphatic Dysfunction in Migraine Mice Model. Neuroscience 2023; 528:64-74. [PMID: 37516436 DOI: 10.1016/j.neuroscience.2023.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The glymphatic system is important for waste removal in the central nervous system. It removes soluble proteins and metabolic waste under the action of aquaporin-4 (AQP4) at the end of astrocytes. The glymphatic system plays a role in numerous neurological diseases; however, the relationship between migraine and the glymphatic system remains unclear. In this study, we explored the relationship between the glymphatic system and migraine using the nitroglycerin migraine model in C57/BL6mice. The glymphatic influx of cerebrospinal fluid tracer was reduced in mice in the migraine model, accompanied by decreased expression and impaired polarization of AQP4, thereby suggesting glymphatic dysfunction in migraine mice model. Then, further suppression of glymphatic function by TGN-020 (an AQP4 blocker) aggravated the migraine pathological changes in mice. The results indicated that glymphatic dysfunction may aggravate migraine pathology. Therefore, our findings revealed the potential role of the glymphatic system in migraine, providing possible targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
17
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
18
|
Zhang Y, Asgar J, Shou H, Pak J, Da Silva JT, Ro JY. Intraganglionic reactive oxygen species mediate inflammatory pain and hyperalgesia through TRPA1 in the rat. FRONTIERS IN PAIN RESEARCH 2023; 4:1204057. [PMID: 37325677 PMCID: PMC10261988 DOI: 10.3389/fpain.2023.1204057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Reactive oxygen species (ROS) are generated in nociceptive pathways in response to inflammation and injury. ROS are accumulated within the sensory ganglia following peripheral inflammation, but the functional role of intraganlionic ROS in inflammatory pain is not clearly understood. The aims of this study were to investigate whether peripheral inflammation leads to prolonged ROS accumulation within the trigeminal ganglia (TG), whether intraganglionic ROS mediate pain hypersensitivity via activation of TRPA1, and whether TRPA1 expression is upregulated in TG during inflammatory conditions by ROS. We demonstrated that peripheral inflammation causes excess ROS production within TG during the period when inflammatory mechanical hyperalgesia is most prominent. Additionally, scavenging intraganglionic ROS attenuated inflammatory mechanical hyperalgesia and a pharmacological blockade of TRPA1 localized within TG also mitigated inflammatory mechanical hyperalgesia. Interestingly, exogenous administration of ROS into TG elicited mechanical hyperalgesia and spontaneous pain-like responses via TRPA1, and intraganglionic ROS induced TRPA1 upregulation in TG. These results collectively suggest that ROS accumulation in TG during peripheral inflammation contributes to pain and hyperalgesia in a TRPA1 dependent manner, and that ROS further exacerbate pathological pain responses by upregulating TRPA1 expression. Therefore, any conditions that exacerbate ROS accumulation within somatic sensory ganglia can aggravate pain responses and treatments reducing ganglionic ROS may help alleviate inflammatory pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Y. Ro
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
19
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
20
|
Landini L, Souza Monteiro de Araujo D, Chieca M, De Siena G, Bellantoni E, Geppetti P, Nassini R, De Logu F. Acetaldehyde via CGRP receptor and TRPA1 in Schwann cells mediates ethanol-evoked periorbital mechanical allodynia in mice: relevance for migraine. J Biomed Sci 2023; 30:28. [PMID: 37101198 PMCID: PMC10131321 DOI: 10.1186/s12929-023-00922-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist. METHODS Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde. RESULTS We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde. CONCLUSIONS Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | | | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| |
Collapse
|
21
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Yu Z, Li B, Tang W, Dong Z, Liu R, Yu S. Acute sleep deprivation aggravates nitroglycerin-evoked hyperalgesia in mice. Mol Pain 2023; 19:17448069221149645. [PMID: 36550614 PMCID: PMC9830572 DOI: 10.1177/17448069221149645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sleep deprivation can trigger migraine, and migraineurs often choose to sleep to relieve headaches during acute migraine. This study aimed to explore the effect of acute sleep deprivation on hyperalgesia induced by nitroglycerin in mice. In part one, after either 6-h sleep deprivation or 6-h normal sleep, mice were intraperitoneally injected with nitroglycerin or saline. The mechanical pain threshold and withdrawal latency of the hindpaw were measured every 30 min for 6 h. Next, the same sleep deprivation and injection procedure was performed with new mice, and mice were sacrificed 4.5 h after injection. The trigeminal nucleus caudalis and upper cervical spinal segments were taken for immunofluorescence Fos staining. In part two, after injection of saline or nitroglycerin, the mice were either deprived of sleep for 6 h or allowed to sleep without interference. The mechanical and thermal pain threshold were measured after 6 h. In part three, we compared the sleep time of mice after intraperitoneal injection of saline or nitroglycerin without interference. Sleep deprivation for 6 h did not cause any changes in the baseline pain thresholds in mice. However, pretreatment with 6-h sleep deprivation significantly prolonged the duration of hyperalgesia induced by nitroglycerin. Additionally, the expression of Fos at 4.5 h was significantly higher in the 6-h sleep deprivation and nitroglycerin group than in the other three groups. When intraperitoneal injection was given first, the mechanical pain threshold of the hind paw was significantly lower in the group that received nitroglycerin with 6-h sleep deprivation than in the other groups. Compared to the saline injection, one-time nitroglycerin injection would result in a significant increase in sleep latency and decrease in sleep duration for the normal mice. Acute sleep deprivation significantly aggravated the hyperalgesia induced by nitroglycerin in mice, which highlights the importance of sleep disorders for migraine.
Collapse
Affiliation(s)
- Zhe Yu
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Bozhi Li
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruozhuo Liu
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- International Headache Center, Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
25
|
Psychosocial Stress Induces Orofacial Mechanical Allodynia Due to the Enhancement of Transient Receptor Potential Ankyrin 1 Expression in Trigeminal Ganglion Neurons via the Increment of the Trace Amine-Associated Receptor 7f Expression. STRESSES 2022. [DOI: 10.3390/stresses3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
(1) Background: Chronic psychosocial stress can lead to oral dysesthesia with tongue pain. We examined whether psychosocial stress causes orofacial pain, and analyzed the comprehensive gene expression patterns of circulating cells and transient receptor potential ankyrin 1 (TRPA1) expression in trigeminal ganglion (TG) neurons in a mouse model of psychosocial stress. (2) Methods: Mice were divided into two groups: one group was kept in confrontational housing, and the other group was kept in single housing. Blood, adrenal gland, and tongue were collected. The head withdrawal threshold (HWT) of mechanical stimulation to the whisker pad skin was measured. TRPA1-positive TG neurons were immunohistochemically examined. DNA microarray analysis and quantitative reverse transcription polymerase chain reaction analysis were performed. (3) Results: The HWT was significantly lower in mice under the psychosocial stress condition compared to non-stressed mice. In stress-loaded mice, the number of TRPA1-positive TG neurons was significantly increased. Moreover, we showed that trace amine-associated receptor 7f expression was upregulated in circulating cells in blood and downregulated in the tongue. (4) Conclusions: Our results indicated that chronic psychosocial stress induced the orofacial mechanical allodynia through enhancement of TRPA1 expression in TG neurons with changes in the levels of trace amine-associated receptor 7f.
Collapse
|
26
|
Kim SS, Won S, Lee HE, Ryu SH, Choi DJ, Cho SI, Gwag BJ, Youn HY, Lee JH. Potent Analgesic Action of 2-acetoxy-5-(2-4 (trifluoromethyl)-phenethylamino)-benzoic Acid (Flusalazine) in Experimental Mice. J Pain Res 2022; 15:3869-3879. [PMID: 36531829 PMCID: PMC9748189 DOI: 10.2147/jpr.s385617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX)-2 selective inhibitors are the most widely used drugs to treat pain. Conventional NSAIDs and COX-2 selective inhibitors, however, cause several side effects such as gastric damage, kidney damage, and cardiovascular problems. Our previous study showed that 2-acetoxy-5-(2-4-(trifluoromethyl)-phenethylamino)-benzoic acid ie, flusalazine (also known as ND-07), which exerts dual actions by serving both as an anti-inflammatory agent and a free radical scavenger, is an effective and safe treatment for severe inflammatory diseases in mice. The goal of the present study was to examine the potential analgesic action and safety of flusalazine in mice models of pain. METHODS AND RESULTS Flusalazine showed a significant analgesic effect in an acetic acid-induced abdominal constriction model. Likewise, total paw licking was reduced significantly in neurogenic (early stage) and inflammatory (late stage) pain induced by formalin in flusalazine-treated mice. In the tail immersion test, flusalazine significantly increased tail withdrawal time at 2 h after its administration. Also, the formation of paw edema in the flusalazine-treated group was significantly inhibited in a carrageenan-induced inflammatory pain model. Gastric damage was not induced by flusalazine even up to 1000 mg/kg, while aspirin and indomethacin caused critical gastric bleeding. CONCLUSION These findings suggest that flusalazine's safety profile and analgesic effects have high translational potential for the clinical treatment of patients experiencing pain.
Collapse
Affiliation(s)
- Sung-Soo Kim
- VIP Animal Medical Center KR, Seoul, 02830, Republic of Korea
| | - Sojung Won
- GNT Pharma, Yongin, Gyeonggi, 17096, Republic of Korea
| | - Ha Eun Lee
- GNT Pharma, Yongin, Gyeonggi, 17096, Republic of Korea
| | | | | | - Sung Ig Cho
- GNT Pharma, Yongin, Gyeonggi, 17096, Republic of Korea
| | | | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hwan Lee
- GNT Pharma, Yongin, Gyeonggi, 17096, Republic of Korea
| |
Collapse
|
27
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
28
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
29
|
Wei C, Kim B, McKemy DD. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice. Pain 2022; 163:2380-2389. [PMID: 35353773 PMCID: PMC9519811 DOI: 10.1097/j.pain.0000000000002635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease. Interestingly, these migraine-associated single-nucleotide polymorphisms reside in noncoding regions of TRPM8, with those correlated with reduced migraine risk exhibiting lower TRPM8 expression and decreased cold sensitivity. Nonetheless, as a role for TRPM8 in migraine has yet to be defined, we sought to address this gap in our knowledge using mouse genetics and TRPM8 antagonism to determine whether TRPM8 channels or neurons are required for migraine-like pain (mechanical allodynia and facial grimace) in inducible migraine models. Our results show that both evoked and spontaneous pain behaviors are dependent on both TRPM8 channels and neurons, as well as required in both acute and chronic migraine models. Moreover, inhibition of TRPM8 channels prevented acute but not established chronic migraine-like pain. These results are consistent with its association with migraine in genetic analyses and establish that TRPM8 channels are a component of the underlying mechanisms of migraine.
Collapse
Affiliation(s)
- Chao Wei
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - Brian Kim
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - David D. McKemy
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| |
Collapse
|
30
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
31
|
Alarcón-Alarcón D, Cabañero D, de Andrés-López J, Nikolaeva-Koleva M, Giorgi S, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nat Commun 2022; 13:6304. [PMID: 36272975 PMCID: PMC9588003 DOI: 10.1038/s41467-022-33835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.
Collapse
Affiliation(s)
- David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Jorge de Andrés-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
32
|
Wu S, Ren X, Zhu C, Wang W, Zhang K, Li Z, Liu X, Wang Y. A c-Fos activation map in nitroglycerin/levcromakalim-induced models of migraine. J Headache Pain 2022; 23:128. [PMID: 36180824 PMCID: PMC9524028 DOI: 10.1186/s10194-022-01496-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic migraine is a common and highly disabling disorder. Functional MRI has indicated that abnormal brain region activation is linked with chronic migraine. Drugs targeting the calcitonin gene-related peptide (CGRP) or its receptor have been reported to be efficient for treating chronic migraine. The CGRP signaling was also shared in two types of chronic migraine models (CMMs). However, it remains unclear whether the activation of specific brain regions could contribute to persistent behavioral sensitization, and CGRP receptor antagonists relieve migraine-like pain in CMMs by altering specific brain region activation. Therefore, it’s of great interest to investigate brain activation pattern and the effect of olcegepant (a CGRP receptor-specific antagonist) treatment on alleviating hyperalgesia by altering brain activation in two CMMs, and provide a reference for future research on neural circuits. Methods Repeated administration of nitroglycerin (NTG) or levcromakalim (LEV) was conducted to stimulate human migraine-like pain and establish two types of CMMs in mice. Mechanical hypersensitivity was evaluated by using the von Frey filament test. Then, we evaluated the activation of different brain regions with c-Fos and NeuN staining. Olcegepant was administered to explore its effect on mechanical hyperalgesia and brain region activation. Results In two CMMs, acute and basal mechanical hyperalgesia was observed, and olcegepant alleviated mechanical hyperalgesia. In the NTG-induced CMM, the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and the caudal part of the spinal trigeminal nucleus (Sp5c) showed a significant increase of c-Fos expression in the NTG group (p < 0.05), while pre-treatment with olcegepant reduced c-Fos expression compared with NTG group (p < 0.05). No significant difference of c-Fos expression was found in the paraventricular thalamic nucleus (PVT) and ventrolateral periaqueductal gray (vlPAG) between the vehicle control and NTG group (p > 0.05). In the LEV-induced CMM, mPFC, PVT, and Sp5c showed a significant increase of c-Fos expression between vehicle control and LEV group, and olcegepant reduced c-Fos expression (p < 0.05). No significant difference in c-Fos expression was found in vlPAG and ACC (p > 0.05). Conclusions Our study demonstrated the activation of mPFC and Sp5c in two CMMs. Olcegepant may alleviate hyperalgesia of the hind paw and periorbital area by attenuating brain activation in CMMs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01496-8.
Collapse
Affiliation(s)
- Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, China
| | - Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, FengtaiDistrict, Beijing, 100070, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Zhilei Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Gate, No. 82Linxia Road, Chengguan District, Lanzhou, 730000, China. .,Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, FengtaiDistrict, Beijing, 100070, China.
| |
Collapse
|
33
|
Different Involvement of ASIC and TRPA1 in Facial and Hindpaw Allodynia in Nitroglycerin-Induced Peripheral Hypersensitivities in Mice. Life (Basel) 2022; 12:life12091294. [PMID: 36143331 PMCID: PMC9502551 DOI: 10.3390/life12091294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and mechanical allodynia of the face and hindpaws, respectively, in a mouse model of repetitive nitroglycerin (NTG)-induced migraine. NTG (10 mg/kg) was administered to the mice every other day for 9 days, followed 90 min later by HC-030031 (a TRPA1 blocker) or amiloride (a non-selective ASIC blocker). Mechanical or cold sensitivity of the hindpaw and facial regions was quantified using von-Frey filaments or acetone solution, respectively. Immunohistochemistry revealed that c-Fos expression was significantly increased in the trigeminal nucleus caudalis region but not in the spinal cord. Amiloride treatment only reduced NTG-induced hindpaw mechanical allodynia, whereas HC-030031 treatment only improved facial cold allodynia. Interestingly, the number of c-Fos positive cells decreased to a similar level in each drug treatment group. These findings demonstrate that facial cold allodynia and hindpaw mechanical allodynia are differentially mediated by activation of TRPA1 and ASIC, respectively, in mice with repetitive NTG-induced hypersensitivity.
Collapse
|
34
|
Dalenogare DP, Theisen MC, Peres DS, Fialho MFP, Andrighetto N, Barros L, Landini L, Titiz M, De Logu F, Oliveira SM, Geppetti P, Nassini R, Trevisan G. Transient receptor potential ankyrin 1 mediates headache-related cephalic allodynia in a mouse model of relapsing-remitting multiple sclerosis. Pain 2022; 163:1346-1355. [PMID: 34711761 DOI: 10.1097/j.pain.0000000000002520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Primary headache conditions are frequently associated with multiple sclerosis (MS), but the mechanism that triggers or worsens headaches in patients with MS is poorly understood. We previously showed that the proalgesic transient receptor potential ankyrin 1 (TRPA1) mediates hind paw mechanical and cold allodynia in a relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) model in mice. Here, we investigated the development of periorbital mechanical allodynia (PMA) in RR-EAE, a hallmark of headache, and if TRPA1 contributed to this response. RR-EAE induction by injection of the myelin oligodendrocyte peptide fragment35-55 (MOG35-55) and Quillaja A adjuvant (Quil A) in C57BL/6J female mice elicited a delayed and sustained PMA. The PMA at day 35 after induction was reduced by the calcitonin gene-related peptide receptor antagonist (olcegepant) and the serotonin 5-HT1B/D receptor agonist (sumatriptan), 2 known antimigraine agents. Genetic deletion or pharmacological blockade of TRPA1 attenuated PMA associated with RR-EAE. The levels of oxidative stress biomarkers (4-hydroxynonenal and hydrogen peroxide, known TRPA1 endogenous agonists) and superoxide dismutase and NADPH oxidase activities were increased in the trigeminal ganglion of RR-EAE mice. Besides, the treatment with antioxidants (apocynin or α-lipoic acid) attenuated PMA. Thus, the results of this study indicate that TRPA1, presumably activated by endogenous agonists, evokes PMA in a mouse model of relapsing-remitting MS.
Collapse
Affiliation(s)
- Diéssica P Dalenogare
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Maria C Theisen
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Diulle S Peres
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Maria F P Fialho
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathaly Andrighetto
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Laura Barros
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara M Oliveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Gabriela Trevisan
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| |
Collapse
|
35
|
NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022; 11:antiox11061162. [PMID: 35740059 PMCID: PMC9219759 DOI: 10.3390/antiox11061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Collapse
|
36
|
Fila M, Jablkowska A, Pawlowska E, Blasiak J. DNA Damage and Repair in Migraine: Oxidative Stress and Beyond. Neuroscientist 2022; 29:277-286. [PMID: 35658694 DOI: 10.1177/10738584221090836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Energy generation in the brain to ameliorate energy deficit in migraine leads to oxidative stress as it is associated with reactive oxygen species (ROS) that may damage DNA and show a pronociceptive action in meninges mediated by transient receptor potential cation channel subfamily A member 1 (TRPA1). Recent studies show high levels of single-strand breaks (SSBs) at specific sites in the genome of postmitotic neurons and point at SSB repair (SSBR) as an important element of homeostasis of the central nervous system. DNA topoisomerase 1 (TOP1) is stabilized in the DNA damage-inducing state by neuronal stimulation, including cortical spreading depression. Impairment in poly (ADP-ribose) polymerase 1 (PARP-1) and X-ray repair cross complementing 1 (XRCC1), key SSBR proteins, may be linked with migraine by transient receptor potential melastatin 2 (TRPM2). TRPM2 may also mediate the involvement of migraine-related neuroinflammation with PARP-1 activated by oxidative stress-related SSBs. In conclusion, aberrant activity of SSBR evoked by compromised PARP-1 and XRCC1 may contribute to pathological phenomena in the migraine brain. Such aberrant SSBR results in the lack of repair or misrepair of SSBs induced by ROS or resulting from impaired TOP1. Therefore, components of SSBR may be considered a prospective druggable target in migraine.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Iannone LF, Nassini R, Patacchini R, Geppetti P, De Logu F. Neuronal and non-neuronal TRPA1 as therapeutic targets for pain and headache relief. Temperature (Austin) 2022; 10:50-66. [PMID: 37187829 PMCID: PMC10177743 DOI: 10.1080/23328940.2022.2075218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, has a major role in different types of pain. TRPA1 is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammation. TRPA1 is characterized by unique sensitivity for an unprecedented number of reactive byproducts of oxidative, nitrative, and carbonylic stress and to be activated by several chemically heterogenous, exogenous, and endogenous compounds. Recent preclinical evidence has revealed that expression of TRPA1 is not limited to neurons, but its functional role has been reported in central and peripheral glial cells. In particular, Schwann cell TRPA1 was recently implicated in sustaining mechanical and thermal (cold) hypersensitivity in mouse models of macrophage-dependent and macrophage-independent inflammatory, neuropathic, cancer, and migraine pain. Some analgesics and herbal medicines/natural products widely used for the acute treatment of pain and headache have shown some inhibitory action at TRPA1. A series of high affinity and selective TRPA1 antagonists have been developed and are currently being tested in phase I and phase II clinical trials for different diseases with a prominent pain component. Abbreviations: 4-HNE, 4-hydroxynonenal; ADH-2, alcohol dehydrogenase-2; AITC, allyl isothiocyanate; ANKTD, ankyrin-like protein with transmembrane domains protein 1; B2 receptor, bradykinin 2 receptor; CIPN, chemotherapeutic-induced peripheral neuropathy; CGRP, calcitonin gene related peptide; CRISPR, clustered regularly interspaced short palindromic repeats; CNS, central nervous system; COOH, carboxylic terminal; CpG, C-phosphate-G; DRG, dorsal root ganglia; EP, prostaglandins; GPCR, G-protein-coupled receptors; GTN, glyceryl trinitrate; MAPK, mitogen-activated protein kinase; M-CSF, macrophage-colony stimulating factor; NAPQI, N-Acetyl parabenzoquinone-imine; NGF, nerve growth factor; NH2, amino terminal; NKA, neurokinin A; NO, nitric oxide; NRS, numerical rating scale; PAR2, protease-activated receptor 2; PMA, periorbital mechanical allodynia; PLC, phospholipase C; PKC, protein kinase C; pSNL, partial sciatic nerve ligation; RCS, reactive carbonyl species; ROS, reactive oxygen species; RNS, nitrogen oxygen species; SP, substance P; TG, trigeminal ganglion; THC, Δ9-tetrahydrocannabinol; TrkA, neurotrophic receptor tyrosine kinase A; TRP, transient receptor potential; TRPC, TRP canonical; TRPM, TRP melastatin; TRPP, TRP polycystin; TRPM, TRP mucolipin; TRPA, TRP ankyrin; TRPV, TRP vanilloid; VG, vagal ganglion.
Collapse
Affiliation(s)
- Luigi F. Iannone
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Riccardo Patacchini
- Corporate Drug Development, Chiesi Farmaceutici S.p.A, Nuovo Centro Ricerche, Parma, Italy
| | - Pierangelo Geppetti
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Landini L, Souza Monteiro de Araujo D, Titiz M, Geppetti P, Nassini R, De Logu F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int J Mol Sci 2022; 23:ijms23094529. [PMID: 35562920 PMCID: PMC9101260 DOI: 10.3390/ijms23094529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.
Collapse
|
39
|
TRPA1s act as chemosensors but not as cold sensors or mechanosensors to trigger the swallowing reflex in rats. Sci Rep 2022; 12:3431. [PMID: 35236901 PMCID: PMC8891345 DOI: 10.1038/s41598-022-07400-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
We examined the role of TRPA1s in triggering the swallowing reflex. TRPA1s predominantly localized on thin nerve fibers and fibroblast-like cells in swallowing-related regions and on small to medium-sized superior laryngeal nerve-afferents in the nodose–petrosal–jugular ganglionic complex. Topical application of a TRPA1 agonist, allyl isothiocyanate (AITC), dose-dependently triggered swallowing reflexes. Prior topical application of a TRPA1 antagonist significantly attenuated the AITC-induced reflexes. Application of cold AITC (4 °C) very briefly reduced the on-site temperature to < 17 °C (temperature at which TRPA1s can be activated), but had no effect on triggering of the reflex. By contrast, reducing the on-site temperature to < 17 °C for a longer time by continuous flow of cold AITC or by application of iced AITC paradoxically delayed/prevented the triggering of AITC-induced reflexes. Prior application of the TRPA1 antagonist had no effect on the threshold for the punctate mechanical stimuli-induced reflex or the number of low-force or high-force continuous mechanical pressure stimuli-induced reflexes. TRPA1s are functional and act as chemosensors, but not as cold sensors or mechanosensors, for triggering of the swallowing reflex. A brief cold stimulus has no effect on triggering of the reflex. However, a longer cold stimulus delays/prevents triggering of the reflex because of cold anesthesia.
Collapse
|
40
|
De Logu F, Nassini R, Hegron A, Landini L, Jensen DD, Latorre R, Ding J, Marini M, Souza Monteiro de Araujo D, Ramírez-Garcia P, Whittaker M, Retamal J, Titiz M, Innocenti A, Davis TP, Veldhuis N, Schmidt BL, Bunnett NW, Geppetti P. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 2022; 13:646. [PMID: 35115501 PMCID: PMC8813987 DOI: 10.1038/s41467-022-28204-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
- Headache Center, Careggi University Hospital, Florence, 50139, Italy
| | - Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Dane D Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Julia Ding
- Department of Anesthesiology, Columbia University, New York, NY, 10010, USA
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Paulina Ramírez-Garcia
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michael Whittaker
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffri Retamal
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Thomas P Davis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Veldhuis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA.
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
- Headache Center, Careggi University Hospital, Florence, 50139, Italy.
| |
Collapse
|
41
|
Christensen SL, Rasmussen RH, Cour SL, Ernstsen C, Hansen TF, Kogelman LJ, Lauritzen SP, Guzaite G, Styrishave B, Janfelt C, Christensen ST, Aziz Q, Tinker A, Jansen-Olesen I, Olesen J, Kristensen DM. Smooth muscle ATP-sensitive potassium channels mediate migraine-relevant hypersensitivity in mouse models. Cephalalgia 2022; 42:93-107. [PMID: 34816764 DOI: 10.1177/03331024211053570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. METHODS In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. RESULTS Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. CONCLUSION Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Rikke H Rasmussen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sanne La Cour
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Charlotte Ernstsen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Lisette Ja Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sabrina P Lauritzen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Gintare Guzaite
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Qadeer Aziz
- The Heart Centre, 4617Queen Mary University of London, William Harvey Research Institute, Queen Mary University of London, UK
| | - Andrew Tinker
- The Heart Centre, 4617Queen Mary University of London, William Harvey Research Institute, Queen Mary University of London, UK
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
43
|
Iannone LF, De Logu F, Geppetti P, De Cesaris F. The role of TRP ion channels in migraine and headache. Neurosci Lett 2022; 768:136380. [PMID: 34861342 DOI: 10.1016/j.neulet.2021.136380] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Migraine afflicts more than 10% of the general population. Although its mechanism is poorly understood, recent preclinical and clinical evidence has identified calcitonin gene related peptide (CGRP) as a major mediator of migraine pain. CGRP, which is predominantly expressed in a subset of primary sensory neurons, including trigeminal afferents, when released from peripheral terminals of nociceptors, elicits arteriolar vasodilation and mechanical allodynia, a hallmark of migraine attack. Transient receptor potential (TRP) channels include several cationic channels with pleiotropic functions and ubiquitous distribution in various cells and tissues. Some members of the TRP channel family, such as the ankyrin 1 (TRPA1), vanilloid 1 and 4 (TRPV1 and TRPV4, respectively), and TRPM3, are abundantly expressed in primary sensory neurons and are recognized as sensors of chemical-, heat- and mechanical-induced pain, and play a primary role in several models of pain diseases, including inflammatory, neuropathic cancer pain, and migraine pain. In addition, TRP channel stimulation results in CGRP release, which can be activated or sensitized by various endogenous and exogenous stimuli, some of which have been proven to trigger or worsen migraine attacks. Moreover, some antimigraine medications seem to act through TRPA1 antagonism. Here we review the preclinical and clinical evidence that highlights the role of TRP channels, and mainly TRPA1, in migraine pathophysiology and may be proposed as new targets for its treatment.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy; Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco De Cesaris
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
44
|
Wistrom E, Chase R, Smith PR, Campbell ZT. A compendium of validated pain genes. WIREs Mech Dis 2022; 14:e1570. [PMID: 35760453 PMCID: PMC9787016 DOI: 10.1002/wsbm.1570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
The development of novel pain therapeutics hinges on the identification and rigorous validation of potential targets. Model organisms provide a means to test the involvement of specific genes and regulatory elements in pain. Here we provide a list of genes linked to pain-associated behaviors. We capitalize on results spanning over three decades to identify a set of 242 genes. They support a remarkable diversity of functions spanning action potential propagation, immune response, GPCR signaling, enzymatic catalysis, nucleic acid regulation, and intercellular signaling. Making use of existing tissue and single-cell high-throughput RNA sequencing datasets, we examine their patterns of expression. For each gene class, we discuss archetypal members, with an emphasis on opportunities for additional experimentation. Finally, we discuss how powerful and increasingly ubiquitous forward genetic screening approaches could be used to improve our ability to identify pain genes. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Eric Wistrom
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Rebecca Chase
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Patrick R. Smith
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Zachary T. Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA,Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
45
|
OUP accepted manuscript. Brain 2022; 145:2450-2460. [DOI: 10.1093/brain/awac040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/09/2021] [Indexed: 11/14/2022] Open
|
46
|
Konkoly J, Kormos V, Gaszner B, Sándor Z, Kecskés A, Alomari A, Szilágyi A, Szilágyi B, Zelena D, Pintér E. The Role of TRPA1 Channels in the Central Processing of Odours Contributing to the Behavioural Responses of Mice. Pharmaceuticals (Basel) 2021; 14:ph14121336. [PMID: 34959735 PMCID: PMC8703823 DOI: 10.3390/ph14121336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1), a nonselective cation channel, contributes to several (patho)physiological processes. Smell loss is an early sign in several neurodegenerative disorders, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases; therefore, we focused on its role in olfaction and social behaviour with the aim to reveal its potential therapeutic use. The presence of Trpa1 mRNA was studied along the olfactory tract of mice by combined RNAscope in situ hybridisation and immunohistochemistry. The aversive effects of fox and cat odour were examined in parallel with stress hormone levels. In vitro calcium imaging was applied to test if these substances can directly activate TRPA1 receptors. The role of TRPA1 in social behaviour was investigated by comparing Trpa1 wild-type and knockout mice (KO). Trpa1 mRNA was detected in the olfactory bulb and piriform cortex, while its expression was weak in the olfactory epithelium. Fox, but not cat odour directly activated TRPA1 channels in TRPA1-overexpressing Chinese Hamster Ovary cell lines. Accordingly, KO animals showed less aversion against fox, but not cat odour. The social interest of KO mice was reduced during social habituation–dishabituation and social interaction, but not during resident–intruder tests. TRPA1 may contribute to odour processing at several points of the olfactory tract and may play an important role in shaping the social behaviour of mice. Thus, TRPA1 may influence the development of certain social disorders, serving as a potential drug target in the future.
Collapse
Affiliation(s)
- János Konkoly
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Research Group for Mood Disorders, Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Balázs Gaszner
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Research Group for Mood Disorders, Department of Anatomy, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Ammar Alomari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
| | - Alíz Szilágyi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Beatrix Szilágyi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Dóra Zelena
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.); (B.S.)
- Institute of Experimental Medicine, H-1085 Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (J.K.); (V.K.); (Z.S.); (A.K.); (A.A.)
- Centre for Neuroscience, Szentágothai Research Centre of the University of Pécs, H-7624 Pécs, Hungary; (B.G.); (D.Z.)
- Correspondence:
| |
Collapse
|
47
|
Activation of PKCε-ALDH2 Axis Prevents 4-HNE-Induced Pain in Mice. Biomolecules 2021; 11:biom11121798. [PMID: 34944441 PMCID: PMC8698646 DOI: 10.3390/biom11121798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/28/2023] Open
Abstract
Protein kinase Cε (PKCε) is highly expressed in nociceptor neurons and its activation has been reported as pro-nociceptive. Intriguingly, we previously demonstrated that activation of the mitochondrial PKCε substrate aldehyde dehydrogenase-2 (ALDH2) results in anti-nociceptive effects. ALDH2 is a major enzyme responsible for the clearance of 4-hydroxy-2-nonenal (4-HNE), an oxidative stress byproduct accumulated in inflammatory conditions and sufficient to induce pain hypersensitivity in rodents. Here we determined the contribution of the PKCε-ALDH2 axis during 4-HNE-induced mechanical hypersensitivity. Using knockout mice, we demonstrated that PKCε is essential for the nociception recovery during 4-HNE-induced hypersensitivity. We also found that ALDH2 deficient knockin mice display increased 4-HNE-induced nociceptive behavior. As proof of concept, the use of a selective peptide activator of PKCε (ΨεHSP90), which favors PKCε translocation to mitochondria and activation of PKCε-ALDH2 axis, was sufficient to block 4-HNE-induced hypersensitivity in WT, but not in ALDH2-deficient mice. Similarly, ΨεHSP90 administration prevented mechanical hypersensitivity induced by endogenous production of 4-HNE after carrageenan injection. These findings provide evidence that selective activation of mitochondrial PKCε-ALDH2 axis is important to mitigate aldehyde-mediated pain in rodents, suggesting that ΨεHSP90 and small molecules that mimic it may be a potential treatment for patients with pain.
Collapse
|
48
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
49
|
The TRPA1 Channel Amplifies the Oxidative Stress Signal in Melanoma. Cells 2021; 10:cells10113131. [PMID: 34831352 PMCID: PMC8624842 DOI: 10.3390/cells10113131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Macrophages (MΦs) and reactive oxygen species (ROS) are implicated in carcinogenesis. The oxidative stress sensor, transient receptor potential ankyrin 1 (TRPA1), activated by ROS, appears to contribute to lung and breast cancer progression. Although TRPA1 expression has been reported in melanoma cell lines, and oxidative stress has been associated with melanocytic transformation, their role in melanoma remains poorly known. Here, we localized MΦs, the final end-product of oxidative stress, 4-hydroxynonenal (4-HNE), and TRPA1 in tissue samples of human common dermal melanocytic nevi, dysplastic nevi, and thin (pT1) and thick (pT4) cutaneous melanomas. The number (amount) of intratumoral and peritumoral M2 MΦs and 4-HNE staining progressively increased with tumor severity, while TRPA1 expression was similar in all samples. Hydrogen peroxide (H2O2) evoked a TRPA1-dependent calcium response in two distinct melanoma cell lines (SK-MEL-28 and WM266-4). Furthermore, H2O2 induced a TRPA1-dependent H2O2 release that was prevented by the TRPA1 antagonist, A967079, or Trpa1 gene silencing (siRNA). ROS release from infiltrating M2 MΦs may target TRPA1-expressing melanoma cells to amplify the oxidative stress signal that affects tumor cell survival and proliferation.
Collapse
|
50
|
Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Front Cell Neurosci 2021; 15:699731. [PMID: 34658790 PMCID: PMC8514986 DOI: 10.3389/fncel.2021.699731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|