1
|
Thompson R, Tong X, Shen X, Ran J, Sun S, Yao XI, Shen C. Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank. ENVIRONMENT INTERNATIONAL 2024; 195:109219. [PMID: 39732110 DOI: 10.1016/j.envint.2024.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Although there is increasing evidence that environmental exposures are associated with the risk of neurodegenerative conditions, there is still limited mechanistic evidence evaluating potential mediators in human populations. METHODS UK Biobank is a large long-term study of 500,000 adults enrolled from 2006 to 2010 age 40-69 years. ICD-10 classified reports of dementia cases up to 2022 (Alzheimer's disease, vascular dementia, dementia in other classified diseases, and unspecified dementia) were identified from health record linkage. Estimates of residential air pollution, traffic noise, and greenspace exposure have been modelled. Structural brain MRI was conducted from 2014 to 2022, with brain volumes relevant to dementia identified a priori. Associations between environmental exposures, brain volumes, and dementia cases (diagnosed post-MRI) were tested using linear and logistic regression and adjusted for age, sex, household income, ethnicity, education, smoking, and area-level deprivation. Mediation of exposure-outcome associations by plausible brain volumes (those associated with both environmental exposure and dementia outcomes) were modelled using the quasi-Bayesian Monte Carlo method (N = 34,817-39,772). RESULTS Small but significant mediating effects (2%-8% of relationships mediated) were observed between PM2.5abs exposure and dementia risk by reduced total brain volume, NOx and Alzheimer's disease risk by reduced peripheral cortical grey matter, PM2.5abs and vascular dementia risk by reduced peripheral cortical grey matter, PM2.5abs and other dementia risk by reduced total grey matter, and PM10 and other dementia risk by reduced total grey matter. Greenspace and noise were not associated with dementia outcomes in the subset of the cohort providing brain imaging data. CONCLUSIONS This study adds to existing evidence of associations between environmental exposures and dementia outcomes. Our findings provide novel evidence that differences in brain volume may mediate these relationships. Future research is required to prove this mechanism and establish the other mechanisms through which exposure to air pollution might increase dementia risk.
Collapse
Affiliation(s)
- Rhiannon Thompson
- National Institute for Health Research (NIHR) School for Public Health Research (NIHR SPHR), UK; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Xinning Tong
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, China
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoxin Iris Yao
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, China.
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK.
| |
Collapse
|
2
|
Jaiswal C, Singh AK. Particulate matter exposure and its consequences on hippocampal neurogenesis and cognitive function in experimental models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125275. [PMID: 39515570 DOI: 10.1016/j.envpol.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Exposure to air pollution is thought to cause millions of deaths globally each year. According to the Who 2018, approximately 7 million deaths annually are caused predominantly by noncommunicable diseases due to air pollution. Exposure to air particulate matter 2.5 (PM2.5) has been strongly associated with increased mortality and has significant effects on brain health. Air pollution, particularly ultrafine particulate matter, has emerged as a serious environmental concern with profound implications for human health. Studies in animal models have indicated that exposure to these pollutants during gestational development impacts prenatal and postnatal brain development. In particular, air pollution has been increasingly identified as a potential causative factor, as it affects neurogenesis in the brain's hippocampal region. The hippocampus is highly vulnerable to PM exposure, and any alteration in the structure or function of this region leads to various neurodevelopmental defects and neurodegenerative disorders via oxidative stress, microglial activation, neuronal death, and differential expression of genes. The neurogenesis process involves several steps, such as proliferation, differentiation, migration, synaptogenesis, and neuritogenesis. If any step of the neurogenesis process is hampered by environmental exposure or other factors, it can lead to neurodevelopmental defects, neurodegenerative disorders, and cognitive decline. One significant contributor to these alterations is air pollution, which ranks as the leading environmental risk factor worldwide. Some of the most common effects include oxidative stress, neuroinflammation, depressive behavior, altered cognitive processes, and microglial activation. This review explores how prenatal and postnatal PM exposure affects the hippocampal regions of the brain and the defects associated with exposure.
Collapse
Affiliation(s)
- Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
3
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Yang K, Lin F, Wang X, Wang H, Shi Y, Chen L, Weng Y, Chen X, Zeng Y, Wang Y, Cai G. Residential blue space, cognitive function, and the role of air pollution in middle-aged and older adults: A cross-sectional study based on UK biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117355. [PMID: 39566261 DOI: 10.1016/j.ecoenv.2024.117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
This study examines the relationship between residential exposure to blue spaces (e.g., rivers, lakes, and seas) and cognitive function in middle-aged and older adults in the United Kingdom, with a specific focus on the mediating effects of air pollution, particularly nitrogen dioxide (NO₂) and fine particulate matter (PM2.5). Cognitive function was assessed using touch screens at UK Biobank Assessment Centre, while residential blue space exposure within a 300-meter radius was estimated from land-use data. Annual average levels of air pollution, specifically NO₂ and PM2.5, were calculated through a land-use regression model. Logistic regression models analyzed the association between blue space exposure and cognitive function, and restricted cubic splines were employed to assess potential nonlinear relationships. Causal mediation analysis quantified the indirect effects of air pollution on this relationship. The study included 35,669 participants, revealing that high blue space exposure (≥75 %) was associated with a 13.2 % lower risk of cognitive impairment compared to those with low exposure (<25 %). Notably, NO₂ and PM2.5 significantly mediated this association, with indirect effects estimated at 9.5 % and 15.85 %, respectively. These findings indicate that increased residential exposure to blue spaces is linked to a reduced risk of cognitive impairment, highlighting the protective role of blue environments in the context of air pollution. This research underscores the importance of environmentally sensitive urban planning and policies to promote public health and cognitive well-being among vulnerable populations.
Collapse
Affiliation(s)
- Kaitai Yang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xuefei Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Huaicheng Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yisen Shi
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Lina Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yanhong Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Xuanjie Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| | - Yinqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
5
|
Liu SH, Weber ES, Manz KE, McCarthy KJ, Chen Y, Schüffler PJ, Zhu CW, Tracy M. Assessing the Impact and Cost-Effectiveness of Exposome Interventions on Alzheimer's Disease: A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference. Genes (Basel) 2024; 15:1457. [PMID: 39596657 PMCID: PMC11593565 DOI: 10.3390/genes15111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. Methods: We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. Results: We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. Conclusions: This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.
Collapse
Affiliation(s)
- Shelley H. Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ellerie S. Weber
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katherine E. Manz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Katharine J. McCarthy
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yitong Chen
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J. Schüffler
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
- Munich Data Science Institute, 85748 Garching, Germany
| | - Carolyn W. Zhu
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa Tracy
- Department of Epidemiology and Biostatistics, State University of New York at Albany, Albany, NY 12222, USA;
| |
Collapse
|
6
|
Jiang Y, Li F, Ye L, Zhang R, Chen S, Peng H, Zhang H, Li D, Chen L, Zeng X, Dong G, Xu W, Liao C, Zhang R, Luo Q, Chen W. Spatial regulation of NMN supplementation on brain lipid metabolism upon subacute and sub-chronic PM exposure in C57BL/6 mice. Part Fibre Toxicol 2024; 21:35. [PMID: 39252011 PMCID: PMC11385136 DOI: 10.1186/s12989-024-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Atmospheric particulate matter (PM) exposure-induced neuroinflammation is critical in mediating nervous system impairment. However, effective intervention is yet to be developed. RESULTS In this study, we examine the effect of β-nicotinamide mononucleotide (NMN) supplementation on nervous system damage upon PM exposure and the mechanism of spatial regulation of lipid metabolism. 120 C57BL/6 male mice were exposed to real ambient PM for 11 days (subacute) or 16 weeks (sub-chronic). NMN supplementation boosted the level of nicotinamide adenine dinucleotide (NAD+) in the mouse brain by 2.04 times. This augmentation effectively reduced neuroinflammation, as evidenced by a marked decrease in activated microglia levels across various brain regions, ranging from 29.29 to 85.96%. Whole brain lipidomics analysis revealed that NMN intervention resulted in an less increased levels of ceramide (Cer) and lysophospholipid in the brain following subacute PM exposure, and reversed triglyceride (TG) and glycerophospholipids (GP) following sub-chronic PM exposure, which conferred mice with anti-neuroinflammation response, improved immune function, and enhanced membrane stability. In addition, we demonstrated that the hippocampus and hypothalamus might be the most sensitive brain regions in response to PM exposure and NMN supplementation. Particularly, the alteration of TG (60:10, 56:2, 60:7), diacylglycerol (DG, 42:6), and lysophosphatidylcholine (LPC, 18:3) are the most profound, which correlated with the changes in functional annotation and perturbation of pathways including oxidative stress, inflammation, and membrane instability unveiled by spatial transcriptomic analysis. CONCLUSIONS This study demonstrates that NMN intervention effectively reduces neuroinflammation in the hippocampus and hypothalamus after PM exposure by modulating spatial lipid metabolism. Strategies targeting the improvement of lipid homeostasis may provide significant protection against brain injury associated with air pollutant exposure.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Hui Peng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Haiyan Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Guanghui Dong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Wei Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, Hebei, 050017, China.
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China.
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
7
|
Handajani YS, Hogervorst E, Schröder-Butterfill E, Turana Y, Hengky A. Memory impairment and its associated risk and protective factors among older adults in Indonesia. Int J Neurosci 2024; 134:978-986. [PMID: 36856553 DOI: 10.1080/00207454.2023.2183788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
AIMS This study aimed to evaluate the association between memory impairment and its risk and protective factors, focusing on demographic and health-related variables among older adults in Indonesia. METHOD The data analyzed were the Indonesian Family Life Survey-5 (IFLS-5) using cross-sectional variables of 4236 older adults aged 60 years and over included in the 2015 round. Memory impairment was assessed by immediate word list recall from the Telephone Interview for Cognitive Status (TICS). Sociodemographic factors and multiple health variables were included as predictors. Data were analyzed using frequency analyses bivariate and stepwise logistic regression tests. RESULT Among 4236 older adults, 49.7% were male and 50.3% were female. Stepwise backward analyses showed that memory impairment was independently associated with older age, being female, or not in a union (unmarried, separated, divorced, or widowed), having obtained low levels of education, living in a rural area, reporting low life satisfaction, low social capital, higher dependency, and having clinical depression. Only moderate (but not high or low) physical activity levels were associated with a lower risk. Being underweight increased the risk, but being overweight/obese (as assessed by BMI) protective factors for a lower immediate recall score. CONCLUSION Increasing education and continued engagement of older adults in psychosocial activities, including moderate physical activity, improving mental health, preventing weight loss, and maintaining functional ability to decrease dependency, are associated with increased episodic memory, especially in non-married and older women in rural areas of Indonesia.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| | - Eef Hogervorst
- Sport Exercise &Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Yuda Turana
- School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| | - Antoninus Hengky
- Centers of Health Research, Atma Jaya Catholic University of Indonesia, South Jakarta, Indonesia
| |
Collapse
|
8
|
Ard K, Thomas J, Bullock C. Toxic air pollution and cognitive decline: Untangling particulate matter. Health Place 2024; 89:103330. [PMID: 39153260 PMCID: PMC11402554 DOI: 10.1016/j.healthplace.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
There is increasing evidence indicating air pollution is an important factor influencing the aging brain. However, much of this work measures air pollution using particulate matter (PM). Yet we know that the chemical components of PM are not consistent across space or time. Rather, the possible chemical mixtures of PM vary and are therefore not reliably measuring the same thing across studies. In this study we attempt to disentangle the effects of the components of measured PM by using estimates of concurrent exposures of 415 industrial air toxics, as well as 44 neuro- and developmental toxics. Using bivariate latent curve models, we leverage individual level panel data from the bi-annual Health and Retirement Study to test how these exposures relate to cognitive score trajectories of respondents across the years 2002-2012. We find that more exposure to neurotoxics was associated with faster rate of cognitive decline by 1.09 points (p < 0.05).
Collapse
Affiliation(s)
- Kerry Ard
- School of Environment and Natural Resources, Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| | - Jason Thomas
- Institute for Population Research, Ohio State University, 060 Townshend Hall, 1885 Neil Ave Mall, Columbus, OH, 43210, USA.
| | - Clair Bullock
- School of Environment and Natural Resources, Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Wang H, Li S, Zhang J, Peng W, Li T, Zhang J. Efficacy of selective serotonin reuptake inhibitors-related antidepressants in Alzheimer's disease: a meta-analysis. Eur J Med Res 2024; 29:438. [PMID: 39210432 PMCID: PMC11360319 DOI: 10.1186/s40001-024-02006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To study the effects of selective serotonin reuptake inhibitors (SSRIs) on cognitive functions, mental improvements, and adverse effects in patients with Alzheimer's disease (AD). METHODS Registered in INPLASY (INPLASY202450004), five drugs (citalopram, s-citalopram, quetiapine, olanzapine, and sertraline) were selected as representatives. A comprehensive search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library up to May 15, 2024. Search terms were combined using Boolean operators, specifically 'AND' between different categories (e.g., 'Alzheimer's Disease' AND 'SSRIs') and 'OR' within the same category (e.g., 'citalopram OR s-citalopram OR quetiapine OR olanzapine OR sertraline'), to ensure a thorough retrieval of relevant studies. The selection followed rigorous inclusion and exclusion criteria for meta-analysis. RESULTS Fourteen articles from 1118 were selected for meta-analysis. The indicators, including Neuropsychiatric Inventory (NPI), Mini-Mental State Examination (MMSE), Brief Psychiatric Rating Scale (BPRS), and Cornell Scale for Depression in Dementia (CSDD), were used to assess the effects of the drugs on AD treatment. According to the results of NPI, CSDD, BPRS, MMSE, and security assessments, the five antidepressants have significant advantages in AD treatment compared with placebo, while the MMSE of the patient treated with the antidepressants did not show notable changes compared with patients treated only with placebo. Statistical analyses were conducted using Review Manager 5.3, employing random-effects models to account for study heterogeneity and sensitivity analyses to test the robustness of our findings. CONCLUSION This study suggests that SSRI-related antidepressants have great potential values in AD treatment, and further research on the application of SSRI-related antidepressants in AD treatment is necessary.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, 247 Beiyuan St, Jinan, 250033, China
| | - Siyi Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiwei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wei Peng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianxin Zhang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, 247 Beiyuan St, Jinan, 250033, China.
| |
Collapse
|
10
|
Singh N, Nagar E, Roy D, Arora N. NLRP3/GSDMD mediated pyroptosis induces lung inflammation susceptibility in diesel exhaust exposed mouse strains. Gene 2024; 918:148459. [PMID: 38608794 DOI: 10.1016/j.gene.2024.148459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1β expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1β secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1β gene influencing expression between mouse strains. CONCLUSIONS C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1β gene.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepti Roy
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Dhapola R, Sharma P, Kumari S, Bhatti JS, HariKrishnaReddy D. Environmental Toxins and Alzheimer's Disease: a Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol Neurobiol 2024; 61:3657-3677. [PMID: 38006469 DOI: 10.1007/s12035-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease is a leading cause of mortality worldwide. Inorganic and organic hazards, susceptibility to harmful metals, pesticides, agrochemicals, and air pollution are major environmental concerns. As merely 5% of AD cases are directly inherited indicating that these environmental factors play a major role in disease development. Long-term exposure to environmental toxins is believed to progress neuropathology, which leads to the development of AD. Numerous in-vitro and in-vivo studies have suggested the harmful impact of environmental toxins at cellular and molecular level. Common mechanisms involved in the toxicity of these environmental pollutants include oxidative stress, neuroinflammation, mitochondrial dysfunction, abnormal tau, and APP processing. Increased expression of GSK-3β, BACE-1, TNF-α, and pro-apoptotic molecules like caspases is observed upon exposure to these environmental toxins. In addition, the expression of neurotrophins like BDNF and GAP-43 have been found to be reduced as a result of toxicity. Further, modulation of signaling pathways involving PARP-1, PGC-1α, and MAPK/ERK induced by toxins have been reported to contribute in AD pathogenesis. These pathways are a promising target for developing novel AD therapeutics. Drugs like epigallocatechin-gallate, neflamapimod, salsalate, dexmedetomidine, and atabecestat are in different phases of clinical trials targeting the pathways for possible treatment of AD. This review aims to culminate the correlation between environmental toxicants and AD development. We emphasized upon the signaling pathways involved in the progression of the disease and the therapeutics under clinical trial targeting the altered pathways for possible treatment of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151 401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India.
| |
Collapse
|
12
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
13
|
Chen PY, Shen M, Cai SQ, Tang ZW. Association Between Atopic Dermatitis and Aging: Clinical Observations and Underlying Mechanisms. J Inflamm Res 2024; 17:3433-3448. [PMID: 38828054 PMCID: PMC11144009 DOI: 10.2147/jir.s467099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
As one of the most prevalent chronic inflammatory skin diseases, atopic dermatitis (AD) increasingly affects the aging population. Amid the ongoing global aging trend, it's essential to recognize the intricate relationship between AD and aging. This paper reviews existing knowledge, summarizing clinical observations of associations between AD and aging-related diseases in various systems, including endocrine, cardiovascular, and neurological. Additionally, it discusses major theories explaining the correlation, encompassing skin-mucosal barriers, systemic inflammation and stress, genes, signal transduction, and environmental and behavioral factors. The association between AD and aging holds significant importance, both in population and basic perspectives. While further research is warranted, this paper aims to inspire deeper exploration of inflammation/allergy-aging dynamics and the timely management of elderly patients with AD.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease; Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Changsha, 410008, People’s Republic of China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, People’s Republic of China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Zhen-Wei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| |
Collapse
|
14
|
Zhang Y, Hu G, Zhang Q, Hong S, Su Z, Wang L, Wang T, Yu S, Yuan F, Zhu X, Jia G. Cellular senescence mediates hexavalent chromium-associated lung function decline: Insights from a structural equation Model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123947. [PMID: 38608856 DOI: 10.1016/j.envpol.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Li Wang
- Department of Occupational and Environmental Health Science, Baotou Medical College, Baotou, Inner Mongolia 014030, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100191, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Rivas-Arancibia S, Rodríguez-Martínez E, Valdés-Fuentes M, Miranda-Martínez A, Hernández-Orozco E, Reséndiz-Ramos C. Changes in SOD and NF-κB Levels in Substantia Nigra and the Intestine through Oxidative Stress Effects in a Wistar Rat Model of Ozone Pollution. Antioxidants (Basel) 2024; 13:536. [PMID: 38790641 PMCID: PMC11117973 DOI: 10.3390/antiox13050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to elucidate how O3 pollution causes a loss of regulation in the immune response in both the brain and the intestine. In this work, we studied the effect of exposing rats to low doses of O3 based on the association between the antioxidant response of superoxide dismutase (SOD) levels and the nuclear factor kappa light chains of activated B cells (NFκB) as markers of inflammation. Method: Seventy-two Wistar rats were used, divided into six groups that received the following treatments: Control and 7, 15, 30, 60, and 90 days of O3. After treatment, tissues were extracted and processed using Western blotting, biochemical, and immunohistochemical techniques. The results indicated an increase in 4-hydroxynonenal (4HNE) and Cu/Zn-SOD and a decrease in Mn-SOD, and SOD activity in the substantia nigra, jejunum, and colon decreased. Furthermore, the translocation of NFκB to the nucleus increased in the different organs studied. In conclusion, repeated exposure to O3 alters the regulation of the antioxidant and inflammatory response in the substantia nigra and the intestine. This indicates that these factors are critical in the loss of regulation in the inflammatory response; they respond to ozone pollution, which can occur in chronic degenerative diseases.
Collapse
Affiliation(s)
- Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.R.-M.); (M.V.-F.); (A.M.-M.); (E.H.-O.); (C.R.-R.)
| | | | | | | | | | | |
Collapse
|
16
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Liu S, Wang A, Zhou D, Zhai X, Ding L, Tian L, Zhang Y, Wang J, Xin L. PM 2.5 induce neurotoxicity via iron overload and redox imbalance mediated-ferroptosis in HT22 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:55-63. [PMID: 38532551 DOI: 10.1080/10934529.2024.2331938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
PM2.5 is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM2.5-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM2.5 induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity via Aβ deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM2.5. Moreover, gene expression of DMT1, TfR1, IRP2 and FPN1 involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM2.5 exposure. The results demonstrated that PM2.5 triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM2.5-induced oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Shuhui Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Danhong Zhou
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xuedi Zhai
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Occupational Disease Prevention and Control, Yancheng Center for Disease Prevention and Control, Yancheng, China
| | - Ling Ding
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Liang Tian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yidan Zhang
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianshu Wang
- Department of Environmental Hygiene, Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Lili Xin
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
19
|
Huang Z, He G, Sun S, Huang Y. Causal relationship of genetically predicted particulate matter 2.5 level with Alzheimer's disease and the mediating effect of dehydroepiandrosterone sulphate. Ann Hum Biol 2024; 51:2337731. [PMID: 38634600 DOI: 10.1080/03014460.2024.2337731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The causal association between particulate matter 2.5 (PM2.5) and Alzheimer's disease (AD) remains inconclusive, and the mediators of the association have yet to be explored. AIMS We aimed to assess the potential causal relationship between PM2.5 and AD, and to investigate the mediating role of dehydroepiandrosterone sulphate (DHEAS). SUBJECTS AND METHODS We implemented a two-sample Mendelian randomisation (MR) study to examine the genetic predisposition to PM2.5 exposure and its association with AD. The inverse-variance weighted (IVW) method served as the primary analytical tool to estimate the odds ratio (OR) and 95% confidence interval (95% CI). RESULTS There were 6 and 4 genetic variants associated with DHEAS and PM2.5, respectively. Based on the multivariable MR analysis, we found that after adjusting for DHEAS, each standard deviation increase in PM2.5 was associated with the risk of AD (OR: 2.96, 95% CI: 1.33, 6.58, p = 0.00769). The MR Egger intercept test did not detect horizontal pleiotropy for PM2.5 (P-pleiotropy = 0.879) and DHEAS(P-pleiotropy = 0.941). According to the results of the mediation analysis, DHEAS accounted for 18.3% of the association between PM2.5 and AD. CONCLUSION Our findings affirm a significant causal association between PM2.5 exposure and AD, with DHEAS playing a mediating role in this relationship.
Collapse
Affiliation(s)
- Zehan Huang
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guodong He
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuo Sun
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuqing Huang
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
21
|
Das A, Dhillon P. Application of machine learning in measurement of ageing and geriatric diseases: a systematic review. BMC Geriatr 2023; 23:841. [PMID: 38087195 PMCID: PMC10717316 DOI: 10.1186/s12877-023-04477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the ageing population continues to grow in many countries, the prevalence of geriatric diseases is on the rise. In response, healthcare providers are exploring novel methods to enhance the quality of life for the elderly. Over the last decade, there has been a remarkable surge in the use of machine learning in geriatric diseases and care. Machine learning has emerged as a promising tool for the diagnosis, treatment, and management of these conditions. Hence, our study aims to find out the present state of research in geriatrics and the application of machine learning methods in this area. METHODS This systematic review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and focused on healthy ageing in individuals aged 45 and above, with a specific emphasis on the diseases that commonly occur during this process. The study mainly focused on three areas, that are machine learning, the geriatric population, and diseases. Peer-reviewed articles were searched in the PubMed and Scopus databases with inclusion criteria of population above 45 years, must have used machine learning methods, and availability of full text. To assess the quality of the studies, Joanna Briggs Institute's (JBI) critical appraisal tool was used. RESULTS A total of 70 papers were selected from the 120 identified papers after going through title screening, abstract screening, and reference search. Limited research is available on predicting biological or brain age using deep learning and different supervised machine learning methods. Neurodegenerative disorders were found to be the most researched disease, in which Alzheimer's disease was focused the most. Among non-communicable diseases, diabetes mellitus, hypertension, cancer, kidney diseases, and cardiovascular diseases were included, and other rare diseases like oral health-related diseases and bone diseases were also explored in some papers. In terms of the application of machine learning, risk prediction was the most common approach. Half of the studies have used supervised machine learning algorithms, among which logistic regression, random forest, XG Boost were frequently used methods. These machine learning methods were applied to a variety of datasets including population-based surveys, hospital records, and digitally traced data. CONCLUSION The review identified a wide range of studies that employed machine learning algorithms to analyse various diseases and datasets. While the application of machine learning in geriatrics and care has been well-explored, there is still room for future development, particularly in validating models across diverse populations and utilizing personalized digital datasets for customized patient-centric care in older populations. Further, we suggest a scope of Machine Learning in generating comparable ageing indices such as successful ageing index.
Collapse
Affiliation(s)
- Ayushi Das
- International Institute for Population Sciences, Deonar, Mumbai, 400088, India
| | - Preeti Dhillon
- Department of Survey Research and Data Analytics, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
22
|
Shi T, Li P, Yang W, Qi A, Qiao J. Application of TCN-biGRU neural network in [Formula: see text] concentration prediction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119506-119517. [PMID: 37930575 DOI: 10.1007/s11356-023-30354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Fine particulate matter ([Formula: see text]) poses a significant threat to human life and health, and therefore, accurately predicting [Formula: see text] concentration is critical for controlling air pollution. Two improved types of recurrent neural networks (RNNs), the long short-term memory (LSTM) and gated recurrent unit (GRU), have been widely used in time series data prediction due to their ability to capture temporal features. However, both degrade into random guessing as the time length increases. In order to enhance the accuracy of [Formula: see text] concentration prediction and address the issue of random guessing in RNNs neural networks, this study introduces a TCN-biGRU neural network model. This model is a hybrid prediction approach based on combining temporal convolutional networks (TCN) and bidirectional gated recurrent units (bi-GRU). TCN extracts higher-level feature information from longer time series data of [Formula: see text] concentrations, while bi-GRU captures features from past and future data to achieve more accurate predictive outcomes. This case study utilizes data from monitoring stations in Beijing in 2021 for conducting [Formula: see text] prediction experiments. The TCN-biGRU model achieves an average absolute error, root mean square error, and [Formula: see text] of 4.20, 7.71, and 0.961 in its predictive outcomes. When compared to the predictive outcomes of individual LSTM, GRU, and bi-GRU models, it is evident that the TCN-biGRU model exhibits smaller errors and superior predictive performance.
Collapse
Affiliation(s)
- Ting Shi
- Faculty of Information Technology, Beijing University of Technology, Nanmofang, 100124, Beijing, China.
| | - Pengyu Li
- Faculty of Information Technology, Beijing University of Technology, Nanmofang, 100124, Beijing, China
| | - Wu Yang
- Faculty of Information Technology, Beijing University of Technology, Nanmofang, 100124, Beijing, China
| | - Ailin Qi
- Faculty of Information Technology, Beijing University of Technology, Nanmofang, 100124, Beijing, China
| | - Junfei Qiao
- Faculty of Information Technology, Beijing University of Technology, Nanmofang, 100124, Beijing, China
| |
Collapse
|
23
|
Gui J, Liu J, Wang L, Luo H, Huang D, Yang X, Song H, Han Z, Ding R, Yang J, Jiang L. TREM2 mitigates NLRP3-mediated neuroinflammation through the NF-κB and PI3k/Akt signaling pathways in juvenile rats exposed to ambient particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119863-119878. [PMID: 37930574 DOI: 10.1007/s11356-023-30764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Ambient particulate matter (PM) is a global public and environmental problem. PM is closely associated with several neurological disorders that typically involve neuroinflammation. There have been few studies on the effect of PM on neuroinflammation to date. In this study, we used a juvenile rat model (PM exposure was conducted at a dose of 10 mg/kg body weight per day for 4 weeks) and a BV-2 cell model (PM exposure was conducted at concentrations of 50, 100, 150, and 200 μg/ml for 24 h) to investigate PM-induced neuroinflammation mediated by NLRP3 inflammasome activation and the role of TREM2 in this process. Our findings revealed that PM exposure reduced TREM2 protein and mRNA levels in the rat hippocampus and BV-2 cells. TREM2 overexpression attenuated PM-induced spatial learning and memory deficits in rats. Moreover, we observed that TREM2 overexpression in vivo and in vitro effectively mitigated the increase in NLRP3 and pro-Caspase1 protein expression, as well as the secretion of IL-1β and IL-18. Exposure to PM increased the expression of NF-κB and decreased the phosphorylation of PI3k/Akt in vivo and in vitro, and this process was effectively reversed by overexpressing TREM2. Our results indicated that PM exposure could reduce TREM2 expression and induce NLRP3 inflammasome-mediated neuroinflammation and that TREM2 could mitigate NLRP3 inflammasome-mediated neuroinflammation by regulating the NF-κB and PI3k/Akt signaling pathways. These findings shed light on PM-induced neuroinflammation mechanisms and potential intervention targets.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Hanyu Luo
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Honghong Song
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Jiaxin Yang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
24
|
Ye Z, Li X, Lang H, Fang Y. Long-Term PM2.5 Exposure, Lung Function, and Cognitive Function Among Middle-Aged and Older Adults in China. J Gerontol A Biol Sci Med Sci 2023; 78:2333-2341. [PMID: 37493944 DOI: 10.1093/gerona/glad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Long-term exposure to PM2.5 is related to poor lung function and cognitive impairment, but less is known about the pathway involved in this association. We aimed to explore whether the effect of PM2.5 on cognitive function was mediated by lung function. METHODS A total of 7 915 adults older than 45 years old were derived from the China Health and Retirement Longitudinal Study (CHARLS) collected in 2011 and 2015. PM2.5 exposure was estimated using a geographically weighted regression model. Lung function was measured by peak expiratory flow (PEF). Cognitive function was evaluated through a structured questionnaire with 4 dimensions: episodic memory, attention, orientation, and visuoconstruction. Under the counterfactual framework, causal mediation analysis was applied to examine direct and indirect associations. RESULTS An interquartile range (IQR) increase in PM2.5 change was significantly related to an 8.480 (95% confidence interval [CI]: 3.116, 13.845) decrease in PEF change and a 0.301 (95% CI: 0.100, 0.575) decrease in global cognitive score change. The direct and indirect effects of PM2.5 exposure on global cognitive performance were -0.279 (95% CI: -0.551, -0.060) and -0.023 (95% CI: -0.041, -0.010), respectively. The proportion of the indirect effect was 7.48% (p = .010). The same significant association appeared in only 2 dimensions, episodic memory and attention, which were both mediated by PEF. CONCLUSIONS Lung function played a partially mediating role in the association between long-term PM2.5 exposure and cognition. More clean air actions should be undertaken to improve lung function and cognitive function in older adults.
Collapse
Affiliation(s)
- Zirong Ye
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Xueru Li
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Haoxiang Lang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Wang X, Salminen LE, Petkus AJ, Driscoll I, Millstein J, Beavers DP, Espeland MA, Erus G, Braskie MN, Thompson PM, Gatz M, Chui HC, Resnick SM, Kaufman JD, Rapp SR, Shumaker S, Brown M, Younan D, Chen JC. Association between late-life air pollution exposure and medial temporal lobe atrophy in older women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23298708. [PMID: 38077091 PMCID: PMC10705610 DOI: 10.1101/2023.11.28.23298708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Background Ambient air pollution exposures increase risk for Alzheimer's disease (AD) and related dementias, possibly due to structural changes in the medial temporal lobe (MTL). However, existing MRI studies examining exposure effects on the MTL were cross-sectional and focused on the hippocampus, yielding mixed results. Method To determine whether air pollution exposures were associated with MTL atrophy over time, we conducted a longitudinal study including 653 cognitively unimpaired community-dwelling older women from the Women's Health Initiative Memory Study with two MRI brain scans (MRI-1: 2005-6; MRI-2: 2009-10; Mage at MRI-1=77.3±3.5years). Using regionalized universal kriging models, exposures at residential locations were estimated as 3-year annual averages of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) prior to MRI-1. Bilateral gray matter volumes of the hippocampus, amygdala, parahippocampal gyrus (PHG), and entorhinal cortex (ERC) were summed to operationalize the MTL. We used linear regressions to estimate exposure effects on 5-year volume changes in the MTL and its subregions, adjusting for intracranial volume, sociodemographic, lifestyle, and clinical characteristics. Results On average, MTL volume decreased by 0.53±1.00cm3 over 5 years. For each interquartile increase of PM2.5 (3.26μg/m3) and NO2 (6.77ppb), adjusted MTL volume had greater shrinkage by 0.32cm3 (95%CI=[-0.43, -0.21]) and 0.12cm3 (95%CI=[-0.22, -0.01]), respectively. The exposure effects did not differ by APOE ε4 genotype, sociodemographic, and cardiovascular risk factors, and remained among women with low-level PM2.5 exposure. Greater PHG atrophy was associated with higher PM2.5 (b=-0.24, 95%CI=[-0.29, -0.19]) and NO2 exposures (b=-0.09, 95%CI=[-0.14, -0.04]). Higher exposure to PM2.5 but not NO2 was also associated with greater ERC atrophy. Exposures were not associated with amygdala or hippocampal atrophy. Conclusion In summary, higher late-life PM2.5 and NO2 exposures were associated with greater MTL atrophy over time in cognitively unimpaired older women. The PHG and ERC - the MTL cortical subregions where AD neuropathologies likely begin, may be preferentially vulnerable to air pollution neurotoxicity.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Lauren E Salminen
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew J Petkus
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Ira Driscoll
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| | - Daniel P Beavers
- Departments of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina
| | - Mark A Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meredith N Braskie
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Department of Neurology, University of Southern California, Los Angeles, California
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, California
| | - Susan M Resnick
- The Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington
| | - Stephen R Rapp
- Departments of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sally Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark Brown
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Petkus AJ, Salminen LE, Wang X, Driscoll I, Millstein J, Beavers DP, Espeland MA, Braskie MN, Thompson PM, Casanova R, Gatz M, Chui HC, Resnick SM, Kaufman JD, Rapp SR, Shumaker S, Younan D, Chen JC. Alzheimer's Related Neurodegeneration Mediates Air Pollution Effects on Medial Temporal Lobe Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299144. [PMID: 38076972 PMCID: PMC10705654 DOI: 10.1101/2023.11.29.23299144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exposure to ambient air pollution, especially particulate matter with aerodynamic diameter <2.5 μm (PM2.5) and nitrogen dioxide (NO2), are environmental risk factors for Alzheimer's disease and related dementia. The medial temporal lobe (MTL) is an important brain region subserving episodic memory that atrophies with age, during the Alzheimer's disease continuum, and is vulnerable to the effects of cerebrovascular disease. Despite the importance of air pollution it is unclear whether exposure leads to atrophy of the MTL and by what pathways. Here we conducted a longitudinal study examining associations between ambient air pollution exposure and MTL atrophy and whether putative air pollution exposure effects resembled Alzheimer's disease-related neurodegeneration or cerebrovascular disease-related neurodegeneration. Participants included older women (n = 627; aged 71-87) who underwent two structural brain MRI scans (MRI-1: 2005-6; MRI-2: 2009-10) as part of the Women's Health Initiative Memory Study of Magnetic Resonance Imaging. Regionalized universal kriging was used to estimate annual concentrations of PM2.5 and NO2 at residential locations aggregated to 3-year averages prior to MRI-1. The outcome was 5-year standardized change in MTL volumes. Mediators included voxel-based MRI measures of the spatial pattern of neurodegeneration of Alzheimer's disease (Alzheimer's disease pattern similarity scores [AD-PS]) and whole-brain white matter small-vessel ischemic disease (WM-SVID) volume as a proxy of global cerebrovascular damage. Structural equation models were constructed to examine whether the associations between exposures with MTL atrophy were mediated by the initial level or concurrent change in AD-PS score or WM-SVID while adjusting for sociodemographic, lifestyle, clinical characteristics, and intracranial volume. Living in locations with higher PM2.5 (per interquartile range [IQR]=3.17μg/m3) or NO2 (per IQR=6.63ppb) was associated with greater MTL atrophy (βPM2.5 = -0.29, 95% confidence interval [CI]=[-0.41,-0.18]; βNO2 =-0.12, 95%CI=[-0.23,-0.02]). Greater PM2.5 was associated with larger increases in AD-PS (βPM2.5 = 0.23, 95%CI=[0.12,0.33]) over time, which partially mediated associations with MTL atrophy (indirect effect= -0.10; 95%CI=[-0.15, -0.05]), explaining approximately 32% of the total effect. NO2 was positively associated with AD-PS at MRI-1 (βNO2=0.13, 95%CI=[0.03,0.24]), which partially mediated the association with MTL atrophy (indirect effect= -0.01, 95% CI=[-0.03,-0.001]). Global WM-SVID at MRI-1 or concurrent change were not significant mediators between exposures and MTL atrophy. Findings support the mediating role of Alzheimer's disease-related neurodegeneration contributing to MTL atrophy associated with late-life exposures to air pollutants. Alzheimer's disease-related neurodegeneration only partially explained associations between exposure and MTL atrophy suggesting the role of multiple neuropathological processes underlying air pollution neurotoxicity on brain aging.
Collapse
Affiliation(s)
- Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Lauren E. Salminen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Ira Driscoll
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792, United States
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Daniel P. Beavers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Mark A. Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Meredith N. Braskie
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, United States
| | - Ramon Casanova
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, 90089, United States
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
| | - Susan M Resnick
- The Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 20898, United States
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington, 98195, United States
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina , 27101, United States
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Sally Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California, 90033, United States
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, 90033, United States
| |
Collapse
|
27
|
Mou Y, Liao W, Liang Y, Li Y, Zhao M, Guo Y, Sun Q, Tang J, Wang Z. Environmental pollutants induce NLRP3 inflammasome activation and pyroptosis: Roles and mechanisms in various diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165851. [PMID: 37516172 DOI: 10.1016/j.scitotenv.2023.165851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Environmental pollution is changing with economic development. Most environmental pollutants are characterized by stable chemical properties, strong migration, potential toxicity, and multiple exposure routes. Harmful substances are discharged excessively, and large quantities of unknown new compounds are emerging, being transmitted and amplifying in the food chain. The increasingly severe problems of environmental pollution have forced people to re-examine the relationship between environmental pollution and health. Pyroptosis and activation of the NLRP3 inflammasome are critical in maintaining the immune balance and regulating the inflammatory process. Numerous diseases caused by environmental pollutants are closely related to NLRP3 inflammasome activation and pyroptosis. We intend to systematically explain the steps and important events that are common in life but easily overlooked by which environmental pollutants activate the NLRP3 inflammasome and pyroptosis pathways. This comprehensive review also discusses the interaction network between environmental pollutants, the NLRP3 inflammasome, pyroptosis, and diseases. Thus, research progress on the impact of decreasing oxidative stress levels to inhibit the NLRP3 inflammasome and pyroptosis, thereby repairing homeostasis and reshaping health, is systematically examined. This review aims to deepen the understanding of the impact of environmental pollutants on life and health and provide a theoretical basis and potential programs for the development of corresponding treatment strategies.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun Liang
- The Third People's Hospital of Chengdu, Chengdu 610014, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaoyao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
28
|
Lobos P, Vega-Vásquez I, Bruna B, Gleitze S, Toledo J, Härtel S, Hidalgo C, Paula-Lima A. Amyloid β-Oligomers Inhibit the Nuclear Ca 2+ Signals and the Neuroprotective Gene Expression Induced by Gabazine in Hippocampal Neurons. Antioxidants (Basel) 2023; 12:1972. [PMID: 38001825 PMCID: PMC10669355 DOI: 10.3390/antiox12111972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AβOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AβOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AβOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AβOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AβOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AβOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
Collapse
Affiliation(s)
- Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Barbara Bruna
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
| | - Jorge Toledo
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Steffen Härtel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Laboratory for Scientific Image Analysis, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Anatomy and Biology of Development Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Interuniversity Center for Healthy Aging (CIES), Santiago 8380000, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| |
Collapse
|
29
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
30
|
Leng S, Jin Y, Vitiello MV, Zhang Y, Ren R, Lu L, Shi J, Tang X. The association between polluted fuel use and self-reported insomnia symptoms among middle-aged and elderly Indian adults: a cross-sectional study based on LASI, wave 1. BMC Public Health 2023; 23:1953. [PMID: 37814252 PMCID: PMC10561501 DOI: 10.1186/s12889-023-16836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Insomnia predisposes the aging population to reduced quality of life and poor mental and physical health. Evidence of the association between polluted fuel use and insomnia symptoms is limited and is non-existent for the Indian population. Our study aimed to explore the link between polluted fuel use and insomnia symptoms in middle-aged and older (≥ 45 years) Indian populations. METHODS We utilized data from nationally representative Longitudinal Aging Study in India (LASI) Wave 1. Participants with complete information on fuel use, insomnia symptoms, and covariates were included. Insomnia symptoms were indicated by the presence of at least one of three symptoms: difficulty in initiating sleep (DIS), difficulty in maintaining sleep (DMS), or early morning awakening (EMA), ≥ 5 times/week. Survey-weighted multivariable logistic regression analyses were conducted to evaluate the association between polluted fuel use and insomnia symptoms. We also assessed the interaction of association in subgroups of age, gender, BMI, drinking, and smoking status. RESULTS Sixty thousand five hundred fifteen participants met the eligibility criteria. Twenty-eight thousand two hundred thirty-six (weighted percentage 48.04%) used polluted fuel and 5461 (weighted percentage 9.90%) reported insomnia symptoms. After full adjustment, polluted fuel use was associated with insomnia symptoms (OR 1.16; 95%CI 1.08-1.24) and was linked with DIS, DMS, and EMA (OR 1.14; 95%CI 1.05-1.24, OR 1.12; 95%CI 1.03-1.22, and OR 1.15; 95%CI 1.06-1.25, respectively). No significant interactions for polluted fuel use and insomnia symptoms were observed for analyses stratified by age, sex, BMI, drinking, or smoking. CONCLUSIONS Polluted fuel use was positively related to insomnia symptoms among middle-aged and older Indians. Suggestions are offered within this article for further studies to confirm our results, to explore underlying mechanisms, and to inform intervention strategies.
Collapse
Affiliation(s)
- Siqi Leng
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Yuming Jin
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Rong Ren
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China.
| |
Collapse
|
31
|
Kim EY, Ji Kim E, Park H, Lee Y, Kyung Kim D, Sohn Y, Jung HS. A study on specific factors related to inflammation and autophagy in BEAS-2B cells induced by urban particulate matter (PM, 1648a) and histological evaluation of PM-induced bronchial asthma model in mice. Int Immunopharmacol 2023; 123:110730. [PMID: 37543014 DOI: 10.1016/j.intimp.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
As particulate matter (PM) poses an increasing risk, research on its correlation with diseases is active. However, researchers often use their own PM, making it difficult to determine its components. To address this, we investigated the effects of PM with known constituents on BEAS-2B cells, examining cytokine levels, reactive oxygen species ROS production, DNA damage, and MAPK phosphorylation. Additionally, we evaluated the effects of PM on normal and OVA-induced asthmatic mice by measuring organ weight, cytokine levels, and inflammatory cells in bronchoalveolar lavage fluid, and examining histological changes. PM markedly increased levels of IL-6, GM-CSF, TNF-α, ROS, nitric oxide, and DNA damage, while surprisingly reducing IL-8 and MCP-1. Moreover, PM increased MAPK phosphorylation and inhibited mTOR and AKT phosphorylation. In vivo, lung and spleen weights, IgE, OVA-specific IgE, IL-4, IL-13, total cells, macrophages, lymphocytes, mucus generation, and LC3II were higher in the asthma group. PM treatment in asthmatic mice increased lung weight and macrophage infiltration, but decreased IL-4 and IL-13 in BALF. Meanwhile, PM treatment in the Nor group increased total cells, macrophages, lymphocytes, and mucus generation. Our study suggests that PM may induce and exacerbate lung disease by causing immune imbalance via the MAPK and autophagy pathways, resulting in decreased lung function due to increased smooth muscle thickness and mucus generation.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yujin Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Scieszka D, Gu H, Barkley-Levenson A, Barr E, Garcia M, Begay JG, Herbert G, Bhaskar K, McCormick M, Brigman J, Ottens A, Bleske B, Campen MJ. NEUROMETABOLOMIC IMPACTS OF MODELED WILDFIRE SMOKE AND PROTECTIVE BENEFITS OF ANTI-AGING THERAPEUTICS IN AGED FEMALE C57BL/6J MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558863. [PMID: 37790385 PMCID: PMC10542542 DOI: 10.1101/2023.09.21.558863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Wildland fires have become progressively more extensive over the past 30 years in the US, and now routinely generate smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact that smoke derived from biomass has on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Mice (N=6/group) were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 0.448mg/m 3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib+quercetin; DQ); or both RNMN with DQ (RNDQ). Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD+ within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by forced swim tests, which revealed an increased immobility (reduction in motivation) immediately post-exposure and persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Significance Statement Neurological impacts of wildfire smoke are largely underexplored but include neuroinflammation and metabolic changes. The present study highlights modulation of major metabolites in the prefrontal cortex and behavioral consequences in aged (18 month) female mice that persists 10 weeks after wood smoke exposure ended. Supplements derived from the anti-aging field were able to mitigate much of the woodsmoke effect, especially a combination of resveratrol and nicotinamide mononucleotide.
Collapse
|
33
|
Dai Y, Xia R, Wang D, Li S, Yuan X, Li X, Liu J, Wang M, Kuang Y, Chen S. Effect of acupuncture on episodic memory for amnesia-type mild cognitive impairment: study protocol of a multicenter, randomized, controlled trial. BMC Complement Med Ther 2023; 23:268. [PMID: 37507779 PMCID: PMC10375685 DOI: 10.1186/s12906-023-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Amnesic mild cognitive impairment (aMCI) is the main subtype of mild cognitive impairment (MCI) and has the highest risk of conversion to Alzheimer's disease (AD) among all MCI subtypes. Episodic memory impairment is the early cognitive impairment of aMCI, which has become an important target for AD prevention. Previous clinical evidence has shown that acupuncture can improve the cognitive ability of MCI patients. This experiment aimed to observe the efficacy and neural mechanism of TiaoshenYizhi acupuncture on the episodic memory of patients with aMCI. METHODS In this multicenter, parallel-group, double-blind, randomized controlled trial, 360 aMCI participants will be recruited from six subcenters and randomly assigned to the acupuncture group, sham acupuncture group, and control group. The acupuncture group will receive TiaoshenYizhi (TSYZ) acupuncture, the sham acupuncture group will use streitberger sham acupuncture, and the control group will only receive free health education. Participants in the two acupuncture groups will receive real acupuncture treatment or placebo acupuncture three times per week, 24 sessions over 8 consecutive weeks. The primary outcome will be global cognitive ability. Secondary outcomes will be a specific cognitive domain, including episodic memory and execution ability, electroencephalogram, and functional magnetic resonance imaging data. Outcomes will be measured at baseline and the fourth and eighth weeks after randomization. Repeated measurement analysis of variance and a mixed linear model will be used to observe the intervention effect. DISCUSSION The protocol will give a detailed procedure to the multicenter clinical trial to further evaluate the efficacy and neural mechanism of TiaoshenYizhi acupuncture on episodic memory in patients with aMCI. From this research, we expect to provide clinical evidence for early aMCI management. TRIAL REGISTRATION http://www.chictr.org.cn/edit.aspx?pid=142612&htm=4 , identifier: ChiCTR2100054009.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dan Wang
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuqian Li
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xu Yuan
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjie Li
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jun Liu
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mengyang Wang
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuxing Kuang
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shangjie Chen
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen, China.
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
34
|
Yi F, Yang H, Chen D, Qin Y, Han H, Cui J, Bai W, Ma Y, Zhang R, Yu H. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease. BMC Med Inform Decis Mak 2023; 23:137. [PMID: 37491248 PMCID: PMC10369804 DOI: 10.1186/s12911-023-02238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Due to the class imbalance issue faced when Alzheimer's disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve multiclassification of NC, MCI, and AD. METHODS We obtained patient data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer's Coordinating Center (NACC) dataset was employed to assess the impact path consistency of the features within the optimal subset. RESULTS Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their SHAP values. Specifically, the higher SHAP values of CDRSB, ADAS13, ADAS11, ventricle volume, ADASQ4, and FAQ were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL, mPACCdigit, RAVLT_immediate, and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset. CONCLUSIONS The proposed interpretable framework contributes to achieving excellent performance in imbalanced AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby facilitating disease management and offering new research ideas for optimizing AD prevention and treatment programs.
Collapse
Affiliation(s)
- Fuliang Yi
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hui Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Durong Chen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Wenlin Bai
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Yifei Ma
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Rong Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| |
Collapse
|
35
|
Zhang Y, Li M, Pu Z, Chi X, Yang J. Multi-omics data reveals the disturbance of glycerophospholipid metabolism and linoleic acid metabolism caused by disordered gut microbiota in PM2.5 gastrointestinal exposed rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115182. [PMID: 37379664 DOI: 10.1016/j.ecoenv.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The relationships between fine particulate matter (PM2.5) exposure and health effects are complex and incompletely understood. Evidence suggests that PM2.5 exposure alters gut microbiota composition and metabolites, but the connections between these changes remain unclear. The aim of our study was to investigate how gut microbiota are involved in the systemic metabolic changes following PM2.5 gastrointestinal exposure. We used multi-omics approaches, including 16S rRNA sequencing and serum metabolomics, to identify alterations in gut microbes and metabolites of PM2.5-exposed rats. We then explored correlations between perturbed gut microbiota and metabolic changes, and conducted pathway analyses to determine critical metabolic pathways impacted by PM2.5 exposure. To verify links between gut microbiome and metabolome disruptions, we performed fecal microbiota transplantation (FMT) experiment. A total of 30 differential gut microbe taxa were identified between PM2.5 and control groups, primarily in Firmicutes, Acidobacteria, and Proteobacteria phyla. We also identified 30 differential metabolites, including glycerophospholipids, fatty acyls, amino acids and others. Pathway analysis revealed disruptions in glycerophospholipid metabolism, steroid hormone biosynthesis, and linoleic acid metabolism. Through FMT, we confirmed PM2.5 altered phosphatidylcholine and linoleic acid metabolism by changing specific gut bacteria. Our results suggest that PM2.5 gastrointestinal exposure triggers systemic metabolic changes by disrupting the gut microbiome, especially glycerophospholipid and linoleic acid metabolism pathways.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| | - Mengyao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Zhiyu Pu
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Xi Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| |
Collapse
|
36
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Ogurtsova K, Soppa VJ, Weimar C, Jöckel KH, Jokisch M, Hoffmann B. Association of long-term air pollution and ambient noise with cognitive decline in the heinz nixdorf recall study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121898. [PMID: 37244536 DOI: 10.1016/j.envpol.2023.121898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Little is known about the impact of long-term ambient air pollution (AP) and noise exposure on change in cognitive function over years in the elderly. In this study, we wanted to examine the association between long-term exposure to AP and noise with the rate of cognitive decline in a population aged 50 and older and susceptible groups with mild cognitive impairment or at a genetically higher risk of Alzheimer's disease (Apolipoprotein E ε4 positive). Participants in the German population-based Heinz Nixdorf Recall study carried out five neuropsychological tests. Individual tests scores at the first (T1 = 2006-2008) and second (T2 = 2011-2015) follow-up for each test were used as outcomes after standardization using predicted means adjusted for age and education. Global cognitive score (GCS) was defined as sum of five standardized scores of individual tests. Long-term exposures to particulate matter (PM2.5, PM10, PM2.5 absorbance), accumulation mode particle number (PNacc), a proxy of ultrafine particles, and nitrogen dioxide were estimated by the land-use regression and chemistry transport models. Noise exposures were assessed as outdoor weighted nighttime road traffic noise (Lnight) means. We performed linear regression analyses adjusted for sex, age, individual and neighborhood socio-economic status, and lifestyle variables. Effect modification in vulnerable groups was estimated using multiplicative interaction terms between exposure and a modifier. Overall, 2554 participants (49.5% men, median age is 63 (IQR = 12)) were included. We found weak associations between higher exposure to PM10 and PM2.5 with faster decline in the immediate verbal memory test. Adjustment for potential confounders and for co-exposures did not change the results. We saw no effects on GCS, and no effect of noise exposure. In susceptible groups, higher AP and noise exposure were tended to be associated with faster decline in GCS. Our results suggest that AP exposure may accelerate cognitive decline in older ages, particularly in susceptible groups.
Collapse
Affiliation(s)
- Katherine Ogurtsova
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Vanessa J Soppa
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Weimar
- BDH Clinic Elzach, Elzach, Germany; Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
39
|
Serafin P, Zaremba M, Sulejczak D, Kleczkowska P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023; 11:biomedicines11051477. [PMID: 37239148 DOI: 10.3390/biomedicines11051477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM) and dementia is encouraging. However, few interventions exist to delay or prevent the onset of dementia. Air quality data are becoming increasingly available, and the science underlying the associated health effects is also evolving rapidly. Recent interest in this area has led to the publication of population-based cohort studies, but these studies have used different approaches to identify cases of dementia. The purpose of this article is to review recent evidence describing the association between exposure to air pollution and dementia with special emphasis on fine particulate matter of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air pollutants reach the brain and activate the innate immune response. In addition, the article also provides a short overview of existing limitations in the treatment of dementia.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
40
|
Yuan A, Halabicky O, Rao H, Liu J. Lifetime air pollution exposure, cognitive deficits, and brain imaging outcomes: A systematic review. Neurotoxicology 2023; 96:69-80. [PMID: 37001821 PMCID: PMC10963081 DOI: 10.1016/j.neuro.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
As the amount of air pollution and human exposure has increased, the effects on human health have become an important public health issue. A field of growing interest is how air pollution exposure affects brain structure and function underlying cognitive deficits and if structural and connectivity changes mediate the relationship between the two. We conducted a systematic review to examine the literature on air pollution, brain structure and connectivity, and cognition studies. Eleven studies matched our inclusion criteria and were included in the qualitative analysis. Results suggest significant associations between air pollution and decreased volumes of specific brain structures, cortical thickness and surface area such as in the prefrontal cortex and temporal lobe, as well as the weakening of functional connectivity pathways, largely the Default Mode (DMN) and Frontal Parietal (FPN) networks, as detected by fMRI. Associations between air pollution and cognitive outcomes were found in most of the studies (n = 9), though some studies showed stronger associations than others. For children & adolescents, these deficiencies largely involved heavy reasoning, problem solving, and logic. For young and middle-aged adults, the associations were mostly seen for executive function and visuospatial cognitive domains. To our knowledge, this is the first systematic review to consolidate findings on the associations among air pollution, brain structure, and cognitive function. In the future, it will be important to conduct further longitudinal studies that follow children who have been exposed at a young age and examine associations with brain structure and cognition throughout adulthood.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Hengyi Rao
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
41
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
42
|
Lamorie‐Foote K, Liu Q, Shkirkova K, Ge B, He S, Morgan TE, Mack WJ, Sioutas C, Finch CE, Mack WJ. Particulate matter exposure and chronic cerebral hypoperfusion promote oxidative stress and induce neuronal and oligodendrocyte apoptosis in male mice. J Neurosci Res 2023; 101:384-402. [PMID: 36464774 PMCID: PMC10107949 DOI: 10.1002/jnr.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) may amplify the neurotoxicity of nanoscale particulate matter (nPM), resulting in white matter injury. This study characterized the joint effects of nPM (diameter ≤ 200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) exposure on neuronal and white matter injury in a murine model. nPM was collected near a highway and re-aerosolized for exposure. Ten-week-old C57BL/6 male mice were randomized into four groups: filtered air (FA), nPM, FA + BCAS, and nPM + BCAS. Mice were exposed to FA or nPM for 10 weeks. BCAS surgeries were performed. Markers of inflammation, oxidative stress, and apoptosis were examined. nPM + BCAS exposure increased brain hemisphere TNFα protein compared to FA. iNOS and HNE immunofluorescence were increased in the corpus callosum and cerebral cortex of nPM + BCAS mice compared to FA. While nPM exposure alone did not decrease cortical neuronal cell count, nPM decreased corpus callosum oligodendrocyte cell count. nPM exposure decreased mature oligodendrocyte cell count and increased oligodendrocyte precursor cell count in the corpus callosum. nPM + BCAS mice exhibited a 200% increase in cortical neuronal TUNEL staining and a 700% increase in corpus callosum oligodendrocyte TUNEL staining compared to FA. There was a supra-additive interaction between nPM and BCAS on cortical neuronal TUNEL staining (2.6× the additive effects of nPM + BCAS). nPM + BCAS exposure increased apoptosis, neuroinflammation, and oxidative stress in the cerebral cortex and corpus callosum. nPM + BCAS exposure increased neuronal apoptosis above the separate responses to each exposure. However, oligodendrocytes in the corpus callosum demonstrated a greater susceptibility to the combined neurotoxic effects of nPM + BCAS exposure.
Collapse
Affiliation(s)
- Krista Lamorie‐Foote
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Qinghai Liu
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristina Shkirkova
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brandon Ge
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shannon He
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesUniversity of Southern California, Keck School of MedicineLos AngelesCaliforniaUSA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - William J. Mack
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
43
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Daniel L Costa
- Department of Environmental Sciences and Engineering, Gilling's School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Functionalized graphene-based electrochemical array sensors for the identification of distinct conformational states of Amyloid Beta in Alzheimer's disease. Biosens Bioelectron 2023; 222:114927. [PMID: 36525707 DOI: 10.1016/j.bios.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Aβ oligomers have been widely accepted as significant biomarkers for Alzheimer's disease (AD) detection, monitoring, and therapy since they are highly correlated with AD development. In this work, an electrochemical array-based sensing platform was successfully built using a group of functionalized graphene with different physicochemical features. Since the electro-insulated Aβ peptide species severely interfered with the electron transport on the electrode surface, the presence of Aβ led to a significant change in the electrochemical impedance signal. The resulting variety of the impedance was then classified and processed by linear discriminant analysis. The constructed sensing platform can discriminate different Aβ forms, the mixture of various Aβ forms, and different ratios of Aβ42 to Aβ40 with 100% accuracy by only the combination of dual probes. Furthermore, it also exhibited excellent performance for screening Aβ inhibitors and metal chelators. The strategy utilizes the infinitesimal general discrepancy instead of specific biomarker recognition, exhibiting the advantage of no requirement to know the exact information about the specific ligand and receptor in advance, which is promising to be widened for the other biosensing detection fields.
Collapse
|
45
|
Thompson R, Smith RB, Karim YB, Shen C, Drummond K, Teng C, Toledano MB. Air pollution and human cognition: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160234. [PMID: 36427724 DOI: 10.1016/j.scitotenv.2022.160234] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND This systematic review summarises and evaluates the literature investigating associations between exposure to air pollution and general population cognition, which has important implications for health, social and economic inequalities, and human productivity. METHODS The engines MEDLINE, Embase Classic+Embase, APA PsycInfo, and SCOPUS were searched up to May 2022. Our inclusion criteria focus on the following pollutants: particulate matter, NOx, and ozone. The cognitive abilities of interest are: general/global cognition, executive function, attention, working memory, learning, memory, intelligence and IQ, reasoning, reaction times, and processing speed. The collective evidence was assessed using the NTP-OHAT framework and random-effects meta-analyses. RESULTS Eighty-six studies were identified, the results of which were generally supportive of associations between exposures and worsened cognition, but the literature was varied and sometimes contradictory. There was moderate certainty support for detrimental associations between PM2.5 and general cognition in adults 40+, and PM2.5, NOx, and PM10 and executive function (especially working memory) in children. There was moderate certainty evidence against associations between ozone and general cognition in adults age 40+, and NOx and reasoning/IQ in children. Some associations were also supported by meta-analysis (N = 14 studies, all in adults aged 40+). A 1 μg/m3 increase in NO2 was associated with reduced performance on general cognitive batteries (β = -0.02, p < 0.05) as was a 1 μg/m3 increase in PM2.5 exposure (β = -0.02, p < 0.05). A 1μgm3 increase in PM2.5 was significantly associated with lower verbal fluency by -0.05 words (p = 0.01) and a decrease in executive function task performance of -0.02 points (p < 0.001). DISCUSSION Evidence was found in support of some exposure-outcome associations, however more good quality research is required, particularly with older teenagers and young adults (14-40 years), using multi-exposure modelling, incorporating mechanistic investigation, and in South America, Africa, South Asia and Australasia.
Collapse
Affiliation(s)
- Rhiannon Thompson
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Rachel B Smith
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK
| | - Yasmin Bou Karim
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chen Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Kayleigh Drummond
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chloe Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Mireille B Toledano
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK.
| |
Collapse
|
46
|
Oh M, Weaver DF. Alzheimer's disease as a fundamental disease of information processing systems: An information theory perspective. Front Neurosci 2023; 17:1106623. [PMID: 36845437 PMCID: PMC9950401 DOI: 10.3389/fnins.2023.1106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
The human brain is a dynamic multiplex of information, both neural (neurotransmitter-to-neuron, involving 1.5×1015 action potentials per minute) and immunological (cytokine-to-microglia, providing continuous immune surveillance via 1.5×1010 immunocompetent cells). This conceptualization highlights the opportunity of exploiting "information" not only in the mechanistic understanding of brain pathology, but also as a potential therapeutic modality. Arising from its parallel yet interconnected proteopathic-immunopathic pathogeneses, Alzheimer's disease (AD) enables an exploration of the mechanistic and therapeutic contributions of information as a physical process central to brain disease progression. This review first considers the definition of information and its relevance to neurobiology and thermodynamics. Then we focus on the roles of information in AD using its two classical hallmarks. We assess the pathological contributions of β-amyloid peptides to synaptic dysfunction and reconsider this as a source of noise that disrupts information transfer between presynaptic and postsynaptic neurons. Also, we treat the triggers that activate cytokine-microglial brain processes as information-rich three-dimensional patterns, including pathogen-associated molecular patterns and damage-associated molecular patterns. There are structural and functional similarities between neural and immunological information with both fundamentally contributing to brain anatomy and pathology in health and disease. Finally, the role of information as a therapeutic for AD is introduced, particularly cognitive reserve as a prophylactic protective factor and cognitive therapy as a therapeutic contributor to the comprehensive management of ongoing dementia.
Collapse
Affiliation(s)
- Myongin Oh
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada,Department of Chemistry, University of Toronto, Toronto, ON, Canada,Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada,*Correspondence: Donald F. Weaver,
| |
Collapse
|
47
|
Casanova R, Anderson AM, Barnard RT, Justice JN, Kucharska-Newton A, Windham BG, Palta P, Gottesman RF, Mosley TH, Hughes TM, Wagenknecht LE, Kritchevsky SB. Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging? GeroScience 2023; 45:439-450. [PMID: 36050589 PMCID: PMC9886771 DOI: 10.1007/s11357-022-00650-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023] Open
Abstract
Machine learning methods have been applied to estimate measures of brain aging from neuroimages. However, only rarely have these measures been examined in the context of biologic age. Here, we investigated associations of an MRI-based measure of dementia risk, the Alzheimer's disease pattern similarity (AD-PS) scores, with measures used to calculate biological age. Participants were those from visit 5 of the Atherosclerosis Risk in Communities Study with cognitive status adjudication, proteomic data, and AD-PS scores available. The AD-PS score estimation is based on previously reported machine learning methods. We evaluated associations of the AD-PS score with all-cause mortality. Sensitivity analyses using only cognitively normal (CN) individuals were performed treating CNS-related causes of death as competing risk. AD-PS score was examined in association with 32 proteins measured, using a Somalogic platform, previously reported to be associated with age. Finally, associations with a deficit accumulation index (DAI) based on a count of 38 health conditions were investigated. All analyses were adjusted for age, race, sex, education, smoking, hypertension, and diabetes. The AD-PS score was significantly associated with all-cause mortality and with levels of 9 of the 32 proteins. Growth/differentiation factor 15 (GDF-15) and pleiotrophin remained significant after accounting for multiple-testing and when restricting the analysis to CN participants. A linear regression model showed a significant association between DAI and AD-PS scores overall. While the AD-PS scores were created as a measure of dementia risk, our analyses suggest that they could also be capturing brain aging.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Andrea M Anderson
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ryan T Barnard
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Priya Palta
- School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
48
|
Rothschild J, Haase E. The mental health of women and climate change: Direct neuropsychiatric impacts and associated psychological concerns. Int J Gynaecol Obstet 2023; 160:405-413. [PMID: 36165632 DOI: 10.1002/ijgo.14479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
Climate change brings exposures to heat, air pollution, poorer quality food, and infectious disease that have significant direct effects on women and their mental health. These environmental impacts are multifaceted in their consequences and raise risks of depression, suicide, violent victimization, post-traumatic stress disorder, and various other neuropsychiatric symptoms. Women also suffer increased climate psychological risks from higher rates of stillbirth, preterm birth, and developmental problems in their children. Here we review what is known about the overlap of women's individual mental health and climate change, and highlight areas where more research is needed.
Collapse
Affiliation(s)
- Julia Rothschild
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth Haase
- Department of Psychiatry, Carson Tahoe Regional Medical Center, Carson City, Nevada, USA.,University of Nevada School of Medicine at Reno, Reno, Nevada, USA
| |
Collapse
|
49
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
50
|
Xu J, Huang L, Bao T, Duan K, Cheng Y, Zhang H, Zhang Y, Li J, Li Q, Li F. CircCDR1as mediates PM 2.5-induced lung cancer progression by binding to SRSF1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114367. [PMID: 36508830 DOI: 10.1016/j.ecoenv.2022.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Research indicates that particulate matter with an aerodynamic equivalent diameter of less than or equal to 2.5 µm in ambient air may induce lung cancer progression. Circular RNAs are a special kind of endogenous noncoding RNA, and their functions are reflected in various diseases and physiological processes, but there are still few studies related to PM2.5-induced lung cancer. Here, we identified that circCDR1as was upregulated in lung cancer cells stimulated with PM2.5 and positively correlated with the malignant features of lung cancer. The lower expression of CircCDR1as reduced the adverse progression of lung cancer cells after PM2.5 treatment; the lower expression of circCDR1as impaired the growth size and metastatic ability of lung cancer cells in mouse tumour models. Mechanistically, circCDR1as specifically bound to serine/arginine-rich splicing Factor 1 (SRSF1) and affected the splicing of vascular endothelial growth factor-A (VEGFA) by SRSF1. Furthermore, circCDR1as affected SRSF1 function by regulating PARK2-mediated SRSF1 ubiquitination, protein production and degradation. CircCDR1as also affected C-myc and cyclin D1 expression by regulating SRSF1 and affecting the wnt/β-catenin signalling pathway, ultimately promoting malignant behavior and inhibiting the apoptosis of lung cancer cells, thereby causing PM2.5-induced lung cancer development.
Collapse
Affiliation(s)
- Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Tuya Bao
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Kaiqian Duan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Qiujuan Li
- Department of Preventive medicine laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|