1
|
Nasrallah NA, Lee B, Wiese BM, Karam MN, Mickler EA, Zhou H, Paolelli N, Stearman RS, Geraci MW, Sears CR. Cigarette Smoke and Decreased DNA Repair by Xeroderma Pigmentosum Group C Use a Double Hit Mechanism for Epithelial Cell Lung Carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639660. [PMID: 40060594 PMCID: PMC11888293 DOI: 10.1101/2025.02.22.639660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Emerging evidence suggests a complex interplay of environmental and genetic factors in non-small cell lung cancer (NSCLC) development. Among these factors, compromised DNA repair plays a critical but incompletely understood role in lung tumorigenesis and concurrent lung diseases, such as chronic obstructive lung disease (COPD). In this study, we investigated the interplay between cigarette smoke, DNA damage and repair, focusing on the Nucleotide Excision Repair (NER) protein Xeroderma Pigmentosum Group C (XPC). We found decreased XPC mRNA expression in most NSCLCs compared to subject-matched, non-cancerous lung. In non-cancerous bronchial epithelial cells, cigarette smoke decreased NER, increased total DNA damage and resultant apoptosis, each exacerbated by XPC deficiency. In contrast, lung cancer cells exhibit greater resilience to cigarette smoke, requiring higher doses to induce comparable DNA damage and apoptosis, and are less reliant on XPC expression for survival. Importantly, XPC protects against chromosomal instability in benign bronchial epithelial cells, but not in lung cancer cells. Our findings support a "double hit" mechanism wherein early decreased XPC expression and resultant aberrant DNA repair, when combined with cigarette smoke exposure, may lead to loss of non-malignant epithelial cells (as observed in COPD), and contributes to early NSCLC transition through altered DNA damage response.
Collapse
Affiliation(s)
- Nawar Al Nasrallah
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pulmonary Oncology, Pulmonary and Critical Care Section, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Bowa Lee
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin M Wiese
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marie N Karam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth A Mickler
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Huaxin Zhou
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nicki Paolelli
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robert S Stearman
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark W Geraci
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Catherine R Sears
- Pulmonary Oncology, Pulmonary and Critical Care Section, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Morgil GK, Çok İ. Evaluation and comparison of DNA alkylation and oxidative damage in e-cigarette and heated tobacco users. Toxicol Mech Methods 2025; 35:125-135. [PMID: 39138671 DOI: 10.1080/15376516.2024.2390028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES This study, aimed to determine and compare DNA damage in e-cigarette and HTP (IQOS) users by assessing DNA-adducts, which are biomarkers of various DNA alkylation and oxidation. METHODS For the evaluation of DNA alkylation, N3-Ethyladenine (N3-EtA) and N3-Methyladenine (N3-MeA) adducts were used. DNA oxidation was assessed using, 8-hydroxy-2'-deoxyguanosine(8-OHdG). The urinary cotinine, N3-MeA, N3-EtA, and 8-OHdG concentrations of the cigarette smokers (n:39), e-cigarette users (n:28), IQOS users (n:20), passive smokers (n:32), and nonsmokers(n:41) who lived Ankara, Turkiye were determined using, liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS In light of the detected 8-OHdG levels, e-cigarette (3.19 ng/g creatinine) and IQOS (4.38 ng/g creatinine) users had higher oxidative DNA damage than healthy nonsmokers (2.51 ng/g creatinine). Alkylated DNA-adducts were identified in the urine of e-cigarette (N3-MeA: 3.92 ng/g creatinine; N3-EtA: 0.23 ng/g creatinine) and IQOS (N3-MeA: 7.54 ng/g creatinine; N3-EtA: 0.29 ng/g creatinine) users. In the generation of N3-MeA adducts, a significant difference was found between IQOS users and e-cigarette users (p < 0.05). Also, DNA alkylation in flavored e-cigarette users (N3-MeA: 4.51 ng/g creatinine; N3-EtA: 0.27 ng/g creatinine) was higher than in non-flavored e-cigarette users (N3-MeA: 2.27 ng/g creatinine; N3-EtA: 0.06 ng/g creatinine). The highest cotinine levels were found in cigarette smokers (16.1316 ng/g creatinine). No significant difference was found when e-cigarette (1163.02 ng/g creatinine) and IQOS smokers were compared (1088.3 ng/g creatinine). CONCLUSION People who use e-cigarettes and IQOS may be at higher risk of genotoxicity than those who do not use and are not exposed to any tobacco products. Furthermore, the usage of flavoring additives in e-cigarettes contributed to additional genotoxic damage risks.
Collapse
Affiliation(s)
- Göksel Koç Morgil
- Minister of Health, General Directorate of Public Health, Department of Consumer Safety and Public Health Laboratories, Toxicology Laboratory, Sıhhıye, Ankara, Türkiye
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkiye
| |
Collapse
|
3
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
4
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative blood-based characterization of oxidative mitochondrial DNA damage variants implicates Mexican American's metabolic risk for developing Alzheimer's disease. Sci Rep 2023; 13:14765. [PMID: 37679478 PMCID: PMC10484983 DOI: 10.1038/s41598-023-41190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Family Medicine, Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics and Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
5
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative Blood-Based Characterization of Oxidative Mitochondrial DNA Damage Variants Implicates Mexican Americans' Metabolic Risk for Developing Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-2666242. [PMID: 36993752 PMCID: PMC10055654 DOI: 10.21203/rs.3.rs-2666242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65+) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latinx population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
| | | | | | - Roland J Thorpe
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health
| | - Jie Sun
- University of North Texas Health Science Center
| | | | | |
Collapse
|
7
|
Kawasaki Y, Li YS, Ootsuyama Y, Fujisawa K, Omori H, Onoue A, Kubota K, Yoshino T, Nonami Y, Yoshida M, Yamato H, Kawai K. Assessment of exposure and DNA damage from second-hand smoke using potential biomarker in urine: cigarettes and heated tobacco products. J Clin Biochem Nutr 2023; 72:242-247. [DOI: 10.3164/jcbn.22-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Yuko Ootsuyama
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Hisamitsu Omori
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University
| | - Ayumi Onoue
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University
| | - Kenichi Kubota
- Department of Internal Medicine, Japanese Red Cross Kumamoto Health Care Center
| | - Toshimi Yoshino
- Department of Internal Medicine, Japanese Red Cross Kumamoto Health Care Center
| | - Yoshio Nonami
- Department of Internal Medicine, Japanese Red Cross Kumamoto Health Care Center
| | - Minoru Yoshida
- Department of Internal Medicine, Japanese Red Cross Kumamoto Health Care Center
| | - Hiroshi Yamato
- Department of Health Development, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | - Kazuaki Kawai
- Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Japan
| |
Collapse
|
8
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
9
|
Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother-Newborn Binomial. Life (Basel) 2022; 12:life12071012. [PMID: 35888100 PMCID: PMC9323630 DOI: 10.3390/life12071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
During pregnancy, appropriate nutritional support is necessary for the development of the foetus. Maternal nutrition might protect the foetus from toxic agents such as free radicals due to its antioxidant content. In this study, 90 mothers and their children were recruited. DNA damage mediated by oxidative stress (OS) was determined by the levels of 8-hidroxy-2′-deoxyguanosine (8-OHdG) in the plasma of women and umbilical cord blood. The mothers and newborns were categorised into tertiles according to their 8-OHdG levels for further comparison. No relevant clinical differences were observed in each group. A strong correlation was observed in the mother−newborn binomial for 8-OHdG levels (Rho = 0.694, p < 0.001). In the binomial, a lower level of 8-OHdG was associated with higher consumption of calories, carbohydrates, lipids, and vitamin A (p < 0.05). In addition, the levels of 8-OHdG were only significantly lower in newborns from mothers with a higher consumption of vitamin A and E (p < 0.01). These findings were confirmed by a significant negative correlation between the 8-OHdG levels of newborns and the maternal consumption of vitamins A and E, but not C (Rho = −0.445 (p < 0.001), −0.281 (p = 0.007), and −0.120 (p = 0.257), respectively). Multiple regression analysis showed that the 8-OHdG levels in mothers and newborns inversely correlated with vitamin A (β = −1.26 (p = 0.016) and −2.17 (p < 0.001), respectively) and pregestational body mass index (β = −1.04 (p = 0.007) and −0.977 (p = 0.008), respectively). In conclusion, maternal consumption of vitamins A and E, but not C, might protect newborns from DNA damage mediated by OS.
Collapse
|
10
|
Nucleobase-Derived Nitrones: Synthesis and Antioxidant and Neuroprotective Activities in an In Vitro Model of Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23063411. [PMID: 35328832 PMCID: PMC8955307 DOI: 10.3390/ijms23063411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a–i. The neuroprotective properties of nitrones, 9a–i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a–i, have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-L-cysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1–6 μM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50′s ≈ 2–4 μM) and antioxidant (EC50′s ≈ 0.4–3.5 μM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mono-nitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.
Collapse
|
11
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
12
|
Matsushita Y, Iwashita Y, Ohtsuka S, Ohnishi I, Yamashita T, Miyake H, Sugimura H. A DNA adductome analysis revealed a reduction in the global level of C5-hydroxymethyl-2'-deoxycytidine in the non-tumoral upper urinary tract mucosa of urothelial carcinoma patients. Genes Environ 2021; 43:52. [PMID: 34852853 PMCID: PMC8638144 DOI: 10.1186/s41021-021-00228-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer. Method To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed. Results C5-Methyl-2′-deoxycytidine, C5-hydroxymethyl-2′-deoxycytidine (5hmdC), C5-formyl-2′-deoxycytidine, 2′-deoxyinosine, C8-oxo-2′-deoxyadenosine, and C8-oxo-2′-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman’s rank correlation test revealed a negative correlation between age and 5hmdC levels (r = − 0.46, p = 0.018 and r = − 0.45, p = 0.042, respectively). Conclusions The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00228-9.
Collapse
Affiliation(s)
- Yuto Matsushita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Shunsuke Ohtsuka
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ippei Ohnishi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takashi Yamashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
13
|
Brozek-Pluska B, Beton K. Oxidative stress induced by tBHP in human normal colon cells by label free Raman spectroscopy and imaging. The protective role of natural antioxidants in the form of β-carotene. RSC Adv 2021; 11:16419-16434. [PMID: 35479133 PMCID: PMC9030785 DOI: 10.1039/d1ra01950c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effect of β-carotene on the oxidative stress injury of human normal colon cell line CCD-18Co triggered by tert-butyl hydroperoxide (tBHP). XTT examination was used to determine cell viability after β-carotene supplementation and to determine the optimal concentration of antioxidant in spectroscopic studies. Cell biochemistry for the CCD-18Co control group, after tBHP addition and for cells in the β-carotene-tBHP model was studied using label-free Raman microspectroscopy. Results for stress treated CCD-18Co human colon normal cells and human colon cancer cells Caco-2 based on vibration features were also compared. Pretreatment with β-carotene alleviated damage in CCD-18Co human normal colon cells induced by tBHP and showed the preventative effect on cell apoptosis. Treatment with β-carotene altered the level of ROS investigated based on intensities of Raman peaks typical for lipids, proteins and nucleic acids. The present study confirmed the antioxidant, protective role of β-carotene against ROS by using spectroscopic label-free Raman techniques.
Collapse
Affiliation(s)
- B Brozek-Pluska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland
| | - K Beton
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland
| |
Collapse
|
14
|
Adli A, Hosseini SM, Lari Najafi M, Behmanesh M, Ghezi E, Rasti M, Kazemi AA, Rad A, Falanji F, Mohammadzadeh M, Miri M, Dadvand P. Polycyclic aromatic hydrocarbons exposures and telomere length: A cross-sectional study on preschool children. ENVIRONMENTAL RESEARCH 2021; 195:110757. [PMID: 33493537 DOI: 10.1016/j.envres.2021.110757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with shorter telomere length (TL), a marker of ageing at cellular level. However, the available evidence on this association among children is still scarce. We therefore aimed to assess, the relationship between urinary 1-hydroxipayrene (1-OHP), a marker of exposure to PAHs, and relative leukocyte TL (LTL) in children at preschool age. Our study was based on 200 children enrolled from 27 randomly-selected kindergartens in the city of Sabzevar, Iran (2017). 1-OHP levels in the participants' urine samples were measured using solid phase extraction (SPE) method and high-performance liquid chromatography (HPLC). Moreover, real-time PCR was used to measure the LTL in the participants' blood samples. Linear mixed effects models, controlled for relevant covariates, were applied to investigate the association of 1-OHP concentration and LTL. The median (interquartile range (IQR)) of relative LTL and urinary 1-OHP were 0.83 (0.7) and 257 (375.5) ng/L, respectively. In the fully adjusted model, an IQR increase in urinary 1-OHP was related to -0.05 (95% confidence interval (CI): 0.09, -0.01, P-value = 0.02) decrease in relative LTL. This association was similar among boys and girls; however, we observed indications for a stronger association for those children whose parents had university education. Our study suggested an inverse relationship between urinary 1-OHP and LTL in children at preschool age. However, further longitudinal research with repeated measures of PAHs and LTL are needed to confirm these findings.
Collapse
Affiliation(s)
- Abolfazl Adli
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Behmanesh
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; University of Applied Sciences & Technology (UAST), Tehran, Iran
| | - Elahe Ghezi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Morteza Rasti
- Non-communicable diseases Research Center, Heshmatiyeh Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Asghar Kazemi
- Non-communicable diseases Research Center, Heshmatiyeh Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Miri
- Non-communicable diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
15
|
Kim DH, Im ST, Yoon JY, Kim S, Kim MK, Chung MH, Park CK. Comparison of therapeutic effects between topical 8-oxo-2'-deoxyguanosine and corticosteroid in ocular alkali burn model. Sci Rep 2021; 11:6909. [PMID: 33767351 PMCID: PMC7994716 DOI: 10.1038/s41598-021-86440-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 01/25/2023] Open
Abstract
We compared the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) and corticosteroid in a murine ocular alkali burn model. (n = 128) The corneal alkali burn model was established by applying 0.1 N sodium hydroxide (NaOH), followed by treatment with 8-oxo-dG, 0.1% fluorometholone (FML), 1% prednisolone acetate (PDE), or phosphate-buffered saline (PBS) twice daily. One week later, the clinical and histological status of the cornea were assessed. Transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as well as the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cornea, were assayed. The 8-oxo-dG and PDE groups showed marked improvements in corneal integrity and clarity when compared with the PBS group (each p < 0.01). The numbers of cells stained for neutrophil elastase and F4/80-positive inflammatory cells were significantly decreased, with levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, and total ROS/RNS amounts markedly reduced in the 8-oxo-dG, FML, and PDE groups (each p < 0.05). Levels of NADPH oxidase type 2 and 4 were substantially more repressed in the 8-oxo-dG-treated group than in the PDE-treated group (each p < 0.05). Topical 8-oxo-dG showed excellent therapeutic effects that were comparable with those treated with topical PDE in a murine ocular alkali burn model.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, 1198, Guwol-dong, Namdong-Gu, Incheon, 21565, Korea.
| | - Sang-Taek Im
- Fight Against Angiogenesis Related Blindness (FARB) Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Jin Young Yoon
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | | | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Hee Chung
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, 21999, Korea.
| |
Collapse
|
16
|
Choe JH, Mazambani S, Kim TH, Kim JW. Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells 2021; 10:606. [PMID: 33803326 PMCID: PMC8000417 DOI: 10.3390/cells10030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCCs) arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors, accounting for more than one million cancer deaths annually. Despite this prevalence, SCC patients have not fully benefited from recent advances in molecularly targeted therapy or immunotherapy. Rather, decades old platinum-based or radiation regimens retaining limited specificity to the unique characteristics of SCC remain first-line treatment options. Historically, a lack of a consolidated perspective on genetic aberrations driving oncogenic transformation and other such factors essential for SCC pathogenesis and intrinsic confounding cellular heterogeneity in SCC have contributed to a critical dearth in effective and specific therapies. However, emerging evidence characterizing the distinct genomic, epigenetic, and metabolic landscapes of SCC may be elucidating unifying features in a seemingly heterogeneous disease. In this review, by describing distinct metabolic alterations and genetic drivers of SCC revealed by recent studies, we aim to establish a conceptual framework for a previously unappreciated network of oncogenic signaling, redox perturbation, and metabolic reprogramming that may reveal targetable vulnerabilities at their intersection.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
- Research and Development, VeraVerse Inc., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
17
|
Luo K, Carmella SG, Zhao Y, Tang MK, Hecht SS. Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115342. [PMID: 32805605 PMCID: PMC8892176 DOI: 10.1016/j.envpol.2020.115342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF2α), a biomarker of lipid peroxidation (R2 = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Collapse
Affiliation(s)
- Kai Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mei Kuen Tang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
CETİN YS, DÜZENLİ U, BERKÖZ M, ÖZKAN H, BOZAN N. An investigation of 8-hydroxy-2’-deoxyguanosine and 8-iso-prostaglandin F2α levels in patients with larynx carcinoma. ENT UPDATES 2020. [DOI: 10.32448/entupdates.744725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Kankanamage RNT, Ghosh AB, Jiang D, Gkika K, Keyes T, Achola LA, Suib S, Rusling JF. Metabolites of Tobacco- and E-Cigarette-Related Nitrosamines Can Drive Cu 2+-Mediated DNA Oxidation. Chem Res Toxicol 2020; 33:2072-2086. [PMID: 32672941 PMCID: PMC7510339 DOI: 10.1021/acs.chemrestox.0c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrosamine metabolites resulting from cigarette smoking and E-cigarette (E-cig) vaping cause DNA damage that can lead to genotoxicity. While DNA adducts of metabolites of nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) are well-known tobacco-related cancer biomarkers, only a few studies implicate NNN and NNK in DNA oxidation in humans. NNK and NNN were found in the urine of E-cigarette users who never smoked cigarettes. This paper proposes the first chemical pathways of DNA oxidation driven by NNK and NNN metabolites in redox reactions with Cu2+ and NADPH leading to reactive oxygen species (ROS). A microfluidic array with thin films of DNA and metabolic enzymes that make metabolites of NNN and NNK in the presence of Cu2+ and NADPH was used to estimate relative rates of DNA oxidation. Detection by electrochemiluminescence (ECL) employed a new ECL dye [Os(tpy-benz-COOH)2]2+ that is selective for and sensitive to the primary DNA oxidation product 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in DNA. Enzyme-DNA films on magnetic beads were used to produce nitrosamine metabolites that enter ROS-forming redox cycles with Cu2+ and NADPH, and liquid chromatography-mass spectrometry (LC-MS) was used to quantify 8-oxodG and identify metabolites. ROS were detected by optical sensors. Metabolites of NNK and NNN + Cu2+ + NADPH generated relatively high rates of DNA oxidation. Lung is the exposure route in smoking and vaping, human lung tissue contains Cu2+ and NADPH, and lung microsomal enzymes gave the highest rates of DNA oxidation in this study. Also, E-cigarette vapor contains 6-fold more copper than that in cigarette smoke, which could exacerbate DNA oxidation.
Collapse
Affiliation(s)
- Rumasha N T Kankanamage
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abhisek Brata Ghosh
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Di Jiang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karmel Gkika
- School of Chemical Sciences, Dublin City University, Dublin D9, Ireland
| | - Tia Keyes
- School of Chemical Sciences, Dublin City University, Dublin D9, Ireland
| | - Laura A Achola
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| |
Collapse
|
20
|
Wong G, Lam E, Karam I, Yee C, Drost L, Tam S, Lam H, McCarvell A, McKenzie E, Chow E. The impact of smoking on adjuvant breast cancer radiation treatment: A systematic review. Cancer Treat Res Commun 2020; 24:100185. [PMID: 32593846 DOI: 10.1016/j.ctarc.2020.100185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The influence of cigarette smoking on cancer risk has been well-studied. Similarly, exposure to ionizing radiation from radiotherapy (RT) can produce detrimental effects on an individual's health. In patients administered RT, there has been an observed relationship in other primary carcinomas. The purpose of this systematic review was to summarize the influence of cigarette smoking on outcomes post adjuvant RT in breast cancer patients. METHODS OVID Medline, Cochrane and Embase were searched and 1893 articles were identified. A total of 71 articles were included in the review. Study type, published year and sample size, age, systemic therapies, RT techniques and treatment side effects were collected if available. RESULTS The review found 198 different outcomes which fell into 7 categories and similar outcomes were recorded. 40% of skin reaction outcomes, 50% of cardiovascular outcomes, 71% of reconstruction outcomes, 29% of pulmonary function outcomes, 33% of mortality outcomes and 42% of secondary recurrence outcomes reported significant differences between smokers and non-smokers. None of the articles reported non-smokers to have a higher risk than smokers. CONCLUSION Cigarette smoking can pose a higher risk of post-treatment complications that can influence an individual's quality of life, survival rate and/or recurrence risk. This review further assessed the impact of smoking on various patient outcomes and side-effects in the adjuvant breast RT setting. The information provided in this review suggest that smoking cessation programs would help educate patients to understand their risks of being a current or former smoker when undergoing RT.
Collapse
Affiliation(s)
- Gina Wong
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Emily Lam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Irene Karam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Caitlin Yee
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leah Drost
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Samantha Tam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Henry Lam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alyson McCarvell
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Erin McKenzie
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Edward Chow
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Hasan F, Khachatryan L, Lomnicki S. Comparative Studies of Environmentally Persistent Free Radicals on Total Particulate Matter Collected from Electronic and Tobacco Cigarettes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5710-5718. [PMID: 32267684 DOI: 10.1021/acs.est.0c00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, electron paramagnetic resonance (EPR) spectroscopy was employed to measure environmentally persistent free radicals (EPFRs) in the total particulate matter (TPM) of mainstream and sidestream TPM of conventional cigarettes and the TPM of e-cigarettes. Comparable concentrations of EPFRs were detected in both sidestream (8.05 ± 1.32) × 104 pmol/g and mainstream TPM (7.41 ± 0.85) × 104 pmol/g of conventional cigarettes. TPM exposure to air resulted in long-lived oxygen centered, secondary radicals with EPR g values of 2.0041 for mainstream and 2.0044 for sidestream. Surprisingly, despite no combustion process, the TPM from e-cigarettes (menthol flavor of NJOY and V2 brands) also contain EPFRs with g values of 2.0031-2.0033, characteristic of carbon centered radicals, while the radical signal in the vanilla flavor of V2 brand was remarkably similar to semiquinones in cigarette smoke with a higher g value (2.0063). The radical concentration in e-cigarettes was much lower as compared to tobacco TPM. Although the production of ROS generated by e-cigarettes is comparatively lower than ROS generated by conventional cigarettes, EPFRs in e-cigarettes appear to be more potent than those in tobacco TPM with respect to hydroxyl radical generation yield per unit EPFR. EPFRs in e-cigarette TPM may be a potential source of health impacts.
Collapse
Affiliation(s)
- Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Matsumura K, Ito S. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach. BMC Pulm Med 2020; 20:29. [PMID: 32013930 PMCID: PMC6998147 DOI: 10.1186/s12890-020-1062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis. Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities. Methods We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes, the machine learning technique was employed with the publicly available transcriptome data obtained from the lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across smoking and COPD. Results The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which they were able to discriminate COPD subjects from smokers was only 29%. Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects (0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco products. Conclusions Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the 15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects and new insights into COPD.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
23
|
Watanabe S, Kawasaki Y, Kawai K. Salivary 8-hydroxyguanine as a lifestyle-related oxidative stress biomarker in workers. J Clin Biochem Nutr 2020; 66:57-61. [PMID: 32001957 PMCID: PMC6983431 DOI: 10.3164/jcbn.19-72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress is a risk factor for lifestyle-related diseases, such as cancer. Investigations of the factors that increase or decrease oxidative stress contribute to disease prevention. In the present study, we focused on the 8-hydroxyguanine (8-OHGua) in saliva, as a new oxidative stress biomarker. The relationship between lifestyles and salivary 8-OHGua levels in 541 Japanese subjects was analyzed. The salivary 8-OHGua levels were significantly elevated in older persons, as well as those who smoke, have hypertension, or excess visceral fat. By contrast, statistically significant lower levels of 8-OHGua were observed in persons who moderately exercised or recently drank green tea or coffee. The direct collection of saliva, without any special collecting device, was suitable for the 8-OHGua analysis. The present results suggest that oxidative stress can be measured in a non-invasive manner with easily collectable saliva, and the salivary 8-OHGua may be a useful biomarker for lifestyle-related disease prevention.
Collapse
Affiliation(s)
- Sintaroo Watanabe
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan.,Japan Marine United Corporation Kure Shipyard, 2-1 Showa-cho, Kure-shi, Hiroshima 737-0027, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan
| |
Collapse
|
24
|
Zhao RN, Jia LP, Feng Z, Ma RN, Zhang W, Shang L, Xue QW, Wang HS. Ultrasensitive electrochemiluminescence aptasensor for 8-hydroxy-2'-deoxyguanosine detection based on target-induced multi-DNA release and nicking enzyme amplification strategy. Biosens Bioelectron 2019; 144:111669. [PMID: 31494507 DOI: 10.1016/j.bios.2019.111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023]
Abstract
8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is a principal stable marker of DNA oxidative damage. Sensitive and specific detection of 8-OH-dG is of great importance for early disease diagnosis. In this paper, we developed an electrochemiluminescence aptasensor for 8-OH-dG detection based on target induced multi-DNA release and nicking enzyme signaling amplification strategy. First, three kinds of short DNAs were aligned on the aptamers immobilized on the magnetic beads. In the presence of 8-OH-dG, the aptamer recognized and specifically bound with 8-OH-dG, leading to the release of three kinds of short DNAs and three-fold signal amplification. Then the released short DNAs hybridized with ferrocence (Fc) labeled hairpin DNA (Fc-HP) immobilized on the gold electrode to form a double strand DNA. Subsequently, nicking endonuclease (Nt.AlwI) recognized the asymmetric sequence in the dsDNA and cleaved the substrate strand (Fc-HP) into two parts, one fragments containing Fc would leave the surface of electrode. Based on the quenching effect of Fc on the electrochemiluminescence (ECL) of Ru(bpy)32+/TPA, a signal-on ECL aptasensor was developed. At the same time, three kinds of short DNAs were released again and reused to initiate the repeated cycles of hybridization-cleavage. Under double signal amplification, this aptasensor achieved a low detection of 25 fM and a wide linear range from 100 fM to 10 nM for 8-OH-dG. Besides, the amount of 8-OH-dG in urine samples derived from different people were determined with satisfactory results.
Collapse
Affiliation(s)
- Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China.
| | - Zhe Feng
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
25
|
Liu Y, Li X, Zhang B, Fu Y, Yang A, Zhang H, Zhang H, Niu Y, Nie J, Yang J. CYP1A1 methylation mediates the effect of smoking and occupational polycyclic aromatic hydrocarbons co-exposure on oxidative DNA damage among Chinese coke-oven workers. Environ Health 2019; 18:69. [PMID: 31358014 PMCID: PMC6664755 DOI: 10.1186/s12940-019-0508-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Multiple factors, including co-exposure between lifestyle and environmental risks, are important in susceptibility to oxidative DNA damage. However, the underlying mechanism is not fully understood. This study was undertaken to evaluate whether Cytochrome P4501A1 (CYP1A1) methylation can mediate the co-exposure effect between smoking and occupational polycyclic aromatic hydrocarbons (PAH) in development of oxidative DNA damage. METHODS We explored the associations between smoking and occupational PAH co-exposure effect, CYP1A1 methylation and oxidative DNA damage among 500 workers from a coke-oven plant in China. Urine biomarkers of PAH exposure (1-hydroxypyrene, 1-OHP; 2-hydroxynaphthalene, 2-NAP; 2-hydroxyfluorene, 2-FLU; and 9-hydroxyphenanthren, 9-PHE) and a marker of oxidative DNA damage (8-hydroxy- 2'- deoxyguanosine, 8-OHdG) were measured by high performance liquid chromatography. CYP1A1 methylation was measured by pyrosequencing. Finally, mediation analysis was performed to investigate whether CYP1A1 methylation mediated smoking and occupational PAH co-exposure effect on oxidative DNA damage. RESULTS We observed significant associations of smoking and 1-OHP co-exposure with CYP1A1 hypomethylation (OR: 1.87, 95% CI: 1.01-3.47) and high 8-OHdG (OR: 2.13, 95% CI: 1.14-3.97). There was a significant relationship between CYP1A1 hypomethylation and high 8-OHdG (1st vs. 3rd tertile = 1.58, 95% CI: 1.01-2.47, P for trend = 0.046). In addition, mediation analysis suggested CYP1A1 hypomethylation could explain 13.6% of effect of high 8-OHdG related to smoking and 1-OHP co-exposure. CONCLUSIONS Our findings suggested that the co-exposure effect of smoking and occupational PAH could increase the risk of oxidative DNA damage by a mechanism partly involving CYP1A1 hypomethylation.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, the Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hongjie Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Huitao Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Xinjiannan Road 56, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
26
|
Ringh MV, Hagemann-Jensen M, Needhamsen M, Kular L, Breeze CE, Sjöholm LK, Slavec L, Kullberg S, Wahlström J, Grunewald J, Brynedal B, Liu Y, Almgren M, Jagodic M, Öckinger J, Ekström TJ. Tobacco smoking induces changes in true DNA methylation, hydroxymethylation and gene expression in bronchoalveolar lavage cells. EBioMedicine 2019; 46:290-304. [PMID: 31303497 PMCID: PMC6710853 DOI: 10.1016/j.ebiom.2019.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background While smoking is known to associate with development of multiple diseases, the underlying mechanisms are still poorly understood. Tobacco smoking can modify the chemical integrity of DNA leading to changes in transcriptional activity, partly through an altered epigenetic state. We aimed to investigate the impact of smoking on lung cells collected from bronchoalveolar lavage (BAL). Methods We profiled changes in DNA methylation (5mC) and its oxidised form hydroxymethylation (5hmC) using conventional bisulphite (BS) treatment and oxidative bisulphite treatment with Illumina Infinium MethylationEPIC BeadChip, and examined gene expression by RNA-seq in healthy smokers. Findings We identified 1667 total 5mC + 5hmC, 1756 5mC and 67 5hmC differentially methylated positions (DMPs) between smokers and non-smokers (FDR-adjusted P <.05, absolute Δβ >0.15). Both 5mC DMPs and to a lesser extent 5mC + 5hmC were predominantly hypomethylated. In contrast, almost all 5hmC DMPs were hypermethylated, supporting the hypothesis that smoking-associated oxidative stress can lead to DNA demethylation, via the established sequential oxidation of which 5hmC is the first step. While we confirmed differential methylation of previously reported smoking-associated 5mC + 5hmC CpGs using former generations of BeadChips in alveolar macrophages, the large majority of identified DMPs, 5mC + 5hmC (1639/1667), 5mC (1738/1756), and 5hmC (67/67), have not been previously reported. Most of these novel smoking-associating sites are specific to the EPIC BeadChip and, interestingly, many of them are associated to FANTOM5 enhancers. Transcriptional changes affecting 633 transcripts were consistent with DNA methylation profiles and converged to alteration of genes involved in migration, signalling and inflammatory response of immune cells. Interpretation Collectively, these findings suggest that tobacco smoke exposure epigenetically modifies BAL cells, possibly involving a continuous active demethylation and subsequent increased activity of inflammatory processes in the lungs. Fund The study was supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the Stockholm County Council (ALF), the King Gustav's and Queen Victoria's Freemasons' Foundation, Knut and Alice Wallenberg Foundation, Neuro Sweden, and the Swedish MS foundation.
Collapse
Affiliation(s)
- Mikael V Ringh
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden.
| | - Michael Hagemann-Jensen
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Charles E Breeze
- Altius Institute for Biomedical Sciences, Seattle, USA; UCL Cancer Institute, University College London, London, United Kingdom
| | - Louise K Sjöholm
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Slavec
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Susanna Kullberg
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden; Department of Respiratory Medicine, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Wahlström
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Johan Grunewald
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Malin Almgren
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Johan Öckinger
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
27
|
Rai SK, Smriti B, Gunaseelan S, Ashokkumar B, Varalakshmi P. Polyphenolic Compound from Brown Macroalga
Padina tetrastromatica
Imparts Oxidative Stress Tolerance in SH‐SY5Y, RAW 264.7, HeLa Cell Lines and in
Caenorhabditis elegans. ChemistrySelect 2019. [DOI: 10.1002/slct.201900607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sameer Kumar Rai
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Bhardwaj Smriti
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Sathaiah Gunaseelan
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Balasubramaniem Ashokkumar
- Department of Genetic EngineeringSchool of BiotechnologyMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Perumal Varalakshmi
- Department of Molecular MicrobiologySchool of BiotechnologyMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| |
Collapse
|
28
|
So CC, Ramachandran S, Martin A. E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair. Mol Cell Biol 2019; 39:e00488-18. [PMID: 30692271 PMCID: PMC6447412 DOI: 10.1128/mcb.00488-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 01/23/2019] [Indexed: 01/13/2023] Open
Abstract
Histone posttranslational modifications play fundamental roles in the regulation of double-stranded DNA break (DSB) repair. RNF20/RNF40-mediated monoubiquitination of histone H2B on lysine 120 (H2Bub) has been suggested as a potential mediator of DSB repair, although the nature and function of this posttranslational modification remain enigmatic. In this report, we demonstrate that RNF20 and RNF40 are required for DSB repair leading to homologous recombination (HR) and class switch recombination, a process driven by nonhomologous end joining (NHEJ), in mouse B cells. These findings suggest a role for RNF20 and RNF40 in DSB repair proximal to NHEJ/HR pathway choice and likely in the signaling of DSBs. We found that DSBs led to a global increase in H2Bub but not the transcription-associated posttranslational modifications H3K4me3 and H3K79me2. We also found that H2AX phosphorylation was dispensable for H2Bub and that ATM and ATR jointly regulate ionizing radiation (IR)-induced H2Bub. Together, our results suggest that RNF20, RNF40, and H2Bub may represent a novel pathway for DSB sensing and repair.
Collapse
Affiliation(s)
- Clare C So
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Ganguly S, Chandra A, Chatterjee IB. Pathobiology of cigarette smoke-induced invasive cancer of the renal pelvis and its prevention by vitamin C. Toxicol Rep 2018; 5:1002-1010. [PMID: 30338226 PMCID: PMC6186955 DOI: 10.1016/j.toxrep.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
Abstract
Urothelial cancer of the renal pelvis (CRP) is predominantly associated with cigarette smoking. However, the molecular pathogenesis of initiation and progression of cigarette smoke (CS)-induced CRP is unknown. Majority of CRP is high grade and high stage at presentation and has a high recurrence rate even after surgery. Earlier we reported that prolonged treatment (24 weeks) of a guinea pig model with p-benzoquinone (p-BQ), a product of CS in vivo, produced carcinoma in situ in the renal pelvis, a noninvasive cancer. Since CS is known to induce invasive cancer, we investigated the effect of CS exposure to the guinea pigs. We observed that CS exposure for a short period (18 weeks) produced invasive tumor (pT1). pT1 was confirmed by immunohistochemistry showing increased immunoexpression of nuclear p53 indicating p53 mutation, aberrant CK20, increased Ki-67 and uniformly negative labeling of CD44. As observed earlier with p-BQ treatment, the initial events of CS exposure were oxidative damage and apoptosis that was followed by persistent signaling through EGFR and MAP kinase pathway. CS exposure also caused hyperphosphorylation of pRb, activation of cyclin E and cell cycle deregulation leading to infiltration of epithelial cells in lamina propria of the renal pelvis resulting in pT1 tumor. Oral supplementation of vitamin C (30 mg/kg guinea pig/day) inhibited oxidative damage and apoptosis and holistically prevented the tumor formation. We consider that our preclinical findings on the intake of adequate vitamin C, along with intense advice for cessation of smoking, will be helpful for the prevention of CS-induced CRP in smokers.
Collapse
Affiliation(s)
- Shinjini Ganguly
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata, 700019, India
| | - Ayan Chandra
- Department of Statistics, St. Xavier's College (Autonomous), Kolkata, 700016, India
| | - Indu B Chatterjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata, 700019, India
| |
Collapse
|
31
|
Arimilli S, Schmidt E, Damratoski BE, Prasad GL. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation. Inflammation 2018; 40:1622-1630. [PMID: 28577134 PMCID: PMC5587635 DOI: 10.1007/s10753-017-0602-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology & Immunology, Wake Forest University Health Sciences, Room 2N-052, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA.
| | | | - Brad E Damratoski
- Department of Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Lawania S, Sharma S, Singh N, Behera D. XPF polymorphism toward lung cancer susceptibility and survival in patients treated with platinum-based chemotherapy. Future Oncol 2018; 14:1071-1089. [PMID: 29741112 DOI: 10.2217/fon-2017-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the association of three XPF polymorphic variants (673 C>T, 11985 A>G, G415A) with lung cancer, overall survival and clinical response in North Indians. METHODS Genotyping was performed using PCR-restriction fragment length polymorphism. RESULTS A total of 673 C>T polymorphism was associated with 1.5-fold increased lung cancer risk for heterozygous genotype (CT; p = 0.03). Adenocarcinoma patients with 673 C>T polymorphism carrying heterozygous genotype (CT) had a lower hazard ratio (p = 0.01). Classification and regression tree analysis predicted XPF 673 C>T (M) as the strongest risk factor for the lung cancer (p = 0.003). For 11985 A>G polymorphism, lung cancer subjects treated with irinotecan cisplatin/carboplatin regimen having heterozygous genotype (AG) was associated with high mortality risk (p = 0.0001). CONCLUSION 673 C>T polymorphism was associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Shweta Lawania
- Department of Biotechnology, Thapar University, Punjab 147002, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar University, Punjab 147002, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| | - Digamber Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| |
Collapse
|
33
|
Kopa PN, Pawliczak R. Effect of smoking on gene expression profile – overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol Mech Methods 2018; 28:397-409. [DOI: 10.1080/15376516.2018.1461289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Natalia Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Suitability of biomarkers of biological effects (BOBEs) for assessing the likelihood of reducing the tobacco related disease risk by new and innovative tobacco products: A literature review. Regul Toxicol Pharmacol 2018; 94:203-233. [DOI: 10.1016/j.yrtph.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
35
|
Wang YZ, Zhuo ZJ, Fang Y, Li L, Zhang J, He J, Wu XM. Functional Polymorphisms in hOGG1 Gene and Neuroblastoma Risk in Chinese Children. J Cancer 2018; 9:4521-4526. [PMID: 30519358 PMCID: PMC6277639 DOI: 10.7150/jca.27983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is a lethal tumor of the sympathetic nervous system. 8-Hydroxydeoxyguanine (8-OH-dG) formation is a common seen type of oxidative DNA damage, which could be repaired by human oxoguanine glycosylase 1 (hOGG1). To explore the contributing role of hOGG1 gene single nucleotide polymorphisms (SNPs) in neuroblastoma risk, we performed a case-control study by genotyping three SNPs (rs1052133 G>C, rs159153 T>C, rs293795 A>G) in hOGG1 gene. A total of 512 neuroblastoma cases and 1076 cancer-free controls were enrolled from three medical centers in China. The hOGG1 gene polymorphisms were determined using TaqMan real-time PCR. The results showed that only the rs1052133 G>C polymorphism was associated with neuroblastoma risk [GC vs. GG: adjusted odds ratio (OR)=0.64, 95% confidence interval (CI)=0.51-0.81, P=0.0002; dominant model: adjusted OR=0.71, 95% CI=0.57-0.88, P=0.002]. Moreover, subjects carrying 1, 2, or 1-3 protective genotypes have less opportunity to develop neuroblastoma, in comparison to those without protective genotypes. Stratified analysis revealed that rs1052133 GC/CC carriers were less likely to develop neuroblastoma in subgroups of age >18 months, males, tumor that develops from retroperitoneal, mediastinum and clinical stage I+II+4s. Our results indicate that hOGG1 rs1052133 G>C polymorphism is associated with decreased risk of neuroblastoma. However, the exact biological mechanism awaits further research.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
- ✉ Corresponding authors: Yi-Zhen Wang, Department of Pathology, Anhui Provincial Children's Hospital, 39 East Wangjiang Road, Hefei 230051, Anhui, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| | - Zhen-Jian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuan Fang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| | - Lin Li
- Clinical Laboratory, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Yi-Zhen Wang, Department of Pathology, Anhui Provincial Children's Hospital, 39 East Wangjiang Road, Hefei 230051, Anhui, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| | - Xue-Mei Wu
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
| |
Collapse
|
36
|
Goettel M, Niessner R, Mueller D, Scherer M, Scherer G, Pluym N. Metabolomic Fingerprinting in Various Body Fluids of a Diet-Controlled Clinical Smoking Cessation Study Using a Validated GC-TOF-MS Metabolomics Platform. J Proteome Res 2017; 16:3491-3503. [PMID: 28849940 DOI: 10.1021/acs.jproteome.7b00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Untargeted GC-TOF-MS analysis proved to be a suitable analytical platform to determine alterations in the metabolic profile. Several metabolic pathways were found to be altered in a first clinical study comparing smokers against nonsmokers. Subsequently, we conducted a clinical diet-controlled study to investigate alterations in the metabolic profile during the course of 3 months of smoking cessation. Sixty male subjects were included in the study, and plasma, saliva, and urine samples were collected during four 24 h stationary visits: at baseline, while still smoking, after 1 week, after 1 month, and after 3 months of cessation. Additionally, subjects were monitored for their compliance by measurements of CO in exhaled breath and salivary cotinine throughout the study. GC-TOF-MS fingerprinting was applied to plasma, saliva, and urine samples derived from 39 compliant subjects. In total, 52 metabolites were found to be significantly altered including 26 in plasma, 20 in saliva, and 12 in urine, respectively. In agreement with a previous study comparing smokers and nonsmokers, the fatty acid and amino acid metabolism showed significant alterations upon 3 months of smoking cessation. Thus these results may indicate a partial recovery of metabolic pathway perturbations, even after a relatively short period of smoking cessation.
Collapse
Affiliation(s)
- Michael Goettel
- Chair for Analytical Chemistry, Technische Universität München , Marchioninistraße 17, 81377 Munich, Germany.,ABF, Analytisch-Biologisches Forschungslabor GmbH , Semmelweisstraße 5, 82152 Planegg, Germany
| | - Reinhard Niessner
- Chair for Analytical Chemistry, Technische Universität München , Marchioninistraße 17, 81377 Munich, Germany
| | - Daniel Mueller
- ABF, Analytisch-Biologisches Forschungslabor GmbH , Semmelweisstraße 5, 82152 Planegg, Germany
| | - Max Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH , Semmelweisstraße 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH , Semmelweisstraße 5, 82152 Planegg, Germany
| | - Nikola Pluym
- ABF, Analytisch-Biologisches Forschungslabor GmbH , Semmelweisstraße 5, 82152 Planegg, Germany
| |
Collapse
|
37
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Intake of Antioxidant Vitamins and Carotenoids and Risk of Developing Active Tuberculosis in a Prospective Population-Based Cohort Study. Am J Epidemiol 2017; 186:491-500. [PMID: 28520939 DOI: 10.1093/aje/kwx132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 11/14/2022] Open
Abstract
Antioxidants may protect against oxidative stress, which is associated with tuberculosis (TB) disease. However, direct evidence for a protective association between dietary antioxidants and TB incidence in humans has been lacking. The relationship between intake of antioxidant vitamins (vitamins A, C, D, and E) and individual carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein) and TB incidence was examined in the Singapore Chinese Health Study, a prospective cohort study of 63,257 adults aged 45-74 years enrolled during 1993-1998. Baseline intake of these antioxidants was estimated using a validated semiquantitative food frequency questionnaire including questions on use of dietary supplements. After an average of 16.9 years of follow-up, 1,186 incident active TB cases were identified among cohort participants. Compared with the lowest quartile, reduced risk of active TB was observed for the highest quartile of vitamin A intake (hazard ratio = 0.71, 95% confidence interval: 0.59, 0.85; P-trend < 0.01) and β-carotene intake (hazard ratio = 0.76, 95% confidence interval: 0.63, 0.91; P-trend < 0.01), regardless of smoking status. Lower TB risk was seen for vitamin C intake among current smokers only. Other vitamins and carotenoids were not associated with TB risk. These results suggest that vitamin C may reduce TB risk among current smokers by ameliorating oxidative stress, while vitamin A and β-carotene may have additional antimycobacterial properties.
Collapse
|
38
|
Fujishita T, Okamoto T, Akamine T, Takamori S, Takada K, Katsura M, Toyokawa G, Shoji F, Shimokawa M, Oda Y, Nakabeppu Y, Maehara Y. Association of MTH1 expression with the tumor malignant potential and poor prognosis in patients with resected lung cancer. Lung Cancer 2017; 109:52-57. [PMID: 28577950 DOI: 10.1016/j.lungcan.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The oxidized purine nucleoside triphosphatase, mutT homolog 1 (MTH1), physiologically sanitizes 8-oxo-dGTP in the nucleotide pool. Previous studies indicated that MTH1 is associated with tumor proliferation and invasion in non-small cell lung cancer (NSCLC) cell lines; however, the role of MTH1 in patients with NSCLC remains unclear. MATERIALS AND METHODS Two patient cohorts that underwent surgery for NSCLC in our institution were investigated retrospectively. In one cohort consisting of 197 patients, the associations between MTH1 expression and clinicopathological factors or prognosis were analyzed. In another cohort consisting of 41 patients, the relationship between MTH1 expression in the tumors and serum oxidative stress levels (evaluated by the diacron-reactive oxygen metabolites [d-ROMs] test) or antioxidant capacity in the patients (evaluated by the biological antioxidant potential (BAP) test) was analyzed. A total of 238 patients were assessed for MTH1 protein levels using immunohistochemistry. RESULTS Among the 197 patients in the former cohort, 111 (56.3%) exhibited high MTH1 expression, while 86 (43.7%) exhibited low MTH1 expression. Male sex, smoking habit of ≥20 pack-years, squamous cell carcinoma, pathological stage ≥ II, tumor diameter ≥30mm, lymph node metastases, pleural invasion, lymphatic permeation and vascular infiltration were significantly associated with high MTH1 expression (p<0.05). The high MTH1 expression group had a significantly worse prognosis than that of the low MTH1 expression group (5-year overall survival: 81.6% vs. 92.3%, p=0.0011; 5-year disease-free survival: 55.0% vs. 83.7%, p=0.0002). d-ROMs and BAP test values were significantly higher in the high than in the low MTH1 expression group (p<0.05). CONCLUSION This study showed that MTH1 protein expression was closely related to factors associated with a high malignant potential and poor patient survival. MTH1 may be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Takatoshi Fujishita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Yang J, Zhang H, Zhang H, Wang W, Liu Y, Fan Y. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers. Int Arch Occup Environ Health 2017; 90:423-431. [PMID: 28181029 DOI: 10.1007/s00420-017-1206-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. METHODS The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. RESULTS The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). CONCLUSIONS Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.
Collapse
Affiliation(s)
- Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China.
| | - Hongjie Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Huitao Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Wubin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Yanli Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Yanfeng Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| |
Collapse
|
40
|
Weeden CE, Chen Y, Ma SB, Hu Y, Ramm G, Sutherland KD, Smyth GK, Asselin-Labat ML. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol 2017; 15:e2000731. [PMID: 28125611 PMCID: PMC5268430 DOI: 10.1371/journal.pbio.2000731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022] Open
Abstract
Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC.
Collapse
Affiliation(s)
- Clare E. Weeden
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yunshun Chen
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen B. Ma
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Hu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Kate D. Sutherland
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K. Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Akiyama S, Saeki H, Nakashima Y, Iimori M, Kitao H, Oki E, Oda Y, Nakabeppu Y, Kakeji Y, Maehara Y. Prognostic impact of MutT homolog-1 expression on esophageal squamous cell carcinoma. Cancer Med 2016; 6:258-266. [PMID: 27917618 PMCID: PMC5269568 DOI: 10.1002/cam4.979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/09/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
MutT homolog‐1 (MTH1) is a pyrophosphatase that acts on oxidized nucleotides and hydrolyzes 8‐oxo‐2’‐deoxyguanosine triphosphate in deoxynucleoside triphosphate pool to prevent its incorporation into nuclear and mitochondrial DNA, result in reduce cytotoxicity in tumor cells. MTH1 is overexpressed in various cancers and is considered as a therapeutic target. Environmental factors such as cigarette smoking and alcohol consumption are critical risk factors for the development and progression of esophageal squamous cell carcinoma (ESCC), suggesting that oxidative stress contributes to the pathogenesis of ESCC. We examined the expression of MTH1 and the accumulation of 8‐oxo‐2’‐deoxyguanosine (8‐oxo‐dG) in 84 patients with ESCC who underwent curative resection without neoadjuvant therapy. MTH1 mRNA level was quantified by performing quantitative reverse transcription‐PCR. Immunohistochemical analysis of paraffin‐embedded cancer tissues was performed to determine MTH1 protein expression and 8‐oxo‐dG accumulation. MTH1 mRNA expression was higher in cancerous tissues than in the corresponding normal epithelium (P < 0.0001). Immunohistochemical analysis showed that high MTH1 expression was significantly associated with deeper tumor invasion and venous invasion, advanced cancer stage, and poor overall survival (P = 0.0021) and disease‐specific survival (P = 0.0013) compared with low MTH1 expression. Furthermore, high MTH1 expression was an independent predictor of poor disease‐specific survival (P = 0.0121). In contrast, 8‐oxo‐dG accumulation was not associated with any clinicopathological factor and poor prognosis. These results suggest that MTH1 overexpression is a predictor of ESCC progression and poor prognosis and that MTH1 can serve as a therapeutic target for treating patients with ESCC.
Collapse
Affiliation(s)
- Shingo Akiyama
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Division of Gastrointestinal SurgeryGraduate School of MedicineKobe UniversityKobeJapan
| | - Hiroshi Saeki
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuichiro Nakashima
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Iimori
- Department of Molecular OncologyGraduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hiroyuki Kitao
- Department of Molecular OncologyGraduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
- Innovative Anticancer Strategy for Therapeutics and Diagnosis GroupInnovation Center for Medical Redox NavigationKyushu UniversityFukuokaJapan
| | - Eiji Oki
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yusaku Nakabeppu
- Division of Neurofunctional GenomicsDepartment of Immunobiology and NeuroscienceMedical Institute of BioregulationKyushu University, FukuokaJapan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal SurgeryGraduate School of MedicineKobe UniversityKobeJapan
| | - Yoshihiko Maehara
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Innovative Anticancer Strategy for Therapeutics and Diagnosis GroupInnovation Center for Medical Redox NavigationKyushu UniversityFukuokaJapan
| |
Collapse
|
42
|
Mazlumoglu MR, Ozkan O, Alp HH, Ozyildirim E, Bingol F, Yoruk O, Kuduban O. Measuring Oxidative DNA Damage With 8-Hydroxy-2'-Deoxyguanosine Levels in Patients With Laryngeal Cancer. Ann Otol Rhinol Laryngol 2016; 126:103-109. [PMID: 27780908 DOI: 10.1177/0003489416675873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES 8-Hydroxy-2'-deoxyguanosine is a biomolecule associated with DNA damage. We evaluated oxidative stress and DNA damage in patients with laryngeal cancer by measuring 8-hydroxy-2'-deoxyguanosine levels. METHODS This study enrolled 117 subjects, including 64 controls and 53 patients who had benign vocal cord lesions or laryngeal cancer. The benign excised lesions, tumor tissue, noncancerous laryngeal tissue, blood, and urine were subjected to high-performance liquid chromatography, and 8-hydroxy-2'-deoxyguanosine levels were compared between groups. RESULTS Blood and urine 8-hydroxy-2'-deoxyguanosine levels in patients with laryngeal carcinoma were significantly higher than in the controls ( P = .00002, P = .00001). The 8-hydroxy-2'-deoxyguanosine level was significantly higher in tumor tissues than in non-tumor tissue and benign vocal cord lesion tissues ( P = .00002, P = .000001). CONCLUSIONS We determined that laryngeal cancer was associated with oxidative stress, which may be quantified by measuring 8-hydroxy-2'-deoxyguanosine. For a patient with a suspicious laryngeal lesion, 8-hydroxy-2'-deoxyguanosine levels in blood and urine can provide advance information about the likely diagnosis.
Collapse
Affiliation(s)
| | - Ozalkan Ozkan
- 2 Department of Otorhinolaryngology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Hamit Hakan Alp
- 3 Department of Biochemistry, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Ercan Ozyildirim
- 4 Department of Public Health, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Bingol
- 5 Otorhinolaryngology Clinic, Region Education and Research Hospital, Erzurum, Turkey
| | - Ozgur Yoruk
- 6 Department of Otorhinolaryngology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ozan Kuduban
- 5 Otorhinolaryngology Clinic, Region Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
43
|
Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: A systematic review and meta-analysis. Lung Cancer 2016; 95:17-27. [PMID: 27040847 DOI: 10.1016/j.lungcan.2016.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES We conducted a systematic review and meta-analysis of the association between recreational physical activity and lung cancer risk to update previous analyses and to examine population subgroups of interest defined by smoking status and histology. MATERIALS AND METHODS We searched the PubMed database for studies up to May 2015. Individual study characteristics were abstracted including study design, number of cases, assessment of recreational physical activity and type and level of adjustment for confounding factors. Combined effect estimates were calculated for the overall associations and across subgroups of interest. RESULTS We identified 28 studies that were eligible for inclusion in the meta-analysis. The overall analysis indicated an inverse association between recreational physical activity and lung cancer risk (Relative Risk (RR), 0.76; 95% Confidence Interval (CI), 0.69-0.85, p-value: <0.001). Similar inverse associations with risk were also noted for all evaluated histological subtypes, including adenocarcinoma (RR, 0.80; 95% CI, 0.72-0.88), squamous (RR, 0.80; 95% CI, 0.71-0.90) and small cell (RR, 0.79; 95% CI, 0.66-0.94). When we examined effects by smoking status, inverse associations between recreational physical activity and lung cancer risk were observed among former (RR, 0.77; 95% CI, 0.69-0.85) and current smokers (RR, 0.77; 95% CI, 0.72-0.83), but not among never smokers (RR, 0.96; 95% CI, 0.79-1.18). CONCLUSION Results from this meta-analysis suggest that regular recreational physical activity may be associated with reduced risk of lung cancer. Only four studies examining never smokers were identified, suggesting the need for additional research in this population.
Collapse
Affiliation(s)
- Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Canada.
| | - Demetra H Yannitsos
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Megan S Farris
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Canada
| |
Collapse
|
44
|
Ellegaard PK, Poulsen HE. Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:151-8. [PMID: 26767849 DOI: 10.3109/00365513.2015.1127407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) increased oxidative stress to DNA, in agreement with the reduction of oxidative stress to DNA found in the smoking cessation study. Meta-analysis of the 22 studies that used chromatography methodology on 1709 persons showed a significant 29.3% increase in smokers (95% CL 17.3;41.3), but meta-analysis of 14 studies on 3668 persons using ELISA methodology showed a non-significant effect of 8.7% [95% CL -1.2;18.6]. Tobacco smoke induces oxidative damage to DNA; however, this is not detected with ELISA methodology. Currently, the use of existing ELISA methodology to measure urinary excretion of 8-oxo-7-hydrodeoxyguanosine cannot be recommended.
Collapse
Affiliation(s)
| | - Henrik E Poulsen
- b Department of Clinical Pharmacology , Bispebjerg Hospital , Copenhagen N , Denmark ;,c Laboratory of Clinical Pharmacology , Rigshospitalet , Copenhagen , Denmark ;,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
45
|
Verde Z, Reinoso-Barbero L, Chicharro L, Resano P, Sánchez-Hernández I, Rodríguez González-Moro JM, Bandrés F, Gómez-Gallego F, Santiago C. The Effect of Polymorphisms in DNA Repair Genes and Carcinogen Metabolizers on Leukocyte Telomere Length: A Cohort of Healthy Spanish Smokers. Nicotine Tob Res 2015; 18:447-52. [PMID: 25987675 DOI: 10.1093/ntr/ntv106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Smoking implies exposure to carcinogenic agents that causes DNA damage, which could be suspected to enhance telomere attrition. To protect and deal with DNA damage, cells possess mechanisms that repair and neutralize harmful substances. Polymorphisms altering DNA repair capacity or carcinogen metabolism may lead to synergistic effects with tobacco carcinogen-induced shorter telomere length independently of cancer interaction. The aim of this study was to explore the association between leukocyte telomere length (LTL) and several genetic polymorphisms in DNA repair genes and carcinogen metabolizers in a cohort of healthy smokers. METHODS We evaluated the effect of six genetic polymorphisms in cytochrome P1A1 (Ile462Val), XRCC1 (Arg399Gln), APEX1 (Asp148Glu), XRCC3 (Thr241Met), and XPD (Asp312Asn; Lys751Gln) on LTL in a cohort of 145 healthy smokers in addition to smoking habits. RESULTS Logistic regression analysis showed an association between XRCC1 399Gln allele and shorter telomere length (OR = 5.03, 95% CI = 1.08% to 23.36%). There were not association between the rest of polymorphisms analyzed and LTL. CONCLUSIONS Continuous exposure to tobacco could overwhelm the DNA repair machinery, making the effect of the polymorphisms that reduce repair capacity more pronounced. Analyzing the function of smoking-induced DNA-repair genes and LTL is an important goal in order to identify therapeutic targets to treat smoking-induced diseases.
Collapse
Affiliation(s)
- Zoraida Verde
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain;
| | - Luis Reinoso-Barbero
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain; Department of Occupational Medicine, Grupo Banco Popular, Madrid, Spain
| | - Luis Chicharro
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Pilar Resano
- Department of Neumology, Hospital Guadalajara, Guadalajara, Spain
| | | | | | - Fernando Bandrés
- Department of Toxicology and Health Sanitary, Universidad Complutense, Madrid, Spain
| | | | - Catalina Santiago
- School of Doctoral Studies and Research, Universidad Europea, Madrid, Spain
| |
Collapse
|
46
|
Nakamura T, Ishida Y, Ainai K, Nakamura S, Shirata S, Murayama K, Kurimoto SI, Saigo K, Murashige R, Tsuda S, Sasaki YF. Genotoxicity-suppressing effect of aqueous extract of Connarus ruber cortex on cigarette smoke-induced micronuclei in mouse peripheral erythrocytes. Genes Environ 2015; 37:17. [PMID: 27350813 PMCID: PMC4918001 DOI: 10.1186/s41021-015-0009-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction According to published information, it has not been determined whether the inhalation of cigarette smoke can induce chromosome aberrations and/or point mutations in mice, though cigarette smoke is clearly carcinogenic to mice. We tested clastogenicity of inhaled cigarette smoke in mouse by a micronucleus test using peripheral erythrocytes. Since it is important to determine the in vivo anti-genotoxic effect against inhaled cigarette smoke to reduce the risk of tobacco carcinogenesis, we also tested in vivo anti-gnotoxic effect against inhaled cigarette smoke of a Connarus extract whose in vitro anti-genotoxic effect was shown. Results Male ICR mice were exposed for 1 min to a 6-fold dilution of the smoke once a day for up to 14 consecutive days. Although the frequencies of reticulocytes with micronucleus (MNRETs) and erythrocytes with micronuclei (MN erythrocytes) did not increase within 72 h after a single inhalation of cigarette smoke, the frequency of MN erythrocytes increased significantly upon inhalation for 7 and 14 days. When the Connarus extract was fed to mice at >23.7 ppm during the inhalation period of 14 days, frequency of MN erythrocytes was significantly lower than that at 0 ppm. In vitro antioxidant activity of Connarus extract was almost same to that of vitamin C. The antioxidant activity of the Connarus extract might play an important role in its anti-genotoxic effect against cigarette smoke in vivo, like vitamins C. Conclusions Consecutive inhalation of cigarette smoke is clastogenic to mouse bone marrow as shown by the increased frequency of MN erythrocytes. Also, it was shown the possibility that the Connarus extract reduces the risk of tobacco carcinogenesis.
Collapse
Affiliation(s)
- Takanori Nakamura
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Yumi Ishida
- Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan
| | - Kasumi Ainai
- Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan
| | - Shigeto Nakamura
- Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan
| | - Satoru Shirata
- Department of Mechanical Engineering, Hachinohe National College of Technology, Aomori, Japan
| | - Kazuhiro Murayama
- Department of Mechanical Engineering, Hachinohe National College of Technology, Aomori, Japan
| | - Shin-Ichiro Kurimoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Katsuyasu Saigo
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Ryo Murashige
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Shuji Tsuda
- Iwate Institute of Environmental Health Sciences, Iwate, Japan
| | - Yu F Sasaki
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan ; Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan ; Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Tamonoki Uwanotai 16-1, Hachinohe, Aomori, 039-1192 Japan
| |
Collapse
|
47
|
Milic M, Frustaci A, Del Bufalo A, Sánchez-Alarcón J, Valencia-Quintana R, Russo P, Bonassi S. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. Mutat Res 2014; 776:118-27. [PMID: 26255943 DOI: 10.1016/j.mrfmmm.2014.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 02/02/2023]
Abstract
Non-communicable diseases (NCDs) are a leading cause of death and disability, representing 63% of the total death number worldwide. A characteristic phenotype of these diseases is the accelerated aging, which is the result of phenomena such as accumulated DNA damage, telomere capping loss and subcellular irreversible/nonrepaired oxidative damage. DNA damage, mostly oxidative, plays a key role in the development of most common NCDs. The present review will gather some of the most relevant knowledge concerning the presence of DNA damage in NCDs focusing on cardiovascular diseases, diabetes, chronic obstructive pulmonary disease, and neurodegenerative disorders, and discussing a selection of papers from the most informative literature. The challenge of comorbidity and the potential offered by new systems approaches for introducing these biomarkers into the clinical decision process will be discussed. Systems Medicine platforms represent the most suitable approach to personalized medicine, enabling to identify new patterns in the pathogenesis, diagnosis and prognosis of chronic diseases.
Collapse
Affiliation(s)
- Mirta Milic
- IRCCS San Raffaele Pisana, Area of Clinical and Molecular Epidemiology, 00166 Rome, Italy; Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10 000 Zagreb, Croatia
| | - Alessandra Frustaci
- IRCCS San Raffaele Pisana, Area of Clinical and Molecular Epidemiology, 00166 Rome, Italy
| | - Alessandra Del Bufalo
- IRCCS San Raffaele Pisana, Area of Clinical and Molecular Epidemiology, 00166 Rome, Italy
| | - Juana Sánchez-Alarcón
- Universidad Autónoma de Tlaxcala, Facultad de Agrobiología, Evaluación de Riesgos Ambientales, 90062 Tlaxcala, Mexico
| | - Rafael Valencia-Quintana
- Universidad Autónoma de Tlaxcala, Facultad de Agrobiología, Evaluación de Riesgos Ambientales, 90062 Tlaxcala, Mexico
| | - Patrizia Russo
- IRCCS San Raffaele Pisana, Area of Clinical and Molecular Epidemiology, 00166 Rome, Italy
| | - Stefano Bonassi
- IRCCS San Raffaele Pisana, Area of Clinical and Molecular Epidemiology, 00166 Rome, Italy.
| |
Collapse
|
48
|
Yang S, Wu H, Zhao J, Wu X, Zhao J, Ning Q, Xu Y, Xie J. Feasibility of 8-OHdG formation and hOGG1 induction in PBMCs for assessing oxidative DNA damage in the lung of COPD patients. Respirology 2014; 19:1183-90. [PMID: 25154311 DOI: 10.1111/resp.12378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/06/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Oxidative stress has long been recognized to play a role in chronic obstructive pulmonary disease (COPD); however, approaches for assessing oxidative stress are lacking. The objective of this study was to address the feasibility of measuring 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-OHdG) formation and human 8-oxoguanine DNA glycosylase (hOGG1) induction in peripheral blood mononuclear cell (PBMC) to assess oxidative deoxyribonucleic acid (DNA) damage in the lung of smoking COPD patients. METHODS PBMC were obtained from 412 participants including 129 smokers with COPD, 143 healthy smokers and 140 healthy non-smokers. Lung tissue specimens and PBMC were obtained from smoker COPD (n = 12), healthy smokers (n = 12) and healthy non-smokers (n = 10). 8-OHdG and hOGG1 were detected, and correlation analysis was conducted for assessing the feasibility. RESULTS Oxidative DNA damage (8-OHdG formation) along with impaired induction of hOGG1 expression in the lung was a prominent feature for smokers COPD patients. PBMC originated from smokers COPD patients also displayed similar features to that of lung tissues. Correlation analysis suggests that PBMC could be used as a surrogate for oxidative DNA damage in lung of smokers COPD patients. Indeed, 8-OHdG levels in PBMC DNA were negatively correlated with lung function, while hOGG1 induction in PBMC was associated with improved lung function in smokers COPD patients. CONCLUSIONS COPD patients manifest oxidative DNA damage of 8-OHdG along with impaired hOGG1 expression in the lung, whereas 8-OHdG formation and hOGG1 induction in PBMC could be a biomarker of oxidative DNA damage in the lung.
Collapse
Affiliation(s)
- Shifang Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Multimarker screening of oxidative stress in aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:562860. [PMID: 25147595 PMCID: PMC4124763 DOI: 10.1155/2014/562860] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022]
Abstract
Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups.
Collapse
|
50
|
Oxidative stress of office workers relevant to tobacco smoking and inner air quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:5586-97. [PMID: 24865395 PMCID: PMC4078535 DOI: 10.3390/ijerph110605586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 01/26/2023]
Abstract
Studies have used 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker to detect systemic oxidative DNA damage associated with oxidative stress. However, studies on the association between exposure to tobacco smoking and urinary 8-OHdgG give inconsistent results. Limited studies have estimated the oxidative stress among office workers. This study assessed the association between urinary 8-OHdG and cotinine for office workers. Workers (389) including smokers, ex-smokers and non-smokers from 87 offices at high-rise buildings in Taipei participated in this study with informed consent. Each participant completed a questionnaire and provided a spot urine specimen at the end of work day for measuring urinary 8-OHdG and cotinine. The carbon dioxide (CO2) levels in workers’ offices were also measured. The questionnaire reported socio-demographic characteristics, life styles and allergic history. The urinary 8-OHdG level increased with the cotinine level among participants (Spearmans’ rho = 0.543, p < 0.001). The mean of urinary 8-OHdG and cotinine was 5.81 ± 3.53 μg/g creatinine and 3.76 ± 4.06 μg/g creatinine, respectively. Comparing with non-smokers, the adjusted odds ratio (OR) of having urinary 8-OHdG greater than the median level of 4.99 μg/g creatinine was 5.30 (95% confidence intervals (CI) = 1.30–21.5) for current smokers and 0.91 (95% CI = 0.34–2.43) for former smokers. We also found workers exposed to 1,000 ppm of CO2 at offices had an adjusted OR of 4.28 (95% CI = 1.12–16.4) to have urinary 8-OHdG greater than 4.99 μg/g creatinine, compared to those exposed to indoor CO2 under 600 ppm. In conclusion, urinary 8-OHdG could represent a suitable marker for measuring smoking and CO2 exposure for office workers.
Collapse
|