1
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Raina K, Kandhari K, Jain AK, Ravichandran K, Maroni P, Agarwal C, Agarwal R. Stage-Specific Effect of Inositol Hexaphosphate on Cancer Stem Cell Pool during Growth and Progression of Prostate Tumorigenesis in TRAMP Model. Cancers (Basel) 2022; 14:4204. [PMID: 36077751 PMCID: PMC9455012 DOI: 10.3390/cancers14174204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8-15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55-70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anil K. Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kameswaran Ravichandran
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Huang YW, Mo YY, Echeveste CE, Oshima K, Zhang J, Yearsley M, Lin CW, Yu J, Liu P, Du M, Sun C, Xiao J, Wang LS. Black raspberries attenuate colonic adenoma development in Apc Min mice: Relationship to hypomethylation of promoters and gene bodies. FOOD FRONTIERS 2021; 1:234-242. [PMID: 34557678 PMCID: PMC8457619 DOI: 10.1002/fft2.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that in addition to promoter region, DNA methylation in intragenic and intergenic regions also changes during physiological processes and disease. The current study showed that feeding of black raspberries (BRBs) to ApcMin mice suppressed colon and intestinal tumors. MBDCap-seq suggested that dietary BRBs hypomethylated promoter, intragenic, and intergenic regions. Annotation of those regions highlighted genes in pathways involved in immune regulation, inflammatory signaling, production of nitric oxide and reactive oxygen species, and progression of colorectal cancer. BRB phytochemicals (e.g., ellagic acid, anthocyanins, oligosaccharides) and their gut bacterial metabolites (e.g., urolithin, protocatechuic acid, short-chain fatty acids) inhibited DNMT1 and DNMT3B activities in a cell-free assay. Our results suggest that BRBs’ hypomethylating activities result from the combined effects of multiple BRB phytochemicals and their gut bacterial metabolites. Because similar substances are found in many plant products, our results with BRBs might also apply to commonly consumed fruits and vegetables.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Sir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University, Zhejiang, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau, Taipa, Macau, China
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021; 13:3539. [PMID: 34298753 PMCID: PMC8303683 DOI: 10.3390/cancers13143539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Collapse
Affiliation(s)
- Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Rozana Othman
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Sarah Fazalul Rahiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| |
Collapse
|
5
|
Meng J, Zhou X, Yang J, Qu X, Cui S. Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114578. [PMID: 32325249 DOI: 10.1016/j.envpol.2020.114578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
As ZnO nanoparticles have been applied in many fields, their biological risks on human health, of course, are worthy of our attention. Whether ZnO NPs have the risk and how colonic cells respond to the invaded ZnO NPs are still unknown. Herein, we evaluated the biological effects of ZnO NPs on colonic mucosal cells by in vitro and in vivo methods. IMCE cells, with APC mutation but phenotypically normal, demonstrated hyperproliferation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways when exposed to ZnO NPs for 24 h. Long-term exposure of ZnO NPs resulted in the malignant transformation of IMCE cells, showing the morphological changes, anchorage-independent cell growth ability. Importantly, IMCE cells exposed to ZnO NPs subcutaneously grew and induced tumorigenesis in nude mice. In conclusion, exposure of ZnO NPs could induce malignant transformation of colonic mucosal cells through the CXCR2/NF-κB/STAT3/ERK and AKT pathways. We suggest that it was necessary to consider using the precautionary principle for gastrointestinal contact nanomaterials.
Collapse
Affiliation(s)
- Jian Meng
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoling Zhou
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Juan Yang
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Chamoun-Emanuelli AM, Bryan LK, Cohen ND, Tetrault TL, Szule JA, Barhoumi R, Whitfield-Cargile CM. NSAIDs disrupt intestinal homeostasis by suppressing macroautophagy in intestinal epithelial cells. Sci Rep 2019; 9:14534. [PMID: 31601922 PMCID: PMC6787209 DOI: 10.1038/s41598-019-51067-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Small intestinal damage induced by nonsteroidal anti-inflammatory drugs (NSAIDs) remains an under-recognized clinical disorder. The incomplete understanding of the pathophysiology has hampered the development of prevention and treatment strategies leading to the high morbidity and mortality rates. NSAIDs are known to modulate macroautophagy, a process indispensable for intestinal homeostasis. Whether NSAIDs stimulate or repress macroautophagy and how this correlates with the clinical manifestations of NSAID enteropathy, however, remains unknown. The objectives of this study were to determine whether NSAIDs impaired macroautophagy and how this affects macroautophagy-regulated intestinal epithelial cell (IEC) processes essential for intestinal homeostasis (i.e., clearance of invading pathogens, secretion and composition of mucus building blocks, and inflammatory response). We show that NSAID treatment of IECs inhibits macroautophagy in vitro and in vivo. This inhibition was likely attributed to a reduction in the area and/or distribution of lysosomes available for degradation of macroautophagy-targeted cargo. Importantly, IEC regulatory processes necessary for intestinal homeostasis and dependent on macroautophagy were dysfunctional in the presence of NSAIDs. Since macroautophagy is essential for gastrointestinal health, NSAID-induced inhibition of macroautophagy might contribute to the severity of intestinal injury by compromising the integrity of the mucosal barrier, preventing the clearance of invading microbes, and exacerbating the inflammatory response.
Collapse
Affiliation(s)
- Ana M Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Laura K Bryan
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Taylor L Tetrault
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A Szule
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Canaan M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
8
|
Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, Lagoa R, Rengasamy KR. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147:104346. [PMID: 31295570 DOI: 10.1016/j.phrs.2019.104346] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
Collapse
Affiliation(s)
- Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, UK
| | - Rosanna Filosa
- Institute of Food Sciences, National Research Council, Roma str. 64, Avellino, 83100, Italy; Consorzio Sannio Tech, AMP Biotec, Appia Str, Apollosa, Benevento, 82030, Italy
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal; UCIBIO-Faculty of Science and Technology, University NOVA of Lisbon, Portugal.
| | - Kannan Rr Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Kim HS, Kacew S, Lee BM. Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-2404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
The main goal of cancer chemoprevention is to prevent or halt the progression of carcinogenesis with the administration of synthetic or natural compounds. Fundamental chemopreventive strategies include inhibition of genetic damage, anti-proliferation/cell cycle regulation, and induction of apoptosis and anti-inflammatory processes, which may be critical for carcinogenesis intervention. Recently, a new paradigm for identifying chemopreventive agents has been implemented. It focuses on defining new biomarkers that can be used to evaluate chemopreventive efficacy based on multistage carcinogenesis. The functional roles of chemopreventive agents are associated with the modulation of nuclear factor kappa B, nuclear factor erythroid 2-related factor, p53, AMPK/mTOR, phosphatidylinositol 3-kinase, epidermal growth factor receptor, cyclooxygenase-2, chemokine (C-X-C motif) receptor 2, and sphingosine-1-phosphate. This paper summarizes the genetic and epigenetic effects of chemopreventive agents on the expression of cancer-related target genes mediated by epigenetic alterations, such as DNA methylation and histone modifications. This review will provide unique and effective strategies for reducing cancer and aging-related diseases in humans.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Byung Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea.
| |
Collapse
|
10
|
Thompson HJ, Neuhouser ML, Lampe JW, McGinley JN, Neil ES, Schwartz Y, McTiernan A. Effect of low or high glycemic load diets on experimentally induced mammary carcinogenesis in rats. Mol Nutr Food Res 2016; 60:1416-26. [PMID: 26778091 DOI: 10.1002/mnfr.201500864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 01/18/2023]
Abstract
SCOPE High glycemic load diets have been associated with increased breast cancer risk in population-based studies, but the evidence is mixed. This investigation determined whether diets differing in glycemic load affected the carcinogenic process using a preclinical model. METHODS AND RESULTS Human diets, formulated to differ 2-fold in glycemic load, were evaluated in the 1-methyl-nitrosourea-induced (37.5 mg/kg) mammary carcinogenesis model. Cancer incidence (23.3 versus 50.0%, p = 0.032), multiplicity, (0.40 versus 1.03, p = 0.030) and burden, (0.62 versus 1.19 g/rat, p = 0.037) were reduced in the low versus high glycemic load diets, respectively. However, the low glycemic protective effect was attenuated when two purified diets that differed in resistant starch and simulated the glycemic effects of the human diets were fed. Protection was associated with alterations in markers of cell growth regulation. CONCLUSION Our findings show that human low or high glycemic load dietary patterns differentially affect the carcinogenic response in a nondiabetic rodent model for breast cancer. However, factors that are associated with these patterns, in addition to dietary carbohydrate availability, appear to account for the differences observed.
Collapse
Affiliation(s)
- Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | | | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
11
|
González-Sarrías A, Núñez-Sánchez MÁ, Tomé-Carneiro J, Tomás-Barberán FA, García-Conesa MT, Espín JC. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res 2015; 60:701-16. [PMID: 26634414 DOI: 10.1002/mnfr.201500780] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022]
Abstract
SCOPE Ellagitannins, ellagic acid, and the colonic metabolites urolithins (Uros) exhibit anticancer effects against colon cells, but a comprehensive molecular analysis has not been done. Herein, we used a panel of cell lines to first time evaluate the antiproliferative properties and accompanying molecular responses of two ellagitannin metabolites mixtures mimicking the situation in vivo and of each individual metabolite. METHODS AND RESULTS We examined cell growth, cell cycle, apoptosis, and the expression of related genes and microRNAs (miRs) in a panel of nonmalignant and malignant colon cell lines. Regardless of the composition, the mixed metabolites similarly inhibited proliferation, induced cycle arrest, and apoptosis. All the metabolites contributed to these effects, but Uro-A, isourolithin A, Uro-C, and Uro-D were more potent than Uro-B and ellagic acid. Despite molecular differences between the cell lines, we discerned relevant changes in key cancer markers and corroborated the induction of CDKN1A (cyclin-dependent kinase inhibitor 1A gene (p21, Cip1); encoding p21) as a common step underlying the anticancer properties of Uros. Interestingly, cell-unique downregulation of miR-224 or upregulation of miR-215 was found associated with CDKN1A induction. CONCLUSION Physiologically relevant mixtures of Uros exert anticancer effects against colon cancer cells via a common CDKN1A upregulatory mechanism. Other associated molecular responses are however heterogeneous and mostly cell-specific.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Ángeles Núñez-Sánchez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Joao Tomé-Carneiro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
12
|
Yang L, Allred KF, Dykes L, Allred CD, Awika JM. Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food Funct 2015; 6:749-55. [DOI: 10.1039/c4fo00300d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report unusually strong enhanced effect of apigenin-naringenin combination and natural flavonoid mixtures on estrogenic response in non-malignant young adult mouse colonocytesin vitro.
Collapse
Affiliation(s)
- Liyi Yang
- Cereal Quality Laboratory
- Soil & Crop Science Department
- Texas A&M University
- College Station
- USA
| | - Kimberly F. Allred
- Nutrition and Food Science Department
- Texas A&M University
- College Station
- USA
| | - Linda Dykes
- Cereal Quality Laboratory
- Soil & Crop Science Department
- Texas A&M University
- College Station
- USA
| | - Clinton D. Allred
- Nutrition and Food Science Department
- Texas A&M University
- College Station
- USA
| | - Joseph M. Awika
- Cereal Quality Laboratory
- Soil & Crop Science Department
- Texas A&M University
- College Station
- USA
| |
Collapse
|
13
|
Yang L, Allred CD, Awika JM. Emerging Evidence on the Role of Estrogenic Sorghum Flavonoids in Colon Cancer Prevention. CEREAL FOOD WORLD 2014. [DOI: 10.1094/cfw-59-5-0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- L. Yang
- Corresponding author. Department of Soil & Crop Sciences, 2474 TAMU, Texas A&M University, College Station, TX 77843-2474, USA. Current affiliation: Kellogg Company, Global Breakfast R&D.Tel: +1.269.961.6149; Fax: +1.269.961.9107
| | - C. D. Allred
- Texas A&M University, College Station, TX, U.S.A
| | - J. M. Awika
- Texas A&M University, College Station, TX, U.S.A
| |
Collapse
|
14
|
Riondino S, Roselli M, Palmirotta R, Della-Morte D, Ferroni P, Guadagni F. Obesity and colorectal cancer: Role of adipokines in tumor initiation and progression. World J Gastroenterol 2014; 20:5177-5190. [PMID: 24833848 PMCID: PMC4017033 DOI: 10.3748/wjg.v20.i18.5177] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/20/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity-associated diseases account for a large portion of public health challenges. Among obesity-related disorders, a direct and independent relationship has been ascertained for colorectal cancer (CRC). The evidence that adipocyte hypertrophy and excessive adipose tissue accumulation (mainly visceral) can promote pathogenic adipocyte and adipose tissue-related diseases, has led to formulate the concept of “adiposopathy”, defined as adipocyte and adipose tissue dysfunction that contributes to metabolic syndrome. Adipose tissue can, indeed, be regarded as an important and highly active player of the innate immune response, in which cytokine/adipokine secretion is responsible for a paracrine loop between adipocytes and macrophages, thus contributing to the systemic chronic low-grade inflammation associated with visceral obesity, which represents a favorable niche for tumor development. The adipocyte itself participates as a central mediator of this inflammatory response in obese individuals by secreting hormones, growth factors and proinflammatory cytokines, which are of particular relevance for the pathogenesis of CRC. Among adipocyte-secreted hormones, the most relevant to colorectal tumorigenesis are adiponectin, leptin, resistin and ghrelin. All these molecules have been involved in cell growth and proliferation, as well as tumor angiogenesis and it has been demonstrated that their expression changes from normal colonic mucosa to adenoma and adenocarcinoma, suggesting their involvement in multistep colorectal carcinogenesis. These findings have led to the hypothesis that an unfavorable adipokine profile, with a reduction of those with an anti-inflammatory and anti-cancerous activity, might serve as a prognostic factor in CRC patients and that adipokines or their analogues/antagonists might become useful agents in the management or chemoprevention of CRC.
Collapse
|
15
|
Jamin EL, Riu A, Douki T, Debrauwer L, Cravedi JP, Zalko D, Audebert M. Combined genotoxic effects of a polycyclic aromatic hydrocarbon (B(a)P) and an heterocyclic amine (PhIP) in relation to colorectal carcinogenesis. PLoS One 2013; 8:e58591. [PMID: 23484039 PMCID: PMC3590161 DOI: 10.1371/journal.pone.0058591] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line ApcMin/+, mimicking the early step of colorectal carcinogenesis, and control Apc+/+ cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on ApcMin/+ cells compared to Apc+/+. Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.
Collapse
Affiliation(s)
- Emilien L. Jamin
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Anne Riu
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Thierry Douki
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France
| | - Laurent Debrauwer
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Jean-Pierre Cravedi
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Daniel Zalko
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Marc Audebert
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
- * E-mail:
| |
Collapse
|
16
|
Cohen G, Lecht S, Arien-Zakay H, Ettinger K, Amsalem O, Oron-Herman M, Yavin E, Prus D, Benita S, Nissan A, Lazarovici P. Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor. PLoS One 2012; 7:e48803. [PMID: 23144978 PMCID: PMC3493605 DOI: 10.1371/journal.pone.0048803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/01/2012] [Indexed: 01/11/2023] Open
Abstract
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.
Collapse
Affiliation(s)
- Gadi Cohen
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimon Lecht
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Arien-Zakay
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Keren Ettinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Amsalem
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Oron-Herman
- Advanced Technology Center, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eylon Yavin
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana Prus
- Department of Pathology and Surgical Oncology Laboratory, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Simon Benita
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Nissan
- Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
17
|
Bittoni MA, Fisher JL, Fowler JM, Maxwell GL, Paskett ED. Assessment of the effects of severe obesity and lifestyle risk factors on stage of endometrial cancer. Cancer Epidemiol Biomarkers Prev 2012; 22:76-81. [PMID: 23118146 DOI: 10.1158/1055-9965.epi-12-0843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lifestyle risk factors, including obesity, have been associated with increased risk of endometrial cancer (EC). Women with higher obesity levels tend to have less aggressive EC disease stage and histology. This study further investigated associations between nonmodifiable risk factors, such as age, race, and grade, and modifiable lifestyle factors, such as diet and physical activity expenditure, in relation to severe obesity and late versus early EC stage at diagnosis. METHODS Demographic, anthropometric, and lifestyle surveys were administered to 177 women with histologically confirmed EC. Logistic regression analyses assessed the relationship between obesity and other risk factors on EC stage at diagnosis. RESULTS In multivariate models, body mass index (BMI) < 35 was not significantly associated with late EC stage at diagnosis (OR = 1.67, P = 0.219) when adjusting for grade and age. Grade was significantly associated with EC stage when controlling for BMI and age (OR = 8.48, P = .000). Women more than the age of 60 had a fourfold increased risk of diagnosis at late versus early EC stage when adjusting for other risk factors. Age had a confounding effect on the obesity-EC stage association. CONCLUSIONS Our results corroborate those of past studies showing that BMI is not an independent risk factor for EC stage and that age may have confounded the obesity-EC stage association. Because of mixed results and implications for treatment outcomes, however, further research examining these variables is warranted. IMPACT Our results provide further insight into the obesity EC-stage association, especially the confounding effect of age. Future studies should examine modifiable lifestyle factors in larger and more diverse populations.
Collapse
Affiliation(s)
- Marisa A Bittoni
- Division of Epidemiology, The Ohio State University College of Public Health, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
18
|
Concentration- and stage-specific effects of nitrite on colon cancer cell lines. Nitric Oxide 2012; 26:267-73. [DOI: 10.1016/j.niox.2012.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/10/2012] [Accepted: 03/24/2012] [Indexed: 01/22/2023]
|
19
|
Wilhelm A, Jahns F, Böcker S, Mothes H, Greulich K, Glei M. Culturing explanted colon crypts highly improves viability of primary non-transformed human colon epithelial cells. Toxicol In Vitro 2012; 26:133-41. [DOI: 10.1016/j.tiv.2011.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022]
|
20
|
Kurapati KRV, Samikkannu T, Kadiyala DB, Zainulabedin SM, Gandhi N, Sathaye SS, Indap MA, Boukli N, Rodriguez JW, Nair MP. Combinatorial cytotoxic effects of Curcuma longa and Zingiber officinale on the PC-3M prostate cancer cell line. J Basic Clin Physiol Pharmacol 2012; 23:139-46. [PMID: 23072849 PMCID: PMC4561547 DOI: 10.1515/jbcpp-2012-0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many plant-derived products exhibit potent chemopreventive activity against animal tumor models as well as rodent and human cancer cell lines. They have low side effects and toxicity and presumably modulate the factors that are critical for cell proliferation, differentiation, senescence and apoptosis. The present study investigates the effects of some medicinal plant extracts from generally recognized as safe plants that may be useful in the prevention and treatment of cancer. METHODS Clonogenic assays using logarithmically-growing cells were performed to test the effect. The cytotoxic effects of Curcuma longa and Zingiber officinale were studied using sulforhodamine B assay, tetrazolium dye assay, colony morphology and microscopic analysis. RESULTS Out of the 13 lyophilized plant-derived extracts evaluated for growth-inhibitory effects on the PC-3M prostate cancer cell line, two extracts derived from C. longa and Z. officinale showed significant inhibitory effects on colony-forming ability. The individual and augmentative effects of these two extracts were tested for their narrow range effective lower concentration on PC-3M in clonogenic assays. At relatively lower concentrations, C. longa showed significant inhibition of colony formation in clonogenic assays; whereas at same concentrations Z. officinale showed only moderate inhibitory effects. However, when both the agents were tested together at the same concentrations, the combined effects were much more significant than their individual ones. On normal prostate epithelial cells both C. longa and Z. officinale had similar effects but at a lower magnitude. These observations were confirmed by several cytotoxicity assays involving the morphological appearance of the colonies, microscopic observations, per cent inhibition in comparison to control by sulforhodamine B and tetrazolium dye assay. CONCLUSIONS From these observations, it was concluded that the combined effects of C. longa and Z. officinale are much greater than their individual effects, suggesting the role of multiple components and their synergistic mode of actions to elicit stronger beneficial effects.
Collapse
Affiliation(s)
- Kesava Rao V. Kurapati
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| | - Thangavel Samikkannu
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| | - Dakshayani B. Kadiyala
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| | - Saiyed M. Zainulabedin
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| | - Nimisha Gandhi
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| | - Sadhana S. Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Nawal Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Jose W. Rodriguez
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Madhavan P.N. Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
21
|
Baradat M, Jouanin I, Dalleau S, Taché S, Gieules M, Debrauwer L, Canlet C, Huc L, Dupuy J, Pierre FHF, Guéraud F. 4-Hydroxy-2(E)-nonenal Metabolism Differs in Apc+/+Cells and in ApcMin/+Cells: It May Explain Colon Cancer Promotion by Heme Iron. Chem Res Toxicol 2011; 24:1984-93. [DOI: 10.1021/tx2003036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Stein K, Borowicki A, Scharlau D, Schettler A, Scheu K, Obst U, Glei M. Effects of synbiotic fermentation products on primary chemoprevention in human colon cells. J Nutr Biochem 2011; 23:777-84. [PMID: 21840698 DOI: 10.1016/j.jnutbio.2011.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 02/28/2011] [Accepted: 03/30/2011] [Indexed: 01/12/2023]
Abstract
The consumption of synbiotics, a mixture of probiotics and indigestible food constituents such as dietary fiber, has been reported to reduce colon cancer risk. We investigated the effects of fermented wheat aleurone enriched with the probiotics Lactobacillus rhamnosus GG/Bifidobacterium animalis supsp. lactis on the gene expression and functional end points related to cellular defence in HT29 and primary human colon cells. Aleurone was digested and fermented in vitro with/without probiotics. The resulting fermentation supernatants (fs) were analyzed for concentrations of deoxycholic acid and ammonia. The cells were treated with the fs, and effects on gene expression of catalase, GSTP1 and SULT2B1, enzyme activity of catalase and glutathione S-transferase as well as H₂O₂-induced DNA damage were examined. Fermentation of aleurone reduced deoxycholic acid concentration by 84%, while the probiotics enhanced this effect. Ammonia was increased by fs aleurone, whereas a reduction occurred by the addition of L. rhamnosus GG/B. animalis supsp. lactis 12. GSTP1 expression tended to result in an increase by the fs aleurone in both cell types, whereas the probiotics could not additionally increase the effect. Catalase was not modulated by fs aleurone enriched with probiotics. Only in HT29 cells, expression of SULT2B1 was enhanced by fs aleurone. Enzyme activity of catalase and glutathione S-transferase was induced (2-3.6 fold, 72 h) in HT29 cells only. Addition of probiotics had no influence on this effect. In HT29 cells, a reduced H₂O₂-induced DNA damage by the fs aleurone after 48 h, enhanced by the addition of probiotics, was detected. The observed effects could improve detoxification of xenobiotics and therefore may lower colon cancer risk.
Collapse
Affiliation(s)
- Katrin Stein
- Department of Nutritional Toxicology, Institute for Nutrition, Biological-Pharmaceutical Faculty, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Preventive effects of rice bran oil on 1,2-dimethylhydrazine/dextran sodium sulphate-induced colon carcinogenesis in rats. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 2011; 6:e16399. [PMID: 21283682 PMCID: PMC3025981 DOI: 10.1371/journal.pone.0016399] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/15/2010] [Indexed: 12/02/2022] Open
Abstract
The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.
Collapse
|
25
|
Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells. Br J Nutr 2010; 104:1101-11. [DOI: 10.1017/s0007114510001881] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1·4- to 3·7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.
Collapse
|
26
|
Odom RY, Dansby MY, Rollins-Hairston AM, Jackson KM, Kirlin WG. Phytochemical induction of cell cycle arrest by glutathione oxidation and reversal by N-acetylcysteine in human colon carcinoma cells. Nutr Cancer 2009; 61:332-9. [PMID: 19373606 DOI: 10.1080/01635580802549982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cancer prevention by dietary phytochemicals has been shown to involve decreased cell proliferation and cell cycle arrest. However, there is limited understanding of the mechanisms involved. Previously, we have shown that a common effect of phytochemicals investigated is to oxidize the intracellular glutathione (GSH) pool. Therefore, the objective of this study was to evaluate whether changes in the glutathione redox potential in response to dietary phytochemicals was related to their induction of cell cycle arrest. Human colon carcinoma (HT29) cells were treated with benzyl isothiocyanate (BIT) (BIT), diallyl disulfide (DADS), dimethyl fumarate (DMF), lycopene (LYC) (LYC), sodium butyrate (NaB) or buthione sulfoxamine (BSO, a GSH synthesis inhibitor) at concentrations shown to cause oxidation of the GSH: glutathione disulfide pool. A decrease in cell proliferation, as measured by [(3)H]-thymidine incorporation, was observed that could be reversed by pretreatment with the GSH precursor and antioxidant N-acetylcysteine (NAC). Cell cycle analysis on cells isolated 16 h after treatment indicated an increase in the percentage (ranging from 75-30% for benzyl isothiocyanate and lycopene, respectively) of cells at G2/M arrest compared to control treatments (dimethylsulfoxide) in response to phytochemical concentrations that oxidized the GSH pool. Pretreatment for 6 h with N-acetylcysteine (NAC) resulted in a partial reversal of the G2/M arrest. As expected, the GSH oxidation from these phytochemical treatments was reversible by NAC. That both cell proliferation and G2/M arrest were also reversed by NAC leads to the conclusion that these phytochemical effects are also mediated, in part, by intracellular oxidation. Thus, one potential mechanism for cancer prevention by dietary phytochemicals is inhibition of the growth of cancer cells through modulation of their intracellular redox environment.
Collapse
Affiliation(s)
- R Y Odom
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
27
|
Wong KK. Oral-specific chemical carcinogenesis in mice: an exciting model for cancer prevention and therapy. Cancer Prev Res (Phila) 2009; 2:10-3. [PMID: 19139012 DOI: 10.1158/1940-6207.capr-08-0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kwong-Kwok Wong
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Abstract
Genetically engineered mice are essential tools in both mechanistic studies and drug development in colon cancer research. Mice with mutations in the Apc gene, as well as in genes that modify or interact with Apc, are important models of familial adenomatous polyposis. Mice with mutations in the beta-catenin signaling pathway have also revealed important information about colon cancer pathogenesis, along with models for hereditary nonpolyposis colon cancer and inflammatory bowel diseases associated with colon cancer. Finally, transplantation models (xenografts)have been useful in the study of metastasis and for testing potential therapeutics. This review discusses what models have been developed most recently and what they have taught us about colon cancer formation, progression, and possible treatment strategies.
Collapse
Affiliation(s)
- Makoto Mark Taketo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
29
|
Whitehead RH, Robinson PS. Establishment of conditionally immortalized epithelial cell lines from the intestinal tissue of adult normal and transgenic mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G455-60. [PMID: 19109407 PMCID: PMC2660172 DOI: 10.1152/ajpgi.90381.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has proved to be impossible to culture epithelial cells from the gastrointestinal tract of adult animals. Researchers have had to use either cell lines derived from newborn rat small intestine or colon carcinoma cell lines that have retained some of the properties of the gastrointestinal mucosa. We have described a method for establishing conditionally immortalized cell lines from the stomach, small intestine, colon, pancreas, and liver from tissue obtained from a transgenic mouse strain carrying a temperature-sensitive mutant of the SV40 large T gene (the "Immortomouse"). This immortalizing gene has proved to be useful for establishing cell lines from a number of transgenic mice following crossbreeding of the Immortomouse with the transgenic mouse of interest. These cell lines are being used in numerous studies. In this review we describe the methods for developing such lines and list the range of cell lines that have been developed from colon, small intestine, stomach, liver, and pancreas of a number of transgenic mice.
Collapse
Affiliation(s)
- Robert H. Whitehead
- Novel Cell Line Core Facility, Vanderbilt Digestive Disease Research Center, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee
| | - Pamela S. Robinson
- Novel Cell Line Core Facility, Vanderbilt Digestive Disease Research Center, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
30
|
Birmingham JM, Busik JV, Hansen-Smith FM, Fenton JI. Novel mechanism for obesity-induced colon cancer progression. Carcinogenesis 2009; 30:690-7. [PMID: 19221001 DOI: 10.1093/carcin/bgp041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue secretes factors linked to colon cancer risk including leptin. A hallmark of cancer is sustained angiogenesis. While leptin promotes angiogenesis in adipose tissue, it is unknown whether leptin can induce epithelial cells to produce factors that may drive angiogenesis, vascular development and therefore cancer progression. The purpose of this study was to compare the effects of leptin-stimulated colon epithelial cells differing in adenomatous polyposis coli (Apc) genotype (gatekeeper tumor suppressor gene for colon cancer) on angiogenesis. We employed novel colonic epithelial cell lines derived from the Immorto mouse [young adult mouse colon (YAMC)] and the Immorto-Min mouse [Immorto-Min colonic epithelial cell (IMCE)], which carries the Apc Min mutation, to study the effects of leptin-stimulated colon epithelial cells on angiogenesis. We utilized ex vivo rat mesenteric capillary bioassay and human umbilical vein endothelial cell (HUVEC) models to study angiogenesis. IMCE cells stimulated with leptin produced significantly more vascular endothelial growth factor (VEGF) than YAMC (268 +/- 18 versus 124 +/- 8 pg/ml; P < 0.01) cells. Leptin treatment induced dose-dependent increases in VEGF only in IMCE cells. Conditioned media from leptin (50 ng/ml)-treated IMCE cells induced significant capillary formation compared with control, which was blocked by the addition of a neutralizing antibody against VEGF. Conditioned media from leptin-treated IMCE cells also induced HUVEC cell proliferation, chemotaxis, upregulation of adhesion proteins and cell-signaling activation resulting in nuclear factor kappa B nuclear translocation and DNA binding due to VEGF. This is the first study demonstrating that leptin can induce preneoplastic colon epithelial cells to orchestrate VEGF-driven angiogenesis and vascular development, thus providing a specific mechanism and potential target for obesity-associated cancer.
Collapse
Affiliation(s)
- Janette M Birmingham
- Department of Food Science and Human Nutrition, College of Nursing, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
31
|
Hatakeyama H, Nakamura KI, Izumiyama-Shimomura N, Ishii A, Tsuchida S, Takubo K, Ishikawa N. The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech Ageing Dev 2008; 129:550-7. [DOI: 10.1016/j.mad.2008.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/21/2008] [Accepted: 05/16/2008] [Indexed: 01/21/2023]
|
32
|
Fenton JI, Birmingham JM, Hursting SD, Hord NG. Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer 2008; 122:2437-45. [PMID: 18338750 DOI: 10.1002/ijc.23436] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that leptin, an adipose-derived hormone, induces cell proliferation in a model of preneoplastic (IMCE (Apc(Min/+)), but not normal (YAMC (Apc(+/+)), colon epithelial cells by inducing autocrine IL-6 production and trans-IL-6 signaling. Low serum adiponectin is associated with colon, prostate and breast cancer. Adiponectin is secreted by white adipose tissue; the levels of adiponectin in the blood decrease as body mass index (and leptin) increases. In our study, we tested whether murine recombinant globular adiponectin (gArcp30) could modulate leptin-induced cell proliferation, autocrine IL-6 production, trans-IL-6 signaling and other leptin-induced cell signaling events previously observed in IMCE cells but not YAMC cells. Under serum-free conditions, adiponectin (1 mug/ml) inhibited leptin-induced autocrine IL-6 production, soluble IL-6 receptor shedding, trans-IL-6 signaling and subsequent STAT3 phosphorylation in IMCE cells. Adiponectin inhibited leptin-induced cell proliferation in the IMCE cells and this inhibition was associated with I kappa B-alpha phosphorylation, I kappa B-alpha degradation and decreased NF-kappaB p65 DNA activation and binding. These data indicate that adiponectin acts on preneoplastic colon epithelial cells to regulate cell growth via 2 distinct pathways inhibiting leptin-induced NF-kappaB-dependent autocrine IL-6 production and trans-IL-6 signaling. We hypothesize that adiponectin may be an important regulator of colon epithelial cell homeostasis by linking the observed reduced risk for cancer in populations with high serum adiponectin concentrations to specific mechanisms of cell number homeostasis in a model of preneoplastic colon epithelial cells. These data may have broad implications for diet and lifestyle strategies for the prevention and treatment of obesity-associated cancers.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| | | | | | | |
Collapse
|
33
|
Bellocq D, Molina J, Rathahao E, Canlet C, Taché S, Martin PG, Pierre F, Paris A. High potency of bioactivation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mouse colon epithelial cells with ApcMin mutation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 653:34-43. [DOI: 10.1016/j.mrgentox.2008.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 12/27/2022]
|
34
|
Saracino MR, Lampe JW. Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutr Cancer 2008; 59:121-41. [PMID: 18001207 DOI: 10.1080/01635580701458178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are Phase II biotransformation enzymes that metabolize endogenous and exogenous compounds, some of which have been associated with cancer risk. Many phytochemicals have been shown to induce UGTs in humans, rodents, and cell culture systems. Because UGTs maintain hormone balance and facilitate excretion of potentially carcinogenic compounds, regulation of their expression and activity may affect cancer risk. Phytochemicals regulate transcription factors such as the nuclear factor-erythroid 2-related factor 2 (Nrf2), aryl hydrocarbon, and pregnane X receptors as well as proteins in several signal transduction cascades that converge on Nrf2 to stimulate UGT expression. This induction can be modified by several factors, including phytochemical dose and bioavailability and interindividual variation in enzyme expression. In this review, we summarize the knowledge of dietary modulation of UGTs, particularly by phytochemicals, and discuss the potential mechanisms by which phytochemicals regulate UGT transcription.
Collapse
|
35
|
Fenton JI, Lavigne JA, Perkins SN, Liu H, Chandramouli GVR, Shih JH, Hord NG, Hursting SD. Microarray analysis reveals that leptin induces autocrine/paracrine cascades to promote survival and proliferation of colon epithelial cells in an Apc genotype-dependent fashion. Mol Carcinog 2008; 47:9-21. [PMID: 17620308 DOI: 10.1002/mc.20357] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The imbalance in systemic mediators of inflammation, such as leptin, is thought to be involved in obesity-associated cancers. In addition, systemic endocrine signals can influence the local autocrine/paracrine factors produced within this microenvironment to influence epithelial cell fate. We previously demonstrated that leptin preferentially promotes the survival and proliferation of colon epithelial cells possessing an Apc mutation (IMCE) but not model normal cells (YAMC). Therefore, the purpose of this study was to identify leptin-induced functional gene family changes which characterize the response of colon epithelial cells possessing an Apc mutation but not normal cells. Consistent with our knowledge of colon carcinogenesis, genes regulating the Wnt/beta-catenin-mediated pathway including Mdm2, Pik3r1, and Rb1 were upregulated by leptin. Importantly, leptin induced IGF-mediated pathway gene expression changes and their protein products in IMCE cells. In the IMCE cells IGFBP-6, IGF-1, and Crim1 expression was upregulated, while IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5, and Nov expression was downregulated by leptin treatment. These data establish a biologically plausible mechanistic link between the elevated levels of growth factors and the increased risk of colon cancer associated with obesity.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Effect of dietary selenium deficiency on the in vitro fertilizing ability of mice spermatozoa. Cell Biol Toxicol 2007; 24:321-9. [DOI: 10.1007/s10565-007-9044-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/09/2007] [Indexed: 12/31/2022]
|
37
|
Ealey KN, Xuan W, Lu S, Archer MC. Colon carcinogenesis in liver-specific IGF-I-deficient (LID) mice. Int J Cancer 2007; 122:472-6. [DOI: 10.1002/ijc.23102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Vega L, Rodríguez-Sosa M, García-Montalvo EA, Del Razo LM, Elizondo G. Non-optimal levels of dietary selenomethionine alter splenocyte response and modify oxidative stress markers in female mice. Food Chem Toxicol 2007; 45:1147-53. [PMID: 17306430 DOI: 10.1016/j.fct.2006.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 12/13/2006] [Accepted: 12/25/2006] [Indexed: 01/26/2023]
Abstract
Many studies evaluating the effects of selenium (Se) status on immunity utilize inorganic Se, although selenomethionine (Se-Met) has been suggested to be more bioavailable and less toxic. In the current study, we investigated the effects of dietary Se-Met on immune system function and cellular redox status in C57BL/6N female mice fed with low (0.02 ppm), sufficient (0.2 ppm, control group), or excess Se-Met (2 ppm) in the diet for 50 days. Low Se-Met intake reduced glutathione peroxidase (GPx) activity and glutathione concentration without modifying lipoperoxidation. While low Se-Met intake also reduced the number of B cells in the spleen, it increased mitogen-induced proliferation, IL-4 and IL-12 secretion when compared to the sufficient Se-Met intake group. In comparison to controls, excess Se-Met intake increased splenocyte proliferation and reduced B cell numbers, IL-4, and IL-12 secretion without affecting oxidative stress markers. These data suggest that Se-Met supplementation should be carefully evaluated as it many influence immune function.
Collapse
Affiliation(s)
- Libia Vega
- Sección Externa de Toxicología, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, San Pedro Zacatenco, México, DF 07360, Mexico.
| | | | | | | | | |
Collapse
|
39
|
Hord NG, Fenton JI. Context is everything: Mining the normal and preneoplastic microenvironment for insights into the diet and cancer risk conundrum. Mol Nutr Food Res 2007; 51:100-6. [PMID: 17195262 DOI: 10.1002/mnfr.200600157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review highlights the context-dependence of epithelial carcinogenesis in order to illuminate the potential for progress in the field of diet and cancer prevention. Estimates drawn from observational epidemiology imply that diet and lifestyle changes have the potential to prevent 30-40% of cancer cases. However, the application of knowledge gleaned from observational epidemiology applied to randomized clinical trials (RCT) has yielded equivocal or negative results. Resolving this conundrum requires: (i) advances in diet assessment methodologies and the design of clinical trials; (ii) greater knowledge of the active components within foods which may impact cancer risk; and (iii) knowledge about the effects of dietary components on susceptible tissues throughout the disease process (Meyskens, F. L., Jr., Szabo, E., Diet and cancer: The disconnect between epidemiology and RCT. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1366-1369). Explicit consideration of the causal criteria will pay tangible benefits in the design of basic, clinical, and epidemiologic studies in cancer prevention. The rational identification of diet-dependent physiologic targets for cancer prevention is best pursued by appreciating context-dependence of epithelial carcinogenesis. Five contexts, or paradigms useful in understanding the multifactorial nature of carcinogenesis, are offered which describe the potential diet-associated physiologic influences on normal and preneoplastic cells and tumor microenvironments. Taken together with the interactions of systemic, endocrine, and autocrine/paracrine signals that may modulate the process of carcinogenesis, we can appreciate how dietary factors may act collectively in normal tissues or at early stages of carcinogenesis to prevent cancer. Only by understanding the effect of dietary components on the cellular and stromal components of the tissue microenvironment early in the process of epithelial carcinogenesis will yield clues useful for the development of improved strategies for cancer prevention.
Collapse
Affiliation(s)
- Norman G Hord
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
40
|
Fenton JI, Hursting SD, Perkins SN, Hord NG. Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line. Carcinogenesis 2006; 27:1507-15. [PMID: 16597643 DOI: 10.1093/carcin/bgl018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased visceral adipose tissue results in elevated plasma leptin, which are associated with increased risk of a number of obesity-related cancers. However, research is contradictory regarding the role of elevated plasma leptin in colon cancer risk. Having established that leptin induced proliferation in a murine model of preneoplastic (Apc(Min/+); IMCE) colon epithelial cells but not normal (Apc(+/+); YAMC) cells, we hypothesized that the leptin-associated IMCE cell proliferation was a result of autocrine interleukin-6 (IL-6) production and ensuing IL-6 receptor (IL-6R) signaling. Here we show, for the first time, that leptin induces elevated IL-6 production in IMCE cells but not in YAMC cells. IL-6 treatment induced cell proliferation in IMCE cells, but not in YAMC cells, in a concentration-dependent manner from 0.1 to 100 ng/ml (P < 0.05). Interleukin-6-induced IMCE cell proliferation was blocked by the addition of a neutralizing anti-IL-6R antibody. In addition, leptin-induced IMCE cell proliferation was blocked by the addition of an anti-IL-6R neutralizing antibody. Further, we elucidate a novel mechanism by which leptin activates TACE/ADAM17-associated IL-6R shedding and trans-IL-6 signaling in IMCE by induction of IL-6 production. IL-6 treatment of IMCE cells was associated with STAT3, ERK, p38, MEK and JAK2 activation and associated STAT3 nuclear activation and translocation. These data implicate leptin-induced IL-6 production, signaling and subsequent STAT3 activation as early events promoting the survival/proliferation of colon epithelial preneoplastic cells. The elucidation of the leptin-initiated mechanism of preneoplastic cell proliferation establishes a biologically plausible link between the adipocyte-specific cytokine leptin and obesity-associated colon cancer.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892-7361, USA.
| | | | | | | |
Collapse
|