1
|
Piccinin E, Arconzo M, Pasculli E, Tricase AF, Cultrera S, Bertrand-Michel J, Loiseau N, Villani G, Guillou H, Moschetta A. Pivotal role of intestinal cholesterol and nuclear receptor LXR in metabolic liver steatohepatitis and hepatocarcinoma. Cell Biosci 2024; 14:69. [PMID: 38824560 PMCID: PMC11144344 DOI: 10.1186/s13578-024-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Angela Fulvia Tricase
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Silvia Cultrera
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | | | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
2
|
Chen Y, Deng S, Xu J, Yan Y, Lan S, Guo M. Research status and hotspots on the mechanisms of liver X receptor in cancer progression: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e37126. [PMID: 38552096 PMCID: PMC10977575 DOI: 10.1097/md.0000000000037126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The mechanism of liver X receptor in cancer has been gradually revealed in recent years. This study is committed to analyzing the current research status of the mechanism of liver × receptor in cancer progression by using bibliometric methods and to explore the development trend of liver × receptor related research in the future, in order to provide some reference for further exploration in this field. METHODS The Web of Science core collection database was used to carry out the original data retrieval. Excel software was used for data statistics. Vosviewer and CiteSpace software were used to analyze the publication situation, cooperation network, reference co-citation, keyword and term co-occurrence, term bursts, and cluster analysis, and draw visual maps. RESULTS A total of 631 publications meeting the research criteria were included by December 2022, with an average of 32.5 citations per paper. The main research fields were molecular biology, oncology and cell biology, and the papers were mainly published in journals about molecular, biology and immunology. Cell is the journal with the highest citation. The United States is the most influential country, the University of California, Los Angeles is the main research institution, and Gustafsson, Jan-ake is the author with the highest output. In reference co-citation clustering, cluster#2 "cancer development" is the main cluster, and the period from 2014 to 2018 is an important stage of relevant theoretical progress. "Tumor microenvironment" with high burst and novelty became the most noteworthy term in term burst. CONCLUSION Using bibliometric methods to reveal the current status of LXR and cancer mechanisms, and making predictions of possible future hotspots based on the analysis of the current situation, the translation of LXR anti-cancer research to clinical applications, the impact on the tumor microenvironment as a whole and more immune pathways, and the formation of a systematic cognition of the effects of more cancer cell lines and oncogenic signaling crosstalk, which is a possible direction for future research.
Collapse
Affiliation(s)
- Yukun Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Siqi Deng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiexia Xu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Yan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuwen Lan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingzhang Guo
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Ramalingam PS, Elangovan S, Mekala JR, Arumugam S. Liver X Receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1386102. [PMID: 38550382 PMCID: PMC10972936 DOI: 10.3389/fcell.2024.1386102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer has become a serious health burden that results in high incidence and mortality rates every year, mainly due to various molecular alterations inside the cell. Liver X receptors (LXRs) dysregulation is one among them that plays a vital role in cholesterol metabolism, lipid metabolism and inflammation and also plays a crucial role in various diseases such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular diseases, Type 2 diabetes, osteoporosis, and cancer. Studies report that the activation of LXRs inhibits cancer growth by inhibiting cellular proliferation, inducing apoptosis and autophagy, regulating cholesterol metabolism, various signalling pathways such as Wnt, and PI3K/AKT, modulating the expression levels of cell-cycle regulators, and promoting antitumor immunity inside the tumor microenvironment. In this review, we have discussed the role, structure, and functions of LXRs and also summarized their ligands along with their mechanism of action. In addition, the role of LXRs in various cancers, tumor immunity and tumor microenvironment (TME) along with the importance of precision medicine in LXR-targeted therapies has been discussed to emphasize the LXRs as potent targets for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
| | - Sujatha Elangovan
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, Andhra Pradesh, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Wu H, Wu X, Zhao M, Yan J, Li C, Zhang Z, Tang S, Wang R, Fei W. Regulating Cholesterol in Tumorigenesis: A Novel Paradigm for Tumor Nanotherapeutics. Int J Nanomedicine 2024; 19:1055-1076. [PMID: 38322754 PMCID: PMC10844012 DOI: 10.2147/ijn.s439828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
During the past decade, "membrane lipid therapy", which involves the regulation of the structure and function of tumor cell plasma membranes, has emerged as a new strategy for cancer treatment. Cholesterol is an important component of the tumor plasma membrane and serves an essential role in tumor initiation and progression. This review elucidates the role of cholesterol in tumorigenesis (including tumor cell proliferation, invasion/metastasis, drug resistance, and immunosuppressive microenvironment) and elaborates on the potential therapeutic targets for tumor treatment by regulating cholesterol. More meaningfully, this review provides an overview of cholesterol-integrated membrane lipid nanotherapeutics for cancer therapy through cholesterol regulation. These strategies include cholesterol biosynthesis interference, cholesterol uptake disruption, cholesterol metabolism regulation, cholesterol depletion, and cholesterol-based combination treatments. In summary, this review demonstrates the tumor nanotherapeutics based on cholesterol regulation, which will provide a reference for the further development of "membrane lipid therapy" for tumors.
Collapse
Affiliation(s)
- Huifeng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jingjing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Chaoqun Li
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhewei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Sangsang Tang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Rong Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
5
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Lin J, Lu F, Wu Y, Huang H, Pan Y. The cellular trajectories of tumor-associated macrophages decipher the heterogeneity of pancreatic cancer. Funct Integr Genomics 2023; 23:343. [PMID: 37991591 DOI: 10.1007/s10142-023-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Emerging evidence indicates that the interactions and dynamic changes among tumor-associated macrophages (TAMs) are pivotal in molding the tumor microenvironment (TME), thereby influencing diverse clinical outcomes. However, the potential clinical ramifications of these evolutionary shifts in tumor-associated macrophages within pancreatic adenocarcinoma (PAAD) remain largely unexamined. Single-cell RNA sequencing (scRNA-seq) data were retrieved from the Tumor Immune Single-cell Hub. The Seurat and Monocle algorithms were employed to elucidate the progression of TAMs, using non-negative matrix factorization (NMF) to determine molecular classifications. Subsequently, the prognosis, biological characteristics, genomic modifications, and immune landscape across various clusters were interpreted. Furthermore, the sensitivity of potential therapeutic drugs between subtypes was predicted. Cellular experiments were conducted to explore the function of the NR1H3 gene in pancreatic cancer. These experiments encompassed gene knockdown, proliferation assessment, clone formation evaluation, transwell examination, and apoptosis analysis. Trajectory gene expression analysis of tumor-associated macrophages identified three disparate clusters, each associated with different clinical outcomes Compared to clusters C1 and C2, cluster C3 is seemingly at a less advanced pathological stage and associates with a relatively favorable prognosis. Further investigation revealed pronounced genetic instability in cluster C2, whereas cluster C3 demonstrated notable genetic stability. Cluster C1, characterized as "immune-hot," exhibits an abundance of immune cells and elevated immune checkpoint expression, suggesting its suitability for immunotherapy. Furthermore, several potential therapeutic agents have been pinpointed, potentially facilitating the clinical application of these insights. Cell assays indicated that NR1H3 knockdown markedly induced apoptosis and suppressed clonogenesis, migration, and proliferation of pancreatic cancer cells in the PTAU-8988 and PANC-1 cell lines. Overall, our study discerned three clusters with unique characteristics, defined by the evolution of TAMs. We propose customized therapeutic strategies for patients within these specific clusters to improve clinical outcomes and optimize clinical management.
Collapse
Affiliation(s)
- Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
8
|
Haugen MH, von der Lippe Gythfeldt H, Egeland EV, Svartdal Normann L, Pandya AD, Vedin L, Juell S, Tenstad E, Øy GF, Kristian A, Marangoni E, Sørlie T, Steffensen K, Mælandsmo GM, Engebraaten O. Liver X receptors induce antiproliferative effects in basal-like breast cancer. Mol Oncol 2023; 17:2041-2055. [PMID: 37341140 PMCID: PMC10552888 DOI: 10.1002/1878-0261.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer. In vitro experiments revealed a dose-dependent decrease in tumor cell proliferation in estrogen receptor-positive breast cancer cells, whereas LXR activation in vivo resulted in an increased growth inhibitory effect in a basal-like breast cancer model (in combination with carboplatin). Functional proteomic analysis identified differences in protein expression between responding and nonresponding models related to Akt activity, cell-cycle progression, and DNA repair. Furthermore, pathway analysis suggested that the LXR agonist in combination with carboplatin inhibits the activity of targets of E2F transcription factors and affects cholesterol homeostasis in basal-like breast cancer.
Collapse
Affiliation(s)
| | - Hedda von der Lippe Gythfeldt
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalNorway
- Department of OncologyOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| | | | - Lisa Svartdal Normann
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Research and InnovationVestre Viken Hospital TrustDrammenNorway
| | | | - Lise‐Lotte Vedin
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Siri Juell
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | - Ellen Tenstad
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | - Geir Frode Øy
- Department of Tumor BiologyOslo University Hospital OsloNorway
| | | | - Elisabetta Marangoni
- Translational Research Department, Institut CuriePSL Research UniversityParisFrance
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| | - Knut Steffensen
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Gunhild Mari Mælandsmo
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of Medical Biology, Faculty of Health SciencesThe Arctic University of Norway‐University of TromsøNorway
| | - Olav Engebraaten
- Department of Tumor BiologyOslo University Hospital OsloNorway
- Department of OncologyOslo University HospitalNorway
- Insitute for Clinical MedicineUniversity of OsloNorway
| |
Collapse
|
9
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
10
|
Nyul TE, Beyries K, Hojnacki T, Glynn R, Paulosky KE, Gedela A, Majer A, Altman L, Buckley KH, Feng Z, Sun K, Peng Z, Tobias JW, Hua X, Katona BW. Menin Maintains Cholesterol Content in Colorectal Cancer via Repression of LXR-Mediated Transcription. Cancers (Basel) 2023; 15:4126. [PMID: 37627154 PMCID: PMC10453013 DOI: 10.3390/cancers15164126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND AND AIMS Menin is a nuclear scaffold protein that regulates gene transcription in an oftentimes tissue-specific manner. Our previous work showed that menin is over-expressed in colorectal cancer (CRC); however, the full spectrum of menin function in colonic neoplasia remains unclear. Herein, we aimed to uncover novel menin-regulated pathways important for colorectal carcinogenesis. METHODS RNA-Seq analysis identified that menin regulates LXR-target gene expressions in CRC cell lines. Isolated colonic epithelium from Men1f/f;Vil1-Cre and Men1f/f mice was used to validate the results in vivo. Cholesterol content was quantified via an enzymatic assay. RESULTS RNA-Seq analysis in the HT-29 CRC cell line identified that menin inhibition upregulated LXR-target genes, specifically ABCG1 and ABCA1, with protein products that promote cellular cholesterol efflux. Similar results were noted across other CRC cell lines and with different methods of menin inhibition. Consistent with ABCG1 and ABCA1 upregulation, and similarly to LXR agonists, menin inhibition reduced the total cellular cholesterol in both HT-29 and HCT-15 cells. To confirm the effects of menin inhibition in vivo, we assessed Men1f/f;Vil1-Cre mice lacking menin expression in the colonic epithelium. Men1f/f;Vil1-Cre mice were found to have no distinct baseline phenotype compared to control Men1f/f mice. However, similarly to CRC cell lines, Men1f/f;Vil1-Cre mice showed an upregulation of Abcg1 and a reduction in total cellular cholesterol. Promoting cholesterol efflux, either via menin inhibition or LXR activation, was found to synergistically suppress CRC cell growth under cholesterol-depleted conditions and when administered concomitantly with small molecule EGFR inhibitors. CONCLUSIONS Menin represses the transcription of LXR-target genes, including ABCA1 and ABCG1 in the colonic epithelium and CRC. Menin inhibition conversely upregulates LXR-target genes and reduces total cellular cholesterol, demonstrating that menin inhibition may be an important mechanism for targeting cholesterol-dependent pathways in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Thomas E. Nyul
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keely Beyries
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taylor Hojnacki
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca Glynn
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla E. Paulosky
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anitej Gedela
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily Altman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (X.H.)
| | - Kunfeng Sun
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (X.H.)
| | - Zhicheng Peng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (X.H.)
| | - John W. Tobias
- Department of Genetics, Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (X.H.)
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Decker NS, Johnson T, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Endogenous estrogen receptor modulating oxysterols and breast cancer prognosis: Results from the MARIE patient cohort. Br J Cancer 2023; 129:492-502. [PMID: 37355720 PMCID: PMC10403581 DOI: 10.1038/s41416-023-02315-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND 27-hydroxycholesterol (HC) and 25-HC were identified as endogenous selective estrogen receptor modulators (SERMs) and estrogen receptor (ER) modulators, respectively. They are hypothesized to play a role in multiple physiologic processes and pathologies, including breast cancer development and progression. METHODS We evaluated circulating 27-HC and 25-HC, and outcomes following a breast cancer diagnosis in 2282 women from the MARIE study over median follow-up of 11.6 years. 27-HC and 25-HC were quantified by liquid chromatography-mass spectrometry. We calculated hazard ratios (HR) and 95% confidence intervals [CI] using multivariable Cox Proportional Hazards regression. RESULTS We observed no associations between 27-HC and breast cancer prognosis overall. Associations between 27-HC and survival differed by circulating estradiol concentrations and endocrine therapy, but not by hormone receptor status. Among women with estradiol levels below the median (0.08 nM), 27-HC was associated with higher risk of all-cause mortality (HRlog2 = 1.80 [1.20-2.71]) and breast cancer-specific mortality (HRlog2 = 1.95 [1.14-3.31]). No associations were observed in women with estradiol levels above the median. Higher 25-HC levels were associated with lower risk of recurrence (HRlog2 = 0.87 [0.77-0.98]). CONCLUSION Associations between 27-HC and breast cancer prognosis varied by circulating estradiol levels and endocrine therapy. Less consistent results were observed for 25-HC.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Ullernchausseen 64, 0379, Oslo, Norway.
| |
Collapse
|
12
|
Han N, Yuan M, Yan L, Tang H. Emerging Insights into Liver X Receptor α in the Tumorigenesis and Therapeutics of Human Cancers. Biomolecules 2023; 13:1184. [PMID: 37627249 PMCID: PMC10452869 DOI: 10.3390/biom13081184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Liver X receptor α (LXRα), a member of the nuclear receptor superfamily, is identified as a protein activated by ligands that interacts with the promoters of specific genes. It regulates cholesterol, bile acid, and lipid metabolism in normal physiological processes, and it participates in the development of some related diseases. However, many studies have demonstrated that LXRα is also involved in regulating numerous human malignancies. Aberrant LXRα expression is emerging as a fundamental and pivotal factor in cancer cell proliferation, invasion, apoptosis, and metastasis. Herein, we outline the expression levels of LXRα between tumor tissues and normal tissues via the Oncomine and Tumor Immune Estimation Resource (TIMER) 2.0 databases; summarize emerging insights into the roles of LXRα in the development, progression, and treatment of different human cancers and their diversified mechanisms; and highlight that LXRα can be a biomarker and therapeutic target in diverse cancers.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Shaban NZ, El-Rashidy FH, Adam AH, Beltagy DM, Ali AE, Abde-Alaziz AA, Talaat IM. Anticancer role of mango (Mangifera indica L.) peel and seed kernel extracts against 7,12- dimethylbenz[a]anthracene-induced mammary carcinogenesis in female rats. Sci Rep 2023; 13:7703. [PMID: 37169856 PMCID: PMC10175271 DOI: 10.1038/s41598-023-34626-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death among women. The present study is an effort to reveal the antiproliferative and antioxidant actions of mango seed kernel extract (KE), peel extract (PE), and their combination (KEPE) on mammary tumors induced by 7,12 dimethylbenz[a]anthracene (DMBA). Seven groups of adult female Sprague-Dawley rats were prepared, including C: (control), DMBA: (rats were administered with DMBA), (DMBA-KE), (DMBA-PE), and (DMBA-KEPE): rats were administered with DMBA and then treated with KE, PE, and (both KE and PE), respectively, (KE) and (PE): rats were administered with KE and PE, separately. The study focused on the assessment of markers of endocrine derangement [serum 17-β estradiol (E2)], apoptosis [caspase-3 and deoxyribonucleic acid fragmentation (DNAF)], and oxidative stress [lipid peroxidation and antioxidants (glutathione, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and superoxide dismutase)]. Histopathological examination and immunohistochemical expression of caspase-3 and estrogen receptor-α (ER-α) in mammary gland tissues (MGTs) were determined, as well as the characterization of mango extracts. The results showed that DMBA administration induced mammary tumors by increasing cell proliferation and evading apoptosis. In addition, DMBA administration caused oxidative stress by the production of reactive oxygen species, which increased lipid peroxidation and decreased cellular antioxidants, allowing cancer to progress. In contrast, treatment with DMBA-KE, DMBA-PE, or DMBA-KEPE diminished mammary tumors induced by DMBA, where they reduced oxidative stress via increased antioxidant parameters including reduced glutathione, superoxide dismutase, total glutathione peroxidase, glutathione reductase, and glutathione S-transferase. Also, different treatments decreased proliferation through the reduction of E2, and ER-α expression levels. However, these treatments increased the apoptosis of unwanted cells as they increased caspase-3 activity and DNAF. All these changes led to the prevention of breast injuries and the reduction of mammary tumors. This demonstrates that the contents of mango extracts, especially phenolics and flavonoids, have an important role in mammary tumor treatment through their potential antioxidant, antiproliferative, proapoptotic, and anti-estrogenic effects. KE and PE administration for 4 weeks had no adverse effects. Conclusion: Each of KE, PE, and KEPE has a therapeutic effect against DMBA-induced mammary tumors via induction of apoptosis and reduction of each of the OS, proliferation, and estrogenic effects. So, they can play an important role in the pharmacological tole.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Fatma H El-Rashidy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Amany H Adam
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Doha M Beltagy
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Alaa E Ali
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ahmed A Abde-Alaziz
- Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
14
|
Adigun TO, Danazumi AU, Umar HI, Na'Allah A, Alabi MA, Joel WO, Aberuagba A, Alejolowo OO, Bamidele JO, Omotayo OS, Medayedupin OA. In silico molecular modeling and simulations of black tea theaflavins revealed theaflavin-3'-gallate as putative liver X receptor-beta agonist. J Biomol Struct Dyn 2023; 41:13015-13028. [PMID: 36729100 DOI: 10.1080/07391102.2023.2175264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
The low constitutive activation of Liver X receptor, an endogenous nuclear receptor with two subtypes (α and β), is a condition lying at the crossroad of cancer and cardiovascular disease. Both natural and synthetic Liver X receptor agonists have reportedly shown remarkable antiproliferative and atheroprotective effects but the repeated doses of its synthetic ones are also paradoxically associated with hyperlipidaemic effects and neurotoxicity, though attributed to the alpha subtype. This highlights the need for novel, safe, and potent LXR-beta-selective agonists. Hypocholesterolaemic effects of black theaflavins have been widely reported, but data on the exact theaflavin compound (s) responsible for these effects is currently lacking. Neither is information on the possible modulatory effects of the compound (s) on LXR-beta nor its possible implications in the context of drug development for cardiovascular diseases and cancers is explored. On this account, we investigated the potential interaction of four main theaflavin monomers (TF1, TF2A, TF2B & TF3) with human LXR-beta through robust computational modelling that entails molecular docking, free energy calculations and molecular dynamics simulations. The ligands were further profiled (in silico) for absorption, distribution, metabolism, excretion, and toxicological properties. Our result revealed theaflavin TF2B as a putative LXR-beta agonist, possibly responsible for the widely observed hypocholesterolaemic effect in black tea. This finding, while encouraging, needs to be experimentally verified in wet studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Temidayo O Adigun
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ammar U Danazumi
- Faculty of Chemistry, Warsaw, University of Technology, Warsaw, Poland
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Haruna I Umar
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Computer-aided Therapeutic Discovery and Design Group, Federal University of Technology Akure, Akure, Nigeria
| | - Asiat Na'Allah
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Mutiu A Alabi
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Nigeria
| | - Wisdom O Joel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Adepeju Aberuagba
- Department of Biochemistry, McPherson University, Seriki Sotayo, Nigeria
| | | | - Joy O Bamidele
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | - Olakunle S Omotayo
- Science Laboratory Technology, The Federal Polytechnic Ilaro, Ilaro, Nigeria
| | | |
Collapse
|
15
|
Zhang J, Zhang J, Zhao W, Li Q, Cheng W. Low expression of NR1H3 correlates with macrophage infiltration and indicates worse survival in breast cancer. Front Genet 2023; 13:1067826. [PMID: 36699456 PMCID: PMC9868774 DOI: 10.3389/fgene.2022.1067826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis. Here, we aimed to visualize the prognostic value and immunological characterization of NR1H3 in breast cancer. Methods: The expression pattern and prognostic value of NR1H3 were analyzed via multiple databases, including TIMER2, GEPIA2 and Kaplan-Meier Plotter. TISIDB, TIMER2 and immunohistochemical analysis were used to investigate the correlation between NR1H3 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB and GeneMANIA were used to visualize the functional enrichment of NR1H3 and signaling pathways related to NR1H3. Results: We demonstrated that the expression of NR1H3 was significantly lower in breast cancer compared with adjacent normal tissues. Kaplan-Meier survival curves showed shorter overall survival in basal breast cancer patients with low NR1H3 expression, and poorer prognosis of relapse-free survival in breast cancer patients with low NR1H3 expression. NR1H3 was mainly expressed in immune cells, and its expression was closely related with infiltrating levels of tumor-infiltrating immune cells in breast cancer. Additionally, univariate and multivariate analysis indicated that the expression of NR1H3 and the level of macrophage infiltration were independent prognostic factors for breast cancer. Gene interaction network analysis showed the function of NR1H3 involved in regulating of innate immune response and macrophage activation. Moreover, NR1H3 may function as a predictor of chemoresponsiveness in breast cancer. Conclusion: These findings suggest that NR1H3 serves as a prognostic biomarker and contributes to the regulation of macrophage activation in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingxian Li
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| | - Wenwu Cheng
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| |
Collapse
|
16
|
The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
|
17
|
CYP27A1 inhibits proliferation and migration of clear cell renal cell carcinoma via activation of LXRs/ABCA1. Exp Cell Res 2022; 419:113279. [PMID: 35810773 DOI: 10.1016/j.yexcr.2022.113279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Cholesterol homeostasis plays an important role in the maintenance of normal body functions. CYP27A1 is a key enzyme known to regulate cholesterol homeostasis, which catalyzes the conversion of cholesterol to 27-HC and has been implicated in the occurrence and metastasis of various cancer types. The present study aimed to explore the regulatory role of CYP27A1 in the development of clear cell renal cell carcinoma (ccRCC). In particular, the effect of CYP27A1 on the proliferation and migration of ccRCC cells was investigated. The construction of a stable 786-O cell line overexpressing CYP27A1/pLVX was mediated by lentiviral infection. The proliferative capacity was assessed using MTT and colony formation. Wound healing assay was used to measure cell migration. Production of intracellular cholesterol and 27-HC was detected by enzyme-linked immunosorbent assay. The LXRs/ABCA1 pathway of cholesterol metabolism regulation was studied by RT-qPCR and Western blotting analysis after cells were treated with stimulation agents of 27-HC or T0901317 and inhibition agents of siRNA or GSK2033. The results revealed that overexpression of CYP27A1 could increase the intracellular production of 27-HC and inhibit the proliferation and migration of 786-O cells. And the treatment of 786-O cells with 27-HC induced a similar effect. CYP27A1/27HC mediated activation of the liver X receptors (LXRs) could up-regulate the expression of ATP-binding cassette transporter A1 (ABCA1), further resulting in the reduction of intracellular cholesterol contents. All of these findings indicated a regulatory role of CYP27A1 in the proliferation and migration of ccRCC, via activating LXRs/ABCA1 to regulate cholesterol homeostasis.
Collapse
|
18
|
Ma L, Vidana Gamage HE, Tiwari S, Han C, Henn MA, Krawczynska N, Dibaeinia P, Koelwyn GJ, Das Gupta A, Bautista Rivas RO, Wright CL, Xu F, Moore KJ, Sinha S, Nelson ER. The Liver X Receptor Is Selectively Modulated to Differentially Alter Female Mammary Metastasis-associated Myeloid Cells. Endocrinology 2022; 163:bqac072. [PMID: 35569056 PMCID: PMC9188661 DOI: 10.1210/endocr/bqac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rafael Ovidio Bautista Rivas
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris L Wright
- Roy J. Carver Biotechnology Center DNA Services, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Fangxiu Xu
- Roy J. Carver Biotechnology Center DNA Services, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10032, USA
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Xu Y, Shu D, Shen M, Wu Q, Peng Y, Liu L, Tang Z, Gao S, Wang Y, Liu S. Development and Validation of a Novel PPAR Signaling Pathway-Related Predictive Model to Predict Prognosis in Breast Cancer. J Immunol Res 2022; 2022:9412119. [PMID: 35692496 PMCID: PMC9184151 DOI: 10.1155/2022/9412119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 12/27/2022] Open
Abstract
This study is aimed at exploring the potential mechanism of the PPAR signaling pathway in breast cancer (BRCA) and constructing a novel prognostic-related risk model. We used various bioinformatics methods and databases to complete our exploration in this research. Based on TCGA database, we use multiple extension packages based on the R language for data conversion, processing, and statistics. We use LASSO regression analysis to establish a prognostic-related risk model in BRCA. And we combined the data of multiple online websites, including GEPIA, ImmuCellAI, TIMER, GDSC, and the Human Protein Atlas database to conduct a more in-depth exploration of the risk model. Based on the mRNA data in TCGA database, we conducted a preliminary screening of genes related to the PPAR signaling pathway through univariate Cox analysis, then used LASSO regression analysis to conduct a second screening, and successfully established a risk model consisting of ten genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide breast cancer patients into high- and low-risk groups with significant prognostic differences (P = 1.92e - 05) based on this risk model. Combined with the clinical data in TCGA database, there is a correlation between the risk model and the patient's N, T, gender, and fustat. The results of multivariate Cox regression show that the risk score of this risk model can be used as an independent risk factor for BRCA patients. In particular, we draw a nomogram that can predict the 5-, 7-, and 10-year survival rates of BRCA patients. Subsequently, we conducted a series of pancancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to investigate drug sensitivity. Finally, to gain insight into the predictive value and protein expression of these risk model genes in breast cancer, we used GEO and HPA databases for validation. This study provides valuable clues for future research on the PPAR signaling pathway in BRCA.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shun Gao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
20
|
Xu Y, Shu D, Shen M, Wu Q, Peng Y, Liu L, Tang Z, Gao S, Wang Y, Liu S. Development and Validation of a Novel PPAR Signaling Pathway-Related Predictive Model to Predict Prognosis in Breast Cancer. J Immunol Res 2022; 2022:9412119. [PMID: 35692496 PMCID: PMC9184151 DOI: 10.1155/2022/9412119;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 10/11/2024] Open
Abstract
This study is aimed at exploring the potential mechanism of the PPAR signaling pathway in breast cancer (BRCA) and constructing a novel prognostic-related risk model. We used various bioinformatics methods and databases to complete our exploration in this research. Based on TCGA database, we use multiple extension packages based on the R language for data conversion, processing, and statistics. We use LASSO regression analysis to establish a prognostic-related risk model in BRCA. And we combined the data of multiple online websites, including GEPIA, ImmuCellAI, TIMER, GDSC, and the Human Protein Atlas database to conduct a more in-depth exploration of the risk model. Based on the mRNA data in TCGA database, we conducted a preliminary screening of genes related to the PPAR signaling pathway through univariate Cox analysis, then used LASSO regression analysis to conduct a second screening, and successfully established a risk model consisting of ten genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide breast cancer patients into high- and low-risk groups with significant prognostic differences (P = 1.92e - 05) based on this risk model. Combined with the clinical data in TCGA database, there is a correlation between the risk model and the patient's N, T, gender, and fustat. The results of multivariate Cox regression show that the risk score of this risk model can be used as an independent risk factor for BRCA patients. In particular, we draw a nomogram that can predict the 5-, 7-, and 10-year survival rates of BRCA patients. Subsequently, we conducted a series of pancancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to investigate drug sensitivity. Finally, to gain insight into the predictive value and protein expression of these risk model genes in breast cancer, we used GEO and HPA databases for validation. This study provides valuable clues for future research on the PPAR signaling pathway in BRCA.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shun Gao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
21
|
Chen Z, Lai X, Ding H, Zhang A, Sun Y, Ling J, Chiao PJ, Chen Z, Xia X. ATF4/TXNIP/REDD1/mTOR signaling mediates the antitumor activities of liver X receptor in pancreatic cancers. CANCER INNOVATION 2022; 1:55-69. [PMID: 38089448 PMCID: PMC10686145 DOI: 10.1002/cai2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 10/15/2024]
Abstract
Background Limited by difficulties in early detection and availabilities of effective treatments, pancreatic cancer is a highly malignant disease with poor prognosis. Nuclear receptors are a family of ligand-dependent transcription factors that are highly druggable therapeutic targets playing critical roles in human physiological and pathological development, including cancer. In this study, we explored the therapeutic potential as well as the molecular mechanisms of liver X receptor (LXR) agonist GW3965 in pancreatic cancer. Methods Soft-agar colony formation assay, xenograft tumors, Oligonucleotide microarray, Reverse transcription real-time polymerase chain reaction, Western immunoblotting and Immunohistochemistry were used in this study. Results We demonstrated pleotropic in vitro activities of GW3965 in pancreatic cell lines MIA PaCa-2 and BXPC3 including reduction of cell viability, inhibition of cell proliferation, stimulation of cell death, and suppression of colony formation, which translated to significant inhibition of xenograft tumor growth in vitro. By mapping the gene expression profiles, we identified the up-regulations of 188 and the down-regulations of 92 genes common to both cell lines following GW3965 treatment. Genes responsive to GW3965 represent a variety of biological pathways vital for multiple cellular functions. Specifically, we identified that the activating transcription factor 4/thioredoxin-interacting protein/regulated in development and DNA damage responses 1/mechanistic target of rapamycin (ATF4/TXNIP/REDD1/mTOR) signaling critically controls GW3965-mediated regulation of cell proliferation/death. The significance of the ATF4/TXNIP/REDD1/mTOR pathway was further supported by associated expressions in xenograft tumors as well as human pancreatic cancer samples. Conclusions This study provides the pre-clinical evidence that LXR agonist is a promising therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Zhikang Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | - Xiaobo Lai
- Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Hui Ding
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityHaikouHainanChina
| | - Aijun Zhang
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Yufei Sun
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | - Jianhua Ling
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul J. Chiao
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Zihua Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal TumorChangshaHunanChina
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & StandardizationChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunanChina
| | | |
Collapse
|
22
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
23
|
Avena P, Casaburi I, Zavaglia L, Nocito MC, La Padula D, Rago V, Dong J, Thomas P, Mineo C, Sirianni R, Shaul PW. 27-Hydroxycholesterol Binds GPER and Induces Progression of Estrogen Receptor-Negative Breast Cancer. Cancers (Basel) 2022; 14:1521. [PMID: 35326671 PMCID: PMC8946696 DOI: 10.3390/cancers14061521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cholesterol affects the proliferation of breast cancer (BC) and in particular of estrogen receptor-negative (ER-) BC. Cholesterol is converted to 27-hydroxycholesterol (27HC), which promotes the growth of ER+ BC. Potentially, 27HC can be involved in cholesterol-dependent ER- BC proliferation. Stable MDA-MB-231 silenced clones for CYP7B1 (27HC metabolizing enzyme) show an increased basal proliferation rate, which is not observed in the presence of lipoprotein-deprived serum. Furthermore, the treatment of SKBR3, MDA-MB-231 and MDA-MB-468 with 27HC increased cell proliferation that was prevented by G15, a selective G Protein-Coupled Estrogen Receptor (GPER) inhibitor, suggested this receptor to be a potential 27HC target. Binding experiments demonstrate that 27HC is a new ligand for GPER. We show that ERK1/2 and NFκB are part of the 27HC/GPER pathway. The stable silencing of GPER prevents NFκB activation and reduces basal and 27HC-dependent tumor growth. Additionally, conditioned medium from ER- BC cells treated with 27HC promotes tube formation, which does not occur with CM from GPER silenced cells. Collectively, these data demonstrate that cholesterol conversion into 27HC promotes ER- BC growth and progression, and the expression of GPER is required for its effects.
Collapse
Affiliation(s)
- Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Lucia Zavaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Marta C. Nocito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Davide La Padula
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; (J.D.); (P.T.)
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; (J.D.); (P.T.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
24
|
Shiragannavar VD, Gowda NGS, Santhekadur PK. Discovery of eukaryotic cellular receptor for withaferin A, a multifaceted drug from Withania somnifera plant. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
25
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
27
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
28
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
29
|
Miranda-Bautista J, Rodríguez-Feo JA, Puerto M, López-Cauce B, Lara JM, González-Novo R, Martín-Hernández D, Ferreiro-Iglesias R, Bañares R, Menchén L. Liver X Receptor Exerts Anti-Inflammatory Effects in Colonic Epithelial Cells via ABCA1 and Its Expression Is Decreased in Human and Experimental Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1661-1673. [PMID: 33609028 DOI: 10.1093/ibd/izab034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liver X receptor (LXR) exerts anti-inflammatory effects in macrophages. The aim of this study was to explore the expression and function of LXR in the colonic epithelium under inflammatory conditions. METHODS The expression of LXR was explored by Western blot and immunohistochemistry in colonic biopsies from patients diagnosed with inflammatory bowel disease (IBD) and control patients. In addition, LXR and its target gene expression were analyzed in the colon from interleukin (IL)-10-deficient (IL-10-/-) and wild-type mice. Caco-2 cells were pretreated with the synthetic LXR agonist GW3965 and further challenged with IL-1β, the expression of IL-8 and chemokine (C-C motif) ligand (CCL)-28 chemokines, the activation of mitogen-activated protein (MAP) kinases, and the nuclear translocation of the p65 subunit of nuclear factor kappa B was evaluated. Glibenclamide was used as an ABCA1 antagonist. RESULTS We found that LXR expression was downregulated in colonic samples from patients with IBD and IL-10-/- mice. The nuclear positivity of LXR inversely correlated with ulcerative colitis histologic activity. Colonic IL-1β mRNA levels negatively correlated with both LXRα and LXRβ in the colon of IL-10-/- mice, where a decreased mRNA expression of the LXR target genes ABCA1 and FAS was shown. In addition, IL-1β decreased the expression of the LXR target gene ABCA1 in cultured intestinal epithelial cells. The synthetic LXR agonist GW3965 led to a decreased nuclear positivity of the p65 subunit of nuclear factor kappa B, a phosphorylation ratio of the p44-42 MAP kinase, and the expression of CCL-28 and IL-8 in IL-1β-stimulated Caco-2 cells. The pharmacological inhibition of ABCA1 increased the phosphorylation of p44-42 after GW3965 treatment and IL-1β stimulation. CONCLUSIONS The LXR-ABCA1 pathway exerts anti-inflammatory effects in intestinal epithelial cells and is impaired in the colonic mucosa of patients with IBD and IL-10-/- mice.
Collapse
Affiliation(s)
- José Miranda-Bautista
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Juan A Rodríguez-Feo
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marta Puerto
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Beatriz López-Cauce
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José M Lara
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raquel González-Novo
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - David Martín-Hernández
- Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón-Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Inasu M, Bendahl PO, Fernö M, Malmström P, Borgquist S, Kimbung S. High CYP27A1 expression is a biomarker of favorable prognosis in premenopausal patients with estrogen receptor positive primary breast cancer. NPJ Breast Cancer 2021; 7:127. [PMID: 34556659 PMCID: PMC8460751 DOI: 10.1038/s41523-021-00333-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
27-hydroxycholesterol (27HC), synthesized from cholesterol by the enzyme CYP27A1, differentially impacts estrogen receptor positive (ER+) breast cancer (BC) cell growth depending on estrogen levels. This study examined the association between CYP27A1 expression and prognosis in a cohort of 193 premenopausal patients with lymph node-negative primary BC with limited exposure to adjuvant systemic cancer treatments. In multivariable analyses among patients with ER+ tumors, high CYP27A1 protein and mRNA expressions were associated with four- and eight-fold reductions in the incidence of distant recurrence-free survival events: HRadj = 0.26, 95% CI = 0.07-0.93 and HRadj = 0.13, 95% CI = 0.03-0.60, respectively. In vitro studies revealed that 27HC treatment potently inhibited ER+ BC cell proliferation under lipid-depleted conditions regardless of estradiol levels, transcriptionally mediated through the downregulation of ER signaling with a concomitant upregulation of cholesterol export. Importantly, if validated, these results may have implications for adjuvant treatment decisions in premenopausal patients, especially when de-escalation of therapy is being considered.
Collapse
Affiliation(s)
- Maria Inasu
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Per Malmström
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Siker Kimbung
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
32
|
Cytoplasmic LXR expression is an independent marker of poor prognosis for patients with early stage primary breast cancer. J Cancer Res Clin Oncol 2021; 147:2535-2544. [PMID: 34085098 PMCID: PMC8310839 DOI: 10.1007/s00432-021-03670-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Purpose The aim of this study was to investigate the expression of liver X receptors α/β (LXR) in primary breast cancer (BC) tissues and to analyze its correlations with clinicopathological parameters including patient survival. Methods In a well-characterized cohort of 305 primary BC, subcellular distribution of LXR was evaluated by immunohistochemistry. Correlations with clinicopathological characteristics as well as with patient outcome were analyzed. Results LXR was frequently localized in both nuclei and cytoplasms of BC cells, with stronger staining in nuclei. Total and nuclear LXR expression was positively correlated with ER and PR status. Overall survival analysis demonstrated that cytoplasmic LXR was significantly correlated with poor survival and appeared as an independent marker of poor prognosis, in stage I but not in stage II–III tumors Conclusion Altogether, these data suggest that cytoplasmic LXR could be defined as a prognostic marker in early stage primary BC. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03670-y.
Collapse
|
33
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
34
|
Wang Q, Wang J, Wang J, Zhang H. Molecular mechanism of liver X receptors in cancer therapeutics. Life Sci 2021; 273:119287. [PMID: 33667512 DOI: 10.1016/j.lfs.2021.119287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Liver X receptors (LXRs) are receptors that belong to the nuclear receptor superfamily (NRs). It was originally called the "orphan receptor" when it was firstly discovered. Then it was found to be activated by oxysterol and it was officially named LXRs. LXRs are activated by ligands and bind to the retinol X receptor to form a heterodimer and regulate metabolism. Numerous studies have shown that LXRs are involved in regulating immune function and maintaining immune tolerance. Activating LXRs can also inhibit the tumorigenesis and promote apoptosis of tumor cells, which make LXRs as potential targets in cancer treatment. This review will discuss the recent progress of LXRs from the structure and function of LXRs, the signaling pathway of LXRs, the molecular mechanism of LXRs activation in cancers, and the potential targets of LXRs in cancer therapy.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
35
|
Sheng G, Yuan H, Jin L, Ranjit S, Panov J, Lu X, Levi M, Glazer RI. Reduction of fibrosis and immune suppressive cells in ErbB2-dependent tumorigenesis by an LXR agonist. PLoS One 2021; 16:e0248996. [PMID: 33780491 PMCID: PMC8007044 DOI: 10.1371/journal.pone.0248996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
One of the central challenges for cancer therapy is the identification of factors in the tumor microenvironment that increase tumor progression and prevent immune surveillance. One such element associated with breast cancer is stromal fibrosis, a histopathologic criterion for invasive cancer and poor survival. Fibrosis is caused by inflammatory factors and remodeling of the extracellular matrix that elicit an immune tolerant microenvironment. To address the role of fibrosis in tumorigenesis, we developed NeuT/ATTAC transgenic mice expressing a constitutively active NeuT/erbB2 transgene, and an inducible, fat-directed caspase-8 fusion protein, which upon activation results in selective and partial ablation of mammary fat and its replacement with fibrotic tissue. Induction of fibrosis in NeuT/ATTAC mice led to more rapid tumor development and an inflammatory and fibrotic stromal environment. In an effort to explore therapeutic options that could reduce fibrosis and immune tolerance, mice were treated with the oxysterol liver X receptor (LXR) pan agonist, N,N-dimethyl-3-β-hydroxy-cholenamide (DMHCA), an agent known to reduce fibrosis in non-malignant diseases. DMHCA reduced tumor progression, tumor multiplicity and fibrosis, and improved immune surveillance by reducing infiltrating myeloid-derived suppressor cells and increasing CD4 and CD8 effector T cells. These effects were associated with downregulation of an LXR-dependent gene network related to reduced breast cancer survival that included Spp1, S100a9, Anxa1, Mfge8 and Cd14. These findings suggest that the use of DMHCA may be a potentially effective approach to reduce desmoplasia and immune tolerance and increase the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Gao Sheng
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Lu Jin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Suman Ranjit
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Julia Panov
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Xun Lu
- George Washington University, Washington, DC, United States of America
| | - Moshe Levi
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dong S, Wang Z, Shen K, Chen X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front Oncol 2021; 11:629666. [PMID: 33842335 PMCID: PMC8027241 DOI: 10.3389/fonc.2021.629666] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a type of multifactorial metabolic disease with the presence of at least three factors: obesity, diabetes mellitus, low high-density lipoprotein, hypertriglyceridemia, and hypertension. Recent studies have shown that metabolic syndrome and its related components exert a significant impact on the initiation, progression, treatment response, and prognosis of breast cancer. Metabolic abnormalities not only increase the disease risk and aggravate tumor progression but also lead to unfavorable treatment responses and more treatment side effects. Moreover, biochemical reactions caused by the imbalance of these metabolic components affect both the host general state and organ-specific tumor microenvironment, resulting in increased rates of recurrence and mortality. Therefore, this review discusses the recent advances in the association of metabolic syndrome and breast cancer, providing potential novel therapeutic targets and intervention strategies to improve breast cancer outcome.
Collapse
Affiliation(s)
| | | | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Rooney J, Ryan N, Liu J, Houtman R, van Beuningen R, Hsieh JH, Chang G, Chen S, Christopher Corton J. A Gene Expression Biomarker Identifies Chemical Modulators of Estrogen Receptor α in an MCF-7 Microarray Compendium. Chem Res Toxicol 2021; 34:313-329. [PMID: 33405908 PMCID: PMC10683854 DOI: 10.1021/acs.chemrestox.0c00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identification of chemicals that affect hormone-regulated systems will help to predict endocrine disruption. In our previous study, a 46 gene biomarker was found to be an accurate predictor of estrogen receptor (ER) α modulation in chemically treated MCF-7 cells. Here, potential ERα modulators were identified using the biomarker by screening a microarray compendium consisting of ∼1600 gene expression comparisons representing exposure to ∼1200 chemicals. A total of ∼170 chemicals were identified as potential ERα modulators. In the Connectivity Map 2.0 collection, 75 and 39 chemicals were predicted to activate or suppress ERα, and they included 12 and six known ERα agonists and antagonists/selective ERα modulators, respectively. Nineteen and eight of the total number were also identified as active in an ERα transactivation assay carried out in an MCF-7-derived cell line used to screen the Tox21 10K chemical library in agonist or antagonist modes, respectively. Chemicals predicted to modulate ERα in MCF-7 cells were examined further using global and targeted gene expression in wild-type and ERα-null cells, transactivation assays, and cell-free ERα coregulator interaction assays. Environmental chemicals classified as weak and very weak agonists were confirmed to activate ERα including apigenin, kaempferol, and oxybenzone. Novel activators included digoxin, nabumetone, ivermectin, and six progestins. Novel suppressors included emetine, mifepristone, niclosamide, and proscillaridin. Our strategy will be useful to identify environmentally relevant ERα modulators in future high-throughput transcriptomic screens.
Collapse
Affiliation(s)
- John Rooney
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
- Present address: Integrated Lab Services, Research Triangle Park, NC
| | - Natalia Ryan
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
- Present address: Bayer Crop Science, Research Triangle Park, NC
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
| | - René Houtman
- PamGene International B.V., Den Bosch, The Netherlands
- Present address: Precision Medicine Lab, Oss, The Netherlands
| | | | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, North Carolina
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte,California 91010
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte,California 91010
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
| |
Collapse
|
38
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
39
|
Common targets for a deadly duo of diabetes mellitus and colon cancer: Catching two fish with one worm. Eur J Pharmacol 2021; 893:173805. [PMID: 33359221 DOI: 10.1016/j.ejphar.2020.173805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Colon cancer is a major health issue and number of cases are increasing every year. Diabetes mellitus is also a significant health issue that is growing day by day worldwide having negative influences on the survival of individuals. Research has shown a strong relationship between the two malignant diseases. The risk of colon cancer with patients who have type 2 diabetes mellitus has spiked by 30%. The scientific research suggests insulin has a major role in the spread of cancer and the condition unifying between the two diseases is hyperinsulinemia. Several anti-diabetic agents are used for the treatment of type 2 diabetesmellitus. However, their mechanism of action against cancer activity is a question and only a few agents have shown positive signs of action in colon cancer associated with type 2 diabetesmellitus. Hence, the identification of targets, which is common for both colon cancer, associated with type 2 diabetesmellitus has become an urgent requirement. Novel targets such as Liver X receptors, Histone deacetylase inhibitors (HDACi), Glucose Transporters (GLUTs), Peroxisome proliferator activator receptors (PPARs), Dipeptidyl peptidase-IV inhibitors (DPP4i), Cyclin-dependent kinase 4 inhibitors (CDK4i), Estrogen receptors,Mechanistic target of rapamycin (mTOR), Insulin-like growth factor receptors (IGF) are some of the targets which are common for both, type 2 diabetesmellitus and colon cancer. This current review gives an overview of the targets (using one worm) which are common for both viz. diabetes mellitus and colon cancer (two fish).
Collapse
|
40
|
Carbó JM, León TE, Font-Díaz J, De la Rosa JV, Castrillo A, Picard FR, Staudenraus D, Huber M, Cedó L, Escolà-Gil JC, Campos L, Bakiri L, Wagner EF, Caelles C, Stratmann T, Van Ginderachter JA, Valledor AF. Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment. Cancer Res 2020; 81:968-985. [PMID: 33361391 DOI: 10.1158/0008-5472.can-19-3360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Liver X receptors (LXR) are transcription factors from the nuclear receptor family that are activated by oxysterols and synthetic high-affinity agonists. In this study, we assessed the antitumor effects of synthetic LXR agonist TO901317 in a murine model of syngeneic Lewis Lung carcinoma. Treatment with TO901317 inhibited tumor growth in wild-type, but not in LXR-deficient mice, indicating that the antitumor effects of the agonist depends on functional LXR activity in host cells. Pharmacologic activation of the LXR pathway reduced the intratumoral abundance of regulatory T cells (Treg) and the expression of the Treg-attracting chemokine Ccl17 by MHCIIhigh tumor-associated macrophages (TAM). Moreover, gene expression profiling indicated a broad negative impact of the LXR agonist on other mechanisms used by TAM for the maintenance of an immunosuppressive environment. In studies exploring the macrophage response to GM-CSF or IL4, activated LXR repressed IRF4 expression, resulting in subsequent downregulation of IRF4-dependent genes including Ccl17. Taken together, this work reveals the combined actions of the LXR pathway in the control of TAM responses that contribute to the antitumoral effects of pharmacologic LXR activation. Moreover, these data provide new insights for the development of novel therapeutic options for the treatment of cancer. SIGNIFICANCE: This study reveals unrecognized roles of LXR in the transcriptional control of the tumor microenvironment and suggests use of a synthetic LXR agonist as a novel therapeutic strategy to stimulate antitumor activity.
Collapse
Affiliation(s)
- José M Carbó
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain.,Leukaemia Stem Cell Group, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Theresa E León
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain.,Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Juan Vladimir De la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS, ULPGC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS, ULPGC), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Felix R Picard
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Daniel Staudenraus
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
| | - Lucía Campos
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany.,Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Lab of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain. .,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
41
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
42
|
Revilla G, Cedó L, Tondo M, Moral A, Pérez JI, Corcoy R, Lerma E, Fuste V, Reddy ST, Blanco-Vaca F, Mato E, Escolà-Gil JC. LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Semin Cancer Biol 2020; 73:134-157. [PMID: 33249202 DOI: 10.1016/j.semcancer.2020.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol is essential for a variety of functions in endocrine-related cells, including hormone and steroid production. We have reviewed the progress to date in research on the role of the main cholesterol-containing lipoproteins; low-density lipoprotein (LDL) and high-density lipoprotein (HDL), and their impact on intracellular cholesterol homeostasis and carcinogenic pathways in endocrine-related cancers. Neither LDL-cholesterol (LDL-C) nor HDL-cholesterol (HDL-C) was consistently associated with endocrine-related cancer risk. However, preclinical studies showed that LDL receptor plays a critical role in endocrine-related tumor cells, mainly by enhancing circulating LDL-C uptake and modulating tumorigenic signaling pathways. Although scavenger receptor type BI-mediated uptake of HDL could enhance cell proliferation in breast, prostate, and ovarian cancer, these effects may be counteracted by the antioxidant and anti-inflammatory properties of HDL. Moreover, 27-hydroxycholesterol a metabolite of cholesterol promotes tumorigenic processes in breast and epithelial thyroid cancer. Furthermore, statins have been reported to reduce the incidence of breast, prostate, pancreatic, and ovarian cancer in large clinical trials, in part because of their ability to lower cholesterol synthesis. Overall, cholesterol homeostasis deregulation in endocrine-related cancers offers new therapeutic opportunities, but more mechanistic studies are needed to translate the preclinical findings into clinical therapies.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mireia Tondo
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Antonio Moral
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Rosa Corcoy
- Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Enrique Lerma
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Victoria Fuste
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Srivinasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain.
| | - Eugènia Mato
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain.
| |
Collapse
|
43
|
Bilotta MT, Petillo S, Santoni A, Cippitelli M. Liver X Receptors: Regulators of Cholesterol Metabolism, Inflammation, Autoimmunity, and Cancer. Front Immunol 2020; 11:584303. [PMID: 33224146 PMCID: PMC7670053 DOI: 10.3389/fimmu.2020.584303] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
The interplay between cellular stress and immune response can be variable and sometimes contradictory. The mechanisms by which stress-activated pathways regulate the inflammatory response to a pathogen, in autoimmunity or during cancer progression remain unclear in many aspects, despite our recent knowledge of the signalling and transcriptional pathways involved in these diseases. In this context, over the last decade many studies demonstrated that cholesterol metabolism is an important checkpoint for immune homeostasis and cancer progression. Indeed, cholesterol is actively metabolized and can regulate, through its mobilization and/or production of active derivatives, many aspects of immunity and inflammation. Moreover, accumulation of cholesterol has been described in cancer cells, indicating metabolic addiction. The nuclear receptors liver-X-receptors (LXRs) are important regulators of intracellular cholesterol and lipids homeostasis. They have also key regulatory roles in immune response, as they can regulate inflammation, innate and adaptive immunity. Moreover, activation of LXRs has been reported to affect the proliferation and survival of different cancer cell types that show altered metabolic pathways and accumulation of cholesterol. In this minireview we will give an overview of the recent understandings about the mechanisms through which LXRs regulate inflammation, autoimmunity, and cancer, and the therapeutic potential for future treatment of these diseases through modulation of cholesterol metabolism.
Collapse
Affiliation(s)
| | - Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
He J, Yang T, He W, Jiang S, Zhong D, Xu Z, Wei Q, Zhang Y, Shi C. Liver X receptor inhibits the growth of hepatocellular carcinoma cells via regulating HULC/miR-134-5p/FOXM1 axis. Cell Signal 2020; 74:109720. [DOI: 10.1016/j.cellsig.2020.109720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
|
45
|
Role of cholesterol metabolism in the anticancer pharmacology of selective estrogen receptor modulators. Semin Cancer Biol 2020; 73:101-115. [PMID: 32931953 DOI: 10.1016/j.semcancer.2020.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are a class of compounds that bind to estrogen receptors (ERs) and possess estrogen agonist or antagonist actions in different tissues. As such, they are widely used drugs. For instance, tamoxifen, the most prescribed SERM, is used to treat ERα-positive breast cancer. Aside from their therapeutic targets, SERMs have the capacity to broadly affect cellular cholesterol metabolism and handling, mainly through ER-independent mechanisms. Cholesterol metabolism reprogramming is crucial to meet the needs of cancer cells, and different key processes involved in cholesterol homeostasis have been associated with cancer progression. Therefore, the effects of SERMs on cholesterol homeostasis may be relevant to carcinogenesis, either by contributing to the anticancer efficacy of these compounds or, conversely, by promoting resistance to treatment. Understanding these aspects of SERMs actions could help to design more efficacious therapies. Herein we review the effects of SERMs on cellular cholesterol metabolism and handling and discuss their potential in anticancer pharmacology.
Collapse
|
46
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
47
|
Andersen CJ, Dupree L, Murray K, Ragonesi N, McMullen K, Cintrón-Rivera L, Doerr A. Low-Density Lipoproteins, High-Density Lipoproteins (HDL), and HDL-Associated Proteins Differentially Modulate Chronic Myelogenous Leukemia Cell Viability. Lipids 2020; 55:615-626. [PMID: 32558932 DOI: 10.1002/lipd.12254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Cellular lipid metabolism, lipoprotein interactions, and liver X receptor (LXR) activation have been implicated in the pathophysiology and treatment of cancer, although findings vary across cancer models and by lipoprotein profiles. In this study, we investigated the effects of human-derived low-density lipoproteins (LDL), high-density lipoproteins (HDL), and HDL-associated proteins apolipoprotein A1 (apoA1) and serum amyloid A (SAA) on markers of viability, cholesterol flux, and differentiation in K562 cells-a bone marrow-derived, stem-like erythroleukemia cell model of chronic myelogenous leukemia (CML). We further evaluated whether lipoprotein-mediated effects were altered by concomitant LXR activation. We observed that LDL promoted higher K562 cell viability in a dose- and time-dependent manner and increased cellular cholesterol concentrations, while LXR activation by the agonist TO901317 ablated these effects. LXR activation in the presence of HDL, apoA1 and SAA-rich HDL suppressed K562 cell viability, while robustly inducing mRNA expression of ATP-binding cassette transporter A1 (ABCA1). HDL and its associated proteins additionally suppressed mRNA expression of anti-apoptotic B-cell lymphoma-extra large (BCL-xL), and the erythroid lineage marker 5'-aminolevulinate synthase 2 (ALAS2), while SAA-rich HDL induced mRNA expression of the megakaryocytic lineage marker integrin subunit alpha 2b (ITGA2B). Together, these findings suggest that lipoproteins and LXR may impact the viability and characteristics of CML cells.
Collapse
Affiliation(s)
| | - Lydia Dupree
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Kristina Murray
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Nicholas Ragonesi
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Kaley McMullen
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | | | - Adam Doerr
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| |
Collapse
|
48
|
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:611-635. [PMID: 33715811 PMCID: PMC7193951 DOI: 10.1194/jlr.tr119000439] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain. mailto:
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
49
|
Ben Hassen C, Gutierrez-Pajares JL, Guimaraes C, Guibon R, Pinault M, Fromont G, Frank PG. Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells. Breast Cancer Res 2020; 22:38. [PMID: 32321558 PMCID: PMC7178965 DOI: 10.1186/s13058-020-01276-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The highest incidence of breast cancer is in the Western world. Several aspects of the Western lifestyle are known risk factors for breast cancer. In particular, previous studies have shown that cholesterol levels can play an important role in the regulation of tumor progression. METHODS In the present study, we modulated cholesterol metabolism in the human breast cancer cell lines MCF-7 and MDA-MB-231 using a genetic approach. Apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE) were expressed in these cell lines to modulate cholesterol metabolism. The effects of these apolipoproteins on cancer cell properties were examined. RESULTS Our results show that both apolipoproteins can regulate cholesterol metabolism and can control the epithelial-to-mesenchymal transition process. However, these effects were different depending on the cell type. We show that expressing apoA-I or apoE stimulates proliferation, migration, and tumor growth of MCF-7 cells. However, apoA-I or apoE reduces proliferation and migration of MDA-MB-231 cells. CONCLUSIONS These data suggest that modulating sterol metabolism may be most effective at limiting tumor progression in models of triple-negative cancers.
Collapse
Affiliation(s)
| | | | | | - Roseline Guibon
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | | - Gaëlle Fromont
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | |
Collapse
|
50
|
Le Cornet C, Walter B, Sookthai D, Johnson TS, Kühn T, Herpel E, Kaaks R, Fortner RT. Circulating 27-hydroxycholesterol and breast cancer tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ: results from the EPIC-Heidelberg cohort. Breast Cancer Res 2020; 22:23. [PMID: 32075687 PMCID: PMC7031866 DOI: 10.1186/s13058-020-1253-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Experimental and epidemiological studies demonstrate a role for 27-hydroxycholesterol (27HC) in breast cancer development, though results are conflicting. Cholesterol 27-hydroxylase (CYP27A1) and oxysterol 7-alpha-hydroxylase (CYP7B1) regulate 27HC concentrations, while differential expression of the liver X receptor (LXR) and estrogen receptor beta (ERβ) may impact the association between 27HC and breast cancer risk. Methods We evaluated correlates of tumor tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ and the association between circulating prediagnostic 27HC concentrations and breast cancer risk by marker expression in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort including 287 breast cancer cases with tumor tissue available. Tumor protein expression was evaluated using immunohistochemistry, and serum 27HC concentrations quantified using liquid chromatography–mass spectrometry. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results A higher proportion of CYP7B1-positive cases were progesterone receptor (PR)-positive, relative to CYP7B1-negative cases, whereas a higher proportion of ERβ-positive cases were Bcl-2 low, relative to ERβ-negative cases. No differences in tumor tissue marker positivity were observed by reproductive and lifestyle factors. We observed limited evidence of heterogeneity in associations between circulating 27HC and breast cancer risk by tumor tissue expression of CYP27A1, CYP7B1, LXR-β, and ERβ, with the exception of statistically significant heterogeneity by LXR-β status in the subgroup of women perimenopausal at blood collection (p = 0.02). Conclusion This exploratory study suggests limited associations between tumor marker status and epidemiologic or breast cancer characteristics. Furthermore, the association between circulating 27HC and breast cancer risk may not vary by tumor expression of CYP27A1, CYP7B1, LXR-β, or ERβ. Electronic supplementary material The online version of this article (10.1186/s13058-020-1253-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Britta Walter
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Disorn Sookthai
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Theron S Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ester Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|