1
|
Shizu R, Makida N, Sobe K, Ishimura M, Takeshita A, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Interaction with YAP underlies the species differences between humans and rodents in CAR-dependent hepatocyte proliferation. Toxicol Sci 2024; 198:101-112. [PMID: 38128062 DOI: 10.1093/toxsci/kfad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Constitutive androstane receptor (CAR), a nuclear receptor predominantly expressed in the liver, is activated by diverse chemicals and induces hepatocyte proliferation and hepatocarcinogenesis in rodents. However, the underlying mechanism responsible for CAR-dependent hepatocyte proliferation remains unclear. Importantly, this phenomenon has not been observed in the human liver. This study aimed to investigate the molecular mechanism underlying CAR-induced hepatocyte proliferation and to explore the species differences in hepatocyte proliferation between humans and rodents. Treatment of mice with the CAR activator TCPOBOP induced hepatocyte proliferation and nuclear accumulation of yes-associated protein (YAP), a known liver cancer inducer. This induction was abolished in CAR-knockout mice. Exogenously expressed YAP in cultured cells was accumulated in the nucleus by the coexpression with mouse CAR but not human CAR. Pull-down analysis of recombinant proteins revealed that mouse CAR interacted with YAP, whereas human CAR did not. Further investigations using YAP deletion mutants identified the WW domain of YAP as essential for interacting with CAR and showed that the PY motif (PPAY) in mouse CAR was crucial for binding to the WW domain, whereas human CAR with its mutated motif (PPAH) failed to interact with YAP. A mouse model harboring the Y150H mutation (PPAY to PPAH) in CAR displayed drastically attenuated TCPOBOP-induced hepatocyte proliferation and nuclear accumulation of YAP. CAR induces the nuclear accumulation of YAP through the PY motif-WW domain interaction to promote hepatocyte proliferation. The absence of this interaction in human CAR contributes to the lack of CAR-dependent hepatocyte proliferation in human livers.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Natsuki Makida
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichiro Sobe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mai Ishimura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Aki Takeshita
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
2
|
Han Y, Akhtar J, Liu G, Li C, Wang G. Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning. Comput Struct Biotechnol J 2023; 21:3478-3489. [PMID: 38213892 PMCID: PMC10782000 DOI: 10.1016/j.csbj.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 01/13/2024] Open
Abstract
Background Early detection of complex diseases like hepatocellular carcinoma remains challenging due to their network-driven pathology. Dynamic network biomarkers (DNB) based on monitoring changes in molecular correlations may enable earlier predictions. However, DNB analysis often overlooks disease heterogeneity. Methods We integrated DNB analysis with graph convolutional neural networks (GCN) to identify critical transitions during hepatocellular carcinoma development in a mouse model. A DNB-GCN model was constructed using transcriptomic data and gene expression levels as node features. Results DNB analysis identified a critical transition point at 7 weeks of age despite histological examinations being unable to detect cancerous changes at that time point. The DNB-GCN model achieved 100% accuracy in classifying healthy and cancerous mice, and was able to accurately predict the health status of newly introduced mice. Conclusion The integration of DNB analysis and GCN demonstrates potential for the early detection of complex diseases by capturing network structures and molecular features that conventional biomarker discovery methods overlook. The approach warrants further development and validation.
Collapse
Affiliation(s)
- Yukun Han
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Javed Akhtar
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guozhen Liu
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chenzhong Li
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guanyu Wang
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Galvão FHF, Traldi MCC, Araújo RSS, Stefano JT, D'Albuquerque LAC, Oliveira CP. PRECLINICAL MODELS OF LIVER CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:383-392. [PMID: 37792769 DOI: 10.1590/s0004-2803.230302023-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 10/06/2023]
Abstract
•In this review, we described different murine models of carcinogenesis: classic models, new transgenic and combined models, that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic physiopathological, and environmental abnormalities. •Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches. •Cholangiocarcinoma has been highlighted, with an increase in prevalence. This review has an important role in understanding the pathophysiology and the development of new drugs. Background - This manuscript provides an overview of liver carcinogenesis in murine models of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Objective - A review through MEDLINE and EMBASE was performed to assess articles until August 2022.Methods - Search was conducted of the entire electronic databases and the keywords used was HCC, CCA, carcinogenesis, animal models and liver. Articles exclusion was based on the lack of close relation to the subject. Carcinogenesis models of HCC include HCC induced by senescence in transgenic animals, HCC diet-induced, HCC induced by chemotoxicagents, xenograft, oncogenes, and HCC in transgenic animals inoculated with B and C virus. The models of CCA include the use of dimethylnitrosamine (DMN), diethylnitrosamine (DEN), thioacetamide (TAA), and carbon tetrachloride (CCl4). CCA murine models may also be induced by: CCA cells, genetic manipulation, Smad4, PTEN and p53 knockout, xenograft, and DEN-left median bile duct ligation. Results - In this review, we described different murine models of carcinogenesis that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic, physiopathological, and environmental abnormalities. Conclusion - Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Maria Clara Camargo Traldi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | | | - Jose Tadeu Stefano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| | - Luiz Augusto Carneiro D'Albuquerque
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Claudia P Oliveira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| |
Collapse
|
4
|
Yassine M, Hassan SA, Sommer S, Yücel LA, Bellert H, Hallenberger J, Sohn D, Korf HW, von Gall C, Ali AAH. Radiotherapy of the Hepatocellular Carcinoma in Mice Has a Time-Of-Day-Dependent Impact on the Mouse Hippocampus. Cells 2022; 12:cells12010061. [PMID: 36611854 PMCID: PMC9818790 DOI: 10.3390/cells12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic liver diseases including hepatocellular carcinoma (HCC) create a state of chronic inflammation that affects the brain via the liver-brain axis leading to an alteration of neurotransmission and cognition. However, little is known about the effects of HCC on the hippocampus, the key brain region for learning and memory. Moreover, radiotherapy used to treat HCC has severe side effects that impair patients' life quality. Thus, designing optimal strategies, such as chronotherapy, to enhance the efficacy and reduce the side effects of HCC treatment is critically important. We addressed the effects of HCC and the timed administration of radiotherapy in mice on the expression of pro-inflammatory cytokines, clock genes, markers for glial activation, oxidative stress, neuronal activity and proliferation in the hippocampal neurogenic niche. Our data showed that HCC induced the upregulation of genes encoding for pro-inflammatory cytokines, altered clock gene expressions and reduced proliferation in the hippocampus. Radiotherapy, in particular when applied during the light/inactive phase enhanced all these effects in addition to glial activation, increased oxidative stress, decreased neuronal activity and increased levels of phospho(p)-ERK. Our results suggested an interaction of the circadian molecular clockwork and the brain's innate immune system as key players in liver-brain crosstalk in HCC and that radiotherapy when applied during the light/inactive phase induced the most profound alterations in the hippocampus.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Zoology Department, Faculty of Science, Suez University, Cairo-Suez Road, Suez 43533, Egypt
| | - Simon Sommer
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Hanna Bellert
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Johanna Hallenberger
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Universität Strasse 1, 40225 Düsseldorf, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-21-1811-5046
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Department of Human Anatomy and Embryology, Medical Faculty, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
6
|
Yoshinari K, Shizu R. Distinct roles of the sister nuclear receptors PXR and CAR in liver cancer development. Drug Metab Dispos 2022; 50:1019-1026. [DOI: 10.1124/dmd.121.000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
|
7
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Yamada T, Ohara A, Ozawa N, Maeda K, Kondo M, Okuda Y, Abe J, Cohen SM, Lake BG. Comparison of the Hepatic Effects of Phenobarbital in Chimeric Mice Containing Either Rat or Human Hepatocytes With Humanized Constitutive Androstane Receptor and Pregnane X Receptor Mice. Toxicol Sci 2021; 177:362-376. [PMID: 32735318 DOI: 10.1093/toxsci/kfaa125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to phenobarbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/β-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/β-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.
Collapse
Affiliation(s)
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Naoya Ozawa
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | | | - Yu Okuda
- Environmental Health Science Laboratory
| | - Jun Abe
- Environmental Health Science Laboratory
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
9
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Braeuning A, Pavek P. β-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch Toxicol 2020; 94:3983-3991. [PMID: 33097968 PMCID: PMC7655584 DOI: 10.1007/s00204-020-02935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.
Collapse
Affiliation(s)
- Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Heyrovskeho 1203, Hradec Kralove, 500 05, Prague, Czech Republic
| |
Collapse
|
11
|
Zhou L, Pan LC, Zheng YG, Zhang XX, Liu ZJ, Meng X, Shi HD, Du GS, He Q. Reduction of FoxP3 + Tregs by an immunosuppressive protocol of rapamycin plus Thymalfasin and Huaier extract predicts positive survival benefits in a rat model of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:472. [PMID: 32395516 PMCID: PMC7210174 DOI: 10.21037/atm.2020.03.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Investigate immunoregulation and anti-tumor immunity of FoxP3+Tregs after treatment with rapamycin (RAPA/SRL) plus thymalfasin (Zadaxin) and Huaier extract (PS-T) in a hepatocellular carcinoma (HCC) rat model simulating HCC relapse after liver transplant (LT). Methods We successfully established a rat model simulating HCC relapse after LT using an optimized chemical induction method with TACROLIMUS, methylprednisolone, and diethylnitrosamine as identified by visible liver nodules and hematoxylin-eosin staining. The model rats were then treated with RAPA, Zadaxin, and PS-T. Immune status changes were analyzed by flow cytometry, and protein expression of Akt and mTOR was determined by western blotting. Cytokines were measured by ELISAs. Results Combined therapy by RAPA plus Zadaxin and PS-T obviously alleviated hepatic pathological changes and significantly decreased the levels of FoxP3+Tregs in peripheral blood, the spleen, and the liver (P<0.05) and expression of mTOR protein (P<0.01) in the liver, obviously improved survival time (P=0.02). Moreover, the levels of CD8+T cells were increased significantly to almost normal levels (P<0.05) in comparison with no SRL monotherapy protocols. Inhibitory cytokines were also decreased in accordance with FoxP3+Tregs. Significant decreases of IL-10 and TGF-β were observed after SRL-based therapy (P<0.01) in comparison with the other groups. Serum alpha fetoprotein (AFP) and vascular endothelial growth factor (VEGF) levels were also decreased significantly (P<0.05). FoxP3+Tregs showed a negative correlation with CD8+ and CD4+/CD8+T cells and a positive correlation with AFP, and VEGF (P<0.05). Conclusions SRL-based therapy reduces FoxP3+Tregs to decrease secreted inhibitory cytokines which may enhancement the viability and number of CD8+T cells to exert anti-tumor effects that are mainly mediated through the AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China.,Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China.,Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Li-Chao Pan
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Gen Zheng
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Xin-Xue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi-Jia Liu
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Xuan Meng
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hai-Da Shi
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guo-Sheng Du
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
12
|
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol 2020; 16:343-351. [PMID: 32202166 DOI: 10.1080/17425255.2020.1746268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The nuclear receptor CAR plays an important role in the regulation of hepatic responses to xenobiotic exposure, including the induction of hepatocyte proliferation and chemical carcinogenesis. Phenobarbital, a well-known liver cancer promoter, has been found to promote hepatocyte proliferation via CAR activation. However, the molecular mechanisms by which CAR induces liver carcinogenesis remain unknown. In addition, it is believed that CAR-mediated liver carcinogenesis shows a species difference; phenobarbital treatment induces hepatocyte proliferation and liver cancer in rodents but not in humans. However, the mechanisms are also unknown.Areas covered: Several reports indicate that the key oncogenic signaling pathways Wnt/β-catenin and Hippo/YAP are involved in CAR-mediated liver carcinogenesis. We introduce current data about the possible molecular mechanisms involved in CAR-mediated liver carcinogenesis and species differences by focusing on these two signaling pathways.Expert opinion: CAR may activate both the Wnt/β-catenin and Hippo/YAP signaling pathways. The synergistic activation of both signaling pathways seems to be important for CAR-mediated liver cancer development. Low homology between the ligand binding domains of human CAR and rodent CAR might cause species differences in the interactions with proteins that control the Wnt/β-catenin and Hippo/YAP pathways as well as liver cancer induction.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
13
|
Analysis of β-catenin gene mutations and gene expression in liver tumours of C57BL/10J mice produced by chronic administration of sodium phenobarbital. Toxicology 2019; 430:152343. [PMID: 31836555 DOI: 10.1016/j.tox.2019.152343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
In this study liver tumours produced in male and female mice of the low spontaneous liver tumour incidence C57BL/10J strain treated for 99 weeks with 1000 ppm in the diet with the model constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were analysed for β-catenin mutations by Western immunoblotting and DNA/RNA analysis. Some gene array analysis was also performed to identify genes involved in CAR activation and in β-catenin and Hras gene mutations. Analysis of 8 male and 2 female NaPB-induced liver tumour samples (comprising 2 adenomas, 6 carcinomas and 2 samples containing separate adenomas and carcinomas) revealed truncated β-catenin forms in just 4 male liver tumour samples, with the presence of the truncated β-catenin forms being confirmed by β-catenin exon 1-3 mutation analysis. Microarray gene expression analysis was performed with three of the NaPB-induced male mouse liver tumour samples where β-catenin mutations had not been identified by Western immunoblotting and DNA/RNA analysis and with three liver samples from both NaPB-induced non-tumour tissue and control animals. Treatment with NaPB resulted in induction of Cyp2b subfamily gene expression in both NaPB-induced mouse liver tumours and in NaPB-treated non-tumour tissue. In addition, the gene expression analysis demonstrated that the β-catenin and Hras pathways were not modified in NaPB-induced mouse liver tumours not exhibiting truncated β-catenin forms. Overall, while chronic administration of the model CAR activator NaPB results in both hepatocellular adenoma and carcinoma in the low spontaneous liver tumour incidence C57BL/10J mouse strain, only 40 % of the liver tumours evaluated in this study had β-catenin mutations. These results are in agreement with previous studies with the CAR activator oxazepam and demonstrate that mouse liver tumours induced by nongenotoxic CAR activators in the absence of initiation with a genotoxic agent are due to a number of mechanisms, including those largely independent of either the Wnt/β-catenin signalling pathway or Hras oncogene mutations.
Collapse
|
14
|
Vitobello A, Perner J, Beil J, Zhu J, Del Río-Espínola A, Morawiec L, Westphal M, Dubost V, Altorfer M, Naumann U, Mueller A, Kapur K, Borowsky M, Henderson C, Wolf CR, Schwarz M, Moggs J, Terranova R. Drug-induced chromatin accessibility changes associate with sensitivity to liver tumor promotion. Life Sci Alliance 2019; 2:e201900461. [PMID: 31615920 PMCID: PMC6795216 DOI: 10.26508/lsa.201900461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
Liver cancer susceptibility varies amongst humans and between experimental animal models because of multiple genetic and epigenetic factors. The molecular characterization of such susceptibilities has the potential to enhance cancer risk assessment of xenobiotic exposures and disease prevention strategies. Here, using DNase I hypersensitivity mapping coupled with transcriptomic profiling, we investigate perturbations in cis-acting gene regulatory elements associated with the early stages of phenobarbital (PB)-mediated liver tumor promotion in susceptible versus resistant mouse strains (B6C3F1 versus C57BL/6J). Integrated computational analyses of strain-selective changes in liver chromatin accessibility underlying PB response reveal differential epigenetic regulation of molecular pathways associated with PB-mediated tumor promotion, including Wnt/β-catenin signaling. Complementary transcription factor motif analyses reveal mouse strain-selective gene regulatory networks and a novel role for Stat, Smad, and Fox transcription factors in the early stages of PB-mediated tumor promotion. Mapping perturbations in cis-acting gene regulatory elements provides novel insights into the molecular basis for susceptibility to xenobiotic-induced rodent liver tumor promotion and has the potential to enhance mechanism-based cancer risk assessments of xenobiotic exposures.
Collapse
Affiliation(s)
- Antonio Vitobello
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Inserm, Unité Mixte de Recherche (UMR) 1231, Université de Bourgogne-Franche Comté, Dijon, France
| | - Juliane Perner
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Johanna Beil
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | | | - Laurent Morawiec
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Valérie Dubost
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Marc Altorfer
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Ulrike Naumann
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Arne Mueller
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Karen Kapur
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Colin Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Jonathan Moggs
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Rémi Terranova
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| |
Collapse
|
15
|
Mattu S, Saliba C, Sulas P, Zavattari P, Perra A, Kowalik MA, Monga SP, Columbano A. High Frequency of β-Catenin Mutations in Mouse Hepatocellular Carcinomas Induced by a Nongenotoxic Constitutive Androstane Receptor Agonist. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2497-2507. [DOI: 10.1016/j.ajpath.2018.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
16
|
Pouché L, Vitobello A, Römer M, Glogovac M, MacLeod AK, Ellinger-Ziegelbauer H, Westphal M, Dubost V, Stiehl DP, Dumotier B, Fekete A, Moulin P, Zell A, Schwarz M, Moreno R, Huang JTJ, Elcombe CR, Henderson CJ, Roland Wolf C, Moggs JG, Terranova R. Xenobiotic CAR Activators Induce Dlk1-Dio3 Locus Noncoding RNA Expression in Mouse Liver. Toxicol Sci 2018; 158:367-378. [PMID: 28541575 DOI: 10.1093/toxsci/kfx104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.
Collapse
Affiliation(s)
- Lucie Pouché
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Antonio Vitobello
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Michael Römer
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Milica Glogovac
- Novartis Business Services, Novartis Pharma, CH-4057 Basel, Switzerland
| | - A Kenneth MacLeod
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Magdalena Westphal
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Valérie Dubost
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Daniel Philipp Stiehl
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Bérengère Dumotier
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Alexander Fekete
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Pierre Moulin
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Rita Moreno
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Rémi Terranova
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| |
Collapse
|
17
|
Liang Y, Feng Y, Zong M, Wei X, Lee J, Feng Y, Li H, Yang G, Wu ZJ, Fu XD, Feng GS. β-catenin deficiency in hepatocytes aggravates hepatocarcinogenesis driven by oncogenic β-catenin and MET. Hepatology 2018; 67:1807-1822. [PMID: 29152756 PMCID: PMC5906147 DOI: 10.1002/hep.29661] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
UNLABELLED Both activating and inactivating mutations in catenin β1 (ctnnb1), which encodes β-catenin, have been implicated in liver tumorigenesis in humans and mice, although the underlying mechanisms are not fully understood. Herein, we show that deletion of endogenous β-catenin in hepatocytes aggravated hepatocellular carcinoma (HCC) development driven by an oncogenic version of β-catenin (CAT) in combination with the hepatocyte growth factor receptor MET proto-oncogene receptor tyrosine kinase (MET). Although the mitogenic signaling and cell cycle progression was modestly impaired after CAT/MET transfection, the β-catenin-deficient livers displayed changes in transcriptomes, increased DNA damage response, expanded Sox9+ cells, and up-regulation of protumorigenic cytokines, including interleukin-6 and transforming growth factor β1. These events eventually exacerbated CAT/MET-driven hepatocarcinogenesis in β-catenin-deficient livers, featured by up-regulation of extracellular signal-regulated kinase (Erk), protein kinase B (Akt), and Wnt/β-catenin signaling and cyclin D1 expression. The resultant mouse tumors showed similar transcriptomes to human HCC samples with concomitant CTNNB1 mutations and MET overexpression. CONCLUSION These data argue that while dominantly activating mutants of β-catenin are oncogenic, inhibiting the oncogenic signaling pathway generates a pro-oncogenic microenvironment that may facilitate HCC recurrence following a targeted therapy of the primary tumor. An effective therapeutic strategy must require disruption of the oncogenic signaling in tumor cells and suppression of the secondary tumor-promoting stromal effects in the liver microenvironment. (Hepatology 2018;67:1807-1822).
Collapse
Affiliation(s)
- Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yun Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA,The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Xufu Wei
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA,Department of Hepatology, 1 affiliated Hospital, Chong-Qing Medical University, China
| | - Jin Lee
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukuan Feng
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA,Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Guangshun Yang
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Zhong-Jun Wu
- Department of Hepatology, 1 affiliated Hospital, Chong-Qing Medical University, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093, USA, Corresponding to: Gen-Sheng Feng,
| |
Collapse
|
18
|
Hori T, Saito K, Moore R, Flake GP, Negishi M. Nuclear Receptor CAR Suppresses GADD45B-p38 MAPK Signaling to Promote Phenobarbital-induced Proliferation in Mouse Liver. Mol Cancer Res 2018; 16:1309-1318. [PMID: 29716964 DOI: 10.1158/1541-7786.mcr-18-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Phenobarbital, a nongenotoxic hepatocarcinogen, induces hepatic proliferation and promotes development of hepatocellular carcinoma (HCC) in rodents. Nuclear receptor constitutive active/androstane receptor (NR1I3/CAR) regulates the induction and promotion activities of phenobarbital. Here, it is demonstrated that phenobarbital treatment results in dephosphorylation of a tumor suppressor p38 MAPK in the liver of C57BL/6 and C3H/HeNCrlBR mice. The molecular mechanism entails CAR binding and inhibition of the growth arrest and DNA-damage-inducible 45 beta (GADD45B)-MAPK kinase 6 (MKK6) scaffold to repress phosphorylation of p38 MAPK. Phenobarbital-induced hepatocyte proliferation, as determined by BrdUrd incorporation, was significantly reduced in both male and female livers of GADD45B knockout (KO) mice compared with the wild-type mice. The phenobarbital-induced proliferation continued until 48 hours after phenobarbital injection in only the C57BL/6 males, but neither in males of GADD45B KO mice nor in females of C57BL/6 and GADD45B KO mice. Thus, these data reveal nuclear receptor CAR interacts with GADD45B to repress p38 MAPK signaling and elicit hepatocyte proliferation in male mice.Implications: This GADD45B-regulated male-predominant proliferation can be expanded as a phenobarbital promotion signal of HCC development in future studies.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/8/1309/F1.large.jpg Mol Cancer Res; 16(8); 1309-18. ©2018 AACR.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kosuke Saito
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Gordon P Flake
- Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina.
| |
Collapse
|
19
|
Felter SP, Foreman JE, Boobis A, Corton JC, Doi AM, Flowers L, Goodman J, Haber LT, Jacobs A, Klaunig JE, Lynch AM, Moggs J, Pandiri A. Human relevance of rodent liver tumors: Key insights from a Toxicology Forum workshop on nongenotoxic modes of action. Regul Toxicol Pharmacol 2018; 92:1-7. [PMID: 29113941 PMCID: PMC11350555 DOI: 10.1016/j.yrtph.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The Toxicology Forum sponsored a workshop in October 2016, on the human relevance of rodent liver tumors occurring via nongenotoxic modes of action (MOAs). The workshop focused on two nuclear receptor-mediated MOAs (Constitutive Androstane Receptor (CAR) and Peroxisome Proliferator Activated Receptor-alpha (PPARα), and on cytotoxicity. The goal of the meeting was to review the state of the science to (1) identify areas of consensus and differences, data gaps and research needs; (2) identify reasons for inconsistencies in current regulatory positions; and (3) consider what data are needed to demonstrate a specific MOA, and when additional research is needed to rule out alternative possibilities. Implications for quantitative risk assessment approaches were discussed, as were implications of not considering MOA and dose in hazard characterization and labeling schemes. Most, but not all, participants considered the CAR and PPARα MOAs as not relevant to humans based on quantitative and qualitative differences. In contrast, cytotoxicity is clearly relevant to humans, but a threshold applies. Questions remain for all three MOAs concerning what data are necessary to determine the MOA and to what extent it is necessary to exclude other MOAs.
Collapse
Affiliation(s)
- Susan P Felter
- Procter and Gamble, Central Product Safety, Mason, OH, United States.
| | | | - Alan Boobis
- Department of Medicine, Imperial College London, London, UK
| | - J Christopher Corton
- National Health and Environmental Effects Research Lab, US EPA, Durham, NC, United States
| | - Adriana M Doi
- BASF Corporation, Research Triangle Park, NC, United States
| | - Lynn Flowers
- Office of Science Policy, US EPA, Washington DC, United States
| | - Jay Goodman
- Michigan State University, Dept. Pharmacology and Toxicology, East Lansing, MI, United States
| | - Lynne T Haber
- Risk Science Center, Dept. of Environmental Health, University of Cincinnati, Cincinnati, OH, United States
| | - Abigail Jacobs
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Preclinical Safety, Translational Medicine, Basel, Switzerland
| | - Arun Pandiri
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
20
|
Enooku K, Kondo M, Fujiwara N, Sasako T, Shibahara J, Kado A, Okushin K, Fujinaga H, Tsutsumi T, Nakagomi R, Minami T, Sato M, Nakagawa H, Kondo Y, Asaoka Y, Tateishi R, Ueki K, Ikeda H, Yoshida H, Moriya K, Yotsuyanagi H, Kadowaki T, Fukayama M, Koike K. Hepatic IRS1 and ß-catenin expression is associated with histological progression and overt diabetes emergence in NAFLD patients. J Gastroenterol 2018; 53:1261-1275. [PMID: 29749571 PMCID: PMC6244858 DOI: 10.1007/s00535-018-1472-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes. Our aim was to investigate the relationship between NAFLD and impaired glucose metabolism in terms of insulin receptor substrate 1 and 2 (IRS1 and IRS2) expression in the liver. METHODS Liver biopsy was performed at the University of Tokyo Hospital between November 2011 and March 2016 on 146 patients with NAFLD who were not being treated with any diabetes or dyslipidemia drugs. Among them, 63 underwent liver biopsy after an overnight fast, and 83 at 5 h after an oral glucose tolerance test (OGTT). Differences in messenger RNA (mRNA) levels of several glucose metabolism-related factors were determined and correlated with hepatic histological changes assessed by NAFLD activity score. We prospectively followed up with the patients until May 2017. RESULTS Hepatic necroinflammation was significantly correlated with serum insulin levels and inversely correlated with IRS1 mRNA levels. In specimens obtained after an OGTT, hepatic necroinflammation and IRS1 expression correlated significantly with both peripheral and hepatic insulin resistance. We also found that hepatic β-catenin and glucokinase mRNA levels were elevated in patients undergoing liver biopsy after an OGTT, especially in those with less hepatic necroinflammation and a lower degree of fibrosis. A prospective cohort study showed that ballooning is the most significant risk factor for developing diabetes. CONCLUSIONS The decreased hepatic expression of IRS1 and β-catenin in NAFLD is linked to histological progression such as ballooning, and might lead to diabetes as a result of impaired glucose metabolism.
Collapse
Affiliation(s)
- Kenichiro Enooku
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Mayuko Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Naoto Fujiwara
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takayoshi Sasako
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Shibahara
- 0000 0000 9340 2869grid.411205.3Department of Pathology, Kyorin University, Mitaka, Japan
| | - Akira Kado
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kazuya Okushin
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hidetaka Fujinaga
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takeya Tsutsumi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tatsuya Minami
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Masaya Sato
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hayato Nakagawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yuji Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yoshinari Asaoka
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Ryosuke Tateishi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kohjiro Ueki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kyoji Moriya
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
21
|
Qiu P, Sun J, Man S, Yang H, Ma L, Yu P, Gao W. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2000-2007. [PMID: 28198625 DOI: 10.1021/acs.jafc.6b04797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.
Collapse
Affiliation(s)
- Peiyu Qiu
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jiachen Sun
- Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - He Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Long Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| |
Collapse
|
22
|
Derisking Drug-Induced Carcinogenicity for Novel Therapeutics. Trends Cancer 2016; 2:398-408. [DOI: 10.1016/j.trecan.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
|
23
|
Thomson JP, Ottaviano R, Unterberger EB, Lempiäinen H, Muller A, Terranova R, Illingworth RS, Webb S, Kerr ARW, Lyall MJ, Drake AJ, Wolf CR, Moggs JG, Schwarz M, Meehan RR. Loss of Tet1-Associated 5-Hydroxymethylcytosine Is Concomitant with Aberrant Promoter Hypermethylation in Liver Cancer. Cancer Res 2016; 76:3097-108. [PMID: 27197233 PMCID: PMC5021200 DOI: 10.1158/0008-5472.can-15-1910] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
Aberrant hypermethylation of CpG islands (CGI) in human tumors occurs predominantly at repressed genes in the host tissue, but the preceding events driving this phenomenon are poorly understood. In this study, we temporally tracked epigenetic and transcriptomic perturbations that occur in a mouse model of liver carcinogenesis. Hypermethylated CGI events in the model were predicted by enrichment of the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone H3 modification H3K27me3 at silenced promoters in the host tissue. During cancer progression, selected CGIs underwent hypo-hydroxymethylation prior to hypermethylation, while retaining H3K27me3. In livers from mice deficient in Tet1, a tumor suppressor involved in cytosine demethylation, we observed a similar loss of promoter core 5hmC, suggesting that reduced Tet1 activity at CGI may contribute to epigenetic dysregulation during hepatocarcinogenesis. Consistent with this possibility, mouse liver tumors exhibited reduced Tet1 protein levels. Similar to humans, DNA methylation changes at CGI in mice did not appear to be direct drivers of hepatocellular carcinoma progression, rather, dynamic changes in H3K27me3 promoter deposition correlated strongly with tumor-specific activation and repression of transcription. Overall, our results suggest that loss of promoter-associated 5hmC in liver tumors licenses reprograming of DNA methylation at silent CGI during progression. Cancer Res; 76(10); 3097-108. ©2016 AACR.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Raffaele Ottaviano
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Elif B Unterberger
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany
| | - Harri Lempiäinen
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Muller
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Remi Terranova
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Robert S Illingworth
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair R W Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus J Lyall
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | - Jonathan G Moggs
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
24
|
Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. Regulation of gene expression by CAR: an update. Arch Toxicol 2015; 89:1045-55. [PMID: 25975989 DOI: 10.1007/s00204-015-1522-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
Abstract
The constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is a well-known xenosensor that regulates hepatic drug metabolism and detoxification. CAR activation can be elicited by a large variety of xenobiotics, including phenobarbital (PB) which is not a directly binding CAR ligand. The mechanism of CAR activation is complex and involves translocation from the cytoplasm into the nucleus, followed by further activation steps in the nucleus. Recently, epidermal growth factor receptor (EGFR) has been identified as a PB-responsive receptor, and PB activates CAR by inhibiting the EGFR signaling. In addition to regulation of drug metabolism, activation of CAR has multiple biological end points such as modulation of xenobiotic-elicited liver injury, and the role of CAR in endobiotic functions such as glucose metabolism and cholesterol homeostasis is increasingly recognized. Thus, investigations on the molecular mechanism of CAR activation are critical for the real understanding of CAR-mediated processes. Here, we summarize the current understanding of mechanisms by which CAR activators regulate gene expression through cellular signaling pathways and the roles of CAR on xenobiotic-elicited hepatocellular carcinoma, liver injury, glucose metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,
| | | | | | | |
Collapse
|
25
|
Tolba R, Kraus T, Liedtke C, Schwarz M, Weiskirchen R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim 2015; 49:59-69. [DOI: 10.1177/0023677215570086] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The toxic properties of various nitrosamines in animals and humans are well established. The parenteral or oral administration of the smallest quantities of diethylnitrosamine (DEN) or dimethylnitrosamine (DMN) results in severe liver damage. Most prominent are intense neutrophilic infiltration, extensive centrilobular haemorrhagic necrosis, bile duct proliferation, fibrosis, and bridging necrosis that ends in hepatocarcinogenesis. Due to the robustness of the induced hepatic alterations, the application of DEN in rodents has become an attractive experimental model for studies aimed at understanding the pathogenetic alterations underlying the formation of liver cancer, which represents one of the most common malignancies in humans worldwide. However, several studies have shown that the hepatocarcinogenic effects of nitrosamines might vary with the genetic background of the animals, their sex, their age, and other factors that might impact the outcome of experimentation. We present general guidelines for working with DEN, and a detailed protocol that allows the establishment of highly reproducible liver cancer in mice. The outcome of liver injury after the application of DEN in mice, as estimated by the formation of cirrhosis and cancer, appears to be a suitable animal model for the analysis of some aspects and processes that promote the pathogenesis of hepatocellular carcinoma in humans.
Collapse
Affiliation(s)
- R Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - T Kraus
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - C Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - M Schwarz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - R Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany for the Transregional Collaborative Research Center ‘Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease’ (SFB/TRR57)
| |
Collapse
|
26
|
Activating CAR and β-catenin induces uncontrolled liver growth and tumorigenesis. Nat Commun 2015; 6:5944. [PMID: 25661872 PMCID: PMC4324535 DOI: 10.1038/ncomms6944] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Aberrant β-catenin activation contributes to a third or more of human hepatocellular carcinoma (HCC), but β-catenin activation alone is not sufficient to induce liver cancer in mice. Differentiated hepatocytes proliferate upon acute activation of either β-catenin or the nuclear xenobiotic receptor CAR. These responses are strictly limited and are tightly linked, since β-catenin is activated in nearly all of the CAR-dependent tumors generated by the tumor promoter phenobarbital. Here we show that full activation of β-catenin in the liver induces senescence and growth arrest, which is overcome by combined CAR activation, resulting in uncontrolled hepatocyte proliferation, hepatomegaly, and rapid lethality despite maintenance of normal liver function. Combining CAR activation with limited β-catenin activation induces tumorigenesis, and the tumors share a conserved gene expression signature with β-catenin positive human HCC. These results reveal an unexpected route for hepatocyte proliferation and define a murine model of hepatocarcinogenesis with direct relevance to human HCC.
Collapse
|
27
|
Bopp A, Wartlick F, Henninger C, Schwarz M, Kaina B, Fritz G. Rac1 promotes diethylnitrosamine (DEN)-induced formation of liver tumors. Carcinogenesis 2015; 36:378-89. [PMID: 25556150 DOI: 10.1093/carcin/bgu323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To elucidate the function of the Ras-homologous GTPase Rac1 in hepatocarcinogenesis induced by diethylnitrosamine (DEN), mice lacking hepatic Rac1 expression were treated with DEN and compared to the wild-type (WT). Rac1 knock-out (KO) mice were found to have a lower tumor yield as compared to Rac1 proficient mice. The small-sized tumors formed in the absence of Rac1 lack an activated Ras/Raf/mitogen-activated protein kinase pathway, as indicated by the absence of p-ERK expression. Apparently, Rac1 is required for Ras-driven oncogenic pathways. Moreover, tumors in Rac1 deficient mice were glutamine synthase (GS) negative. They displayed a high number of p-H3-positive and cyclinB1 expressing cells, pointing to a defect in mitotic progression. To elucidate the influence of Rac1 on mechanisms of tumor initiation, acute DEN-induced hepatic stress responses were monitored. Rac1 deficiency caused fairly complex, partially time-dependent, alterations in both basal and/or DEN-induced messenger RNA (mRNA) and protein levels of susceptibility-related genes. Basal protein expression of DNA repair factors Brca1 and DNA repair protein RAD51 homolog (Rad51) and the cell cycle regulatory factor p27 was enhanced in the absence of Rac1. Following DEN treatment, p21 mRNA and protein expression was stimulated independent of the Rac1 status. Lack of Rac1 increased mechanisms of the DNA damage response (DDR), as shown by elevated protein levels of p-ATR, p-p53 and γH2AX 24h after DEN treatment. The data show that Rac1 is essential for DEN-stimulated hepatocarcinogenesis. We hypothesize that it promotes tumor initiation by counteracting the elimination of initiated cells and, moreover, alleviates the outgrowth of transformed cells. Hence, pharmacological targeting of Rac1 could be suitable for chemoprevention.
Collapse
Affiliation(s)
- Anita Bopp
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Friedrich Wartlick
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Michael Schwarz
- Institute of Pharmacology and Toxicology, University Tübingen, Wilhelmstrasse 76, D-72074 Tübingen, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany and
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany,
| |
Collapse
|
28
|
Liver cell proliferation and tumor promotion by phenobarbital: relevance for humans? Arch Toxicol 2014; 88:1771-2. [DOI: 10.1007/s00204-014-1331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 12/24/2022]
|
29
|
Okabe H, Delgado E, Lee JM, Yang J, Kinoshita H, Hayashi H, Tsung A, Behari J, Beppu T, Baba H, Monga SP. Role of leukocyte cell-derived chemotaxin 2 as a biomarker in hepatocellular carcinoma. PLoS One 2014; 9:e98817. [PMID: 24892551 PMCID: PMC4043833 DOI: 10.1371/journal.pone.0098817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/06/2014] [Indexed: 12/22/2022] Open
Abstract
We sought to identify a secreted biomarker for β-catenin activation commonly seen in hepatocellular carcinoma (HCC). By examination of our previously published genearray of hepatocyte-specific β-catenin knockout (KO) livers, we identified secreted factors whose expression may be β-catenin-dependent. We verified expression and secretion of the leading factor in HCC cells transfected with mutated (Hep3BS33Y)-β-catenin. Serum levels of biomarker were next investigated in a mouse model of HCC with β-catenin gene (Ctnnb1) mutations and eventually in HCC patients. Leukocyte cell-derived chemotaxin-2 (LECT2) expression was decreased in KO livers. Hep3BS33Y expressed and secreted more LECT2 in media as compared to Hep3BWT. Mice developing HCC with Ctnnb1 mutations showed significantly higher serum LECT2 levels. However patients with CTNNB1 mutations showed LECT2 levels of 54.28±22.32 ng/mL (Mean ± SD; n = 8) that were insignificantly different from patients with non-neoplastic chronic liver disease (32.8±21.1 ng/mL; n = 15) or healthy volunteers (33.2±7.2 ng/mL; n = 11). Intriguingly, patients without β-catenin mutations showed significantly higher serum LECT2 levels (54.26 ± 22.25 ng/mL; n = 46). While β-catenin activation was evident in a subset of non-mutant β-catenin HCC group with high LECT2 expression, serum LECT2 was unequivocally similar between β-catenin-active and -normal group. Further analysis showed that LECT2 levels greater than 50 ng/ml diagnosed HCC in patients irrespective of β-catenin mutations with specificity of 96.1% and positive predictive value of 97.0%. Thus, LECT2 is regulated by β-catenin in HCC in both mice and men, but serum LECT2 reflects β-catenin activity only in mice. Serum LECT2 could be a potential biomarker of HCC in patients.
Collapse
Affiliation(s)
- Hirohisa Okabe
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America; Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jung Min Lee
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jing Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hiroki Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jaideep Behari
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Multidisciplinary Treatment for Gastroenterological Cancer, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
30
|
Braeuning A, Gavrilov A, Brown S, Wolf CR, Henderson CJ, Schwarz M. Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR. Toxicol Sci 2014; 140:259-70. [PMID: 24863967 DOI: 10.1093/toxsci/kfu099] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear receptors CAR (constitutive androstane receptor) and possibly PXR (pregnane X receptor) mediate the hepatic effects of phenobarbital (PB) and similar-acting compounds. Although PB is a potent nongenotoxic tumor promoter in rodent liver, epidemiological data from epilepsy patients treated with phenobarbital do not show a specific role of PB in human liver cancer risk. That points to species differences in the susceptibility to tumor promotion by PB, which might be attributed to divergent functions of the PB receptors CAR and PXR in mice and humans. In the present study, male transgenic mice expressing human CAR and PXR were used to detect possible differences between wild-type (WT) and humanized mice in their response to CAR activation in a tumor initiation/promotion experiment with a single injection of the tumor initiator N-nitrosodiethylamine preceding chronic PB treatment for 10 months. Analysis of liver tumor burden revealed that PB strongly promoted the outgrowth of hepatocellular adenoma driven by activated β-catenin in WT mice, whereas the tumor-promoting effect of PB was much less pronounced in the humanized group. In conclusion, the present findings demonstrate that human CAR and PXR support tumor promotion by PB in mouse liver, but to a significantly lesser extent than the WT murine receptors.
Collapse
Affiliation(s)
- Albert Braeuning
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Alina Gavrilov
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Susan Brown
- CXR Biosciences, 2 James Lyndsay Place, Dundee Technopole, Dundee DD1 5JJ, Scotland, UK
| | - C Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Michael Schwarz
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
31
|
Luo M, Yang F, Huang SX, Kuang ZP, Luo XL, Li YD, Wu JN, Xie YA. Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res 2014; 20:517-28. [PMID: 24063282 DOI: 10.3727/096504013x13747716581336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to develop an efficient and reproducible mouse model for hepatocellular carcinoma (HCC) research and assess the expression of two proto-oncogenes (c-myc and N-ras) and tumor suppressor gene p53 in the carcinogenic process. In this study, we found that diethylnitrosamine initiation with CCl4 and ethanol promotion could induce a short-term, two-stage liver carcinogenesis model in male BALB/c mice, the process of hepatocarcinogenesis including liver damage, liver necrosis/cell death, liver inflammation, liver proliferation, liver hyperplasia, liver steatosis, and liver cirrhosis and hepatocellular nodules, which mimicked the usual sequence of events observed in human HCC. We also identified that the increase in expression of the p53 gene is related to the proliferation of hepatocytes, whereas overexpression of the c-myc and N-ras genes is associated with hepatocarcinogenesis. This animal model may serve as a basis for recapitulating the molecular pathogenesis of HCC seen in humans.
Collapse
Affiliation(s)
- Min Luo
- Biomedical Research Center, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Luisier R, Lempiäinen H, Scherbichler N, Braeuning A, Geissler M, Dubost V, Müller A, Scheer N, Chibout SD, Hara H, Picard F, Theil D, Couttet P, Vitobello A, Grenet O, Grasl-Kraupp B, Ellinger-Ziegelbauer H, Thomson JP, Meehan RR, Elcombe CR, Henderson CJ, Wolf CR, Schwarz M, Moulin P, Terranova R, Moggs JG. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci 2014; 139:501-11. [PMID: 24690595 DOI: 10.1093/toxsci/kfu038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Unterberger EB, Eichner J, Wrzodek C, Lempiäinen H, Luisier R, Terranova R, Metzger U, Plummer S, Knorpp T, Braeuning A, Moggs J, Templin MF, Honndorf V, Piotto M, Zell A, Schwarz M. Ha-ras and β-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors. Int J Cancer 2014; 135:1574-85. [PMID: 24535843 DOI: 10.1002/ijc.28798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
Abstract
The process of hepatocarcinogenesis in the diethylnitrosamine (DEN) initiation/phenobarbital (PB) promotion mouse model involves the selective clonal outgrowth of cells harboring oncogene mutations in Ctnnb1, while spontaneous or DEN-only-induced tumors are often Ha-ras- or B-raf-mutated. The molecular mechanisms and pathways underlying these different tumor sub-types are not well characterized. Their identification may help identify markers for xenobiotic promoted versus spontaneously occurring liver tumors. Here, we have characterized mouse liver tumors harboring either Ctnnb1 or Ha-ras mutations via integrated molecular profiling at the transcriptional, translational and post-translational levels. In addition, metabolites of the intermediary metabolism were quantified by high resolution (1)H magic angle nuclear magnetic resonance. We have identified tumor genotype-specific differences in mRNA and miRNA expression, protein levels, post-translational modifications, and metabolite levels that facilitate the molecular and biochemical stratification of tumor phenotypes. Bioinformatic integration of these data at the pathway level led to novel insights into tumor genotype-specific aberrant cell signaling and in particular to a better understanding of alterations in pathways of the cell intermediary metabolism, which are driven by the constitutive activation of the β-Catenin and Ha-ras oncoproteins in tumors of the two genotypes.
Collapse
Affiliation(s)
- Elif B Unterberger
- Institute of Experimental and Clinical Pharmacology and Toxicology Department of Toxicology, Eberhard Karls University of Tübingen, Tübingen, 72074, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Thoolen B, Ten Kate FJW, Castigliego D, van Diest PJ, Malarkey DE, Elmore SA, Maronpot RR. Comparative immunohistochemical investigation of rat and human hepatocellular carcinomas. J Histotechnol 2013. [DOI: 10.1179/2046023613y.0000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol 2013; 59:1107-17. [PMID: 23835194 DOI: 10.1016/j.jhep.2013.07.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the β-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects.
Collapse
Affiliation(s)
- Floriane Pez
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon-1, F-69622 Villeurbanne, France; Centre Léon Bérard, F-69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
37
|
Lee JM, Yang J, Newell P, Singh S, Parwani A, Friedman SL, Nejak-Bowen KN, Monga SP. β-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation. Cancer Lett 2013; 343:90-7. [PMID: 24071572 DOI: 10.1016/j.canlet.2013.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/07/2023]
Abstract
β-Catenin signaling is implicated in hepatocellular carcinoma (HCC), although its role in inflammation, fibrosis, and proliferation is unclear. Commercially available HCC tissue microarray (TMA) of 89 cases was assessed for β-catenin, one of its transcriptional targets glutamine synthetase (GS), proliferation (PCNA), inflammation (CD45), and fibrosis (Sirius Red). HCC cells transfected with wild-type (WT) or mutant-β-catenin were evaluated for β-catenin-T cell factor transactivation by TOPFlash reporter activity and expression of certain targets. Hepatocyte-specific-serine-45-mutated β-catenin transgenic mice (TG) and controls (Con) were used to study thioacetamide (TAA)-induced hepatic fibrosis and tumorigenesis. Sustained β-catenin activation was only observed in mutant-, not WT-β-catenin transfected HCC cells. Aberrant intratumoral β-catenin stabilization was evident in 33% cases with 9% showing predominant nuclear with some cytoplasmic (N/C) localization and 24% displaying predominant cytoplasmic with occasional nuclear (C/N) localization. N/C β-catenin was associated with reduced fibrosis (p=0.017) and tumor-wide GS staining (p<0.001) while C/N correlated with increased intratumoral inflammation (p=0.064) and proliferation (p=0.029). A small subset of HCC patients (15.5%) lacked β-catenin staining and exhibited low inflammation and fibrosis (p<0.05). TG and Con mice exposed to TAA showed comparable development of fibrosis and progression to cirrhosis and HCC. Taken together the data suggests a complex relationship of β-catenin, inflammation, fibrosis and HCC. GS staining is highly sensitive in identifying HCC with nuclear β-catenin, which may in turn represent β-catenin mutations, and does so with high negative predictive value. Also, β-catenin mutations and cirrhosis do not appear to cooperate in HCC pathogenesis in mice and men.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Yang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pippa Newell
- Hepatobiliary and Pancreatic Surgery Program, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anil Parwani
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott L Friedman
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Minicis SD, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner D, Alvaro D, Alpini G, Marzioni M. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013; 45. [PMID: 23177172 PMCID: PMC3716909 DOI: 10.1016/j.dld.2012.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are primary liver cancers, both represent a growing challenge for clinicians due to their increasing morbidity and mortality. In the last few years a number of in vivo models of hepatocellular carcinoma and cholangiocarcinoma have been developed. The study of these models is providing a significant contribution in unveiling the pathophysiology of primary liver malignancies. They are also fundamental tools to evaluate newly designed molecules to be tested as new potential therapeutic agents in a pre-clinical set. Technical aspects of each model are critical steps, and they should always be considered in order to appropriately interpret the findings of a study or its planning. The purpose of this review is to describe the technical and experimental features of the most significant rodent models, highlighting similarities or differences between the corresponding human diseases. The first part is dedicated to the discussion of models of hepatocellular carcinoma, developed using toxic agents, or through dietary or genetic manipulations. In the second we will address models of cholangiocarcinoma developed in rats or mice by toxin administration, genetic manipulation and/or bile duct incannulation or surgery. Xenograft or syngenic models are also proposed.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Heather Francis
- Division Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Department of Medicine, Division Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - David Brenner
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Domenico Alvaro
- Division of Gastroenterology, Polo Pontino, Università degli Studi “La Sapienza”, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States,Co-corresponding author. Tel.: +1 254 743 1041/1044; fax: +1 254 743 0378/0555. (M. Marzioni)
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,Corresponding author at: Department of Gastroenterology, Università Politecnica delle Marche, Nuovo Polo Didattico, III Piano, Via Tronto 10, 60020 Ancona, Italy. Tel.: +39 0712206043; fax: +39 0712206044
| |
Collapse
|
39
|
Ganzenberg K, Singh Y, Braeuning A. The time point of β-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology 2013; 308:113-21. [DOI: 10.1016/j.tox.2013.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 12/13/2022]
|
40
|
The connection of β-catenin and phenobarbital in murine hepatocarcinogenesis: a critical discussion of Awuah et al., PLoS ONE 7(6):e39771, 2012. Arch Toxicol 2012; 87:401-2. [PMID: 23266721 DOI: 10.1007/s00204-012-1002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
41
|
Faust D, Vondráček J, Krčmář P, Šmerdová L, Procházková J, Hrubá E, Hulinková P, Kaina B, Dietrich C, Machala M. AhR-mediated changes in global gene expression in rat liver progenitor cells. Arch Toxicol 2012. [DOI: 10.1007/s00204-012-0979-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
BIOLOGICAL TARGETS OF OXIDATIVE STRESS Oxidative Post-translational Protein Modifi cations (OPMs). Cancer Biomark 2012. [DOI: 10.1201/b14318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Lempiäinen H, Couttet P, Bolognani F, Müller A, Dubost V, Luisier R, Del Rio Espinola A, Vitry V, Unterberger EB, Thomson JP, Treindl F, Metzger U, Wrzodek C, Hahne F, Zollinger T, Brasa S, Kalteis M, Marcellin M, Giudicelli F, Braeuning A, Morawiec L, Zamurovic N, Längle U, Scheer N, Schübeler D, Goodman J, Chibout SD, Marlowe J, Theil D, Heard DJ, Grenet O, Zell A, Templin MF, Meehan RR, Wolf RC, Elcombe CR, Schwarz M, Moulin P, Terranova R, Moggs JG. Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion. Toxicol Sci 2012; 131:375-86. [PMID: 23091169 DOI: 10.1093/toxsci/kfs303] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Awuah PK, Rhieu BH, Singh S, Misse A, Monga SPS. β-Catenin loss in hepatocytes promotes hepatocellular cancer after diethylnitrosamine and phenobarbital administration to mice. PLoS One 2012; 7:e39771. [PMID: 22761897 PMCID: PMC3382575 DOI: 10.1371/journal.pone.0039771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/30/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is the fifth most common cancer worldwide. β-Catenin, the central orchestrator of the canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5 µg/gm body weight) as a tumor inducer is commonly used model to study HCC in mice. Herein, nine fifteen-day male β-catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB treatment and were examined for hepatic tumorigenesis at eight months. Paradoxically, a significantly higher tumor burden was observed in KO (p<0.05). Tumors in KO were β-catenin and glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A significant increase in PDGFRα and its ligand PDGF-CC leading to increased phosphotyrosine-720-PDGFRα was observed in tumor-bearing KO mice (p<0.05). Simultaneously, these livers displayed increased cell death, stellate cell activation, hepatic fibrosis and cell proliferation. Further, PDGF-CC significantly induced hepatoma cell proliferation especially following β-catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT C57BL/6 mice did not select for β-catenin gene mutations during hepatocarcinogenesis. Thus, DEN/PB enhanced HCC in mice lacking β-catenin in the liver may be due to their ineptness at regulating cell survival, leading to enhanced fibrosis and regeneration through PDGFRα activation. β-Catenin downregulation also made hepatoma cells more sensitive to receptor tyrosine kinases and thus may be exploited for therapeutics.
Collapse
Affiliation(s)
- Prince Kwaku Awuah
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Byung Han Rhieu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amalea Misse
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Satdarshan P. S. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cerminara C, Bagnolo V, De Leonardis F, Coniglio A, Roberto D, Compagnone E, Curatolo P. Hepatocellular adenoma associated with long-term exposure to phenobarbital: a paediatric case report. Childs Nerv Syst 2012; 28:939-41. [PMID: 22124572 DOI: 10.1007/s00381-011-1636-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/17/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Caterina Cerminara
- Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome Tor Vergata, Viale Oxford 81, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Awuah PK, Monga SP. Cell cycle-related kinase links androgen receptor and β-catenin signaling in hepatocellular carcinoma: why are men at a loss? Hepatology 2012; 55:970-3. [PMID: 22362601 PMCID: PMC3545276 DOI: 10.1002/hep.24774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. It is more prevalent in men than women. Related to this, recent genetic studies have revealed a causal role for androgen receptor (AR) in hepatocarcinogenesis, but the underlying molecular mechanism remains unclear. Here, we used genome-wide location and functional analyses to identify a critical mediator of AR signaling — cell cycle–related kinase (CCRK) — that drives hepatocarcinogenesis via a signaling pathway dependent on β-catenin and T cell factor (TCF). Ligand-bound AR activated CCRK transcription and protein expression via direct binding to the androgen-responsive element of the CCRK promoter in human HCC cell lines. In vitro analyses showed that CCRK was critical in human cell lines for AR-induced cell cycle progression, hepatocellular proliferation, and malignant transformation. Ectopic expression of CCRK in immortalized human liver cells activated β-catenin/TCF signaling to stimulate cell cycle progression and to induce tumor formation, as shown in both xenograft and orthotopic models. Conversely, knockdown of CCRK decreased HCC cell growth, and this could be rescued by constitutively active β-catenin or TCF. In primary human HCC tissue samples, AR, CCRK, and β-catenin were concordantly overexpressed in the tumor cells. Furthermore, CCRK overexpression correlated with the tumor staging and poor overall survival of patients. Our results reveal a direct AR transcriptional target, CCRK, that promotes hepatocarcinogenesis through the upregulation of β-catenin/TCF signaling.
Collapse
Affiliation(s)
- Prince K. Awuah
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Depletion of β-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development. Proc Natl Acad Sci U S A 2011; 108:18384-9. [PMID: 22042854 DOI: 10.1073/pnas.1116386108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depletion of β-catenin impairs regeneration of the rapid turn-over gut epithelial cells, but appears dispensable for that of the slow turn-over mature hepatocytes in mice until 1 y of age. As the life span of mature murine hepatocytes is about 400 d, we studied conditional β-catenin knockout mice (Alb-Cre;Ctnnb1(flx/flx)) until 20 mo of age to determine the function of β-catenin in the postnatal liver. β-catenin was absent from the hepatocytes of β-catenin knockout mice 4 wk after delivery. From 9 mo of age, hepatocytes were gradually replaced by newly formed β-catenin-positive hepatocytes, which constituted about 90% of hepatocytes at 18-20 mo of age. This process was accompanied by active proliferation of bile duct/ductule cells. β-catenin-positive hepatocytes exhibited elevated proliferation activity and expression of progenitor cell markers, but lower albumin and Cre. This might explain their intact β-catenin protein, and suggest their origins from hepatic progenitor cells. Liver tumors arose spontaneously from β-catenin-positive cells, and tumorigenesis was accelerated by hepatitis B X protein. These results indicate β-catenin critical for the regeneration of mature hepatocytes. Failure to regenerate mature hepatocytes results in proliferation of hepatic progenitor cells that are able to maintain liver function but are predisposed to form liver tumors.
Collapse
|
48
|
Thompson MD, Wickline ED, Bowen WB, Lu A, Singh S, Misse A, Monga SPS. Spontaneous repopulation of β-catenin null livers with β-catenin-positive hepatocytes after chronic murine liver injury. Hepatology 2011; 54:1333-43. [PMID: 21721031 PMCID: PMC3184210 DOI: 10.1002/hep.24506] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 06/07/2011] [Indexed: 12/28/2022]
Abstract
UNLABELLED Prolonged exposure of mice to diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) results in hepatobiliary injury, atypical ductular proliferation, oval cell appearance, and limited fibrosis. Previously, we reported that short-term ingestion of DDC diet by hepatocyte-specific β-catenin conditional knockout (KO) mice led to fewer A6-positive oval cells than wildtype (WT) littermates. To examine the role of β-catenin in chronic hepatic injury and repair, we exposed WT and KO mice to DDC for 80 and 150 days. Paradoxically, long-term DDC exposure led to significantly more A6-positive cells, indicating greater atypical ductular proliferation in KO, which coincided with increased fibrosis and cholestasis. Surprisingly, at 80 and 150 days in KO we observed a significant amelioration of hepatocyte injury. This coincided with extensive repopulation of β-catenin null livers with β-catenin-positive hepatocytes at 150 days, which was preceded by appearance of β-catenin-positive hepatocyte clusters at 80 days and a few β-catenin-positive hepatocytes at earlier times. Intriguingly, occasional β-catenin-positive hepatocytes that were negative for progenitor markers were also observed at baseline in the KO livers, suggesting spontaneous escape from cre-mediated recombination. These cells with hepatocyte morphology expressed mature hepatocyte markers but lacked markers of hepatic progenitors. The gradual repopulation of KO livers with β-catenin-positive hepatocytes occurred only following DDC injury and coincided with a progressive loss of hepatic cre-recombinase expression. A few β-catenin-positive cholangiocytes were observed albeit only after long-term DDC exposure and trailed the appearance of β-catenin-positive hepatocytes. CONCLUSION In a chronic liver injury model, β-catenin-positive hepatocytes exhibit growth and survival advantages and repopulate KO livers, eventually limiting hepatic injury and dysfunction despite increased fibrosis and intrahepatic cholestasis.
Collapse
Affiliation(s)
- Michael D. Thompson
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Emily D. Wickline
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William B. Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy Lu
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amalea Misse
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. S. Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA,
Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Schreiber S, Rignall B, Braeuning A, Marx-Stoelting P, Ott T, Buchmann A, Hammad S, Hengstler JG, Schwarz M, Köhle C. Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. J Mol Histol 2011; 42:393-400. [DOI: 10.1007/s10735-011-9342-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/23/2011] [Indexed: 01/28/2023]
|
50
|
Sekine S, Ogawa R, Kanai Y. Hepatomas with activating Ctnnb1 mutations in 'Ctnnb1-deficient' livers: a tricky aspect of a conditional knockout mouse model. Carcinogenesis 2011; 32:622-8. [PMID: 21216847 DOI: 10.1093/carcin/bgr002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditional knockout mice, based on the Cre-loxP system, are a widely used model for examining organ-specific gene functions. To date, efficient hepatocyte-specific knockout has been reported in many different models, but little attention has been paid to the long-term stability of the recombination efficiency. In the present study, we characterized Alb-Cre;Ctnnb1flox/flox 'hepatocyte-specific Ctnnb1 knockout' mice of different ages to test whether efficient recombination is maintained over time. At 2 months of age, the knockout mouse livers achieved efficient deletions of β-catenin in hepatocytes. However, as the mice aged, the reappearance and expansion of β-catenin-expressing hepatocytes were observed. In 1-year-old mice, a significant proportion of the pericentral hepatocytes in the knockout mouse livers were replaced with β-catenin-positive hepatocytes, whereas the periportal hepatocytes mostly remained β-catenin-negative. Furthermore, most of the 1-year-old mice spontaneously developed hepatocellular adenomas and carcinomas that were positive for β-catenin and overexpressed glutamine synthetase and Slc1a2, both of which are hallmarks of active β-catenin signaling. Sequencing analysis revealed that the Ctnnb1 alleles were not inactivated but had activating mutations in these tumors. The present study suggests that recombination efficiency should be carefully examined when hepatocyte-specific knockout mice of different ages are analyzed. In addition, illegitimate deletion mutations should be recognized as potential adverse effects of the Cre-loxP system.
Collapse
Affiliation(s)
- Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, Japan 104-0045.
| | | | | |
Collapse
|