1
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
2
|
Park YJ, Pang WK, Hwang SM, Ryu DY, Rahman MS, Pang MG. Establishment of tumor microenvironment following bisphenol A exposure in the testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117071. [PMID: 39303638 DOI: 10.1016/j.ecoenv.2024.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Although detrimental roles of bisphenol A (BPA) in xenoestrogen target organs, testis and epididymis, and male fertility are well-documented, disruption of the immune privilege system in the male reproductive tract following BPA exposure remains poorly understood. Therefore, this study aimed to explore the precise mechanisms of BPA in interfering immune privilege in the testis on RNA sequencing results. CD-1 male mice were daily treated no-observed-adverse-effect (NOAEL, 5 mg BPA/kg BW) and lowest-observed-adverse-effects (LOAEL, 50 mg BPA/kg BW) of BPA by oral gavage for 6 weeks. Following the LOAEL exposure, the expression of immune response-associated transcripts was upregulated in the testis. Moreover, BPA switch the testicular microenvironment to tumor friendly through the recruitment of tumor associated macrophages (TAMs), which can produce both anti- and pro-inflammatory cytokines, such as TNF-α, TLR2, IL-10, and CXCL9. Number of testicular blood vessels were approximately 2-times increased by upregulation of matrix metallopeptidase 2 in TAMs and upregulation of AR expression in the nucleus of Leydig cells. Moreover, we found that the tumor-supportive environment can also be generated even though NOAEL BPA concentration due to the individual's variability in cancer susceptibility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Soo-Min Hwang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Hale A, Moldovan GL. Novel insights into the role of bisphenol A (BPA) in genomic instability. NAR Cancer 2024; 6:zcae038. [PMID: 39319028 PMCID: PMC11420844 DOI: 10.1093/narcan/zcae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenol A (BPA) is a phenolic chemical that has been used for over 50 years in the manufacturing of polycarbonate and polyvinyl chloride plastics, and it is one of the highest volume chemicals produced worldwide. Because BPA can bind to and activate estrogen receptors, studies have mainly focused on the effect of BPA in disrupting the human endocrine and reproductive systems. However, BPA also plays a role in promoting genomic instability and has been associated with initiating carcinogenesis. For example, it has been recently shown that exposure to BPA promotes the formation of single stranded DNA gaps, which may be associated with increased genomic instability. In this review, we outline the mechanisms by which BPA works to promote genomic instability including chromosomal instability, DNA adduct formation, ROS production, and estrogen receptor (ER) activation. Moreover, we define the ways in which BPA promotes both carcinogenesis and resistance to chemotherapy, and we provide critical insights into future directions and outstanding questions in the field.
Collapse
Affiliation(s)
- Anastasia Hale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Aysin F. Bisphenol A promotes cell death in healthy respiratory system cells through inhibition of cell proliferation and induction of G2/M cell cycle arrest. ENVIRONMENTAL TOXICOLOGY 2024; 39:3264-3273. [PMID: 38459623 DOI: 10.1002/tox.24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) is a substance that can harm the environment and human health by interfering with the normal functioning of the body's hormonal system. It is commonly found in various plastic-based products such as cosmetics, canned foods, beverage containers, and medical equipment and as well as it can also be absorbed by inhalation. There have been limited studies on the effects of BPA on lung fibroblasts, and it is still unclear how high levels of BPA can impact respiratory system cells, particularly the lungs and trachea. In this research, we aimed to investigate the cell cycle disruption potential of BPA on respiratory system cells by examining healthy trachea and lung cells together for the first time. The findings indicated that BPA exposure can alter the healthy cells' morphology, leading to reduced cellular viability that has been assessed by MTT and SRB assays. BPA treatment was able to activate caspase3 as expected, which could cause apoptosis in treated cells. Although the highest dose of BPA did not increase the apoptotic rate of rat trachea cells, it remarkably caused them to become necrotic (52.12%). In addition to quantifying the induction of apoptosis and necrosis by BPA, cell cycle profiles were also determined using flow cytometry. Thereby, BPA treatment unexpectedly inhibited the cell cycle's progression by causing G2/M cell cycle arrest in both lung and tracheal cells, which hindered cell proliferation. The findings of the study suggested that exposure to BPA could lead to serious respiratory problems, even respiratory tract cancers via alterations in the cell cycle.
Collapse
Affiliation(s)
- Ferhunde Aysin
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Nie J, Mao Z, Zeng X, Zhao X. Rapamycin protects Sertoli cells against BPA-induced autophagy disorders. Food Chem Toxicol 2024; 186:114510. [PMID: 38365117 DOI: 10.1016/j.fct.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Bisphenol A (BPA) is a well-known environmental contaminant that can negatively impact reproductive function. Disruption of autophagy is implicated in BPA-induced cell injury, the specific molecular mechanisms through which BPA affects autophagy in Sertoli cells are still unknown. In the present study, TM4 cells were exposed to various doses of BPA (10, 100, and 200 μM), and the results indicated that BPA exposure led to the accumulation of autophagosomes, this change was accompanied by increased expression of p-mTOR and decreased expression of Atg12, a protein involved in regulating autophagy initiation. Additionally, BPA exposure upregulated the expression levels of p62, a protein involved in autophagic degradation. The inhibition of autophagy initiation and autophagic degradation contributes to the accumulation of autophagosomes. Further studies showed that BPA exposure didn't affect the expression of the lysosome protein LAMP1; however, decreased cytoplasmic retention of acridine orange in TM4 cells may explain the disruption of autophagy. The role of rapamycin and chloroquine (CQ), an autophagy inhibitor that impairs lysosomal degradation also confirmed the effect of BPA on autophagy regulation. Specifically, rapamycin can protect Sertoli cells against BPA-induced cell injury by promoting autophagy. These findings contribute to our understanding of the mechanisms underlying reproductive toxicity caused by BPA.
Collapse
Affiliation(s)
- Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| | - Zhimin Mao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
9
|
Yang R, Lu Y, Yin N, Faiola F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19156-19168. [PMID: 37978927 DOI: 10.1021/acs.est.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor widely used in the production of electronic, sports, and medical equipment, as well as consumer products like milk bottles, dental sealants, and thermal paper. Despite its widespread use, current assessments of BPA exposure risks remain limited due to the lack of comprehensive cross-species comparative analyses. To address this gap, we conducted a study aimed at identifying genes and fundamental molecular processes consistently affected by BPA in various species and tissues, employing an effective data integration method and bioinformatic analyses. Our findings revealed that exposure to BPA led to significant changes in processes like lipid metabolism, proliferation, and apoptosis in the tissues/cells of mammals, fish, and nematodes. These processes were found to be commonly affected in adipose, liver, mammary, uterus, testes, and ovary tissues. Additionally, through an in-depth analysis of signaling pathways influenced by BPA in different species and tissues, we observed that the JUN/FOS, EGFR, ER, PPARG, and P53 pathways, along with their downstream key transcription factors and kinases, were all impacted by BPA. Our study provides compelling evidence that BPA indeed induces similar toxic effects across different species and tissues. Furthermore, our investigation sheds light on the underlying molecular mechanisms responsible for these toxic effects. By uncovering these mechanisms, we gain valuable insights into the potential health implications associated with BPA exposure, highlighting the importance of comprehensive assessments and awareness of this widespread endocrine disruptor.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen YM, Liu ZY, Chen S, Lu XT, Huang ZH, Wusiman M, Huang BX, Lan QY, Wu T, Huang RZ, Huang SY, Lv LL, Jian YY, Zhu HL. Mitigating the impact of bisphenol A exposure on mortality: Is diet the key? A cohort study based on NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115629. [PMID: 37890258 DOI: 10.1016/j.ecoenv.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Bisphenol A (BPA) is a widespread environmental pollutant linked to detrimental effects on human health and reduced life expectancy following chronic exposure. This prospective cohort study aimed to examine the association between BPA exposure and mortality in American adults and to explore the potential mitigating effects of dietary quality on BPA-related mortality. This study utilized data from 8761 American adults in the 2003-2016 National Health and Nutrition Examination Survey (NHANES). Urinary BPA levels were employed to assess BPA exposure, and dietary quality was evaluated using the Healthy Eating Index-2015 (HEI-2015). All-cause, cardiovascular disease (CVD), and cancer mortality statuses were determined until December 31, 2019, resulting in a cumulative follow-up of 80,564 person-years. The results showed that the highest tertile of urinary BPA levels corresponded to a 36% increase in all-cause mortality and a 62% increase in CVD mortality compared to the lowest tertile. In contrast, the highest tertile of HEI-2015 scores was associated with a 29% reduction in all-cause mortality relative to the lowest tertile. Although no significant interaction was found between HEI-2015 scores and urinary BPA levels concerning mortality, the association between HEI-2015 scores and both all-cause and CVD mortality was statistically significant at low urinary BPA levels. Continuous monitoring of BPA exposure is crucial for evaluating its long-term adverse health effects. Improving dietary quality can lower all-cause mortality and decrease the risk of all-cause and CVD mortality at low BPA exposure levels. However, due to the limited protective effect of dietary quality against BPA exposure, minimizing BPA exposure remains a vital goal.
Collapse
Affiliation(s)
- Ye-Mei Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Bi-Xia Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiu-Ye Lan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tong Wu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Rong-Zhu Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China
| | - Lu-Lu Lv
- Yibicom Health Management Center, CVTE, Guangzhou, China
| | - Yue-Yong Jian
- Yibicom Health Management Center, CVTE, Guangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Gebru YA, Pang MG. Modulatory effects of bisphenol A on the hepatic immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122430. [PMID: 37611793 DOI: 10.1016/j.envpol.2023.122430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The liver is a primary line of defense for protection from external substances next to the intestinal barrier. As a result, the hepatic immune system plays a central role in liver pathophysiology. Bisphenol A (BPA) is one of the most common endocrine disrupting chemicals and is primarily metabolized in the liver. Due to its ability to bind to estrogen receptors, BPA is well known to possess estrogenic activity and disrupt reproductive functions. The phase I and Phase II metabolism reactions of BPA mainly occur in the liver with the help of enzymes including cytochrome P450 (CYP), uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferases, sulfotransferases, and glutathione-S-transferases. Although the majority of BPA is excreted after conjugation by these enzymes, untransformed BPA induces the production of reactive oxygen species through disruption of the enzymatic complex CYP, lipid accumulation, mitochondrial dysfunction, endoplasmic reticulum stress and inflammatory injury in the liver. Moreover, it has been proposed to possess a potential immunomodulatory effect. Indeed, several in vivo and in vitro studies have reported that low doses of BPA increase the population of T cells with type 1 T helper (Th1), Th2, and Th17 cells. Although the current literature lacks clear evidence on the mechanisms by which BPA is involved in T cell mediated immune responses, recent multi-omics studies suggest that it may directly interact with the antigen processing and presentation pathways. In this review, we first discuss the metabolism of BPA in the liver, before exploring currently available data on its effects on liver injury. Finally, we review its modulatory effects on the hepatic immune response, as well as potential mechanisms. By conducting this review, we aim to improve understanding on the relationship between BPA exposure and immune-related liver injury, with a focus on the antigen processing and presentation pathway and T cell-mediated response in the liver.
Collapse
Affiliation(s)
- Yoseph Asmelash Gebru
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
12
|
Torres-Alamilla P, Castillo-Sanchez R, Cortes-Reynosa P, Gomez R, Perez Salazar E. Bisphenol A increases the size of primary mammary tumors and promotes metastasis in a murine model of breast cancer. Mol Cell Endocrinol 2023; 575:111998. [PMID: 37414130 DOI: 10.1016/j.mce.2023.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast tumor characterized for the absence of estrogen and progesterone receptors expression and low HER2/neu expression. Bisphenol A (BPA) is an endocrine disrupting chemical with estrogenic activity that has been associated with increasing rates of breast cancer. Moreover, BPA is a solid organic synthetic chemical employed in the manufacture of many consumer products, epoxy resins and polycarbonate plastics including baby bottles, containers for food and beverages, and the lining of beverage cans. The G-protein-coupled estrogen receptor (GPER) is activated by endogenous hormones and synthetic ligands, such as BPA. GPER is expressed in TNBC cells and its expression is associated with larger tumor size, metastasis and worse survival prognosis. In breast cancer cells, BPA induces activation of signal transduction pathways that mediates migration and invasion via GPER in human TNBC MDA-MB-231 cells. In this study, we demonstrate that BPA induces an increase of GPER expression and its translocation from cytosol to cytoplasmic membrane, metalloproteinase (MMP)-2 and MMP-9 secretion, migration and invasion in murine TNBC 4T1 cells. In a murine TNBC model "in vivo" using 4T1 cells, BPA induces the formation of mammary tumors with more weight and volume, and an increase in the number of mice with metastasis to lung and nodules in lung compared with tumors and metastasis to lung of untreated Balb/cJ mice. In conclusion, our findings demonstrate that BPA mediates the growth of mammary primary tumors and metastasis to lung in a murine model of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Rocio Gomez
- Departamento de Toxicologia, Cinvestav-IPN, Ciudad de Mexico, Mexico
| | | |
Collapse
|
13
|
Dairkee SH, Moore DH, Luciani MG, Anderle N, Gerona R, Ky K, Torres SM, Marshall PV, Goodson Iii WH. Reduction of daily-use parabens and phthalates reverses accumulation of cancer-associated phenotypes within disease-free breast tissue of study subjects. CHEMOSPHERE 2023; 322:138014. [PMID: 36746253 DOI: 10.1016/j.chemosphere.2023.138014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Estrogenic overstimulation is carcinogenic to the human breast. Personal care products (PCPs) commonly contain xenoestrogens (XE), such as parabens and phthalates. Here, we identified the adverse effects of persistent exposure to such PCPs directly within human estrogen responsive breast tissue of subjects enrolled in a regimen of reduced XE use (REDUXE). Pre- and post-intervention fine needle aspirates (FNAs) of the breast were collected from healthy volunteers who discontinued the use of paraben and phthalate containing PCPs over a 28 d period. Based on high-dimensional gene expression data of matched FNA pairs of study subjects, we demonstrate a striking reversal of cancer-associated phenotypes, including the PI3K-AKT/mTOR pathway, autophagy, and apoptotic signaling networks within breast cells of REDUXE compliant subjects. These, and other altered phenotypes were detected together with a significant reduction in urinary parabens and phthalate metabolites. Moreover, in vitro treatment of paired FNAs with 17β-estradiol (E2), displayed a 'normalizing' impact of REDUXE on gene expression within known E2-modulated pathways, and on functional endpoints, including estrogen receptor alpha: beta ratio, and S-phase fraction of the cell cycle. In a paradigm shifting approach facilitated by community-based participatory research, REDUXE reveals unfavorable consequences from exposure to XEs from daily-use PCPs. Our findings illustrate the potential for REDUXE to suppress pro-carcinogenic phenotypes at the cellular level towards the goal of breast cancer prevention.
Collapse
Affiliation(s)
- Shanaz H Dairkee
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| | - Dan H Moore
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - M Gloria Luciani
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Nicole Anderle
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Roy Gerona
- Department of OB/Gyn and Reproductive Sciences, University of California, San Francisco, CA, 94115, USA
| | - Karina Ky
- Department of OB/Gyn and Reproductive Sciences, University of California, San Francisco, CA, 94115, USA
| | | | | | | |
Collapse
|
14
|
Quercetin and Its Fermented Extract as a Potential Inhibitor of Bisphenol A-Exposed HT-29 Colon Cancer Cells’ Viability. Int J Mol Sci 2023; 24:ijms24065604. [PMID: 36982678 PMCID: PMC10052295 DOI: 10.3390/ijms24065604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Bisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA. Polyphenols were quantified in FEQ by HPLC and their antioxidant capacity by DPPH and ORAC. Q and 3,4-dihydroxyphenylacetic acid (DOPAC) were quantified in FEQ. Q and FEQ exhibited antioxidant capacity. Cell viability with Q+BPA and FEQ+BPA was 60% and 50%, respectively; less than 20% of dead cells were associated with the necrosis process (LDH). Treatments with Q and Q+BPA induced cell cycle arrest in the G0/G1 phase, and FEQ and FEQ+BPA in the S phase. Compared with other treatments, Q positively modulated ESR2 and GPR30 genes. Using a gene microarray of the p53 pathway, Q, Q+BPA, FEQ and FEQ+BPA positively modulated genes involved in apoptosis and cell cycle arrest; bisphenol inhibited the expression of pro-apoptotic and cell cycle repressor genes. In silico analyses demonstrated the binding affinity of Q > BPA > DOPAC molecules for ERα and ERβ. Further studies are needed to understand the role of disruptors in colon cancer.
Collapse
|
15
|
Della Rocca Y, Traini EM, Diomede F, Fonticoli L, Trubiani O, Paganelli A, Pizzicannella J, Marconi GD. Current Evidence on Bisphenol A Exposure and the Molecular Mechanism Involved in Related Pathological Conditions. Pharmaceutics 2023; 15:pharmaceutics15030908. [PMID: 36986769 PMCID: PMC10053246 DOI: 10.3390/pharmaceutics15030908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Bisphenol A (BPA) is one of the so-called endocrine disrupting chemicals (EDCs) and is thought to be involved in the pathogenesis of different morbid conditions: immune-mediated disorders, type-2 diabetes mellitus, cardiovascular diseases, and cancer. The purpose of this review is to analyze the mechanism of action of bisphenol A, with a special focus on mesenchymal stromal/stem cells (MSCs) and adipogenesis. Its uses will be assessed in various fields: dental, orthopedic, and industrial. The different pathological or physiological conditions altered by BPA and the related molecular pathways will be taken into consideration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (O.T.); (A.P.)
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
- Correspondence: (O.T.); (A.P.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
16
|
Wang Y, Kang J, Wang R, Ramezani K, Bonakdar M, Moghimi N, Salimi M, Yao Y, Wang K. Bisphenol A interacts with DLGAP5 and regulates IL-6/JAK2/STAT3 signaling pathway to promote tumorigenesis and progression of osteosarcoma. CHEMOSPHERE 2023; 312:136545. [PMID: 36155021 DOI: 10.1016/j.chemosphere.2022.136545] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE It has been suggested that Bisphenol A (BPA), a high-production-volume industrial chemical, can accelerate the development of various type of cancers. However, the effect of BPA on osteosarcoma and the underlying mechanisms are yet to be established. Therefore, in this study we tried to explore the carcinogenic effects of BPA on osteosarcoma and the underlying mechanism. METHODS SaOs-2 cancer cell line was used to treat with BPA at the doses of 0.1, 1, 10 μM DGLAP5 knockdown and overexpression methods were constructed by using adenovirus mediated transfection, and the functional analysis of DGLAP5 was investigated to evaluate the carcinogenic effect of BPA on osteosarcoma through DLGAP5. Xenograft and metastatic mouse model were used to evaluate in vivo experiments. RESULTS In this study, BPA at 10 μM promoted the proliferation, migration and invasion in vitro, and accelerate the progression and metastasis in vivo. Also, exposure to BPA was associated with poor survival of osteosarcoma in mice. In addition, we observed that BPA at 10 μM significantly increased the expression of DGLAP5 in osteosarcoma. Silencing DGLAP5 could reverse the effect of BPA on proliferation, migration and invasion. Mechanically, BPA promoted IL-6, JAK2, and STAT3 expression and promoted tumor progression in an IL-6-dependent manner through up-regulation of DLGAP5. CONCLUSION Our findings demonstrated that BPA could promote the proliferation, migration, invasion of osteosarcoma cells and related to poor survival in a mouse model. DLGAP5 is one of the most critical targets of BPA to act as a carcinogen through IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Orthopedics, Daxing Hospital, Xi'an 710016, China
| | - Jing Kang
- Department of Hematology and Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Rui Wang
- Military Personnel Medical Care Center, Tangdu Hospital, Air Force Medical University Xi'an, Shaanxi, China
| | - Keyvan Ramezani
- Department of Orthopedics, Emam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Bonakdar
- Department of Orthopedics, Emam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niusha Moghimi
- Department of Orthopedics, Emam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yongfeng Yao
- Department of Orthopedics, Daxing Hospital, Xi'an 710016, China
| | - Kai Wang
- Department of Hematology and Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
17
|
Xie B, Lin X, Wu K, Chen J, Qiu S, Luo J, Huang Y, Peng L. Adipose tissue levels of polybrominated diphenyl ethers in relation to prognostic biomarkers and progression-free survival time of breast cancer patients in eastern area of southern China: A hospital-based study. ENVIRONMENTAL RESEARCH 2023; 216:114779. [PMID: 36370816 DOI: 10.1016/j.envres.2022.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Evidence indicates that individual or groups of polybrominated diphenyl ethers (PBDEs) are associated with risk of breast cancer (BC). Epidemiological studies of PBDEs and BC progression are scarce. This study aimed to investigate the relationships between PBDE burdens in adipose tissues and prognostic biomarkers of BC as well as progression-free survival (PFS) of patients for the first time. The concentrations of 14 PBDE congeners in breast adipose tissues of 183 cases from the eastern area of southern China were analyzed by gas chromatography-mass spectrometry (GC-MS). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression models for the associations between PBDE levels and prognostic biomarkers. Kaplan-Meier and Cox regression analyses were conducted to identify the correlations between PBDEs and PFS. The results showed that BDE-99 and 190 levels were positively associated with clinical stage and N stage respectively (OR = 2.61 [1.26-5.40], OR = 2.78 [1.04-7.46]). Concentrations of BDE-28 and BDE-183 were negatively associated with the expression of estrogen receptor (ER) (OR = 0.30 [0.11-0.81]; 0.39 [0.15-0.99]) and progesterone receptor (PR) (OR = 0.36 [0.14-0.92]; 0.37 [0.15-0.91]), and increased BDE-47 was associated with lower human epidermal growth factor receptor 2 (HER2) expression (OR = 0.44 [0.23-0.86]). Adipose levels of BDE-71, 99, 138, 153, 154 and total PBDEs were positively associated with p53 expression (all P < 0.05). Finally, BDE-47, 99 and 183 were considered as independent prognostic factors for shorter PFS in the Cox models (adjusted hazard ratios = 3.14 [1.26-7.82]; 2.25 [1.03-4.94]; 2.60 [1.08-6.25], respectively). The recurrence risk and prognosis of BC may be closely bound to the body burdens of certain PBDE congeners. Further epidemiological and experimental studies are needed for confirmation.
Collapse
Affiliation(s)
- Bingmeng Xie
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; School of Public Health, Shantou University, Shantou, 515041, China.
| | - Xueqiong Lin
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, 515041, Shantou, Guangdong, China
| | - Kusheng Wu
- School of Public Health, Shantou University, Shantou, 515041, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shuyi Qiu
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; School of Public Health, Shantou University, Shantou, 515041, China
| | - Jianan Luo
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Yiteng Huang
- Health Care Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
18
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
19
|
Pellerin È, Pellerin FA, Chabaud S, Pouliot F, Bolduc S, Pelletier M. Bisphenols A and S Alter the Bioenergetics and Behaviours of Normal Urothelial and Bladder Cancer Cells. Cancers (Basel) 2022; 14:cancers14164011. [PMID: 36011004 PMCID: PMC9406715 DOI: 10.3390/cancers14164011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are used in the production of plastics. These endocrine disruptors can be released into the environment and food, resulting in the continuous exposure of humans to bisphenols (BPs). The bladder urothelium is chronically exposed to BPA and BPS due to their presence in human urine samples. BPA and BPS exposure has been linked to cancer progression, especially for hormone-dependent cancers. However, the bladder is not recognized as a hormone-dependent tissue. Still, the presence of hormone receptors on the urothelium and their role in bladder cancer initiation and progression suggest that BPs could impact bladder cancer development. The effects of chronic exposure to BPA and BPS for 72 h on the bioenergetics (glycolysis and mitochondrial respiration), proliferation and migration of normal urothelial cells and non-invasive and invasive bladder cancer cells were evaluated. The results demonstrate that chronic exposure to BPs decreased urothelial cells' energy metabolism and properties while increasing them for bladder cancer cells. These findings suggest that exposure to BPA and BPS could promote bladder cancer development with a potential clinical impact on bladder cancer progression. Further studies using 3D models would help to understand the clinical consequences of this exposure.
Collapse
Affiliation(s)
- Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Félix-Antoine Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1R 2J6, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence: (S.B.); (M.P.); Tel.: +1-418-525-4444 (ext. 42282) (S.B.); +1-418-525-4444 (ext. 46166) (M.P.)
| | - Martin Pelletier
- Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence: (S.B.); (M.P.); Tel.: +1-418-525-4444 (ext. 42282) (S.B.); +1-418-525-4444 (ext. 46166) (M.P.)
| |
Collapse
|
20
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
21
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Bisphenol A Alters the Energy Metabolism of Stromal Cells and Could Promote Bladder Cancer Progression. Cancers (Basel) 2021; 13:cancers13215461. [PMID: 34771623 PMCID: PMC8582525 DOI: 10.3390/cancers13215461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Our research brings new insight on the potential impact of bisphenol A on bladder cancer progression. By evaluating the effects of bisphenol A on the stromal environment of bladder cancer, we aimed to demonstrate that this endocrine disruptor could promote bladder cancer invasion through alteration of the energy metabolism of stromal cells, specifically on bladder fibroblasts and cancer-associated fibroblasts. These findings could modify the understanding of bladder cancer since bladder tissue is not recognized as a hormone-sensitive tissue. Consequently, our study suggests that endocrine disruptors, such as bisphenol A, could impact bladder cancer progression. Abstract Bisphenol A (BPA) is an endocrine-disrupting molecule used in plastics. Through its release in food and the environment, BPA can be found in humans and is mostly excreted in urine. The bladder is therefore continuously exposed to this compound. BPA can bind to multiple cell receptors involved in proliferation, migration and invasion pathways, and exposure to BPA is associated with cancer progression. Considering the physiological concentrations of BPA in urine, we tested the effect of nanomolar concentrations of BPA on the metabolism of bladder fibroblasts and cancer-associated fibroblasts (CAFs). Our results show that BPA led to a decreased metabolism in fibroblasts, which could alter the extracellular matrix. Furthermore, CAF induction triggered a metabolic switch, similar to the Warburg effect described in cancer cells. Additionally, we demonstrated that nanomolar concentrations of BPA could exacerbate this metabolic switch observed in CAFs via an increased glycolytic metabolism, leading to greater acidification of the extracellular environment. These findings suggest that chronic exposure to BPA could promote cancer progression through an alteration of the metabolism of stromal cells.
Collapse
|
23
|
Almeida TFA, Oliveira SR, Mayra da Silva J, Fernandes de Oliveira AL, de Lourdes Cardeal Z, Menezes HC, Gomes JM, Campolina-Silva GH, Oliveira CA, Macari S, Garlet GP, Alves Diniz IM, Leopoldino AM, Aparecida Silva T. Effects of high-dose bisphenol A on the mouse oral mucosa: A possible link with oral cancers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117296. [PMID: 33971473 DOI: 10.1016/j.envpol.2021.117296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.
Collapse
Affiliation(s)
| | - Sicília Rezende Oliveira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Zenilda de Lourdes Cardeal
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helvécio Costa Menezes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Messias Gomes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
24
|
Zhang Y, Li S, Wu J, Peng Y, Bai J, Ning B, Wang X, Fang Y, Han D, Ren S, Li S, Chen R, Li K, Du H, Gao Z. The orphan nuclear receptor Nur77 plays a vital role in BPA-induced PC12 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112026. [PMID: 33582411 DOI: 10.1016/j.ecoenv.2021.112026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that can migrate into organisms through skin contact, breathing, diet and various other approaches. The reproductive toxicity and neurotoxicity of BPA has been confirmed by several toxicological studies. However, the neurotoxicity of BPA is still controversial. In the present study, we used PC12 cells as a model to investigate the mechanism of BPA-induced neuronal apoptosis. BPA exposure reduced cell viability, altered cell morphology and aggravated intracellular Lactate dehydrogenase (LDH) release, intracellular Ca2+ concentration, Reactive oxygen species (ROS) levels, apoptosis and the reduction in the mitochondrial transmembrane potential (ΔΨm). Moreover, the results of the Western blot (WB) and Real-time quantitative polymerase chain reaction (RT-qPCR) assays indicated that the expression levels of Nur77 in the BPA group were down-regulated and accompanied by the downregulation of the NF-κb/Bcl-2 proteins and the upregulation of cleaved-caspase 3, which is a marker of apoptosis. However, these changes were significantly reversed with the upregulation of the Nur77 protein by introducing plasmids carrying the nur77 gene. These results indicated that BPA-induced apoptosis was closely related to Nur77-mediated inhibition of the NF-κb/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yingchun Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China.
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Sen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Ruipeng Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Hongwei Du
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China.
| |
Collapse
|
25
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
26
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
27
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
28
|
Dumitrascu MC, Mares C, Petca RC, Sandru F, Popescu RI, Mehedintu C, Petca A. Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 2020; 20:282. [PMID: 33014160 DOI: 10.3892/ol.2020.12145] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds ubiquitously found in everyday life of the modern world. EDCs enter the human body where they act similarly to endogenous hormones, altering the functions of the endocrine system and causing adverse effects on human health. Bisphenol A (BPA), the principal representative of this class, is a carbon-based synthetic plastic, and a key element in manufacturing cans, reusable water bottles and medical equipment. BPA mimics the actions of estrogen on multiple levels by activating estrogen receptors α and β. BPA regulates various processes, such as cell proliferation, migration and apoptosis, leading to neoplastic changes. Considering genetic mechanisms, BPA exerts its functions via multiple oncogenic signaling pathways, including the STAT3, PI3K/AKT and MAPK pathways. Furthermore, BPA is associated with various modifications of the reproductive system in both males and females. These alterations include benign lesions, such as endometrial hyperplasia, the development of ovarian cysts, an increase in the ductal density of mammary gland cells and other preneoplastic lesions. These benign lesions may continue to develop to breast or ovarian cancer; the effects of BPA depend on various molecular and epigenetic mechanisms that dictate whether the endocrine or reproductive system is impacted, wherein preexisting benign lesions can become cancerous. The present review supports the need for continuous research on BPA, considering its widespread use and most available data suggesting a carcinogenic effect of BPA on the female reproductive system. Although most studies on BPA have been conducted in vitro with human cells or in vivo with animal models, it can be argued that more studies should be conducted in vivo with humans to further promote understanding of the impact of BPA.
Collapse
Affiliation(s)
- Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Cristian Mares
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Ionut Popescu
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
29
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
30
|
Wang TN, Yang PJ, Tseng YT, Tsai YS, Kuo PL, Chiu CC, Liang SS, Hsieh TH, Hou MF, Tsai EM. Visceral obesity and cell cycle pathways serve as links in the association between bisphenol A exposure and breast cancer. Oncol Lett 2020; 20:33-42. [PMID: 32565931 PMCID: PMC7285711 DOI: 10.3892/ol.2020.11553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/16/2018] [Indexed: 11/05/2022] Open
Abstract
It has been identified that bisphenol A (BPA) exposure causes developmental toxicity in breast cells. However, the exact molecular mechanisms underlying the association between exposure to BPA and breast cancer remain unclear. The aim of the present study was to investigate the BPA-regulated signaling pathways associated with the aggressiveness and the development of breast cancer. Microarray technology and functional gene set analyses were used to evaluate BPA and breast cancer-associated biomarkers and pathways in a discovery-driven manner. Using individual dataset analyses, it was indicated that two BPA-associated gene sets, the visceral obesity pathway, involved in visceral fat deposits and the metabolic syndrome, and the cell cycle pathway, involved in cyclins and cell cycle regulation, were significantly associated with a high grade of aggressiveness and the development of estrogen receptor (ER)-positive breast cancer (between P<0.05 and 0.0001). The pooled analysis indicated that the most significant pathway was G1/S checkpoint regulation, and the cyclin and cell cycle regulation pathway for BPA-associated ER-positive cancer. Cancer cell signaling pathways were associated with healthy breast cells developing into breast cancer. The visceral obesity and the cell cycle pathways were indicated to link BPA exposure to breast cancer. The results of the present study demonstrate a significant association between breast cancer and BPA-regulated gene pathways.
Collapse
Affiliation(s)
- Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Pei-Jing Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Ting Tseng
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Shan Tsai
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Po-Lin Kuo
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Chien-Chih Chiu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Department of Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan, R.O.C.,Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30010, Taiwan, R.O.C
| | - Eing-Mei Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Center for Research Resources and Development, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
31
|
Reed BG, Babayev SN, Chen LX, Carr BR, Word RA, Jimenez PT. Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction 2020; 156:559-567. [PMID: 30328349 PMCID: PMC6215928 DOI: 10.1530/rep-18-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRs) are small molecules important for regulation of transcription and translation. The objective was to identify hormonally regulated miRs in human endometrial stromal cells and to determine the impact of the endocrine disruptor, bisphenol A (BPA), on those miRs. miR microarray analysis and multiple confirmatory cell preparations treated with 17β-estradiol (E2) and BPA altered miR-27b, let-7c, let-7e and miR-181b. Further, decidualization downregulated miR-27b. VEGFB and VEGFC were validated as targets of miR-27b. Identification of miR-27b target genes suggests that BPA and E2 downregulate miR-27b thereby leading to upregulation of genes important for vascularization and angiogenesis of the endometrium during the menstrual cycle and decidualization.
Collapse
Affiliation(s)
- Beverly G Reed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Samir N Babayev
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lucy X Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce R Carr
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Ann Word
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patricia T Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Hafezi SA, Abdel-Rahman WM. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol 2020; 12:230-238. [PMID: 30848227 DOI: 10.2174/1874467212666190306164507] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a synthetic plasticizer that is commonly used in the production of polycarbonate plastics and epoxy resins. Human exposure occurs when BPA migrates from food and beverage containers into the contents when heated or even under normal conditions of use. BPA exerts endocrine disruptor action due to its weak binding affinity for the estrogen receptors ERα and ERβ. BPA exerts other effects by activating the membrane receptor GPER (GPR30) and/or other receptors such as the estrogen-related receptors (ERRs). OBJECTIVE This review summarizes emerging data on BPA and cancer. These include data linking exposure to BPA with an increased risk of hormone-related cancers such as those of the ovary, breast, prostate, and even colon cancer. BPA can also induce resistance to various chemotherapeutics such as doxorubicin, cisplatin, and vinblastine in vitro. The development of chemoresistance to available therapeutics is an emerging significant aspect of BPA toxicity because it worsens the prognosis of many tumors. CONCLUSION Recent findings support a causal role of BPA at low levels in the development of cancers and in dictating their response to cytotoxic therapy. Accurate knowledge and consideration of these issues would be highly beneficial to cancer prevention and management.
Collapse
Affiliation(s)
- Shirin A Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
33
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review. CHEMOSPHERE 2020; 240:124901. [PMID: 31563713 DOI: 10.1016/j.chemosphere.2019.124901] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) released from plastics into water, soil and air are significant environmental and health problem. Continuous exposure of humans to these substances results not only from the slow biodegradation of plastics but also from their ubiquitous use as industrial materials and everyday products. Exposure to POPs may lead to neurodegenerative disorders, induce inflammation, hepatotoxicity, nephrotoxicity, insulin resistance, allergies, metabolic diseases, and carcinogenesis. This has spurred an increasing intense search for natural compounds with protective effects against the harmful components of plastics. In this paper, we discuss the current state of knowledge concerning the protective functions of polyphenols against the toxic effects of POPs: acrylonitrile, polychlorinated biphenyls, dioxins, phthalates and bisphenol A. We review in detail papers from the last two decades, analyzing POPs in terms of their sources of exposure and demonstrate how polyphenols may be used to counteract the harmful environmental effects of POPs. The protective effect of polyphenols results from their impact on the level and activity of the components of the antioxidant system, enzymes involved in the elimination of xenobiotics, and as a consequence - on the level of reactive oxygen species (ROS). Polyphenols present in daily diet may play a protective role against the harmful effects of POPs derived from plastics, and this interaction is related, among others, to the antioxidant properties of these compounds. To our knowledge, this is the first extensive review of in vitro and in vivo studies concerning the molecular mechanisms of interactions between selected environmental toxins and polyphenols.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, 3c Felczaka St., 71-412, Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Anna Nowakowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, 17C Narutowicza St., 70-240, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland.
| |
Collapse
|
34
|
Dairkee SH, Luciani-Torres G, Moore DH, Jaffee IM, Goodson WH. A Ternary Mixture of Common Chemicals Perturbs Benign Human Breast Epithelial Cells More Than the Same Chemicals Do Individually. Toxicol Sci 2019; 165:131-144. [PMID: 29846718 PMCID: PMC6135635 DOI: 10.1093/toxsci/kfy126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a continuous source of hormonal stimulation, environmentally ubiquitous estrogenic chemicals, ie, xenoestrogens (XEs), are a potential risk factor for breast carcinogenesis. Given their wide distribution in the environment and the fact that bisphenol-A (BPA), methylparaben (MP), and perfluorooctanoic acid (PFOA) are uniformly detected in unselected body fluid samples, it must be assumed that humans are simultaneously exposed to these chemicals almost daily. We studied the effects of a ternary mixture of BPA, MP, and PFOA on benign breast epithelial cells at the range of concentrations observed for single chemicals in human samples. Measurements of exposure impact relevant to the breast were based on endpoints associated with “hallmarks” of cancer and “key characteristics” of carcinogens. These included modulation of total estrogen receptor (ER)α, phosphorylated ERα (pERα), total ERβ, S-phase induction, and apoptotic evasion. Data from live cell measurements were fit to a log-linear dose-response model. Concentration-dependent reduction of ERβ and apoptosis evasion was observed concurrently with the induction of ERα, pERα, and S-phase fraction, and an increased rate of cell proliferation. Beyond additive effects predicted by the sum of individual test XEs, mixture treatment demonstrated synergism for the ERβ and apoptosis suppression phenotypes (p > .001). Nonmalignant breast cells were more sensitive than commonly used breast cancer lines to XE treatment in 3 of 5 endpoints. All observations were validated with cells isolated from the normal breast tissue of 14 individuals. At relatively low concentrations, a chemical mixture has striking effects on normal cell function that are missed by evaluation of single components.
Collapse
Affiliation(s)
| | | | - Dan H Moore
- California Pacific Medical Center Research Institute
| | - Ian M Jaffee
- Department of Pathology, California Pacific Medical Center, San Francisco, California 94107
| | | |
Collapse
|
35
|
Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon? Cells 2019; 8:cells8080896. [PMID: 31416286 PMCID: PMC6721698 DOI: 10.3390/cells8080896] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.
Collapse
|
36
|
Bisphenol S promotes the cell cycle progression and cell proliferation through ERα-cyclin D-CDK4/6-pRb pathway in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 2019; 366:75-82. [DOI: 10.1016/j.taap.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 11/20/2022]
|
37
|
Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8459-8467. [PMID: 30712204 DOI: 10.1007/s11356-019-04228-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 04/15/2023]
Abstract
Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA readily leaches out from these products into the environment and into foodstuffs (from packaging materials) and human exposure can be considerable. Many studies have shown that BPA exposure is associated with a range of chronic human health conditions, including diabetes, cardiovascular disorders, polycystic ovarian disease, hepatotoxicity, and various types of cancer. BPA exerts its effects through deregulating cell signaling pathways associated with cell growth, proliferation, migration, invasion, and apoptosis. Previous studies on the molecular mechanisms of BPA have illustrated a variety of pathways impaired at very low exposure concentrations and that stimulate cellular responses relating to tumorigenesis both in cancer onset and progression. In this mini review, the recent advancements made through in vitro analyses are reported on for the effect of BPA on various cellular signaling pathways focusing on the signaling pathways that play a major role in carcinogenesis.
Collapse
Affiliation(s)
- Samira Nomiri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Clinical Biochemistry Department, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131, Naples, Italy
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Borhan Mansouri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
38
|
Huang B, Luo N, Wu X, Xu Z, Wang X, Pan X. The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2353-2362. [PMID: 30467747 DOI: 10.1007/s11356-018-3780-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Selective estrogen receptor modulators such as tamoxifen (TAM) significantly reduce the risks of developing estrogen receptor-positive (ER+) breast cancer. Low concentrations (nanomolar range) of bisphenol A (BPA) shows estrogenic effects and further promotes the proliferation of hormone-dependent breast cancer cells. However, whether or not BPA can influence TAM-treatment resistance in breast cancer has not drawn much attention. In the current study, low concentrations of BPA reduced TAM-induced cytotoxicity of MCF-7 cells, which was proved by the suppression of cell apoptosis, transition of cell cycle from G1 to S phase, and upregulation of cyclin D1 and ERα. Simultaneously, the mRNA levels of estrogen-related receptor γ (ERRγ) and its coactivators, peroxisome proliferation-activated receptor γ coactivator-1α (PGC-1α), and PGC-1β, were increased. However, the similar effects were not observed in MDA-MB-231 cells. Our results indicated that low concentrations of BPA decreased the sensitivity of TAM in MCF-7 cells rather than in MDA-MB-231 cells. These different actions likely involved the interaction of relative receptors and coactivators. This study provided a possible support that the exposure of BPA in environmental media may potentially induce TAM resistance to breast cancer treatment.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xinhao Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
39
|
Awada Z, Sleiman F, Mailhac A, Mouneimne Y, Tamim H, Zgheib NK. BPA exposure is associated with non-monotonic alteration in ESR1 promoter methylation in peripheral blood of men and shorter relative telomere length in peripheral blood of women. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:118-128. [PMID: 29643374 DOI: 10.1038/s41370-018-0030-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/01/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
The aim of this study was to evaluate the potential association of urinary Bisphenol A (BPA) levels with estrogen receptor alpha (ESR1) promoter % methylation and relative telomere length in a sample of 482 participants. Urinary BPA concentration was measured using organic phase extraction followed by high performance liquid chromatography mass spectroscopy. Peripheral blood ESR1 promoter % methylation and relative telomere length were measured using direct bisulfite sequencing and real-time polymerase chain reaction, respectively. The mean ± SD urinary BPA concentration adjusted for urinary creatinine was 2.90 ± 4.81 (μg/g creatinine) with a median of 1.86 μg/g creatinine (min-max: <LOD -69.85). There was a potentially non-monotonic relationship between adjusted urinary BPA concentrations and ESR1 promoter % methylation in men. As a matter of fact, for the lowest tertile of ESR1 promoter % methylation, the OR and 95% CI of the middle and highest tertiles of urinary adjusted BPA were 2.54 (1.01-6.39) and 1.64 (0.55-4.86) when compared to the lowest BPA tertile, respectively. After adjustment for potential confounders, similar results remained in men and appeared in the whole cohort. As for relative telomere length, there was a significant trend whereby higher adjusted urinary BPA concentrations were significantly associated with shorter relative telomere length in females. For instance, for the shortest relative telomere length tertile, the OR and 95% CI of the middle and highest tertiles of urinary adjusted BPA were 2.91 (1.38-6.16) and 3.19 (1.57-6.49) when compared to the lowest BPA tertile, respectively. This trend remained significant after adjustment for potential confounders.
Collapse
Affiliation(s)
- Z Awada
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - F Sleiman
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - A Mailhac
- Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Y Mouneimne
- Kamal A. Shair Central Research Science Laboratory, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - H Tamim
- Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - N K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
40
|
Sidorkiewicz I, Czerniecki J, Jarząbek K, Zbucka-Krętowska M, Wołczyński S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018; 359:1-11. [DOI: 10.1016/j.taap.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
41
|
Cheng SF, Li L, Li B, Liu JC, Lai FN, Zhao Y, Zhang XF, Shen W, Li L. Low-dose diethylhexyl phthalate exposure does not impair the expressive patterns of epigenetics-related genes and DNA methylation of breast cancer-related genes in mouse mammary glands. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0016-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|
43
|
Delgado-López F, Zamora-León SP. Breast cancer and environmental contamination: A real connection? COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1520470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Fernando Delgado-López
- Facultad de Medicina, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| | - S. Pilar Zamora-León
- Facultad de Medicina, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
- Facultad de Ciencias Básicas, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| |
Collapse
|
44
|
Di Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A, Castoria G. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol 2017; 457:35-42. [PMID: 28257827 DOI: 10.1016/j.mce.2017.02.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are man-made substances widespread in the environment that include, among many others, bisphenol A (BPA), organochlorinated pesticides and hormone derivatives detectable in meat from animals raised in concentrated animal feeding operations. Increasing evidence indicates that EDCs have a negative impact on human health as well as on male and female fertility. They may also be associated with some endocrine diseases and increased incidence of breast and prostate cancer. This review aims to summarize available data on the (potential) impact of some common EDCs, focusing particularly on BPA, prostate cancer and their mechanisms of action. These compounds interfere with normal hormone signal pathway transduction, resulting in prolonged exposure of receptors to stimuli or interference with cellular hormone signaling in target cells. Understanding the effects of BPA and other EDCs as well as their molecular mechanism(s) may be useful in sensitizing the scientific community and the manufacturing industry to the importance of finding alternatives to their indiscriminate use.
Collapse
Affiliation(s)
- Marzia Di Donato
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gustavo Cernera
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Pia Giovannelli
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antonio Bilancio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antimo Migliaccio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gabriella Castoria
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
45
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
46
|
Xu F, Wang X, Wu N, He S, Yi W, Xiang S, Zhang P, Xie X, Ying C. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1609-1620. [PMID: 28964603 DOI: 10.1016/j.envpol.2017.09.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/toxicity
- Cattle
- Caveolin 1/biosynthesis
- Cell Culture Techniques
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Culture Media, Serum-Free
- Endocrine Disruptors/toxicity
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- HSP90 Heat-Shock Proteins/biosynthesis
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mice, SCID
- Phenols/toxicity
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Fangyi Xu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Xiaoning Wang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Nannan Wu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuiqing He
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Weijie Yi
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Siyun Xiang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Piwei Zhang
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Xie
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China.
| |
Collapse
|
47
|
Yang S, Zhang A, Li T, Gao R, Peng C, Liu L, Cheng Q, Mei M, Song Y, Xiang X, Wu C, Xiao X, Li Q. Dysregulated Autophagy in Hepatocytes Promotes Bisphenol A-Induced Hepatic Lipid Accumulation in Male Mice. Endocrinology 2017; 158:2799-2812. [PMID: 28323964 DOI: 10.1210/en.2016-1479] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that bisphenol A (BPA) exposure is associated with nonalcoholic fatty liver disease. Disruption of autophagy causes lipid accumulation in hepatocytes. Whether and how BPA regulates autophagy remains to be explored. We investigated the effect of BPA on autophagy in hepatocytes and examined the influence of BPA-regulated autophagy on hepatic lipid accumulation. Male CD1 mice were treated with BPA for 8 weeks, followed by histological and biochemical evaluation of liver lipids and autophagy. Also, the effects of BPA on autophagy and hepatic lipid accumulation were examined in primary hepatocytes and HepG2 cells. Lipid content in HepG2 cells and/or primary hepatocytes was increased obviously after BPA exposure. In addition, BPA exposure caused accumulation of autophagosomes in HepG2 cells and enhanced colocalization of Bodipy 493/503 with microtubule associated protein light-chain 3. These changes were accompanied with increased expression levels of p-mammalian target of rapamycin, p-p70S6 kinase, p-ULK1 and decreased expression levels of Atg5. BPA exposure also downregulated the expression of cathepsin L and decreased cytoplasmic retention of acridine orange in HepG2 cells. The impaired autophagic degradation was further evidenced by increased levels of p62 in BPA-treated HepG2 cells. At the whole animal level, BPA treatment induced lipid accumulation in livers of male CD1 mice, which was accompanied with changes in hepatic autophagy-related proteins. Moreover, induction of autophagy by Torin1 protected against BPA-induced lipid accumulation whereas suppression of autophagy by chloroquine exacerbated BPA-induced lipid accumulation in HepG2 cells. BPA dysregulates autophagy in hepatocytes, which is linked to BPA-induced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Aipin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rufei Gao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Chuan Peng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lulu Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mei Mei
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Song
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiao Xiang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
48
|
Tapella L, Sesta A, Cassarino MF, Zunino V, Catalano MG, Pecori Giraldi F. Benzene and 2-ethyl-phthalate induce proliferation in normal rat pituitary cells. Pituitary 2017; 20:311-318. [PMID: 27853917 PMCID: PMC5427103 DOI: 10.1007/s11102-016-0777-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Endocrine disruptors are known to modulate a variety of endocrine functions and increase the risk for neoplasia. Epidemiological data reported increased prevalence of pituitary tumors in high industrial areas while genotyping studies showed that mutations in the aryl hydrocarbon receptor (AhR) interacting protein (AIP)-chaperone to the dioxin ligand AhR-gene are linked to predisposition to pituitary tumor development. Aim of the present study was to establish whether endocrine pollutants can induce cell proliferation in normal rat pituitary cells. METHODS Pituitary primary cultures were incubated with 250, 650 and 1250 pM benzene or 2-ethyl-phthalate for up to 96 h and viability, energy content and cell proliferation assessed. Expression of pituitary tumor transforming gene (PTTG), cyclin D1 (Ccnd1), AhR and AIP was quantified by RT-qPCR. RESULTS Incubation with benzene or 2-ethyl-phthalate increased viability and energy content in pituitary cells. The endocrine disruptors also increased cell proliferation as well as Ccnd1 and PTTG expression. Increased AhR and AIP expression was observed after incubation with the two pollutants. CONCLUSIONS Our findings indicate that benzene and 2-ethyl-phthalate activate AhR/AIP expression and stimulate proliferation in normal rat pituitary cells. This study is the first demonstration that pollutants can induce normal pituitary cells to proliferate and provides a link between epidemiological and genomic findings in pituitary tumors.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Valentina Zunino
- Unit of Oncological Endocrinology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Francesca Pecori Giraldi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy.
| |
Collapse
|
49
|
DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients. Genes (Basel) 2017; 8:genes8050144. [PMID: 28505145 PMCID: PMC5448018 DOI: 10.3390/genes8050144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Early postnatal exposures to Bisphenol A (BPA) and genistein (GEN) have been reported to predispose for and against mammary cancer, respectively, in adult rats. Since the changes in cancer susceptibility occurs in the absence of the original chemical exposure, we have investigated the potential of epigenetics to account for these changes. DNA methylation studies reveal that prepubertal BPA exposure alters signaling pathways that contribute to carcinogenesis. Prepubertal exposure to GEN and BPA + GEN revealed pathways involved in maintenance of cellular function, indicating that the presence of GEN either reduces or counters some of the alterations caused by the carcinogenic properties of BPA. We subsequently evaluated the potential of epigenetic changes in the rat mammary tissues to predict survival in breast cancer patients via the Cancer Genomic Atlas (TCGA). We identified 12 genes that showed strong predictive values for long-term survival in estrogen receptor positive patients. Importantly, two genes associated with improved long term survival, HPSE and RPS9, were identified to be hypomethylated in mammary glands of rats exposed prepuberally to GEN or to GEN + BPA respectively, reinforcing the suggested cancer suppressive properties of GEN.
Collapse
|
50
|
Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:60-71. [PMID: 28181297 PMCID: PMC5458620 DOI: 10.1002/em.22072] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. Environ. Mol. Mutagen. 58:60-71, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, 36604-1405
| |
Collapse
|