1
|
Huang HY, Li FR, Zhang YF, Lau HC, Hsueh CY, Zhou L, Zhang M. Metagenomic shotgun sequencing reveals the enrichment of Salmonella and Mycobacterium in larynx due to prolonged ethanol exposure. Comput Struct Biotechnol J 2024; 23:396-405. [PMID: 38235358 PMCID: PMC10792199 DOI: 10.1016/j.csbj.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
The exposure of ethanol increases the risk of head and neck inflammation and tumor progression. However, limited studies have investigated the composition and functionality of laryngeal microbiota under ethanol exposure. We established an ethanol-exposed mouse model to investigate the changes in composition and function of laryngeal microbiota using Metagenomic shotgun sequencing. In the middle and late stages of the experiment, the laryngeal microbiota of mice exposed to ethanol exhibited obvious distinguished from that of the control group on principal-coordinate analysis (PCoA) plots. Among the highly abundant species, Salmonella enterica and Mycobacterium marinum were likely to be most impacted. Our findings indicated that the exposure to ethanol significantly increased their abundance in larynxes in mice of the same age, which has been confirmed through FISH experiments. Among the species-related functions and genes, metabolism is most severely affected by ethanol. The difference was most obvious in the second month of the experiment, which may be alleviated later because the animal established tolerance. Notable enrichments concerning energy, amino acid, and carbohydrate metabolic pathways occurred during the second month under ethanol exposure. Finally, based on the correlation between species and functional variations, a network was established to investigate relationships among microbiota, functional pathways, and related genes affected by ethanol. Our data first demonstrated the continuous changes of abundance, function and their interrelationship of laryngeal microbiota under ethanol exposure by Metagenomic shotgun sequencing. Importance Ethanol may participate in the inflammation and tumor progression by affecting the composition of the laryngeal microbiota. Here, we applied the metagenomic shotgun sequencing instead of 16 S rRNA sequencing method to identify the laryngeal microbiota under ethanol exposure. Salmonella enterica and Mycobacterium marinum are two dominant species that may play a role in the reconstruction of the laryngeal microenvironment, as their local abundance increases following exposure to ethanol. The metabolic function is most evidently impacted, and several potential metabolic pathways could be associated with alterations in microbiota composition. These findings could help us better understand the impact of prolonged ethanol exposure on the microbial composition and functionality in the larynx.
Collapse
Affiliation(s)
| | | | | | - Hui-Ching Lau
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Chung RS, Wong S, Lin D, Kokot NC, Sinha UK, Han AY. Mechanisms of crosstalk between the oropharyngeal microbiome and human papillomavirus in oropharyngeal carcinogenesis: a mini review. Front Oncol 2024; 14:1425545. [PMID: 39211550 PMCID: PMC11357953 DOI: 10.3389/fonc.2024.1425545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally. Notably, human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is on the rise, accounting for 70% of all OPSCC cases. Persistent high-risk HPV infection is linked to various cancers, but HPV infection alone is not sufficient to cause cancer. Advances in next-generation sequencing have improved our understanding of changes in the human microbiome of cancerous environments. Yet, there remains a dearth of knowledge on the impact of HPV-microbiome crosstalk in HPV-positive OPSCC. In this review, we examine what is known about the oropharyngeal microbiome and the compositional shifts in this microbiome in HPV-positive OPSCC. We also review potential mechanisms of crosstalk between HPV and specific microorganisms. Additional research is needed to understand these interactions and their roles on cancer development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Albert Y. Han
- Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Wang S, Tan X, Cheng J, Liu Z, Zhou H, Liao J, Wang X, Liu H. Oral microbiome and its relationship with oral cancer. J Cancer Res Ther 2024; 20:1141-1149. [PMID: 39206975 DOI: 10.4103/jcrt.jcrt_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.
Collapse
Affiliation(s)
- Shengran Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xiao Tan
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Juan Cheng
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Zeyang Liu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Huiping Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Jiyuan Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Hongyun Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| |
Collapse
|
4
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
5
|
van Dijk MC, Petersen JF, Raber-Durlacher JE, Epstein JB, Laheij AMGA. Diversity and compositional differences in the oral microbiome of oral squamous cell carcinoma patients and healthy controls: a scoping review. FRONTIERS IN ORAL HEALTH 2024; 5:1366153. [PMID: 38919733 PMCID: PMC11196763 DOI: 10.3389/froh.2024.1366153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Objectives The human oral microbiome may play a role in the development of oral squamous cell carcinoma. The aim of this scoping review was to examine microbial diversity and differences in the composition of the oral microbiome between OSCC patients and healthy controls. Methods A literature search (in PubMed and Embase.com) was performed on January 9, 2023. The outcome variables used from the included studies of this review were alpha- and beta diversity and oral microbiome composition profiles for each taxonomic level (phylum-, class-, order-, genus- and species level). Results Thirteen out of 423 studies were included in this review compromising 1,677 subjects, of which 905 (54.0%) were OSCC patients and 772 (46.0%) were healthy controls. Most studies found a higher alpha diversity in the OSCC patient group and significantly different beta diversities between OSCC patient samples and healthy control samples. Studies reported more abundant Fusobacteria (on phylum level), Fusobacterium (on genus level), Fusobacterium nucleatum, Porphyromonas endodontalis and Prevotella intermedia (on species level) in OSCC patients. The healthy control group had more abundant Actinobacteria (on phylum level), Streptococcus and Veilonella (on genus level) and Veilonella parvula (on species level) according to most studies. Conclusions Our findings show differences in oral microbiome diversity and composition in OSCC patients. Clinical implications demand continuing study. Development of internationally accepted standard procedures for oral sample collection and oral microbiota analysis is needed for more conclusive and clinically relevant comparisons in future research.
Collapse
Affiliation(s)
- M. C. van Dijk
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - J. F. Petersen
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - J. E. Raber-Durlacher
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J. B. Epstein
- City of Hope Comprehensive Cancer Center, Duarte CA and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical System, Los Angeles, CA, United States
| | - A. M. G. A. Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
7
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhou Y, Qin Y, Ma J, Li Z, Heng W, Zhang L, Liu H, Li R, Zhang M, Peng Q, Ye P, Duan N, Liu T, Wang W, Wang X. Heat-killed Prevotella intermedia promotes the progression of oral squamous cell carcinoma by inhibiting the expression of tumor suppressors and affecting the tumor microenvironment. Exp Hematol Oncol 2024; 13:33. [PMID: 38515216 PMCID: PMC10956211 DOI: 10.1186/s40164-024-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Our previous study showed that Prevotella intermedia (P. intermedia) were enriched in the oral mucosal surface, plaque, and saliva of patients with OSCC. Intratumoral microbiome could reshape the immune system and influence the development of various tumors. However, the invasion status of human OSCC tissues by P. intermedia and the pathway through which intratumoral P. intermedia potentiates tumor progression remain unexplored. METHODS P. intermedia in human OSCC or normal tissues was detected by FISH. A mouse OSCC cell line SCC7 was adopted to investigate the effects of heat-killed P. intermedia treatment on cell proliferation, invasion, and cytokine release by using CCK-8 assay, transwell invasion assay and ELISA. Moreover, we established a mouse transplanted tumor model by using SCC7 cells, injected heat-killed P. intermedia into tumor tissues, and investigated the effects of heat-killed P. intermedia on tumor growth, invasion, cytokine levels, immune cell infiltrations, and expression levels by using gross observation, H&E staining, ELISA, immunohistochemistry, mRNA sequencing, and transcriptomic analysis. RESULTS Our results indicated that P. intermedia were abundant in OSCC and surrounding muscle tissues. Heat-killed P. intermedia promoted SCC7 cell proliferation, invasion and proinflammatory cytokine secretions, accelerated transplanted tumor growth in mice, exacerbate muscle and perineural invasion of OSCC, elevated the serum levels of IL-17A, IL-6, TNF-α, IFN-γ, and PD-L1, induced Treg cells M2 type macrophages in mouse transplanted tumors. The data of transcriptomic analysis revealed that heat-killed P. intermedia increased the expression levels of inflammatory cytokines and chemokines while reduced the expression levels of some tumor suppressor genes in mouse transplanted tumors. Additionally, IL-17 signaling pathway was upregulated whereas GABAergic system was downregulated by heat-killed P. intermedia treatment. CONCLUSIONS Taken together, our results suggest that P. intermedia could inhibit the expression of tumor suppressors, alter the tumor microenvironment, and promote the progression of OSCC.
Collapse
Affiliation(s)
- Yifan Zhou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jingjing Ma
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lei Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ruowei Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Miaomiao Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Belibasakis GN, Senevirantne CJ, Jayasinghe RD, Vo PTD, Bostanci N, Choi Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontol 2000 2024. [PMID: 38501658 DOI: 10.1111/prd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
It has long been considered that the oral microbiome is tightly connected to oral health and that dysbiotic changes can be detrimental to the occurrence and progression of dysplastic oral mucosal lesions or oral cancer. Improved understanding of the concepts of microbial dysbiosis together with advances in high-throughput molecular sequencing of these pathologies have charted in greater microbiological detail the nature of their clinical state. This review discusses the bacteriome and mycobiome associated with oral mucosal lesions, oral candidiasis, and oral squamous cell carcinoma, aiming to delineate the information available to date in pursuit of advancing diagnostic and prognostic utilities for oral medicine.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Phuc Thi-Duy Vo
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| |
Collapse
|
10
|
Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, Lim XY, Reduan NA, Sim KS. Antimicrobial and Antiproliferative Effects of Zingiberaceae Oils: A Natural Solution for Oral Health. Chem Biodivers 2024; 21:e202301836. [PMID: 38253795 DOI: 10.1002/cbdv.202301836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
Collapse
Affiliation(s)
- Muhammad Amirul Amil
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathilah Abdul Razak
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, Universitas Padjadjaran, 40132, Kota Bandung, Indonesia
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lamis S O Salem
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xiu Yi Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Athirah Reduan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Sukmana BI, Saleh RO, Najim MA, AL-Ghamdi HS, Achmad H, Al-Hamdani MM, Taher AAY, Alsalamy A, Khaledi M, Javadi K. Oral microbiota and oral squamous cell carcinoma: a review of their relation and carcinogenic mechanisms. Front Oncol 2024; 14:1319777. [PMID: 38375155 PMCID: PMC10876296 DOI: 10.3389/fonc.2024.1319777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Emerging research suggests a strong association between OSCC and the oral microbiota, a diverse community of bacteria, fungi, viruses, and archaea. Pathogenic bacteria, in particular Porphyromonas gingivalis and Fusobacterium nucleatum, have been closely linked to OSCC. Moreover, certain oral fungi, such as Candida albicans, and viruses, like the human papillomavirus, have also been implicated in OSCC. Despite these findings, the precise mechanisms through which the oral microbiota influences OSCC development remain unclear and necessitate further research. This paper provides a comprehensive overview of the oral microbiota and its relationship with OSCC and discusses potential carcinogenic pathways that the oral microbiota may activate or modulate are also discussed.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia (Lecture of Pediatric Dentistry), Makassar, Indonesia
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna, Iraq
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
12
|
Zhang L, Valentin EMDS, John TM, Jenq RR, Do KA, Hanna EY, Peterson CB, Reyes-Gibby CC. Influence of oral microbiome on longitudinal patterns of oral mucositis severity in patients with squamous cell carcinoma of the head and neck. Cancer 2024; 130:150-161. [PMID: 37688396 PMCID: PMC10872366 DOI: 10.1002/cncr.35001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND This study investigated the influence of oral microbial features on the trajectory of oral mucositis (OM) in patients with squamous cell carcinoma of the head and neck. METHODS OM severity was assessed and buccal swabs were collected at baseline, at the initiation of cancer treatment, weekly during cancer treatment, at the termination of cancer treatment, and after cancer treatment termination. The oral microbiome was characterized via the 16S ribosomal RNA V4 region with the Illumina platform. Latent class mixed-model analysis was used to group individuals with similar trajectories of OM severity. Locally estimated scatterplot smoothing was used to fit an average trend within each group and to assess the association between the longitudinal OM scores and longitudinal microbial abundances. RESULTS Four latent groups (LGs) with differing patterns of OM severity were identified for 142 subjects. LG1 has an early onset of high OM scores. LGs 2 and 3 begin with relatively low OM scores until the eighth and 11th week, respectively. LG4 has generally flat OM scores. These LGs did not vary by treatment or clinical or demographic variables. Correlation analysis showed that the abundances of Bacteroidota, Proteobacteria, Bacteroidia, Gammaproteobacteria, Enterobacterales, Bacteroidales, Aerococcaceae, Prevotellaceae, Abiotrophia, and Prevotella_7 were positively correlated with OM severity across the four LGs. Negative correlation was observed with OM severity for a few microbial features: Abiotrophia and Aerococcaceae for LGs 2 and 3; Gammaproteobacteria and Proteobacteria for LGs 2, 3, and 4; and Enterobacterales for LGs 2 and 4. CONCLUSIONS These findings suggest the potential to personalize treatment for OM. PLAIN LANGUAGE SUMMARY Oral mucositis (OM) is a common and debilitating after effect for patients treated for squamous cell carcinoma of the head and neck. Trends in the abundance of specific microbial features may be associated with patterns of OM severity over time. Our findings suggest the potential to personalize treatment plans for OM via tailored microbiome interventions.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Erin Marie D. San Valentin
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teny M. John
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ehab Y. Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cielito C. Reyes-Gibby
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol Res Pract 2024; 253:154953. [PMID: 38039738 DOI: 10.1016/j.prp.2023.154953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Oral cancer tumors occur in the mouth and are mainly derived from oral mucosa linings. It is one of the most common and fatal malignant diseases worldwide. The intratumor heterogeneity (ITH) of oral cancerous tumor is vast, so it is challenging to study and interpret. Due to environmental selection pressures, ITH arises through diverse genetic, epigenetic, and metabolic alterations. The ITH also talks about peri-tumoral vascular/ lymphatic growth, perineural permeation, tumor necrosis, invasion, and clonal expansion/ the coexistence of multiple subclones in a single tumor. The heterogeneity offers tumors the adaptability to survive, induce growth/ metastasis, and, most importantly, escape antitumor therapy. Unfortunately, the ITH is prioritized less in determining disease pathology than the traditional TNM classifications or tumor grade. Understanding ITH is challenging, but with the advancement of technology, this ITH can be decoded. Tumor genomics, proteomics, metabolomics, and other modern analyses can provide vast information. This information in clinics can assist in understanding a tumor's severity and be used for diagnostic, prognostic, and therapeutic decision-making. Lastly, the oral tumor ITH can lead to individualized, targeted therapy strategies fighting against OC.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Kamre, Ranchi 835 222, Jharkhand, India.
| |
Collapse
|
14
|
Maley SJ, Yue Y, Burns KF, Hovey KM, Wactawski-Wende J, Freudenheim JL, McSkimming DI, LaMonte MJ, Andrews CA, Sun Y, Buck M, Millen AE. Alcohol Consumption and the Diversity of the Oral Microbiome in Postmenopausal Women. J Nutr 2024; 154:202-212. [PMID: 37913907 PMCID: PMC10808818 DOI: 10.1016/j.tjnut.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Alcohol reduces neutrophil function and decreases salivary flow, which could affect the composition of the oral microbiome. OBJECTIVE We hypothesized that the α- and β-diversity of the oral microbiome and the relative abundance of bacterial taxa would differ by frequency and type of alcohol consumption. METHODS We used a food frequency questionnaire to assess the frequency of consumption of beer, wine, and liquor (drinks/week) in a sample of 1179 postmenopausal women in the Osteoporosis and Periodontal Disease Study. Women were categorized as nondrinkers, drinking <1 drink/wk, ≥1 to <7 drinks/wk, or ≥7 drinks/wk for total alcohol consumption and for beer, wine, and liquor consumption. The composition and diversity of the oral microbiome was assessed from subgingival plaque samples using 16S ribosomal RNA amplicon sequencing. Permutational multivariate analysis of variance (PERMANOVA) was used to examine β-diversity (between-sample diversity) in the microbiome between alcohol consumption categories. Analysis of covariance was used to examine the mean α-diversity (within-sample diversity), assessed by the Shannon index (species evenness), Chao1 index (species richness), and observed operational taxonomic unit (OTU) count and the mean relative abundance of 245 bacterial taxa across alcohol consumption categories. RESULTS Over half of the participants (67%) consumed alcohol, with 14% reporting ≥1 drink/d. The β-diversity across categories of total alcohol consumption, but not categories of alcohol type, was statistically significantly different (P for PERMANOVA = 0.016). Mean α-diversity measures were statistically significantly higher (P < 0.05) in the highest category of total alcohol and wine consumption compared to nondrinkers; no significant associations were found for beer or liquor consumption. The relative abundance of 1 OTU, Selenomonassp._oral_taxon_133, was significantly lower in the highest level of total alcohol consumption compared to nondrinkers after adjustment for multiple comparisons. CONCLUSIONS Alcohol consumption was associated with the diversity and composition of the subgingival microbiome.
Collapse
Affiliation(s)
- Samantha J Maley
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yihua Yue
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kaelyn F Burns
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Daniel I McSkimming
- Interdisciplinary Unit in Data Science & Analytics, The State University of New York at Buffalo State University, Buffalo, NY, United States
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Chris A Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Yijun Sun
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Michael Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
15
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
16
|
Wang J, Gao B. Mechanisms and Potential Clinical Implications of Oral Microbiome in Oral Squamous Cell Carcinoma. Curr Oncol 2023; 31:168-182. [PMID: 38248096 PMCID: PMC10814288 DOI: 10.3390/curroncol31010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Microorganisms in the oral cavity are abundant in the human body. At present, more than 700 species of oral microorganisms have been identified. Recently, a lot of literature has indicated that the oral microbiota plays an important role in the occurrence, development, and prognosis of oral squamous cell carcinoma (OSCC) through various mechanisms. And researchers are now trying to utilize oral microbiota in cancer diagnosis and treatment. However, few articles systematically summarize the effects of oral microbes in the diagnosis, treatment, and disease outcomes of oral cancer. Herein, we made a summary of the microbial changes at cancerous sites and placed more emphasis on the mechanisms by which the oral microbiome promotes cancerization. Moreover, we aimed to find out the clinical value of the oral microbiome in OSCC.
Collapse
Affiliation(s)
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
17
|
Okolo O, Honzel E, Britton WR, Yu VX, Flashner S, Martin C, Nakagawa H, Parikh AS. Experimental Modeling of Host-Bacterial Interactions in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:5810. [PMID: 38136355 PMCID: PMC10742111 DOI: 10.3390/cancers15245810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The microscopic species colonizing the human body, collectively referred to as the microbiome, play a crucial role in the maintenance of tissue homeostasis, immunity, and the development of disease. There is evidence to suggest associations between alterations in the microbiome and the development of head and neck squamous cell carcinomas (HNSCC). The use of two-dimensional (2D) modeling systems has made significant strides in uncovering the role of microbes in carcinogenesis; however, direct mechanistic links remain in their infancy. Patient-derived three-dimensional (3D) HNSCC organoid and organotypic models have recently been described. Compared to 2D models, 3D organoid culture systems effectively capture the genetic and epigenetic features of parent tissue in a patient-specific manner and may offer a more nuanced understanding of the role of host-microbe responses in carcinogenesis. This review provides a topical literature review assessing the current state of the field investigating the role of the microbiome in HNSCC; including in vivo and in vitro modeling methods that may be used to characterize microbiome-epithelial interactions.
Collapse
Affiliation(s)
- Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - Emily Honzel
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - Victoria X. Yu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10027, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10027, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10027, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung GC, Najarzadegan F, Wong DT, Ton-That H, Wang CY, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2023:10.1111/prd.12542. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Pachiyappan Kamarajan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Alex Cho
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Sandy Wang
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Guo-Chin Hung
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Fereshteh Najarzadegan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - David T Wong
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Hung Ton-That
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Cun-Yu Wang
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Yvonne L Kapila
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
19
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Galvin S, Anishchuk S, Healy CM, Moran GP. Smoking, tooth loss and oral hygiene practices have significant and site-specific impacts on the microbiome of oral mucosal surfaces: a cross-sectional study. J Oral Microbiol 2023; 15:2263971. [PMID: 37795170 PMCID: PMC10547447 DOI: 10.1080/20002297.2023.2263971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
We investigated bacterial colonisation patterns of healthy mucosa (buccal, tongue, palate and floor of mouth) in a cohort of adults in order to determine how smoking, tooth loss, plaque levels and oral hygiene practices impacted on mucosal colonisation. A total of 322 swabs were recovered from 256 participants, of whom 46% were current smokers. We analysed colonization by sequencing the V1-V3 regions of the 16S rRNA gene. Palate and tongue microbiomes generally exhibited greater biodiversity than buccal and floor of mouth. Although Neisseria, Lautropia and Haemophilus spp. showed reduced abundance in smokers, buccal mucosa specifically showed a significant increase in Prevotella spp., whereas tongue and floor of mouth tended towards increased abundance of Streptococcus spp. Unexpectedly, tooth brushing frequency had a greater impact on mucosal community structure than plaque levels. Tooth loss was associated with significant reductions in mucosal biodiversity and had site-specific impacts, with buccal communities showing increased abundance of periodontitis-associated species and Rothia mucilaginosa, whereas tongue communities exhibited increased abundance of several streptococcal OTUs and reduced abundance of Haemophilus spp. This study highlights the complex relationship between mucosal colonisation and host factors, highlighting the need for careful consideration of these factors in mucosal microbiome studies.
Collapse
Affiliation(s)
- Sheila Galvin
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Sviatlana Anishchuk
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Claire M. Healy
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
22
|
Mauceri R, Coppini M, Vacca D, Bertolazzi G, Cancila V, Tripodo C, Campisi G. No Clear Clustering Dysbiosis from Salivary Microbiota Analysis by Long Sequencing Reads in Patients Affected by Oral Squamous Cell Carcinoma: A Single Center Study. Cancers (Basel) 2023; 15:4211. [PMID: 37686487 PMCID: PMC10486367 DOI: 10.3390/cancers15174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Advancements in DNA sequencing technology have facilitated the assessment of the connection between the oral microbiome and various diseases. The aim of the present study was to investigate the salivary microbiota composition employing for the first time in the literature the Oxford Nanopore Technology in patients affected by oral squamous cell carcinoma (OSCC). METHODS Unstimulated saliva samples of 31 patients were collected (24 OSCC patients and 7 controls). DNA was extracted using the QIAamp DNA Blood Kit and metagenomic long sequencing reads were performed using the MinION device. RESULTS In the OSCC group, 13 were males and 11 were females, with a mean age of 65.5 ± 13.9 years; in the control group, 5 were males and 2 were females, with a mean age of 51.4 ± 19.2 years. The border of the tongue was the most affected OSCC site. The microorganisms predominantly detected in OSCC patients were Prevotella, Chlamydia, Tissierellia, Calothrix, Leotiomycetes, Firmicutes and Zetaproteobacteria. CONCLUSIONS This study confirmed the predominance of periodontopathic bacteria in the salivary microbiome in the OSCC group. If a direct correlation between oral dysbiosis and OSCC onset was proven, it could lead to new prevention strategies and early diagnostic tools.
Collapse
Affiliation(s)
- Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility and Continuity of Care, University Hospital Palermo, 90127 Palermo, Italy
| | - Martina Coppini
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 90100 Messina, Italy
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
- Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility and Continuity of Care, University Hospital Palermo, 90127 Palermo, Italy
| |
Collapse
|
23
|
Ting HSL, Chen Z, Chan JYK. Systematic review on oral microbial dysbiosis and its clinical associations with head and neck squamous cell carcinoma. Head Neck 2023; 45:2120-2135. [PMID: 37249085 DOI: 10.1002/hed.27422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES The relationship between head and neck squamous cell carcinoma (HNSCC) and the oral microbiome has been drawn in various studies. Microbial diversities, microbiome profiles, metagenomic analysis, and host-pathogen interactions were collected from these studies to highlight similarities and account for inconsistencies. We also evaluate the possible clinical applications of the microbiome regarding screening and diagnosis of HNSCC. METHODS Systematic analysis of studies regarding HNSCC and the microbiome was done according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines. Articles were retrieved from four databases (PubMed, ScienceDirect, CUHK Full-Text Journals, and Cochrane database) and were screened using predefined criteria. RESULTS Twenty studies were chosen after screening for full-text review. α-diversity comparison was inconsistent whereas β-diversity between HNSCC and normal samples showed distinct clustering. Microbial dysbiosis characterized by change in the relative abundances of several bacterial species were also seen in HNSCC patients. At a phylum level, inconsistencies were seen between studies using HNSCC tumor tissue samples and saliva samples. At a genus level, Fusobacterium, Peptostreptococcus, Alloprevotella, Capnocytophaga, Catonella, and Prevotella were differentially enriched in HNSCC while Streptococcus, Actinomyces Veillonella, and Rothia were differentially depleted. Co-occurrence network analysis revealed a positive correlation of HNSCC with periodontal pathogens and a negative correlation with commensal bacteria. Metagenomic analysis of microbiota revealed a differential enrichment of pro-inflammatory genomic pathways which was consistent across various studies. Microbial dysbiosis was applied in clinical use as a tool for HNSCC screening. Random-forest analysis was adopted to differentiate between tumor and normal tissue, at 95.7% and 70.0% accuracies respectively in two studies. Microbial dysbiosis index was also used to predict prognosis. CONCLUSIONS Oral microbial dysbiosis could be a promising tool for HNSCC screening and diagnosis. However, more research should be conducted pertaining to clinical applications to improve diagnostic accuracy and explore other clinical uses.
Collapse
Affiliation(s)
- Haaron S L Ting
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
25
|
Benjamin WJ, Wang K, Zarins K, Bellile E, Blostein F, Argirion I, Taylor JMG, D’Silva NJ, Chinn SB, Rifkin S, Sartor MA, Rozek LS. Oral Microbiome Community Composition in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2549. [PMID: 37174014 PMCID: PMC10177240 DOI: 10.3390/cancers15092549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of the oral microbiome on head and neck cancer pathogenesis and outcomes requires further study. 16s rRNA was isolated and amplified from pre-treatment oral wash samples for 52 cases and 102 controls. The sequences were binned into operational taxonomic units (OTUs) at the genus level. Diversity metrics and significant associations between OTUs and case status were assessed. The samples were binned into community types using Dirichlet multinomial models, and survival outcomes were assessed by community type. Twelve OTUs from the phyla Firmicutes, Proteobacteria, and Acinetobacter were found to differ significantly between the cases and the controls. Beta-diversity was significantly higher between the cases than between the controls (p < 0.01). Two community types were identified based on the predominant sets of OTUs within our study population. The community type with a higher abundance of periodontitis-associated bacteria was more likely to be present in the cases (p < 0.01), in older patients (p < 0.01), and in smokers (p < 0.01). Significant differences between the cases and the controls in community type, beta-diversity, and OTUs indicate that the oral microbiome may play a role in HNSCC.
Collapse
Affiliation(s)
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freida Blostein
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genomics, National Cancer Institute, Bethesda, MA 20814, USA
| | - Jeremy M. G. Taylor
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven B. Chinn
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samara Rifkin
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura S. Rozek
- Medical Center Department of Oncology, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
26
|
Li Z, Fu R, Wen X, Wang Q, Huang X, Zhang L. The significant clinical correlation of the intratumor oral microbiome in oral squamous cell carcinoma based on tissue-derived sequencing. Front Physiol 2023; 13:1089539. [PMID: 36699672 PMCID: PMC9868672 DOI: 10.3389/fphys.2022.1089539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background: The microbiota is a critical component of the complex human microenvironment, impacting various physiological processes and disease development via the microbe-host interaction. In particular, the oral microbiota profoundly affects tumor development and progression. There is increasing evidence that oral microbiota is associated with the development of oral cancer, especially oral squamous cell carcinoma (OSCC). Methods: We comprehensively analyzed the oral microbiota in 133 OSCC samples worldwide. Subsequently, we evaluated the microbial compositions between OSCC patients and healthy people and their correlation with clinical parameters. The value of the oral microbiota as a diagnostic and prognostic biomarker was also determined. Results: This study found differences in critical oral microbiota between OSCC and normal controls. The most notable differences are present in p_Firmicutes, p_Actinobacteria, c_Fusobacteriia, o_Fusobacteriales, f_Fusobacteriaceae, and g_Fusobacterium. All six-level oral microorganisms were also associated with the clinical characteristics of OSCC, particularly with the clinical outcomes (survival time and status). We developed a predictive model based on this. We found that five different oral microorganisms have high confidence and can be used for clinical diagnosis and prognostic prediction, except for p_Actinobacteria. Conclusion: This study revealed that the intratumor oral microbiota of OSCC patients worldwide and the microbial signatures of OSCC patients possess similar properties in different regions, further refining the shortcomings of the current research field. We revealed that the oral microbiota could be used as a biomarker to reflect human health and disease progression status. This will provide new directions for tumor microbiome research. This means we can develop strategies through diet, probiotics, and antibiotics for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Affliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,National Center for Stomatology, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology, Shanghai, China,Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Ling Zhang,
| |
Collapse
|
27
|
Galvin S, Moran GP, Healy CM. Influence of site and smoking on malignant transformation in the oral cavity: Is the microbiome the missing link? FRONTIERS IN ORAL HEALTH 2023; 4:1166037. [PMID: 37035251 PMCID: PMC10076759 DOI: 10.3389/froh.2023.1166037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
The tongue and floor of the mouth are high-risk sites for oral squamous cell carcinoma (OSCC), while smoking is its most significant risk factor. Recently, questions have been raised as to the role of the oral microbiome in OSCC because of a wealth of evidence demonstrating that the microbiome of OSCC differs from that of healthy mucosa. However, oral site and smoking also have a significant impact on oral microbial communities, and to date, the role these factors play in influencing the dysbiotic microbial communities of OSCC and precursor lesions has not been considered. This review aims to examine the influence of site and smoking on the oral microbiome and, in turn, whether these microbiome changes could be involved in oral carcinogenesis.
Collapse
Affiliation(s)
- Sheila Galvin
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
- Correspondence: Sheila Galvin
| | - Gary P. Moran
- Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Claire M. Healy
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, School of Dental Science, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
28
|
Jha A, Nath N, Kumari A, Kumari N, Panda AK, Mishra R. Polymorphisms and haplotypes of TLR-4/9 associated with bacterial infection, gingival inflammation/recession and oral cancer. Pathol Res Pract 2023; 241:154284. [PMID: 36563560 DOI: 10.1016/j.prp.2022.154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The expression and SNPs of innate immunity genes TLR-4/9 for bacterial infection, gingival inflammation/gingival recession (GIGR), and oral squamous cell carcinoma (OSCC) are largely unknown. PATIENTS AND METHOD 235 specimens (120 OSCC cases, among which 85 cases with either Porphyromonas gingivalis, Fusobacterium nucleatum or Treponema denticola infection and GIGR) and 115 healthy controls were used to know the expression and polymorphisms (TLR-4: N1:rs10759931, N2:rs11536889, N3:rs1927911, N4:rs4986790; TLR-9: N5:rs5743836, N6:rs352140, N7:rs187084 and N8:rs352139) of TLR-4/9 by western blot, RT-PCR, and allele-specific (AS)-PCR followed by sequencing. RESULTS Increased TLR-4/9 mRNA/protein expression, bacterial infection (BI) and GIGR were associated with OSCC incidence. One of the three BI and GIGR was observed in 70.83% of OSCC cases, whereas all the HC used were free from any of these three BI/GIGR. The N3: CT-genotype (Odds Ratio hereafter as O.R.=1.811, p = 0.0338), TT-genotype (O.R.=3.094, p = 0.0124), 'T'-allele (O.R.=1.821, p = 0.003), N4: AG-genotype (O.R.=2.015, p = 0.0222) and 'G'-allele (O.R.=1.86, p = 0.018) of TLR-4 as well as the N5: CC-genotype (O.R.=3.939, p = 0.0017), 'C'-allele (O.R.=1.839, p = 0.0042), N6: AA-genotype (O.R.=2.195, p = 0.0234), 'A'-allele (O.R.=1.569, p = 0.0163), N7: TC-genotype (O.R.=2.083, p = 0.0136), CC-genotype (O.R.=2.984, p = 0.003) and 'C'-allele (O.R.=1.885, p = 0.0008) of TLR-9 were associated with increased OSCC risk. Similarly, the N2:'C'-allele (O.R.=1.615, p = 0.0382), N3: TT-genotype (O.R.=2.829, p = 0.0336), 'T'-allele (O.R.=1.742, p = 0.0115), N4: AG-genotype (O.R.=2.221, p = 0.0147) and 'G'-allele (O.R.=1.890, p = 0.0238) of TLR-4 as well as the N5: CC-genotype (O.R.=2.830, p = 0.031), N6: AA-genotype (O.R.=2.6, p = 0.0122) and 'A'-allele (O.R.=1.746, p = 0.0064), N7:CC-genotype (O.R.2.706, p = 0.0111) and 'C'-allele (O.R. 1.774, p = 0.0055) of TLR-9 were correlated with GIGR and BI. TLR-4 (N1-N2-N3-N4: A-C-T-A (O.R.=2.1, p = 0.0069) and TLR-9 (N5-N6-N7-N8: T-A-C-A (O.R.=2.019, p = 0.0263); C-A-C-A (O.R.=6.0, p = 0.0084); C-A-C-G (O.R.=4.957, p = 0.0452) haplotypes were linked with OSCC vulnerability, while the TLR-4 (N1-N2-N3-N4: G-C-C-A (O.R.=0.5752, p = 0.0131) and TLR-9 (N5-N6-N7-N8: T-G-T-A (O.R.=0.5438, p = 0.0314); T-G-T-G (O.R.=0.5241, p = 0.036) haplotypes offered protection. CONCLUSION TLR-4/9 expression, polymorphisms, and BI-induced GIGR could increase OSCC risk. This may be used in pathogenesis and oral cancer prediction.
Collapse
Affiliation(s)
- Arpita Jha
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Anjali Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Aditya K Panda
- P.G. Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
29
|
Dorobisz K, Dorobisz T, Zatoński T. The Microbiome's Influence on Head and Neck Cancers. Curr Oncol Rep 2023; 25:163-171. [PMID: 36696075 PMCID: PMC9947050 DOI: 10.1007/s11912-022-01352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW Head and neck tumors (HNC) rank sixth among cancers worldwide. Due to their late diagnosis and poor prognosis, they are a clinical challenge. However, recent years have seen a dynamic development of science on the microbiome. The aim of the study is to discuss the role of the microbiome in HNC, the impact of the microbiome on oncogenesis, the course of the disease, as well as on treatment, and its toxicity. RECENT FINDINGS The microbiome's influence on oncogenesis, the course of the disease, and the effectiveness of oncological treatment have been confirmed in cancers of the colon, pancreas, lungs, and prostate. There is no solid literature on HNC. Many studies indicate disruption of the oral microbiome and periodontal disease as potential cancer risk factors. Disruption of the microbiome increases radiotherapy's toxicity, intensifying radiation reactions. The microbiome plays an important role in cancer. It is a new target in research into new therapies. It may also be a prognostic marker of cancer development. Changes in the composition of the microbiome modulate the effectiveness of oncological treatment. More research is needed on the microbiome and its effects on HNC.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland.
| | - Tadeusz Dorobisz
- Department of Vascular and General Surgery, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland.
| | - Tomasz Zatoński
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland.
| |
Collapse
|
30
|
Bahuguna M, Hooda S, Mohan L, Gupta RK, Diwan P. Identifying oral microbiome alterations in adult betel quid chewing population of Delhi, India. PLoS One 2023; 18:e0278221. [PMID: 36598926 DOI: 10.1371/journal.pone.0278221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023] Open
Abstract
The study targets to establish a factorial association of oral microbiome alterations (oral dysbiosis) with betel quid chewing habits through a comparison of the oral microbiome of Betel quid chewers and non-chewing individuals. Oral microbiome analysis of 22 adult individuals in the Delhi region of India through the 16S sequencing approach was carried out to observe the differences in taxonomic abundance and diversity. A significant difference in diversity and richness among Betel Quid Chewers (BQC) and Betel Quid Non-Chewers (BQNC) groups was observed. There were significant differences in alpha diversity among the BQC in comparison to BQNC. However, in the age group of 21-30 years old young BQC and BQNC there was no significant difference in alpha diversity. Similar result was obtained while comparing BQC and Smoker-alcoholic BQC. BQ smoker-chewers expressed significant variance in comparison to BQC, based on cluster pattern analysis. The OTU-based Venn Diagram Analysis revealed an altered microbiota, for BQ chewing group with 0-10 years exposure in comparison to those with 10 years and above. The change in the microbial niche in early chewers may be due to abrupt chemical component exposure affecting the oral cavity, and thereafter establishing a unique microenvironment in the long-term BQC. Linear discriminant analysis revealed, 55 significant features among BQC and Alcoholic-Smoker BQC; and 20 significant features among BQC and Smoker BQC respectively. The study shows the abundance of novel bacterial genera in the BQC oral cavity in addition to the commonly found ones. Since the oral microbiome plays a significant role in maintaining local homeostasis, investigating the link between its imbalance in such conditions that are known to have an association with oral diseases including cancers may lead to the identification of specific microbiome-based signatures for its early diagnosis.
Collapse
Affiliation(s)
- Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Sunila Hooda
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Lalit Mohan
- Department of Biotechnology, Delhi Technological University, Rohini, Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
31
|
Maki KA, Ganesan SM, Meeks B, Farmer N, Kazmi N, Barb JJ, Joseph PV, Wallen GR. The role of the oral microbiome in smoking-related cardiovascular risk: a review of the literature exploring mechanisms and pathways. J Transl Med 2022; 20:584. [PMID: 36503487 PMCID: PMC9743777 DOI: 10.1186/s12967-022-03785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and cardiovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking. Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smokers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. We review possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation, modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular risk reduction can be identified.
Collapse
Affiliation(s)
- Katherine A. Maki
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Sukirth M. Ganesan
- grid.214572.70000 0004 1936 8294Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd., Iowa City, IA 52242 USA
| | - Brianna Meeks
- grid.411024.20000 0001 2175 4264University of Maryland, School of Social Work, Baltimore, MD USA
| | - Nicole Farmer
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Narjis Kazmi
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Jennifer J. Barb
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,grid.280738.60000 0001 0035 9863National Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | - Gwenyth R. Wallen
- grid.410305.30000 0001 2194 5650Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, 10 Center Drive, Building 10, Bethesda, MD 20814 USA
| |
Collapse
|
32
|
Chen YL, Huang KC, Wu JH, Liu T, Chen JW, Xie JY, Chen MY, Wu LW, Tung CL. Microbiome dysbiosis inhibits carcinogen-induced murine oral tumorigenesis. J Cancer 2022; 13:3051-3060. [PMID: 36046649 PMCID: PMC9414028 DOI: 10.7150/jca.75947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Oral cancer is one of the most common cancers worldwide and ranks fourth for the mortality rate of cancers in males in Taiwan. The oral microbiota is the microbial community in the oral cavity, which is essential for maintaining oral health, but the relationship between oral tumorigenesis and the oral microbiota remains to be clarified. This study evaluated the effect of microbiome dysbiosis on oral carcinogenesis in mice, and the impact of the microbiome and its metabolic pathways on regulating oral carcinogenesis. We found that antibiotics treatment decreases carcinogen-induced oral epithelial malignant transformation. Microbiome analysis based on 16S rRNA gene sequencing revealed that the species richness of fecal specimens was significantly reduced in antibiotic-treated mice, while that in the salivary specimens was not decreased accordingly. Differences in bacterial composition, including Lactobacillus animalis abundance, in the salivary samples of cancer-bearing mice was dramatically decreased. L. animalis was the bacterial species that increased the most in the saliva of antibiotic-treated mice, suggesting that L. animalis may be negatively associated with oral carcinogenesis. In functional analysis, the microbiome in the saliva of the tumor-bearing group showed greater potential for polyamine biosynthesis. Immunochemical staining proved that spermine oxidase, an effective polyamine oxidase, was upregulated in mouse oral cancer lesions. In conclusion, oral microbiome dysbiosis may alter polyamine metabolic pathways and reduce carcinogen-induced malignant transformation of the oral epithelium.
Collapse
Affiliation(s)
- Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chih Huang
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Yan Xie
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Yen Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Liang Tung
- Department of Oral Maxillo-Facial Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60080, Taiwan
| |
Collapse
|
33
|
He Z, Tian W, Wei Q, Xu J. Involvement of Fusobacterium nucleatum in malignancies except for colorectal cancer: A literature review. Front Immunol 2022; 13:968649. [PMID: 36059542 PMCID: PMC9428792 DOI: 10.3389/fimmu.2022.968649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is originally an oral opportunistic pathogen and accumulating evidence links the presence of F. nucleatum with the pathogenicity, development, and prognosis of colorectal cancer (CRC). However, only limited preliminary data is available dealing with the role of F. nucleatum in other malignancies except for CRC. The present review aims to update and systematize the latest information about the mechanisms of F. nucleatum-mediating carcinogenesis, together with the detection rates, clinicopathological, and molecular features in F. nucleatum-associated malignancies. Comparing with adjacent non-tumorous tissue, previous studies have shown an overabundance of intratumoural F. nucleatum. Although the prognostic role of F. nucleatum is still controversial, a higher prevalence of F. nucleatum was usually associated with a more advanced tumor stage and a worse overall survival. Preliminary evidence have shown that epithelial-to-mesenchymal transition (EMT) and relevant inflammation and immune response aroused by F. nucleatum may be the probable link between F. nucleatum infection and the initiation of oral/head and neck cancer. Further studies are needed to elucidate the etiologic role of the specific microbiota and the connection between the extent of periodontitis and carcinogenesis in different tumor types. The mechanisms of how the antibiotics exerts the critical role in the carcinogenesis and antitumor effects in malignancies other than CRC need to be further explored.
Collapse
Affiliation(s)
- Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Xu,
| |
Collapse
|
34
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
35
|
Fang Y, Yang Y, Liu C. Evolutionary Relationships Between Dysregulated Genes in Oral Squamous Cell Carcinoma and Oral Microbiota. Front Cell Infect Microbiol 2022; 12:931011. [PMID: 35909962 PMCID: PMC9328420 DOI: 10.3389/fcimb.2022.931011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers in the world. Changes in the composition and abundance of oral microbiota are associated with the development and metastasis of OSCC. To elucidate the exact roles of the oral microbiota in OSCC, it is essential to reveal the evolutionary relationships between the dysregulated genes in OSCC progression and the oral microbiota. Thus, we interrogated the microarray and high-throughput sequencing datasets to obtain the transcriptional landscape of OSCC. After identifying differentially expressed genes (DEGs) with three different methods, pathway and functional analyses were also performed. A total of 127 genes were identified as common DEGs, which were enriched in extracellular matrix organization and cytokine related pathways. Furthermore, we established a predictive pipeline for detecting the coevolutionary of dysregulated host genes and microbial proteomes based on the homology method, and this pipeline was employed to analyze the evolutionary relations between the seven most dysregulated genes (MMP13, MMP7, MMP1, CXCL13, CRISPO3, CYP3A4, and CRNN) and microbiota obtained from the eHOMD database. We found that cytochrome P450 3A4 (CYP3A4), a member of the cytochrome P450 family of oxidizing enzymes, was associated with 45 microbes from the eHOMD database and involved in the oral habitat of Comamonas testosteroni and Arachnia rubra. The peptidase M10 family of matrix metalloproteinases (MMP13, MMP7, and MMP1) was associated with Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Streptococcus salivarius, Tannerella sp._HMT_286, and Streptococcus infantis in the oral cavity. Overall, this study revealed the dysregulated genes in OSCC and explored their evolutionary relationship with oral microbiota, which provides new insight for exploring the microbiota–host interactions in diseases.
Collapse
Affiliation(s)
- Yang Fang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu,
| |
Collapse
|
36
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
38
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
39
|
Könönen E, Fteita D, Gursoy UK, Gursoy M. Prevotella species as oral residents and infectious agents with potential impact on systemic conditions. J Oral Microbiol 2022; 14:2079814. [PMID: 36393976 PMCID: PMC9662046 DOI: 10.1080/20002297.2022.2079814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022] Open
Abstract
Oral Prevotella are known as anaerobic commensals on oral mucosae and in dental plaques from early life onwards, including pigmented P. melaninogenica, P. nigrescens, and P. pallens and non-pigmented Prevotella species. Many Prevotella species contribute to oral inflammatory processes, being frequent findings in dysbiotic biofilms of periodontal diseases (P. intermedia, P. nigrescens), cariotic lesions (P. denticola, Alloprevotella (formerly Prevotella) tannerae), endodontic infections (P. baroniae, P. oris, P. multisaccharivorax), and other clinically relevant oral conditions. Over the years, several novel species have been recovered from the oral cavity without knowledge of their clinical relevance. Within this wide genus, virulence properties and other characteristics like biofilm formation seemingly vary in a species- and strain-dependent manner, as shown for the P. intermedia group organisms (P. aurantiaca, P. intermedia, P. nigrescens, and P. pallens). Oral Prevotella species are identified in various non-oral infections and chronic pathological conditions. Here, we have updated the knowledge of the genus Prevotella and the role of Prevotella species as residents and infectious agents of the oral cavity, as well as their detection in non-oral infections, but also gathered information on their potential link to cancers of the head and neck, and other systemic disorders.
Collapse
Affiliation(s)
- Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Dareen Fteita
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K. Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
40
|
The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel) 2022; 13:genes13040594. [PMID: 35456400 PMCID: PMC9027895 DOI: 10.3390/genes13040594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, with a reported 5-year survival rate of around 50% after treatment. Epigenetic modifications are considered to have a key role in oral carcinogenesis due to histone modifications, aberrant DNA methylation, and altered expression of miRNAs. MicroRNAs (miRNAs) are small non-coding RNAs that have a key role in cancer development by regulating signaling pathways involved in carcinogenesis. MiRNA deregulation identified in oral cancer has led to the idea of using them as potential biomarkers for early diagnosis, prognosis, and the development of novel therapeutic strategies. In recent years, a key role has been observed for risk factors in preventing and treating this malignancy. The purpose of this review is to summarize the recent knowledge about the altered mechanisms of oral cancer due to risk factors and the role of miRNAs in these mechanisms.
Collapse
|
41
|
Hsueh CY, Huang Q, Gong H, Shen Y, Sun J, Lau HC, Zhang D, Tang D, Wu C, Guo Y, Huang H, Cao P, Tao L, Zhang M, Zhou L. A positive feed-forward loop between Fusobacterium nucleatum and ethanol metabolism reprogramming drives laryngeal cancer progression and metastasis. iScience 2022; 25:103829. [PMID: 35198889 PMCID: PMC8851092 DOI: 10.1016/j.isci.2022.103829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
Alcohol consumption, which affects the structure and composition of the laryngeal microbiota, is one of the most important risk factors for laryngeal squamous cell cancer (LSCC). Our results demonstrated that high enrichment of Fusobacterium nucleatum (F. nucleatum) in LSCC was associated with poor prognosis. F. nucleatum increased miR-155-5p and miR-205-5p expression to suppress alcohol dehydrogenase 1B (ADH1B) and transforming growth factor β receptor 2 (TGFBR2) expression by activating innate immune signaling, resulting in ethanol metabolism reprogramming to allow F. nucleatum accumulation and PI3K/AKT signaling pathway activation to promote epithelial-mesenchymal transition, further exacerbating the uncontrolled progression and metastasis of LSCC. Therefore, the positive feed-forward loop between F. nucleatum and ethanol metabolism reprogramming promotes cell proliferation, migration, and invasion to affect LSCC patient prognosis. The amount of F. nucleatum is a potential prognostic biomarker, which yields valuable insight into clinical management that may improve the oncologic outcome of patients with LSCC.
Collapse
Affiliation(s)
- Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Hongli Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Yujie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Ji Sun
- Department of Pathology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Hui-Ching Lau
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Duo Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Di Tang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Yang Guo
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Huiying Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Pengyu Cao
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Lei Tao
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai 200031, China
| |
Collapse
|
42
|
Associations of Genetic Polymorphisms of mTOR rs2295080 T/G and rs1883965 G/A with Susceptibility of Urinary System Cancers. DISEASE MARKERS 2022; 2022:1720851. [PMID: 35082928 PMCID: PMC8786550 DOI: 10.1155/2022/1720851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
Background. Genetic polymorphisms in mammalian target of rapamycin (mTOR) signaling axis can influence the susceptibility of cancer. The relationship between mTOR gene variants rs2295080 T/G and rs1883965 G/A and the risk of cancer remains inconsistent. The present study is aimed at comprehensively investigating the association between mTOR polymorphisms and susceptibility to cancer. Methods. We conducted a comprehensive assessment using odds ratios (ORs), corresponding 95% confidence intervals (CIs), and in silico tools to evaluate the effect of mTOR variations. Immunohistochemical staining (IHS) and GSEA analysis were used to investigate the expression of mTOR in urinary system cancer. Results. The pooled analysis involved 22 case-control studies including 14,747 cancer patients and 16,399 controls. The rs2295080 T/G polymorphism was associated with the risk of cancer (G-allele versus T-allele,
,
–0.98,
; GT versus TT,
,
–0.96,
; GG+GT versus TT,
,
–0.96,
), especially for cancers of the urinary system, breast, and blood. Variation rs1883965 G/A was associated with cancer susceptibility, especially for digestive cancer. IHS analysis showed that mTOR was upregulated in prostate and bladder cancer. GSEA revealed that the insulin signaling pathway, lysine degradation pathway, and mTOR signaling pathway were enriched in the high mTOR expression group. Conclusions. The mTOR rs2295080 T/G polymorphism may be associated with susceptibility of urinary cancer. The expression of mTOR is positively correlated with tumor malignancy in prostate cancer.
Collapse
|
43
|
Chen L, Zheng T, Yang Y, Chaudhary PP, Teh JPY, Cheon BK, Moses D, Schuster SC, Schlundt J, Li J, Conway PL. Integrative multiomics analysis reveals host-microbe-metabolite interplays associated with the aging process in Singaporeans. Gut Microbes 2022; 14:2070392. [PMID: 35549618 PMCID: PMC9116421 DOI: 10.1080/19490976.2022.2070392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.
Collapse
Affiliation(s)
- Liwei Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yifan Yang
- Office of Education Research, and Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, Singapore
| | - Prem Prashant Chaudhary
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean Pui Yi Teh
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Bobby K. Cheon
- School of Social Sciences, Nanyang Technological University, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
- Eunice Kenndy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Joergen Schlundt
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Jun Li
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Patricia L. Conway
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences,The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
44
|
Metsäniitty M, Hasnat S, Salo T, Salem A. Oral Microbiota-A New Frontier in the Pathogenesis and Management of Head and Neck Cancers. Cancers (Basel) 2021; 14:cancers14010046. [PMID: 35008213 PMCID: PMC8750462 DOI: 10.3390/cancers14010046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC) is a group of common and aggressive tumors. Recently, oral microbiota has been credited as an important player in carcinogenesis. However, the available knowledge is not always consistent and sometimes conflicting. Therefore, the present comprehensive systematic review of the current clinical reports was conducted to evaluate the role of oral microbiota in HNSCC. Importantly, this study addresses whether oral microbiota targeting could provide diagnostic, prognostic or therapeutic utility in cancer patients. We also discussed the current limitations of this newly emerging field and the potential related strategies for the management of patients with HNSCC and possibly other solid tumors. Abstract Head and neck squamous cell carcinoma (HNSCC) comprises the majority of tumors in head and neck tissues. The prognosis of HNSCC has not significantly improved for decades, signifying the need for new diagnostic and therapeutic targets. Recent evidence suggests that oral microbiota is associated with carcinogenesis. Thus, we conducted a comprehensive systematic review to evaluate the current evidence regarding the role of oral microbiota in HNSCC and whether their targeting may confer diagnostic, prognostic or therapeutic utility. Following the screening of 233 publications retrieved from multiple databases, 34 eligible studies comprising 2469 patients were compiled and critically appraised. Importantly, many oral pathogens, such as Porphyromonas gingivalis and Fusobacterium nucleatum were linked to certain oral potentially malignant lesions and various types of HNSCC. Furthermore, we summarized the association between the expression profiles of different oral bacterial species and their tumorigenic and prognostic effects in cancer patients. We also discussed the current limitations of this newly emerging area and the potential microbiota-related strategies for preventing and treating HNSCC. Whilst many clinical studies are underway to unravel the role of oral microbiota in cancer, the limited available data and experimental approaches reflect the newness of this promising yet challenging field.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
45
|
Barb JJ, Maki KA, Kazmi N, Meeks BK, Krumlauf M, Tuason RT, Brooks AT, Ames NJ, Goldman D, Wallen GR. The oral microbiome in alcohol use disorder: a longitudinal analysis during inpatient treatment. J Oral Microbiol 2021; 14:2004790. [PMID: 34880965 PMCID: PMC8648028 DOI: 10.1080/20002297.2021.2004790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Alcohol use disorder (AUD)-induced disruption of oral microbiota can lead to poor oral health; there have been no studies published examining the longitudinal effects of alcohol use cessation on the oral microbiome. Aim To investigate the oral microbiome during alcohol cessation during inpatient treatment for AUD. Methods Up to 10 oral tongue brushings were collected from 22 AUD patients during inpatient treatment at the National Institutes of Health. Alcohol use history, smoking, and periodontal disease status were measured. Oral microbiome samples were sequenced using 16S rRNA gene sequencing. Results Alpha diversity decreased linearly during treatment across the entire cohort (P = 0.002). Alcohol preference was associated with changes in both alpha and beta diversity measures. Characteristic tongue dorsum genera from the Human Microbiome Project such as Streptococcus, Prevotella, Veillonella and Haemophilus were highly correlated in AUD. Oral health-associated genera that changed longitudinally during abstinence included Actinomyces, Capnocytophaga, Fusobacterium, Neisseria and Prevotella. Conclusion The oral microbiome in AUD is affected by alcohol preference. Patients with AUD often have poor oral health but abstinence and attention to oral care improve dysbiosis, decreasing microbiome diversity and periodontal disease-associated genera while improving acute oral health.
Collapse
Affiliation(s)
- J J Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - K A Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - N Kazmi
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - B K Meeks
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - M Krumlauf
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - R T Tuason
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - A T Brooks
- Center for Scientific Review, National Institutes of Health, Bethesda, Md, USA
| | - N J Ames
- National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - D Goldman
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Md, USA
| | - G R Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| |
Collapse
|
46
|
Dupras C, Bunnik EM. Toward a Framework for Assessing Privacy Risks in Multi-Omic Research and Databases. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2021; 21:46-64. [PMID: 33433298 DOI: 10.1080/15265161.2020.1863516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While the accumulation and increased circulation of genomic data have captured much attention over the past decade, privacy risks raised by the diversification and integration of omics have been largely overlooked. In this paper, we propose the outline of a framework for assessing privacy risks in multi-omic research and databases. Following a comparison of privacy risks associated with genomic and epigenomic data, we dissect ten privacy risk-impacting omic data properties that affect either the risk of re-identification of research participants, or the sensitivity of the information potentially conveyed by biological data. We then propose a three-step approach for the assessment of privacy risks in the multi-omic era. Thus, we lay grounds for a data property-based, 'pan-omic' approach that moves away from genetic exceptionalism. We conclude by inviting our peers to refine these theoretical foundations, put them to the test in their respective fields, and translate our approach into practical guidance.
Collapse
|
47
|
McIlvanna E, Linden GJ, Craig SG, Lundy FT, James JA. Fusobacterium nucleatum and oral cancer: a critical review. BMC Cancer 2021; 21:1212. [PMID: 34774023 PMCID: PMC8590362 DOI: 10.1186/s12885-021-08903-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing level of interest in the potential role inflammation has on the initiation and progression of malignancy. Notable examples include Helicobacter pylori-mediated inflammation in gastric cancer and more recently Fusobacterium nucleatum-mediated inflammation in colorectal cancer. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that was first isolated from the oral cavity and identified as a periodontal pathogen. Biofilms on oral squamous cell carcinomas are enriched with anaerobic periodontal pathogens, including F. nucleatum, which has prompted hypotheses that this bacterium could contribute to oral cancer development. Recent studies have demonstrated that F. nucleatum can promote cancer by several mechanisms; activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation and immune evasion. This review provides an update on the association between F. nucleatum and oral carcinogenesis, and provides insights into the possible mechanisms underlying it.
Collapse
Affiliation(s)
- Emily McIlvanna
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Stephanie G Craig
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.,Precision Medicine Centre of Excellence, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Jacqueline A James
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Precision Medicine Centre of Excellence, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Northern Ireland Biobank, Health Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
48
|
Liao G, Wu J, Peng X, Li Y, Tang L, Xu X, Deng D, Zhou X. Visualized analysis of trends and hotspots in global oral microbiome research: A bibliometric study. MedComm (Beijing) 2021; 1:351-361. [PMID: 34766127 PMCID: PMC8491219 DOI: 10.1002/mco2.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The oral microbiome contains numerous bacteria, which directly or indirectly participate in various human functions and continuously exchange signals and substances with the human body, significantly affecting human life cycle, health, and disease. This study aimed to conduct bibliometric studies on the scientific outputs of global oral microbiome research by Citespace software. The data were obtained from the Thomson Reuters' Web of Science Core Collection (WoSCC), from the first relevant literature published until December 31st, 2019, and a total of 2225 articles and reviews were identified. The top country and institutions are the United States and Harvard University. Keywords analysis showed that periodontal disease, oral microbes, and dental plaque are research hotspots. The burst word analysis indicates that early childhood caries, squamous cell carcinoma, gut microbiome, Helicobacter pylori, Candida albicans, and dysbiosis are likely to become the research hotspots of the next era. We also recommend the use of knowledge mapping methods to track specific knowledge areas efficiently and objectively regularly, which can accurately identify hotspots and frontiers and provide valuable information for practitioners in the field, including related scientists, students, journals, and editors.
Collapse
Affiliation(s)
- Ga Liao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Medical Big Data Center Sichuan University Chengdu China.,Department of Information Management Department of Stomatology Informatics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jinyun Wu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xian Peng
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Li Tang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xin Xu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam Netherlands
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
49
|
Erira A, García Robayo DA, Chalá AI, Moreno Torres A, Muñoz Lopez EE, Cid Arregui A, Tobar Tosse F, Gamboa Jaimes FO. Bacteriome Identified by Next-Generation Sequencing in Saliva, Dental Plaque, and Tumor Tissue of Patients with Oral Squamous Cell Carcinoma. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background:
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the world, and the bacterial microbiome has been considered a risk factor that could play an important role in carcinogenesis.
Objective:
A bacteriome study was performed by next-generation sequencing in dental plaque, saliva, and tumor samples of 10 OSCC patients and compared with bacteriome in dental plaque and saliva of 10 patients without OSCC.
Methods:
DNA was extracted from all samples and sequenced by Illumina technology MiSeq™. Bioinformatic analyzes were performed for evaluated sequence quality, alpha and beta diversity, bidirectional analysis of variance (p <0.05), and principal component analysis. After establishing bacterial profiles associated with each sample and population, intragroup and intergroup comparisons were carried out. For bacteria identification compatible with eubiosis and dysbiosis processes, a screening was performed based on the frequency of appearance in all patient samples with and without OSCC. Lastly, frequency, average, standard deviation, Chi-square, and Mann Whitney test were calculated.
Results:
Out of the identified 1,231 bacteria in the populations under study, 45 bacterial species were selected, of which 34 were compatible with eubiosis, and 11 were compatible with dysbiosis. Among the bacteria compatible with eubiosis were species of Lactobacillus and Streptococcus, Chromobacterium violaceum, Enterobacter asburiae, Mycobacterium chubuense, Mycoplasma penetrans, and Brachyspira intermedia. Among the species associated with dysbiosis, Providencia stuartii, Capnocytophaga canimorsus, Legionella pneumophila, and Mycoplasma hominis were notable.
Conclusion:
Thirty-four bacterial species may be associated with eubiosis or healthy states and 11 bacterial species could be associated with dysbiosis or pathogenic state, OSCC.
Collapse
|
50
|
Torralba MG, Aleti G, Li W, Moncera KJ, Lin YH, Yu Y, Masternak MM, Golusinski W, Golusinski P, Lamperska K, Edlund A, Freire M, Nelson KE. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. MICROBIAL ECOLOGY 2021; 82:1030-1046. [PMID: 33155101 PMCID: PMC8551143 DOI: 10.1007/s00248-020-01596-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/01/2020] [Indexed: 05/14/2023]
Abstract
The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.
Collapse
Affiliation(s)
- Manolito G Torralba
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| | - Gajender Aleti
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Weizhong Li
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kelvin Jens Moncera
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yi-Han Lin
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yanbao Yu
- Department of Genomic Medicine, J. Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Central Florida Blvd, Orlando, FL, 32827, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Podgórna 50, 65-246, Zielona Góra, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15th Garbary Street, room 5025, 61-866, Poznan, Poland
| | - Anna Edlund
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| |
Collapse
|