1
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Wu Y, Yang M, Xu X, Gao Y, Li X, Li Y, Su S, Xie X, Yang Z, Ke C. Thrombospondin 4, a mediator and candidate indicator of pain. Eur J Cell Biol 2024; 103:151395. [PMID: 38340499 DOI: 10.1016/j.ejcb.2024.151395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pain is the most common symptom for which patients seek medical attention. Existing treatments for pain control are largely ineffective due to the lack of an accurate way to objectively measure pain intensity and a poor understanding of the etiology of pain. Thrombospondin 4(TSP4), a member of the thrombospondin gene family, is expressed in neurons and astrocytes and induces pain by interacting with the calcium channel alpha-2-delta-1 subunit (Cavα2δ1). In the present study we show that TSP4 expression level correlates positively with pain intensity, suggesting that TSP4 could be a novel candidate of pain indicator. Using RNAi-lentivirus (RNAi-LV) to knock down TSP4 both in vivo and in vitro, together with electrophysiological experiments involving paired patch-clamp recordings of evoked action potentials and post-synaptic currents in cultured neurons, we found that TSP4 contributes to the development of bone cancer pain, neuropathic pain, and inflammatory pain. This effect is mediated by regulation of neuron excitability via inhibition of synapsin I (Syn I) and modulation of excitatory and inhibitory presynaptic transmission via regulation of vesicular glutamate transporter 2(Vglut2), vesicular GABA transporter (VGAT), and glutamate decarboxylase (GAD) expression. The present study provides a replicable, predictive, valid indicator of pain and demonstrated the underlying molecular and electrophysiological mechanisms by which TSP4 contributes to pain.
Collapse
Affiliation(s)
- Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China; Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Shanchun Su
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xianqiao Xie
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Huashan Rd. 1961, Shanghai 200030, China.
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China.
| |
Collapse
|
3
|
Leuschner UV, Kleinle S, Holzinger A, Neef J. Novel SYN1 Variant in Two Brothers with Focal Epilepsy and Their Prompt Response to Valproate. Neuropediatrics 2023; 54:206-210. [PMID: 36693418 DOI: 10.1055/a-2019-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synapsins are neuron-specific phosphoproteins that modulate neurotransmitter release, synaptic plasticity, and molecular processes shaping higher brain functions. Pathogenic synapsin-1 (SYN1) variants are associated with epilepsy, intellectual disabilities, and behavioral problems. We detected a novel SYN1 variant [c.477_479delTGG (p.Gly160del)] in brothers with focal epilepsy with secondary generalization. The deleted amino acid was found to be highly conserved among mammalian species. In electroencephalography, the older brother showed a bioelectrical status epilepticus and was also diagnosed with attention deficit hyperactivity disorder. Behavioral abnormalities were seen before or after the seizures. Both patients responded quickly to treatment with valproate. Our case reports are consistent with the clinical heterogeneity of the pathogenic SYN1 variants described in the literature.
Collapse
Affiliation(s)
| | | | - Andreas Holzinger
- Department of Pediatrics, Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Jochen Neef
- Department of Pediatrics, Division of Pediatric Neurology, Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| |
Collapse
|
4
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
|
5
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
7
|
Schwark R, Andrade R, Bykhovskaia M. Synapsin II Directly Suppresses Epileptic Seizures In Vivo. Brain Sci 2022; 12:brainsci12030325. [PMID: 35326282 PMCID: PMC8946686 DOI: 10.3390/brainsci12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.
Collapse
Affiliation(s)
- Ryan Schwark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- The Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- Correspondence:
| |
Collapse
|
8
|
Moschetta M, Ravasenga T, De Fusco A, Maragliano L, Aprile D, Orlando M, Sacchetti S, Casagrande S, Lignani G, Fassio A, Baldelli P, Benfenati F. Ca 2+ binding to synapsin I regulates resting Ca 2+ and recovery from synaptic depression in nerve terminals. Cell Mol Life Sci 2022; 79:600. [PMID: 36409372 PMCID: PMC9678998 DOI: 10.1007/s00018-022-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV)-associated phosphoprotein that modulates neurotransmission by controlling SV trafficking. The SynI C-domain contains a highly conserved ATP binding site mediating SynI oligomerization and SV clustering and an adjacent main Ca2+ binding site, whose physiological role is unexplored. Molecular dynamics simulations revealed that the E373K point mutation irreversibly deletes Ca2+ binding to SynI, still allowing ATP binding, but inducing a destabilization of the SynI oligomerization interface. Here, we analyzed the effects of this mutation on neurotransmitter release and short-term plasticity in excitatory and inhibitory synapses from primary hippocampal neurons. Patch-clamp recordings showed an increase in the frequency of miniature excitatory postsynaptic currents (EPSCs) that was totally occluded by exogenous Ca2+ chelators and associated with a constitutive increase in resting terminal Ca2+ concentrations. Evoked EPSC amplitude was also reduced, due to a decreased readily releasable pool (RRP) size. Moreover, in both excitatory and inhibitory synapses, we observed a marked impaired recovery from synaptic depression, associated with impaired RRP refilling and depletion of the recycling pool of SVs. Our study identifies SynI as a novel Ca2+ buffer in excitatory terminals. Blocking Ca2+ binding to SynI results in higher constitutive Ca2+ levels that increase the probability of spontaneous release and disperse SVs. This causes a decreased size of the RRP and an impaired recovery from depression due to the failure of SV reclustering after sustained high-frequency stimulation. The results indicate a physiological role of Ca2+ binding to SynI in the regulation of SV clustering and trafficking in nerve terminals.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Tiziana Ravasenga
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,Present Address: High-Definition Disease Modelling Lab, Campus IFOM-IEO, Milan, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Charitè Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Silvio Sacchetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,Present Address: Queens Square Institute of Neurology, University College London, London, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
9
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
10
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110135. [PMID: 33058959 DOI: 10.1016/j.pnpbp.2020.110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.
Collapse
|
12
|
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience 2020; 24:101909. [PMID: 33392479 PMCID: PMC7773578 DOI: 10.1016/j.isci.2020.101909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.
Collapse
Affiliation(s)
- Zohreh Farsi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Marie Walde
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Agnieszka E Klementowicz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Foteini Paraskevopoulou
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, 10115, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| |
Collapse
|
13
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
14
|
Mishima T, Fujiwara T, Kofuji T, Saito A, Terao Y, Akagawa K. Syntaxin 1B regulates synaptic GABA release and extracellular GABA concentration, and is associated with temperature-dependent seizures. J Neurochem 2020; 156:604-613. [PMID: 32858780 DOI: 10.1111/jnc.15159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022]
Abstract
De novo heterozygous mutations in the STX1B gene, encoding syntaxin 1B, cause a familial, fever-associated epilepsy syndrome. Syntaxin 1B is an essential component of the pre-synaptic neurotransmitter release machinery as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein that regulates the exocytosis of synaptic vesicles. It is also involved in regulating the functions of the SLC6 family of neurotransmitter transporters that reuptake neurotransmitters, including inhibitory neurotransmitters, such as γ-aminobutyric acid (GABA) and glycine. The purpose of the present study was to elucidate the molecular mechanisms underlying the development of febrile seizures by examining the effects of syntaxin 1B haploinsufficiency on inhibitory synaptic transmission during hyperthermia in a mouse model. Stx1b gene heterozygous knockout (Stx1b+/- ) mice showed increased susceptibility to febrile seizures and drug-induced seizures. In cultured hippocampal neurons, we examined the temperature-dependent properties of neurotransmitter release and reuptake by GABA transporter-1 (GAT-1) at GABAergic neurons using whole-cell patch-clamp recordings. The rate of spontaneous quantal GABA release was reduced in Stx1b+/- mice. The hyperthermic temperature increased the tonic GABAA current in wild-type (WT) synapses, but not in Stx1b+/- synapses. In WT neurons, recurrent bursting activities were reduced in a GABA-dependent manner at hyperthermic temperature; however, this was abolished in Stx1b+/- neurons. The blockade of GAT-1 increased the tonic GABAA current and suppressed recurrent bursting activities in Stx1b+/- neurons at the hyperthermic temperature. These data suggest that functional abnormalities associated with GABA release and reuptake in the pre-synaptic terminals of GABAergic neurons may increase the excitability of the neural circuit with hyperthermia.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tomonori Fujiwara
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
15
|
Ntim M, Li QF, Zhang Y, Liu XD, Li N, Sun HL, Zhang X, Khan B, Wang B, Wu Q, Wu XF, Walana W, Khan K, Ma QH, Zhao J, Li S. TRIM32 Deficiency Impairs Synaptic Plasticity by Excitatory-Inhibitory Imbalance via Notch Pathway. Cereb Cortex 2020; 30:4617-4632. [PMID: 32219328 DOI: 10.1093/cercor/bhaa064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Synaptic plasticity is the neural basis of physiological processes involved in learning and memory. Tripartite motif-containing 32 (TRIM32) has been found to play many important roles in the brain such as neural stem cell proliferation, neurogenesis, inhibition of nerve proliferation, and apoptosis. TRIM32 has been linked to several nervous system diseases including autism spectrum disorder, depression, anxiety, and Alzheimer's disease. However, the role of TRIM32 in regulating the mechanism of synaptic plasticity is still unknown. Our electrophysiological studies using hippocampal slices revealed that long-term potentiation of CA1 synapses was impaired in TRIM32 deficient (KO) mice. Further research found that dendritic spines density, AMPA receptors, and synaptic plasticity-related proteins were also reduced. NMDA receptors were upregulated whereas GABA receptors were downregulated in TRIM32 deficient mice, explaining the imbalance in excitatory and inhibitory neurotransmission. This caused overexcitation leading to decreased neuronal numbers in the hippocampus and cortex. In summary, this study provides this maiden evidence on the synaptic plasticity changes of TRIM32 deficiency in the brain and proposes that TRIM32 relates the notch signaling pathway and its related mechanisms contribute to this deficit.
Collapse
Affiliation(s)
- Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiao-Da Liu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Hai-Lun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Bakhtawar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Khizar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Quan-Hong Ma
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Bres EE, Safina D, Müller J, Bedner P, Yang H, Helluy X, Shchyglo O, Jansen S, Mark MD, Esser A, Steinhäuser C, Herlitze S, Pietrzik CU, Sirko S, Manahan-Vaughan D, Faissner A. Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia 2020; 68:2517-2549. [PMID: 32579270 DOI: 10.1002/glia.23869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures during early postnatal development. The mechanism leading to a buildup of hyperexcitability and emergence of seizures was traced to a failure in adequate astrocyte development and deteriorated postsynaptic density integrity. The detected impairments in the astrocytic lineage: precocious maturation, reactive gliosis, abolished tissue plasminogen activator uptake, and loss of functionality emphasize the importance of this glial cell type for synaptic signaling in the developing brain. Together, the obtained results highlight the relevance of astrocytic low-density lipoprotein receptor-related protein-1 for glutamatergic signaling in the context of neuron-glia interactions and stage this receptor as a contributing factor for epilepsy.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Honghong Yang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Stephan Jansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swetlana Sirko
- Department of Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians University, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Patzke C, Brockmann MM, Dai J, Gan KJ, Grauel MK, Fenske P, Liu Y, Acuna C, Rosenmund C, Südhof TC. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell 2020; 179:498-513.e22. [PMID: 31585084 DOI: 10.1016/j.cell.2019.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/28/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
Neuromodulators bind to pre- and postsynaptic G protein-coupled receptors (GPCRs), are able to quickly change intracellular cyclic AMP (cAMP) and Ca2+ levels, and are thought to play important roles in neuropsychiatric and neurodegenerative diseases. Here, we discovered in human neurons an unanticipated presynaptic mechanism that acutely changes synaptic ultrastructure and regulates synaptic communication. Activation of neuromodulator receptors bidirectionally controlled synaptic vesicle numbers within nerve terminals. This control correlated with changes in the levels of cAMP-dependent protein kinase A-mediated phosphorylation of synapsin-1. Using a conditional deletion approach, we reveal that the neuromodulator-induced control of synaptic vesicle numbers was largely dependent on synapsin-1. We propose a mechanism whereby non-phosphorylated synapsin-1 "latches" synaptic vesicles to presynaptic clusters at the active zone. cAMP-dependent phosphorylation of synapsin-1 then removes the vesicles. cAMP-independent dephosphorylation of synapsin-1 in turn recruits vesicles. Synapsin-1 thereby bidirectionally regulates synaptic vesicle numbers and modifies presynaptic neurotransmitter release as an effector of neuromodulator signaling in human neurons.
Collapse
Affiliation(s)
- Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Marisa M Brockmann
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Jinye Dai
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Kathlyn J Gan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - M Katharina Grauel
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Pascal Fenske
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Yu Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Claudio Acuna
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
18
|
De Fusco A, Cerullo MS, Marte A, Michetti C, Romei A, Castroflorio E, Baulac S, Benfenati F. Acute knockdown of Depdc5 leads to synaptic defects in mTOR-related epileptogenesis. Neurobiol Dis 2020; 139:104822. [PMID: 32113911 DOI: 10.1016/j.nbd.2020.104822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5) is part of the GATOR1 complex that functions as key inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in DEPDC5 leading to mTOR hyperactivation have been identified as the most common cause of either lesional or non-lesional focal epilepsy. However, the precise mechanisms by which DEPDC5 loss-of-function triggers neuronal and network hyperexcitability are still unclear. In this study, we investigated the cellular mechanisms of hyperexcitability by comparing the constitutive heterozygous Depdc5 knockout mouse versus different levels of acute Depdc5 deletion (≈40% and ≈80% neuronal knockdown of Depdc5 protein) by RNA interference in primary cortical cultures. While heterozygous Depdc5+/- neurons have only a subtle phenotype, acutely knocked-down neurons exhibit a strong dose-dependent phenotype characterized by mTOR hyperactivation, increased soma size, dendritic arborization, excitatory synaptic transmission and intrinsic excitability. The robust synaptic phenotype resulting from the acute knockdown Depdc5 deficiency highlights the importance of the temporal dynamics of Depdc5 knockdown in triggering the phenotypic changes, reminiscent of the somatic second-hit mechanism in patients with focal cortical dysplasia. These findings uncover a novel synaptic phenotype that is causally linked to Depdc5 knockdown, highlighting the developmental role of Depdc5. Interestingly, the synaptic defect appears to affect only excitatory synapses, while inhibitory synapses develop normally. The increased frequency and amplitude of mEPSCs, paralleled by increased density of excitatory synapses and expression of glutamate receptors, may generate an excitation/inhibition imbalance that triggers epileptogenesis.
Collapse
Affiliation(s)
- Antonio De Fusco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Stephanie Baulac
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, INSERM, U1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
19
|
Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic Elongation Factor 2 Kinase a Pharmacological Target to Regulate Protein Translation Dysfunction in Neurological Diseases. Neuroscience 2020; 445:42-49. [PMID: 32088293 DOI: 10.1016/j.neuroscience.2020.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023]
Abstract
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. Several neurological studies suggest that eEF2K is a valuable target in treating epilepsy, depression and major neurodegenerative diseases. Despite eEF2k is an ubiquitous and conserved protein, it has been proved that its deletion does not affect development in animal models and in general cell viability. Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.
Collapse
Affiliation(s)
| | | | | | - Carlo Sala
- CNR Neuroscience Institute, Milano, Italy.
| |
Collapse
|
20
|
Forte N, Binda F, Contestabile A, Benfenati F, Baldelli P. Synapsin I Synchronizes GABA Release in Distinct Interneuron Subpopulations. Cereb Cortex 2019; 30:1393-1406. [DOI: 10.1093/cercor/bhz174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023] Open
Abstract
Abstract
Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.
Collapse
Affiliation(s)
- N Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - F Binda
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - A Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - P Baldelli
- IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
21
|
Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, Prestigio C, Giansante G, Sartorelli J, Rossi P, Rubio A, Gambardella A, Nieus T, Broccoli V, Fassio A, Baldelli P, Corradi A, Zara F, Benfenati F. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 2019; 141:1000-1016. [PMID: 29554219 PMCID: PMC5888929 DOI: 10.1093/brain/awy051] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/29/2018] [Indexed: 01/13/2023] Open
Abstract
See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article. Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.
Collapse
Affiliation(s)
- Floriana Fruscione
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessandra Romei
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Simona Baldassari
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Giorgia Giansante
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Jacopo Sartorelli
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Pia Rossi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Alicia Rubio
- San Raffaele Scientific Institute and National Research Council (CNR), Institute of Neuroscience, Via Olgettina 58, 20132 Milano, Italy
| | - Antonio Gambardella
- Institute of Neurology, University Magna Graecia, Viale Europa, 88100 Catanzaro, Italy
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milano, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute and National Research Council (CNR), Institute of Neuroscience, Via Olgettina 58, 20132 Milano, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
22
|
Lugarà E, De Fusco A, Lignani G, Benfenati F, Humeau Y. Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion. Front Cell Neurosci 2019; 13:220. [PMID: 31164805 PMCID: PMC6536628 DOI: 10.3389/fncel.2019.00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/01/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA). We performed dual electrophysiological recordings of identified cells in juvenile and adult GAD67-GFP mice after independent stimulation of cortical and thalamic afferent systems. The results demonstrate that synaptic strengthening occurs during development at synapses projecting to LA principal neurons, but not interneurons. As synaptic strengthening underlies fear conditioning which depends, in turn, on presence and increasing expression of synapsin I, we tested if synapsin I contributes to synaptic strengthening during development. Interestingly, the physiological synaptic strengthening of cortical and thalamic synapses projecting to LA principal neurons was virtually abolished in synapsin I knockout mice, but not differences were observed in the excitatory projections to interneurons. Immunohistochemistry analysis showed that the presence of synapsin I is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. These results indicate that synapsin I is a key regulator of the maturation of synaptic connectivity in this brain region and that is expression is dependent on postsynaptic identity.
Collapse
Affiliation(s)
- Eleonora Lugarà
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Antonio De Fusco
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de Neuroscience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Pogorelov VM, Kao HT, Augustine GJ, Wetsel WC. Postsynaptic Mechanisms Render Syn I/II/III Mice Highly Responsive to Psychostimulants. Int J Neuropsychopharmacol 2019; 22:453-465. [PMID: 31188434 PMCID: PMC6600466 DOI: 10.1093/ijnp/pyz019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Synapsins are encoded by SYN I, SYN II, and SYN III, and they regulate neurotransmitter release by maintaining a reserve pool of synaptic vesicles. METHODS Presynaptic dopamine responses to cocaine were examined by microdialysis, and postsynaptic responses were evaluated to various dopamine receptor agonists in the open field with SynI/SynII/SynIII triple knockout mice. RESULTS Triple knockout mice showed enhanced spontaneous locomotion in a novel environment and were hyper-responsive to indirect and direct D1 and D2 dopamine agonists. Triple knockout animals appeared sensitized to cocaine upon first open field exposure; sensitization developed across days in wild-type controls. When mutants were preexposed to a novel environment before injection, cocaine-stimulated locomotion was reduced and behavioral sensitization retarded. Baseline dopamine turnover was enhanced in mutants and novel open field exposure increased their striatal dopamine synthesis rates. As KCl-depolarization stimulated comparable dopamine release in both genotypes, their readily releasable pools appeared indistinguishable. Similarly, cocaine-induced hyperlocomotion was indifferent to blockade of newly synthesized dopamine and depletion of releasable dopamine pools. Extracellular dopamine release was similar in wild-type and triple knockout mice preexposed to the open field and given cocaine or placed immediately into the arena following injection. Since motor effects to novelty and psychostimulants depend upon frontocortical-striatal inputs, we inhibited triple knockout medial frontal cortex with GABA agonists. Locomotion was transiently increased in cocaine-injected mutants, while their supersensitive cocaine response to novelty was lost. CONCLUSIONS These results reveal presynaptic dopamine release is not indicative of agonist-induced triple knockout hyperlocomotion. Instead, their novelty response occurs primarily through postsynaptic mechanisms and network effects.
Collapse
Affiliation(s)
- Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Brown University, BioMedical Center, Providence, Rhode Island
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore and the Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - William C Wetsel
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina,Correspondence: William C. Wetsel, PhD, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, P.O. Box 103203, 333 Research Drive, Durham, NC 27710 ()
| |
Collapse
|
24
|
Matos H, Quiles R, Andrade R, Bykhovskaia M. Growth and excitability at synapsin II deficient hippocampal neurons. Mol Cell Neurosci 2019; 96:25-34. [PMID: 30858140 DOI: 10.1016/j.mcn.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.
Collapse
Affiliation(s)
- Heidi Matos
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Raymond Quiles
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
25
|
Spike-Related Electrophysiological Identification of Cultured Hippocampal Excitatory and Inhibitory Neurons. Mol Neurobiol 2019; 56:6276-6292. [DOI: 10.1007/s12035-019-1506-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 11/27/2022]
|
26
|
Michetti C, Caruso A, Pagani M, Sabbioni M, Medrihan L, David G, Galbusera A, Morini M, Gozzi A, Benfenati F, Scattoni ML. The Knockout of Synapsin II in Mice Impairs Social Behavior and Functional Connectivity Generating an ASD-like Phenotype. Cereb Cortex 2018; 27:5014-5023. [PMID: 28922833 DOI: 10.1093/cercor/bhx207] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorders (ASD) and epilepsy are neurodevelopmental conditions that appear with high rate of co-occurrence, suggesting the possibility of a common genetic basis. Mutations in Synapsin (SYN) genes, particularly SYN1 and SYN2, have been recently associated with ASD and epilepsy in humans. Accordingly, mice lacking Syn1 or Syn2, but not Syn3, experience epileptic seizures and display autistic-like traits that precede the onset of seizures. Here, we analyzed social behavior and ultrasonic vocalizations emitted in 2 social contexts by SynI, SynII, or SynIII mutants and show that SynII mutants display the most severe ASD-like phenotype. We also show that the behavioral SynII phenotype correlates with a significant decrease in auditory and hippocampal functional connectivity as measured with resting state functional magnetic resonance imaging (rsfMRI). Taken together, our results reveal a permissive contribution of Syn2 to the expression of normal socio-communicative behavior, and suggest that Syn2-mediated synaptic dysfunction can lead to ASD-like behavior through dysregulation of cortical connectivity.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Angela Caruso
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Mara Sabbioni
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Gergely David
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Monica Morini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Maria Luisa Scattoni
- Research Coordination and support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
27
|
Guarnieri FC, Pozzi D, Raimondi A, Fesce R, Valente MM, Delvecchio VS, Van Esch H, Matteoli M, Benfenati F, D'Adamo P, Valtorta F. A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Hum Mol Genet 2018; 26:4699-4714. [PMID: 28973667 DOI: 10.1093/hmg/ddx352] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic X-linked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, 21100 Varese, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, B3000 Leuven, Belgium
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| |
Collapse
|
28
|
Valente P, Romei A, Fadda M, Sterlini B, Lonardoni D, Forte N, Fruscione F, Castroflorio E, Michetti C, Giansante G, Valtorta F, Tsai JW, Zara F, Nieus T, Corradi A, Fassio A, Baldelli P, Benfenati F. Constitutive Inactivation of the PRRT2 Gene Alters Short-Term Synaptic Plasticity and Promotes Network Hyperexcitability in Hippocampal Neurons. Cereb Cortex 2018; 29:2010-2033. [DOI: 10.1093/cercor/bhy079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/13/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
| | - Alessandra Romei
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Davide Lonardoni
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | - Nicola Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Floriana Fruscione
- Laboratory of Neurogenetics and Neuroscience, Department Head-Neck and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova, Italy
| | - Enrico Castroflorio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Giorgia Giansante
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, Milano, Italy
| | - Jin-Wu Tsai
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Department Head-Neck and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova, Italy
| | - Thierry Nieus
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, Italy
| |
Collapse
|
29
|
Barbieri R, Contestabile A, Ciardo MG, Forte N, Marte A, Baldelli P, Benfenati F, Onofri F. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice. Oncotarget 2018; 9:18760-18774. [PMID: 29721159 PMCID: PMC5922353 DOI: 10.18632/oncotarget.24655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 01/23/2023] Open
Abstract
Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.
Collapse
Affiliation(s)
- Raffaella Barbieri
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Maria Grazia Ciardo
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Nicola Forte
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| |
Collapse
|
30
|
Cicvaric A, Bulat T, Bormann D, Yang J, Auer B, Milenkovic I, Cabatic M, Milicevic R, Monje FJ. Sustained consumption of cocoa-based dark chocolate enhances seizure-like events in the mouse hippocampus. Food Funct 2018; 9:1532-1544. [PMID: 29431797 DOI: 10.1039/c7fo01668a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the consumption of caffeine and cocoa has been associated with a variety of health benefits to humans, some authors have proposed that excessive caffeine intake may increase the frequency of epileptic seizures in humans and reduce the efficiency of antiepileptic drugs. Little is known, however, about the proconvulsant potential of the sustained, excessive intake of cocoa on hippocampal neural circuits. Using the mouse as an experimental model, we examined the effects of the chronic consumption of food enriched in cocoa-based dark chocolate on motor and mood-related behaviours as well as on the excitability properties of hippocampal neurons. Cocoa food enrichment did not affect body weights or mood-related behaviours but rather promoted general locomotion and improved motor coordination. However, ex vivo electrophysiological analysis revealed a significant enhancement in seizure-like population spike bursting at the neurogenic dentate gyrus, which was paralleled by a significant reduction in the levels of GABA-α1 receptors thus suggesting that an excessive dietary intake of cocoa-enriched food might alter some of the synaptic elements involved in epileptogenesis. These data invite further multidisciplinary research aiming to elucidate the potential deleterious effects of chocolate abuse on behaviour and brain hyperexcitability.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Daniel Bormann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Bastian Auer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maureen Cabatic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Radoslav Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Guarnieri FC, Bellani S, Yekhlef L, Bergamaschi A, Finardi A, Fesce R, Pozzi D, Monzani E, Fornasiero EF, Matteoli M, Martino G, Furlan R, Taverna S, Muzio L, Valtorta F. Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 68:197-210. [PMID: 29066310 DOI: 10.1016/j.bbi.2017.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro-inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Serena Bellani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Bergamaschi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Eugenio F Fornasiero
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy; CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Muzio
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
32
|
Shultz AM, Lee S, Guaraldi M, Shea TB, Yanco HC. Robot-Embodied Neuronal Networks as an Interactive Model of Learning. Open Neurol J 2017; 11:39-47. [PMID: 29151990 PMCID: PMC5678239 DOI: 10.2174/1874205x01711010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/19/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022] Open
Abstract
Background and Objective: The reductionist approach of neuronal cell culture has been useful for analyses of synaptic signaling. Murine cortical neurons in culture spontaneously form an ex vivo network capable of transmitting complex signals, and have been useful for analyses of several fundamental aspects of neuronal development hitherto difficult to clarify in situ. However, these networks lack the ability to receive and respond to sensory input from the environment as do neurons in vivo. Establishment of these networks in culture chambers containing multi-electrode arrays allows recording of synaptic activity as well as stimulation. Method: This article describes the embodiment of ex vivo neuronal networks neurons in a closed-loop cybernetic system, consisting of digitized video signals as sensory input and a robot arm as motor output. Results: In this system, the neuronal network essentially functions as a simple central nervous system. This embodied network displays the ability to track a target in a naturalistic environment. These findings underscore that ex vivo neuronal networks can respond to sensory input and direct motor output. Conclusion: These analyses may contribute to optimization of neuronal-computer interfaces for perceptive and locomotive prosthetic applications. Ex vivo networks display critical alterations in signal patterns following treatment with subcytotoxic concentrations of amyloid-beta. Future studies including comparison of tracking accuracy of embodied networks prepared from mice harboring key mutations with those from normal mice, accompanied with exposure to Abeta and/or other neurotoxins, may provide a useful model system for monitoring subtle impairment of neuronal function as well as normal and abnormal development.
Collapse
Affiliation(s)
| | - Sangmook Lee
- Laboratory for Neuroscience, Department of Biological Sciences University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mary Guaraldi
- Laboratory for Neuroscience, Department of Biological Sciences University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Holly C Yanco
- Robotics Laboratory, Department of Computer Science, USA
| |
Collapse
|
33
|
Valente P, Farisello P, Valtorta F, Baldelli P, Benfenati F. Impaired GABA B-mediated presynaptic inhibition increases excitatory strength and alters short-term plasticity in synapsin knockout mice. Oncotarget 2017; 8:90061-90076. [PMID: 29163811 PMCID: PMC5685732 DOI: 10.18632/oncotarget.21405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associated with an increased strength of excitatory transmission that has never been mechanistically investigated. Here, we observed that an identical effect in excitatory transmission could be induced in wild-type (WT) Schaffer collateral-CA1 pyramidal cell synapses by blockade of GABAB receptors (GABABRs). The same treatment was virtually ineffective in TKO slices, suggesting that the increased strength of the excitatory transmission results from an impairment of GABAB presynaptic inhibition. Exogenous stimulation of GABABRs in excitatory autaptic neurons, where GABA spillover is negligible, demonstrated that GABABRs were effective in inhibiting excitatory transmission in both WT and TKO neurons. These results demonstrate that the decreased GABA release and spillover, previously observed in TKO hippocampal slices, removes the tonic brake of presynaptic GABABRs on glutamate transmission, making the excitation/inhibition imbalance stronger.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy
| | - Pasqualina Farisello
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Flavia Valtorta
- S. Raffaele Scientific Institute and Vita-Salute University, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| |
Collapse
|
34
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
35
|
Chiacchiaretta M, Latifi S, Bramini M, Fadda M, Fassio A, Benfenati F, Cesca F. Neuronal hyperactivity causes Na +/H + exchanger-induced extracellular acidification at active synapses. J Cell Sci 2017; 130:1435-1449. [PMID: 28254883 DOI: 10.1242/jcs.198564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.
Collapse
Affiliation(s)
- Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Shahrzad Latifi
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Anna Fassio
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
36
|
Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype. J Neurosci 2017; 37:1757-1771. [PMID: 28087765 DOI: 10.1523/jneurosci.0844-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.
Collapse
|
37
|
Insufficient developmental excitatory neuronal activity fails to foster establishment of normal levels of inhibitory neuronal activity. Int J Dev Neurosci 2016; 55:66-71. [PMID: 27686511 DOI: 10.1016/j.ijdevneu.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/22/2022] Open
Abstract
The nervous system is composed of excitatory and inhibitory neurons. One major class of inhibitory neurons release the neurotransmitter γ-Aminobutyric acid (GABA). GABAergic inhibitory activity maintains the balance that is disrupted in conditions such as epilepsy. At least some GABAergic neurons are initially excitatory and undergo a developmental conversion to convert to inhibitory neurons. The mechanism(s) behind this conversion are thought to include a critical developmental increase in excitatory activity. To test this hypothesis, we subjected ex vivo developing neuronal networks on multi-electrode arrays to various stimulation and pharmacological regimens. Synaptic activity of networks initially consists of epileptiform-like high-amplitude individual "spikes", which convert to organized bursts of activity over the course of approximately 1 month. Stimulation of networks with a digitized synaptic signal for 5days hastened the decrease of epileptiform activity. By contrast, stimulation for a single day delayed the appearance of bursts and instead increased epileptiform signaling. GABA treatment reduced total signals in unstimulated networks and networks stimulated for 5days, but instead increased signaling in networks stimulated for 1day. This increase was prevented by co-treatment with (2R)-amino-5-phosphonopentanoate and 6-cyano-7-nitroquinoxaline-2,3-dione, confirming that GABA invoked excitatory activity in networks stimulated for 1day. Glutamate increased signals in networks subjected to all stimulation regimens; the GABA receptor antagonist bicuculline prevented this increase only in networks stimulated for 1day. These latter findings are consistent with the induction of so-called "mixed" synapses (which release a combination of excitatory and inhibitory neurotransmitters) in networks stimulated for 1day, and support the hypothesis that a critical level of excitatory activity fosters the developmental transition of GABAergic neurons from excitatory to inhibitory.
Collapse
|
38
|
Bart Martens M, Frega M, Classen J, Epping L, Bijvank E, Benevento M, van Bokhoven H, Tiesinga P, Schubert D, Nadif Kasri N. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep 2016; 6:35756. [PMID: 27767173 PMCID: PMC5073331 DOI: 10.1038/srep35756] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome.
Collapse
Affiliation(s)
- Marijn Bart Martens
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Monica Frega
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Jessica Classen
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Lisa Epping
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Elske Bijvank
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Marco Benevento
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
39
|
PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci 2016; 39:668-679. [DOI: 10.1016/j.tins.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
|
40
|
Khaspekov LG, Sharonova IN, Kolbaev SN. Modeling of acquired postischemic epileptogenesis in cultures of neural cells and tissue. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Subconvulsant doses of pentylenetetrazol uncover the epileptic phenotype of cultured synapsin-deficient Helix serotonergic neurons in the absence of excitatory and inhibitory inputs. Epilepsy Res 2016; 127:241-251. [PMID: 27639349 DOI: 10.1016/j.eplepsyres.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Synapsins are a family of presynaptic proteins related to several processes of synaptic functioning. A variety of reports have linked mutations in synapsin genes with the development of epilepsy. Among the proposed mechanisms, a main one is based on the synapsin-mediated imbalance towards network hyperexcitability due to differential effects on neurotransmitter release in GABAergic and glutamatergic synapses. Along this line, a non-synaptic effect of synapsin depletion increasing neuronal excitability has recently been described in Helix neurons. To further investigate this issue, we examined the effect of synapsin knock-down on the development of pentylenetetrazol (PTZ)-induced epileptic-like activity using single neurons or isolated monosynaptic circuits reconstructed on microelectrode arrays (MEAs). Compared to control neurons, synapsin-silenced neurons showed a lower threshold for the development of epileptic-like activity and prolonged periods of activity, together with the occurrence of spontaneous firing after recurrent PTZ-induced epileptic-like activity. These findings highlight the crucial role of synapsin on neuronal excitability regulation in the absence of inhibitory or excitatory inputs.
Collapse
|
42
|
Mackenzie KD, Lumsden AL, Guo F, Duffield MD, Chataway T, Lim Y, Zhou XF, Keating DJ. Huntingtin-associated protein-1 is a synapsin I-binding protein regulating synaptic vesicle exocytosis and synapsin I trafficking. J Neurochem 2016; 138:710-21. [PMID: 27315547 DOI: 10.1111/jnc.13703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling.
Collapse
Affiliation(s)
- Kimberly D Mackenzie
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Feng Guo
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Michael D Duffield
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Timothy Chataway
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Yoon Lim
- Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
43
|
Valente P, Lignani G, Medrihan L, Bosco F, Contestabile A, Lippiello P, Ferrea E, Schachner M, Benfenati F, Giovedì S, Baldelli P. Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels. J Cell Sci 2016; 129:1878-91. [PMID: 26985064 DOI: 10.1242/jcs.182089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/08/2016] [Indexed: 02/05/2023] Open
Abstract
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Lucian Medrihan
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Federica Bosco
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Andrea Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Pellegrino Lippiello
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, Genova 16132, Italy Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| |
Collapse
|
44
|
Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI, Prestigio C, Giovedì S, Onofri F, Mura E, Guarnieri FC, Marte A, Orlando M, Zara F, Fassio A, Valtorta F, Baldelli P, Corradi A, Benfenati F. PRRT2 Is a Key Component of the Ca(2+)-Dependent Neurotransmitter Release Machinery. Cell Rep 2016; 15:117-131. [PMID: 27052163 PMCID: PMC4826441 DOI: 10.1016/j.celrep.2016.03.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Enrico Castroflorio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pia Rossi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Romina Ines Cervigni
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Elisa Mura
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabrizia C Guarnieri
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Marta Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federico Zara
- Department of Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
45
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
46
|
Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage-gated Ca(2+) currents in Helix serotonergic neurons. Neuroscience 2015; 311:430-43. [PMID: 26522789 DOI: 10.1016/j.neuroscience.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of presynaptic proteins crucial for the fine-tuning of synaptic function. A large amount of experimental evidences has shown that Syns are involved in the development of epileptic phenotypes and several mutations in Syn genes have been associated with epilepsy in humans and animal models. Syn mutations induce alterations in circuitry and neurotransmitter release, differentially affecting excitatory and inhibitory synapses, thus causing an excitation/inhibition imbalance in network excitability toward hyperexcitability that may be a determinant with regard to the development of epilepsy. Another approach to investigate epileptogenic mechanisms is to understand how silencing Syn affects the cellular behavior of single neurons and is associated with the hyperexcitable phenotypes observed in epilepsy. Here, we examined the functional effects of antisense-RNA inhibition of Syn expression on individually identified and isolated serotonergic cells of the Helix land snail. We found that Helix synapsin silencing increases cell excitability characterized by a slightly depolarized resting membrane potential, decreases the rheobase, reduces the threshold for action potential (AP) firing and increases the mean and instantaneous firing rates, with respect to control cells. The observed increase of Ca(2+) and BK currents in Syn-silenced cells seems to be related to changes in the shape of the AP waveform. These currents sustain the faster spiking in Syn-deficient cells by increasing the after hyperpolarization and limiting the Na(+) and Ca(2+) channel inactivation during repetitive firing. This in turn speeds up the depolarization phase by reaching the AP threshold faster. Our results provide evidence that Syn silencing increases intrinsic cell excitability associated with increased Ca(2+) and Ca(2+)-dependent BK currents in the absence of excitatory or inhibitory inputs.
Collapse
|
47
|
Shaping Neuronal Network Activity by Presynaptic Mechanisms. PLoS Comput Biol 2015; 11:e1004438. [PMID: 26372048 PMCID: PMC4570815 DOI: 10.1371/journal.pcbi.1004438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. The activity of neuronal networks underlies basic neural functions such as sleep, learning and sensorimotor gating. Computational models of neuronal networks have been developed to capture the complexity of the network activity and predict how neuronal networks generate spontaneous activity. However, most computational models do not simulate the intricate synaptic release process that governs the interaction between neurons and has been shown to significantly impact neuronal network activity and animal behavior, learning and memory. Our paper demonstrates the importance of simulating the elaborate synaptic release process to understand how neuronal networks generate spontaneous activity and respond to manipulations of the release process. The model provides mechanistic explanations and predictions for experimental pharmacological and genetic manipulations. Thus, the model presents a novel computational platform to understand how mechanistic changes in the synaptic release process modulate network oscillatory activity that might impact basic neural functions.
Collapse
|
48
|
Nikolaev M, Heggelund P. Functions of synapsins in corticothalamic facilitation: important roles of synapsin I. J Physiol 2015; 593:4499-510. [PMID: 26256545 DOI: 10.1113/jp270553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS The synaptic vesicle associated proteins synapsin I and synapsin II have important functions in synaptic short-term plasticity. We investigated their functions in cortical facilitatory feedback to neurons in dorsal lateral geniculate nucleus (dLGN), feedback that has important functions in state-dependent regulation of thalamic transmission of visual input to cortex. We compared results from normal wild-type (WT) mice and synapsin knockout (KO) mice in several types of synaptic plasticity, and found clear differences between the responses of neurons in the synapsin I KO and the WT, but no significant differences between the synapsin II KO and the WT. These results are in contrast to the important role of synapsin II previously demonstrated in similar types of synaptic plasticity in other brain regions, indicating that the synapsins can have different roles in similar types of STP in different parts of the brain. ABSTRACT The synaptic vesicle associated proteins synapsin I (SynI) and synapsin II (SynII) have important functions in several types of synaptic short-term plasticity in the brain, but their separate functions in different types of synapses are not well known. We investigated possible distinct functions of the two synapsins in synaptic short-term plasticity at corticothalamic synapses on relay neurons in the dorsal lateral geniculate nucleus. These synapses provide excitatory feedback from visual cortex to the relay cells, feedback that can facilitate transmission of signals from retina to cortex. We compared results from normal wild-type (WT), SynI knockout (KO) and SynII KO mice, in three types of synaptic plasticity mainly linked to presynaptic mechanism. In SynI KO mice, paired-pulse stimulation elicited increased facilitation at short interpulse intervals compared to the WT. Pulse-train stimulation elicited weaker facilitation than in the WT, and also post-tetanic potentiation was weaker in SynI KO than in the WT. Between SynII KO and the WT we found no significant differences. Thus, SynI has important functions in these types of synaptic plasticity at corticothalamic synapses. Interestingly, our data are in contrast to the important role of SynII previously shown for sustained synaptic transmission during intense stimulation in excitatory synapses in other parts of the brain, and our results suggest that SynI and SynII may have different roles in similar types of STP in different parts of the brain.
Collapse
Affiliation(s)
- Maxim Nikolaev
- Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway.,I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St Petersburg, Russia
| | - Paul Heggelund
- Institute of Basic Medical Sciences, University of Oslo, N-0317, Oslo, Norway
| |
Collapse
|
49
|
Brenes O, Giachello CNG, Corradi AM, Ghirardi M, Montarolo PG. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment, and fast high-frequency neurotransmitter release. J Neurosci Res 2015. [PMID: 26213348 DOI: 10.1002/jnr.23624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of synaptic vesicle-associated proteins related to fine tuning of synaptic transmission. Studies with mammals have partially clarified the different roles of Syns; however, the presence of different genes and isoforms and the development of compensatory mechanisms hinder accurate data interpretation. Here, we use a simple in vitro monosynaptic Helix neuron connection, reproducing an in vivo physiological connection as a reliable experimental model to investigate the effects of Syn knockdown. Cells overexpressing an antisense construct against Helix Syn showed a time-dependent decrease of Syn immunostaining, confirming protein loss. At the morphological level, Syn-silenced cells showed a reduction in neurite linear outgrowth and branching and in the size and number of synaptic varicosities. Functionally, Syn-silenced cells presented a reduced ability to form synaptic connections; however, functional chemical synapses showed similar basal excitatory postsynaptic potentials and similar short-term plasticity paradigms. In addition, Syn-silenced cells presented faster neurotransmitter release and decreased postsynaptic response toward the end of long tetanic presynaptic stimulations, probably related to an impairment of the synaptic vesicle trafficking resulting from a different vesicle handling, with an increased readily releasable pool and a compromised reserve pool.
Collapse
Affiliation(s)
- Oscar Brenes
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,Department of Physiology, School of Medicine, University of Costa Rica, San José, Costa Rica
| | | | | | - Mirella Ghirardi
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,National Institute of Neuroscience, Turin, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience, Section of Physiology, University of Turin, Turin, Italy.,National Institute of Neuroscience, Turin, Italy
| |
Collapse
|
50
|
Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS One 2015; 10:e0132366. [PMID: 26177381 PMCID: PMC4503715 DOI: 10.1371/journal.pone.0132366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023] Open
Abstract
Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.
Collapse
|