1
|
Ito T, Yamamoto M, Liu L, Saqib KA, Furuyama T, Ono M. Segregated input to thalamic areas that project differently to core and shell auditory cortical fields. iScience 2025; 28:111721. [PMID: 39898033 PMCID: PMC11787697 DOI: 10.1016/j.isci.2024.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Perception of the environment is multimodal in nature, with sensory systems intricately interconnected. The ability to integrate multimodal sensations while preserving the distinct characteristics of each sensory modality is crucial, and the underlying mechanisms of the organization that facilitate this process require further elucidation. In the auditory system, although the concept of core and shell pathways is well established, the brain-wide input/output relationships of thalamic regions projecting to auditory-responsive cortical areas remain insufficiently studied, particularly in relation to non-auditory structures. In this study, we utilized functional imaging and viral tracing techniques to map the brain-wide connections of core and shell pathways. We identified three distinct shell pathways, in addition to a core pathway, each exhibiting unique associations with non-auditory structures involved in behavior, emotion, and other functions. This architecture suggests that these pathways contribute differentially to various aspects of multimodal sensory integration.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Mamiko Yamamoto
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Li Liu
- Anatomy 2, School of Medicine, Kanazawa Medical University, Uchinada 920-0265 Japan
| | - Khaleeq Ahmad Saqib
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Takafumi Furuyama
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| | - Munenori Ono
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| |
Collapse
|
2
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
3
|
Issa LK, Sekaran NVC, Llano DA. Highly branched and complementary distributions of layer 5 and layer 6 auditory corticofugal axons in mouse. Cereb Cortex 2023; 33:9566-9582. [PMID: 37386697 PMCID: PMC10431747 DOI: 10.1093/cercor/bhad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
The auditory cortex exerts a powerful, yet heterogeneous, effect on subcortical targets. Auditory corticofugal projections emanate from layers 5 and 6 and have complementary physiological properties. While several studies suggested that layer 5 corticofugal projections branch widely, others suggested that multiple independent projections exist. Less is known about layer 6; no studies have examined whether the various layer 6 corticofugal projections are independent. Therefore, we examined branching patterns of layers 5 and 6 auditory corticofugal neurons, using the corticocollicular system as an index, using traditional and novel approaches. We confirmed that dual retrograde injections into the mouse inferior colliculus and auditory thalamus co-labeled subpopulations of layers 5 and 6 auditory cortex neurons. We then used an intersectional approach to relabel layer 5 or 6 corticocollicular somata and found that both layers sent extensive branches to multiple subcortical structures. Using a novel approach to separately label layers 5 and 6 axons in individual mice, we found that layers 5 and 6 terminal distributions partially spatially overlapped and that giant terminals were only found in layer 5-derived axons. Overall, the high degree of branching and complementarity in layers 5 and 6 axonal distributions suggest that corticofugal projections should be considered as 2 widespread systems, rather than collections of individual projections.
Collapse
Affiliation(s)
- Lina K Issa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Nathiya V C Sekaran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana—Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, United States
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
4
|
Yazdanbakhsh A, Barbas H, Zikopoulos B. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits. Netw Neurosci 2023; 7:743-768. [PMID: 37397882 PMCID: PMC10312265 DOI: 10.1162/netn_a_00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/01/2023] [Indexed: 10/16/2023] Open
Abstract
Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.
Collapse
Affiliation(s)
- Arash Yazdanbakhsh
- Computational Neuroscience and Vision Lab, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Neural Systems Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Human Systems Neuroscience Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Ye H, Liu ZX, He YJ, Wang X. Effects of M currents on the persistent activity of pyramidal neurons in mouse primary auditory cortex. J Neurophysiol 2022; 127:1269-1278. [PMID: 35294269 DOI: 10.1152/jn.00332.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal persistent activity (PA) is a common phenomenon observed in many types of neurons. PA can be induced in neurons in the mouse auditory nucleus by activating cholinergic receptors with carbachol (CCh), a dual muscarinic and nicotinic receptor agonist. PA is presumed to be associated with learning-related auditory plasticity at the cellular level. However, the mechanism is not clearly understood. Many studies have reported that muscarinic cholinergic receptor agonists inhibit muscarinic-sensitive potassium channels (M channels). Potassium influx through M channels produces potassium currents, called M currents, which play an essential role in regulating neural excitability and synaptic plasticity. Further study is needed to determine whether M currents affect the PA of auditory central neurons and provide additional analysis of the variations in electrophysiological properties. We used in vitro whole-cell patch-clamp recordings in isolated mouse brain slices to investigate the effects of M currents on the PA in pyramidal neurons in layer V of the primary auditory cortex (AI-L5). We found that blocking M currents with XE991 depolarized the AI-L5 pyramidal neurons, which significantly increased the input resistance. The active threshold and threshold intensity were significantly reduced, indicating that the intrinsic excitability was enhanced. Our results also showed that blocking M currents with XE991 switched the neuronal firing patterns in the AI-L5 pyramidal neurons from regular-spiking to intrinsic-bursting. Blocking M currents facilitated PA by increasing the plateau potential and enhancing intrinsic excitability. Our results suggested that blocking M currents might facilitate the PA in AI-L5 pyramidal neurons, which underlies auditory plasticity.
Collapse
Affiliation(s)
- Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhen-Xu Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya-Jie He
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022; 16:799787. [PMID: 35221899 PMCID: PMC8866963 DOI: 10.3389/fnins.2022.799787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both “bottom-up” gain alterations in response to changes in environmental sound statistics as well as “top-down” mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.
Collapse
Affiliation(s)
- Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach,
| | - Howard J. Gritton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Jeschke M, Ohl FW, Wang X. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets. Front Neural Circuits 2022; 15:786740. [PMID: 35069125 PMCID: PMC8766342 DOI: 10.3389/fncir.2021.786740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.
Collapse
Affiliation(s)
- Marcus Jeschke
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany,*Correspondence: Marcus Jeschke
| | - Frank W. Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Xiaoqin Wang
| |
Collapse
|
8
|
Yudintsev G, Asilador AR, Sons S, Vaithiyalingam Chandra Sekaran N, Coppinger M, Nair K, Prasad M, Xiao G, Ibrahim BA, Shinagawa Y, Llano DA. Evidence for Layer-Specific Connectional Heterogeneity in the Mouse Auditory Corticocollicular System. J Neurosci 2021; 41:9906-9918. [PMID: 34670851 PMCID: PMC8638684 DOI: 10.1523/jneurosci.2624-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
The auditory cortex (AC) sends long-range projections to virtually all subcortical auditory structures. One of the largest and most complex of these-the projection between AC and inferior colliculus (IC; the corticocollicular pathway)-originates from layer 5 and deep layer 6. Though previous work has shown that these two corticocollicular projection systems have different physiological properties and network connectivities, their functional organization is poorly understood. Here, using a combination of traditional and viral tracers combined with in vivo imaging in both sexes of the mouse, we observed that layer 5 and layer 6 corticocollicular neurons differ in their areas of origin and termination patterns. Layer 5 corticocollicular neurons are concentrated in primary AC, while layer 6 corticocollicular neurons emanate from broad auditory and limbic areas in the temporal cortex. In addition, layer 5 sends dense projections of both small and large (>1 µm2 area) terminals to all regions of nonlemniscal IC, while layer 6 sends small terminals to the most superficial 50-100 µm of the IC. These findings suggest that layer 5 and 6 corticocollicular projections are optimized to play distinct roles in corticofugal modulation. Layer 5 neurons provide strong, rapid, and unimodal feedback to the nonlemniscal IC, while layer 6 neurons provide heteromodal and limbic modulation diffusely to the nonlemniscal IC. Such organizational diversity in the corticocollicular pathway may help to explain the heterogeneous effects of corticocollicular manipulations and, given similar diversity in corticothalamic pathways, may be a general principle in top-down modulation.SIGNIFICANCE STATEMENT We demonstrate that a major descending system in the brain is actually two systems. That is, the auditory corticocollicular projection, which exerts considerable influence over the midbrain, comprises two projections: one from layer 5 and the other from layer 6. The layer 6 projection is diffusely organized, receives multisensory inputs, and ends in small terminals; while the layer 5 projection is derived from a circumscribed auditory cortical area and ends in large terminals. These data suggest that the varied effects of cortical manipulations on the midbrain may be related to effects on two disparate systems. These findings have broader implications because other descending systems derive from two layers. Therefore, a duplex organization may be a common motif in descending control.
Collapse
Affiliation(s)
- Georgiy Yudintsev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stacy Sons
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Macey Coppinger
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kavya Nair
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Masumi Prasad
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Gang Xiao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Baher A Ibrahim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
9
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
10
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
11
|
Saldeitis K, Jeschke M, Budinger E, Ohl FW, Happel MFK. Laser-Induced Apoptosis of Corticothalamic Neurons in Layer VI of Auditory Cortex Impact on Cortical Frequency Processing. Front Neural Circuits 2021; 15:659280. [PMID: 34322001 PMCID: PMC8311662 DOI: 10.3389/fncir.2021.659280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.
Collapse
Affiliation(s)
- Katja Saldeitis
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Marcus Jeschke
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany.,Institute of Biology (IBIO), University Magdeburg, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Medical School Berlin, Berlin, Germany
| |
Collapse
|
12
|
Nersisyan S, Bekisz M, Kublik E, Granseth B, Wróbel A. Cholinergic and Noradrenergic Modulation of Corticothalamic Synaptic Input From Layer 6 to the Posteromedial Thalamic Nucleus in the Rat. Front Neural Circuits 2021; 15:624381. [PMID: 33981204 PMCID: PMC8107268 DOI: 10.3389/fncir.2021.624381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cholinergic and noradrenergic neuromodulation of the synaptic transmission from cortical layer 6 of the primary somatosensory cortex to neurons in the posteromedial thalamic nucleus (PoM) was studied using an in vitro slice preparation from young rats. Cholinergic agonist carbachol substantially decreased the amplitudes of consecutive excitatory postsynaptic potentials (EPSPs) evoked by a 20 Hz five pulse train. The decreased amplitude effect was counteracted by a parallel increase of synaptic frequency-dependent facilitation. We found this modulation to be mediated by muscarinic acetylcholine receptors. In the presence of carbachol the amplitudes of the postsynaptic potentials showed a higher trial-to-trial coefficient of variation (CV), which suggested a presynaptic site of action for the modulation. To substantiate this finding, we measured the failure rate of the excitatory postsynaptic currents in PoM cells evoked by “pseudominimal” stimulation of corticothalamic input. A higher failure-rate in the presence of carbachol indicated decreased probability of transmitter release at the synapse. Activation of the noradrenergic modulatory system that was mimicked by application of norepinephrine did not affect the amplitude of the first EPSP evoked in the five-pulse train, but later EPSPs were diminished. This indicated a decrease of the synaptic frequency-dependent facilitation. Treatment with noradrenergic α-2 agonist clonidine, α-1 agonist phenylephrine, or β-receptor agonist isoproterenol showed that the modulation may partly rely on α-2 adrenergic receptors. CV analysis did not suggest a presynaptic action of norepinephrine. We conclude that cholinergic and noradrenergic modulation act as different variable dynamic controls for the corticothalamic mechanism of the frequency-dependent facilitation in PoM.
Collapse
Affiliation(s)
- Syune Nersisyan
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marek Bekisz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andrzej Wróbel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Philosophy, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
14
|
Circuit Mechanisms Underlying the Segregation and Integration of Parallel Processing Streams in the Inferior Colliculus. J Neurosci 2020; 40:6328-6344. [PMID: 32665405 DOI: 10.1523/jneurosci.0646-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) forms a nexus between diverse multisensory, motor, and neuromodulatory streams. Like other integration hubs, it contains repeated neurochemical motifs with distinct inputs: GABA-rich modules are innervated by somatosensory structures, while auditory inputs to the LCIC target the surrounding extramodular matrix. To investigate potential mechanisms of convergence between these input streams, we used laser photostimulation circuit mapping to interrogate local LCIC circuits in adult mice of both sexes and found that input patterns are highly dependent on cell type (GABAergic/non-GABAergic) and location (module/matrix). At the circuit level, these inputs yield a directional flow of local information, primarily from the matrix to the modules. Further, the two compartments were found to project to distinct targets in the midbrain and thalamus. These data show that, while connectional modularity in the LCIC gives rise to segregated input-output channels, local circuits provide the architecture for integration between these two streams.SIGNIFICANCE STATEMENT Modularity is a widespread motif across the brain involving the segregation of structures into discrete subregions based on dichotomies in neurochemical expression or connectivity. The inferior colliculus is one such modular structure, containing auditory-recipient matrix regions and GABA-rich modules that are innervated by somatosensory inputs. While modularity suggests segregation of processing streams, here we show that local circuits in the inferior colliculus connect the module and matrix regions, providing an avenue for integration of information across compartments.
Collapse
|
15
|
Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 2020; 40:2314-2331. [PMID: 32005764 DOI: 10.1523/jneurosci.1919-19.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Collapse
|
16
|
Betzel RF, Wood KC, Angeloni C, Neimark Geffen M, Bassett DS. Stability of spontaneous, correlated activity in mouse auditory cortex. PLoS Comput Biol 2019; 15:e1007360. [PMID: 31815941 PMCID: PMC6968873 DOI: 10.1371/journal.pcbi.1007360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2020] [Accepted: 08/24/2019] [Indexed: 12/31/2022] Open
Abstract
Neural systems can be modeled as complex networks in which neural elements are represented as nodes linked to one another through structural or functional connections. The resulting network can be analyzed using mathematical tools from network science and graph theory to quantify the system’s topological organization and to better understand its function. Here, we used two-photon calcium imaging to record spontaneous activity from the same set of cells in mouse auditory cortex over the course of several weeks. We reconstruct functional networks in which cells are linked to one another by edges weighted according to the correlation of their fluorescence traces. We show that the networks exhibit modular structure across multiple topological scales and that these multi-scale modules unfold as part of a hierarchy. We also show that, on average, network architecture becomes increasingly dissimilar over time, with similarity decaying monotonically with the distance (in time) between sessions. Finally, we show that a small fraction of cells maintain strongly-correlated activity over multiple days, forming a stable temporal core surrounded by a fluctuating and variable periphery. Our work indicates a framework for studying spontaneous activity measured by two-photon calcium imaging using computational methods and graphical models from network science. The methods are flexible and easily extended to additional datasets, opening the possibility of studying cellular level network organization of neural systems and how that organization is modulated by stimuli or altered in models of disease. Neurons coordinate their activity with one another, forming networks that help support adaptive, flexible behavior. Still, little is known about the organization of these networks at the cellular scale and their stability over time. Here, we reconstruct networks from calcium imaging data recorded in mouse primary auditory cortex. We show that these networks exhibit spatially constrained, hierarchical modular structure, which may facilitate specialized information processing. However, we show that connection weights and modular structure are also variable over time, changing on a timescale of days and adopting novel network configurations. Despite this, a small subset of neurons maintain their connections to one another and preserve their modular organization across time, forming a stable temporal core surrounded by a flexible periphery. These findings represent a conceptual bridge linking network analyses of macroscale and cellular-level neuroimaging data. They also represent a complementary approach to existing circuits- and systems-based interrogation of nervous system function, opening the door for deeper and more targeted analysis in the future.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America.,Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America.,Network Science Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Katherine C Wood
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Angeloni
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria Neimark Geffen
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Santa Fe Institute, Santa Fa, New Mexico, United States of America
| |
Collapse
|
17
|
Crosson B. The Role of Cortico-Thalamo-Cortical Circuits in Language: Recurrent Circuits Revisited. Neuropsychol Rev 2019; 31:516-533. [PMID: 31758291 PMCID: PMC8418594 DOI: 10.1007/s11065-019-09421-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Based on a review of recent literature, a recurrent circuit model describes how cortico-thalamo-cortical and cortico-cortical circuitry supports word retrieval, auditory-verbal comprehension, and other language functions. Supporting data include cellular and layer-specific cortico-thalamic, thalamo-cortical, and cortico-cortical neuroanatomy and electrophysiology. The model posits that during word retrieval, higher order cortico-thalamo-cortical relays maintain stable representations of semantic information in feedforward processes at the semantic-lexical interface. These stable semantic representations are compared to emerging lexical solutions to represent the semantic construct to determine how well constructs are associated with each other. The resultant error signal allows cortico-cortical sculpting of activity between the semantic and lexical mechanisms until there is a good match between these two levels, at which time the lexical solution will be passed along to the cortical processor necessary for the next stage of word retrieval. Evidence is cited that high gamma activity is the neural signature for processing in the cortico-thalamo-cortical and cortico-cortical circuitry. Methods for testing hypotheses generated from this recurrent circuit model are discussed. Mathematical modeling may be a useful tool in exploring underlying properties of these circuits.
Collapse
Affiliation(s)
- Bruce Crosson
- Department of Veteran Affairs Rehabilitation Research and Development, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center - 151R, 1670 Clairmont Rd, Decatur, GA, 30033, USA. .,Department of Neurology, Emory University, 12 Executive Park Drive, Atlanta, GA, 30329, USA.
| |
Collapse
|
18
|
Fu X, Ye H, Jia H, Wang X, Chomiak T, Luo F. Muscarinic acetylcholine receptor-dependent persistent activity of layer 5 intrinsic-bursting and regular-spiking neurons in primary auditory cortex. J Neurophysiol 2019; 122:2344-2353. [PMID: 31596630 DOI: 10.1152/jn.00184.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in deep-layer neural excitability and experience-dependent plasticity in the primary auditory cortex. However, the underlying cellular mechanism(s) associated with coincident cholinergic receptor activation and neuronal depolarization of deep-layer cortical neurons remains unknown. Using in vitro whole cell patch-clamp recordings targeted to neurons (n = 151) in isolated brain slices containing the primary auditory cortex (AI), we investigated the effects of cholinergic receptor activation and neuronal depolarization on the electrophysiological properties of AI layer 5 intrinsic-bursting and regular-spiking neurons. Bath application of carbachol (5 µM; cholinergic receptor agonist) paired with suprathreshold intracellular depolarization led to persistent activity in these neurons. Persistent activity may involve similar cellular mechanisms and be generated intrinsically in both intrinsic-bursting and regular-spiking neurons given that it 1) persisted under the blockade of ionotropic glutamatergic (kynurenic acid, 2 mM) and GABAergic receptors (picrotoxin, 100 µM), 2) was fully blocked by both atropine (10 µM; nonselective muscarinic antagonist) and flufenamic acid [100 µM; nonspecific Ca2+-sensitive cationic channel (CAN) blocker], and 3) was sensitive to the voltage-gated Ca2+ channel blocker nifedipine (50 µM) and Ca2+-free artificial cerebrospinal fluid. Together, our results support a model through which coincident activation of AI layer 5 neuron muscarinic receptors and suprathreshold activation can lead to sustained changes in layer 5 excitability, providing new insight into the possible role of a calcium-CAN-dependent cholinergic mechanism of AI cortical plasticity. These findings also indicate that distinct streams of auditory processing in layer 5 intrinsic-bursting and regular-spiking neurons may run in parallel during learning-induced auditory plasticity.NEW & NOTEWORTHY Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in experience-dependent plasticity in the primary auditory cortex. Cholinergic activation together with cellular depolarization can lead to persistent activity in both intrinsic-bursting and regular-spiking layer 5 pyramidal neurons. A similar mechanism involving muscarinic acetylcholine receptor, voltage-gated Ca2+ channel, and possible Ca2+-sensitive nonspecific cationic channel activation provides new insight into our understanding of the cellular mechanisms that govern learning-induced auditory cortical and subcortical plasticity.
Collapse
Affiliation(s)
- Xin Fu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huijuan Jia
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Taylor Chomiak
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Feng Luo
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
19
|
Cotel F, Fletcher LN, Kalita-de Croft S, Apergis-Schoute J, Williams SR. Cell Class-Dependent Intracortical Connectivity and Output Dynamics of Layer 6 Projection Neurons of the Rat Primary Visual Cortex. Cereb Cortex 2019; 28:2340-2350. [PMID: 28591797 DOI: 10.1093/cercor/bhx134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
Neocortical information processing is powerfully influenced by the activity of layer 6 projection neurons through control of local intracortical and subcortical circuitry. Morphologically distinct classes of layer 6 projection neuron have been identified in the mammalian visual cortex, which exhibit contrasting receptive field properties, but little information is available on their functional specificity. To address this we combined anatomical tracing techniques with high-resolution patch-clamp recording to identify morphological and functional distinct classes of layer 6 projection neurons in the rat primary visual cortex, which innervated separable subcortical territories. Multisite whole-cell recordings in brain slices revealed that corticoclaustral and corticothalamic layer 6 projection neurons exhibited similar somatically recorded electrophysiological properties. These classes of layer 6 projection neurons were sparsely and reciprocally synaptically interconnected, but could be differentiated by cell-class, but not target-cell-dependent rules of use-dependent depression and facilitation of unitary excitatory synaptic output. Corticoclaustral and corticothalamic layer 6 projection neurons were differentially innervated by columnar excitatory circuitry, with corticoclaustral, but not corticothalamic, neurons powerfully driven by layer 4 pyramidal neurons, and long-range pathways conveyed in neocortical layer 1. Our results therefore reveal projection target-specific, functionally distinct, streams of layer 6 output in the rodent neocortex.
Collapse
Affiliation(s)
- Florence Cotel
- Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | - Lee N Fletcher
- Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | | | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester, UK
| | - Stephen R Williams
- Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
20
|
Williamson RS, Polley DB. Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons. eLife 2019; 8:e42974. [PMID: 30735128 PMCID: PMC6384027 DOI: 10.7554/elife.42974] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/06/2019] [Indexed: 11/27/2022] Open
Abstract
Cortical layers (L) 5 and 6 are populated by intermingled cell-types with distinct inputs and downstream targets. Here, we made optogenetically guided recordings from L5 corticofugal (CF) and L6 corticothalamic (CT) neurons in the auditory cortex of awake mice to discern differences in sensory processing and underlying patterns of functional connectivity. Whereas L5 CF neurons showed broad stimulus selectivity with sluggish response latencies and extended temporal non-linearities, L6 CTs exhibited sparse selectivity and rapid temporal processing. L5 CF spikes lagged behind neighboring units and imposed weak feedforward excitation within the local column. By contrast, L6 CT spikes drove robust and sustained activity, particularly in local fast-spiking interneurons. Our findings underscore a duality among sub-cortical projection neurons, where L5 CF units are canonical broadcast neurons that integrate sensory inputs for transmission to distributed downstream targets, while L6 CT neurons are positioned to regulate thalamocortical response gain and selectivity.
Collapse
Affiliation(s)
- Ross S Williamson
- Eaton-Peabody LaboratoriesMassachusetts Eye and Ear InfirmaryBostonUnited States
- Department of OtolaryngologyHarvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody LaboratoriesMassachusetts Eye and Ear InfirmaryBostonUnited States
- Department of OtolaryngologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
21
|
Slater BJ, Sons SK, Yudintsev G, Lee CM, Llano DA. Thalamocortical and Intracortical Inputs Differentiate Layer-Specific Mouse Auditory Corticocollicular Neurons. J Neurosci 2019; 39:256-270. [PMID: 30361396 PMCID: PMC6325253 DOI: 10.1523/jneurosci.3352-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Long-range descending projections from the auditory cortex play key roles in shaping response properties in the inferior colliculus. The auditory corticocollicular projection is massive and heterogeneous, with axons emanating from cortical layers 5 and 6, and plays a key role in directing plastic changes in the inferior colliculus. However, little is known about the cortical and thalamic networks within which corticocollicular neurons are embedded. Here, laser scanning photostimulation glutamate uncaging and photoactivation of channelrhodopsin-2 were used to probe the local and long-range network differences between preidentified layer 5 and layer 6 auditory corticocollicular neurons from male and female mice in vitro Layer 5 corticocollicular neurons were found to vertically integrate supragranular excitatory and inhibitory input to a substantially greater degree than their layer 6 counterparts. In addition, all layer 5 corticocollicular neurons received direct and large thalamic inputs from channelrhodopsin-2-labeled thalamocortical fibers, whereas such inputs were less common in layer 6 corticocollicular neurons. Finally, a new low-calcium/synaptic blockade approach to separate direct from indirect inputs using laser photostimulation was validated. These data demonstrate that layer 5 and 6 corticocollicular neurons receive distinct sets of cortical and thalamic inputs, supporting the hypothesis that they have divergent roles in modulating the inferior colliculus. Furthermore, the direct connection between the auditory thalamus and layer 5 corticocollicular neurons reveals a novel and rapid link connecting ascending and descending pathways.SIGNIFICANCE STATEMENT Descending projections from the cortex play a critical role in shaping the response properties of sensory neurons. The projection from the auditory cortex to the inferior colliculus is a massive, yet poorly understood, pathway emanating from two distinct cortical layers. Here we show, using a range of optical techniques, that mouse auditory corticocollicular neurons from different layers are embedded into different cortical and thalamic networks. Specifically, we observed that layer 5 corticocollicular neurons integrate information across cortical lamina and receive direct thalamic input. The latter connection provides a hyperdirect link between acoustic sensation and descending control, thus demonstrating a novel mechanism for rapid "online" modulation of sensory perception.
Collapse
Affiliation(s)
- Bernard J Slater
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Stacy K Sons
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Georgiy Yudintsev
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Christopher M Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Daniel A Llano
- Neuroscience Program and
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| |
Collapse
|
22
|
Lohse M, Bajo VM, King AJ. Development, organization and plasticity of auditory circuits: Lessons from a cherished colleague. Eur J Neurosci 2018; 49:990-1004. [PMID: 29804304 PMCID: PMC6519211 DOI: 10.1111/ejn.13979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Ray Guillery was a neuroscientist known primarily for his ground-breaking studies on the development of the visual pathways and subsequently on the nature of thalamocortical processing loops. The legacy of his work, however, extends well beyond the visual system. Thanks to Ray Guillery's pioneering anatomical studies, the ferret has become a widely used animal model for investigating the development and plasticity of sensory processing. This includes our own work on the auditory system, where experiments in ferrets have revealed the role of sensory experience during development in shaping the neural circuits responsible for sound localization, as well as the capacity of the mature brain to adapt to changes in inputs resulting from hearing loss. Our research has also built on Ray Guillery's ideas about the possible functions of the massive descending projections that link sensory areas of the cerebral cortex to the thalamus and other subcortical targets, by demonstrating a role for corticothalamic feedback in the perception of complex sounds and for corticollicular projection neurons in learning to accommodate altered auditory spatial cues. Finally, his insights into the organization and functions of transthalamic corticocortical connections have inspired a raft of research, including by our own laboratory, which has attempted to identify how information flows through the thalamus.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Asokan MM, Williamson RS, Hancock KE, Polley DB. Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nat Commun 2018; 9:2468. [PMID: 29941910 PMCID: PMC6018400 DOI: 10.1038/s41467-018-04852-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Layer 5 (L5) cortical projection neurons innervate far-ranging brain areas to coordinate integrative sensory processing and adaptive behaviors. Here, we characterize a plasticity in L5 auditory cortex (ACtx) neurons that innervate the inferior colliculus (IC), thalamus, lateral amygdala and striatum. We track daily changes in sound processing using chronic widefield calcium imaging of L5 axon terminals on the dorsal cap of the IC in awake, adult mice. Sound level growth functions at the level of the auditory nerve and corticocollicular axon terminals are both strongly depressed hours after noise-induced damage of cochlear afferent synapses. Corticocollicular response gain rebounded above baseline levels by the following day and remained elevated for several weeks despite a persistent reduction in auditory nerve input. Sustained potentiation of excitatory ACtx projection neurons that innervate multiple limbic and subcortical auditory centers may underlie hyperexcitability and aberrant functional coupling of distributed brain networks in tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Meenakshi M Asokan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
- Division of Medical Sciences, Harvard University, Boston, MA, 02114, USA.
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA
- Division of Medical Sciences, Harvard University, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
24
|
Usrey WM, Sherman SM. Corticofugal circuits: Communication lines from the cortex to the rest of the brain. J Comp Neurol 2018. [PMID: 29524229 DOI: 10.1002/cne.24423] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyramidal cells in cortical Layers 5 and 6 are the only cells in the cerebral cortex with axons that leave the cortex to influence the thalamus. Layer 6 cells provide modulatory feedback input to all thalamic nuclei. Layer 5 cells provide driving input to higher-order thalamic nuclei and do not innervate first-order nuclei, which get their driving inputs from subcortical sources. Higher-order nuclei innervated by Layer 5 cells thus seem to be involved with cortico-thalamo-cortical communication. The Layer 5 axons branch to also target additional subcortical structures that mediate interactions with the external environment. These corticofugal pathways represent the only means by which the cortex influences the rest of the neuraxis and thus are essential for proper cortical function and species survival. Here we review current understanding of the corticofugal pathways from Layers 5 and 6 and speculate on their functional contributions to neural processing and behavior.
Collapse
Affiliation(s)
- W Martin Usrey
- Center for Neuroscience, University of California, Davis, Davis, California
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
LaBerge D, Kasevich RS. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits. Front Syst Neurosci 2017; 11:37. [PMID: 28659768 PMCID: PMC5469893 DOI: 10.3389/fnsys.2017.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.
Collapse
Affiliation(s)
- David LaBerge
- Department of Cognitive Sciences, University of California, Irvine, IrvineCA, United States
| | - Ray S Kasevich
- Stanley Laboratory of Electrical Physics, Great BarringtonMA, United States.,Bard College at Simon's Rock, Great BarringtonMA, United States
| |
Collapse
|
26
|
Caspary DM, Llano DA. Auditory thalamic circuits and GABA A receptor function: Putative mechanisms in tinnitus pathology. Hear Res 2017; 349:197-207. [PMID: 27553899 PMCID: PMC5319923 DOI: 10.1016/j.heares.2016.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predict tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing de-inactivation of T-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Abstract
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron’s function by its individual ‘connectome,’ combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons).
Collapse
Affiliation(s)
- Stewart Shipp
- Laboratory of Visual Perceptual Mechanisms, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China; INSERM U1208, Stem Cell and Brain Research InstituteBron, France; Department of Visual Neuroscience, UCL Institute of OphthalmologyLondon, UK
| |
Collapse
|
28
|
Kinnischtzke AK, Fanselow EE, Simons DJ. Target-specific M1 inputs to infragranular S1 pyramidal neurons. J Neurophysiol 2016; 116:1261-74. [PMID: 27334960 PMCID: PMC5018057 DOI: 10.1152/jn.01032.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Abstract
The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237-2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures.
Collapse
Affiliation(s)
- Amanda K Kinnischtzke
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erika E Fanselow
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel J Simons
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Lee CC, Yanagawa Y, Imaizumi K. Commissural functional topography of the inferior colliculus assessed in vitro. Hear Res 2015; 328:94-101. [PMID: 26319767 DOI: 10.1016/j.heares.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
The inferior colliculus (IC) receives ascending and descending information from several convergent neural sources. As such, exploring the neural pathways that converge in the IC is crucial to uncovering their multi-varied roles in the integration of auditory and other sensory information. Among these convergent pathways, the IC commissural connections represent an important route for the integration of bilateral information in the auditory system. Here, we describe the preparation and validation of a novel in vitro slice preparation for examining the functional topography and synaptic properties of the commissural and intrinsic projections in the IC of the mouse. This preparation, in combination with modern genetic approaches in the mouse, enables the specific examination of these pathways, which potentially can reveal cell-type specific processing channels in the auditory midbrain.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazuo Imaizumi
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 2014; 522:225-59. [PMID: 23983048 PMCID: PMC4255240 DOI: 10.1002/cne.23458] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022]
Abstract
The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions.
Collapse
Affiliation(s)
- Nikola T Markov
- Stem Cell and Brain Research Institute, INSERM U846, 69500, Bron, France; Université de Lyon, Université Lyon I, 69003, Lyon, France; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520-8001, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The auditory corticocollicular system: molecular and circuit-level considerations. Hear Res 2014; 314:51-9. [PMID: 24911237 DOI: 10.1016/j.heares.2014.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/11/2023]
Abstract
We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing.
Collapse
|
32
|
Yang Q, Chen CC, Ramos RL, Katz E, Keller A, Brumberg JC. Intrinsic properties of and thalamocortical inputs onto identified corticothalamic-VPM neurons. Somatosens Mot Res 2014; 31:78-93. [PMID: 24397568 DOI: 10.3109/08990220.2013.869495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Corticothalamic (CT) feedback plays an important role in regulating the sensory information that the cortex receives. Within the somatosensory cortex layer VI originates the feedback to the ventral posterior medial (VPM) nucleus of the thalamus, which in turn receives sensory information from the contralateral whiskers. We examined the physiology and morphology of CT neurons in rat somatosensory cortex, focusing on the physiological characteristics of the monosynaptic inputs that they receive from the thalamus. To identify CT neurons, rhodamine microspheres were injected into VPM and allowed to retrogradely transport to the soma of CT neurons. Thalamocortical slices were prepared at least 3 days post injection. Whole-cell recordings from labeled CT cells in layer VI demonstrated that they are regular spiking neurons and exhibit little spike frequency adaption. Two anatomical classes were identified based on their apical dendrites that either terminated by layer V (compact cells) or layer IV (elaborate cells). Thalamic inputs onto identified CT-VPM neurons demonstrated paired pulse depression over a wide frequency range (2-20 Hz). Stimulus trains also resulted in significant synaptic depression above 10 Hz. Our results suggest that thalamic inputs differentially impact CT-VPM neurons in layer VI. This characteristic may allow them to differentiate a wide range of stimulation frequencies which in turn further tune the feedback signals to the thalamus.
Collapse
Affiliation(s)
- Qizong Yang
- Department of Psychology, Queens College , CUNY, Flushing, NY , USA
| | | | | | | | | | | |
Collapse
|
33
|
Ramirez JM. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. PROGRESS IN BRAIN RESEARCH 2014; 209:91-129. [PMID: 24746045 DOI: 10.1016/b978-0-444-63274-6.00006-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Functional convergence of thalamic and intrinsic projections to cortical layers 4 and 6. NEUROPHYSIOLOGY+ 2013; 45:396-406. [PMID: 24563558 DOI: 10.1007/s11062-013-9385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ascending sensory information is conveyed from the thalamus to layers 4 and 6 of sensory cortical areas. Interestingly, receptive field properties of cortical layer 6 neurons are different from those in layer 4. Do such differences reflect distinct inheritance patterns from the thalamus or are they derived instead from local cortical circuits? To distinguish between these possibilities, we utilized in vitro slice preparations containing the thalamocortical pathways in the auditory and somatosensory systems. Responses from neurons in layers 4 and 6 that resided in the same column were recorded using whole-cell patch clamp. Laser-scanning photostimulation via uncaging of glutamate in the thalamus and cortex was used to map the functional topography of thalamocortical and intracortical inputs to each layer. In addition, we assessed the functional divergence of thalamocortical inputs by optical imaging of flavoprotein autofluorescence. We found that the thalamocortical inputs to layers 4 and 6 originated from the same thalamic domain, but the intracortical projections to the same neurons differed dramatically. Our results suggest that the intracortical projections, rather than the thalamic inputs, to each layer contribute more to the differences in their receptive field properties.
Collapse
|
35
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
36
|
LaBerge D, Kasevich R. The cognitive significance of resonating neurons in the cerebral cortex. Conscious Cogn 2013; 22:1523-50. [PMID: 24211318 DOI: 10.1016/j.concog.2013.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
Most neural fibers of the cerebral cortex engage in electric signaling, but one particular fiber, the apical dendrite of the pyramidal neuron, specializes in electric resonating. This dendrite extends upward from somas of pyramidal neurons, the most numerous neurons of the cortex. The apical dendrite is embedded in a recurrent corticothalamic circuit that induces surges of electric current to move repeatedly down the dendrite. Narrow bandwidths of surge frequency (resonating) enable cortical circuits to use specific carrier frequencies, which isolate the processing of those circuits from other circuits. Resonating greatly enhances the intensity and duration of electrical activity of a neuron over a narrow frequency range, which underlies attention in its various modes. Within the minicolumn, separation of the central resonating circuit from the surrounding signal processing network separates "having" subjective impressions from "thinking about" them. Resonating neurons in the insular cortex apparently underlie cognitive impressions of feelings.
Collapse
Affiliation(s)
- David LaBerge
- Department of Cognitive Sciences, University of California, Irvine, USA.
| | | |
Collapse
|
37
|
Oswald MJ, Tantirigama MLS, Sonntag I, Hughes SM, Empson RM. Diversity of layer 5 projection neurons in the mouse motor cortex. Front Cell Neurosci 2013; 7:174. [PMID: 24137110 PMCID: PMC3797544 DOI: 10.3389/fncel.2013.00174] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022] Open
Abstract
In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.
Collapse
Affiliation(s)
- Manfred J Oswald
- Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
38
|
Llano DA, Slater BJ, Lesicko AMH, Stebbings KA. An auditory colliculothalamocortical brain slice preparation in mouse. J Neurophysiol 2013; 111:197-207. [PMID: 24108796 DOI: 10.1152/jn.00605.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Key questions about the thalamus are still unanswered in part because of the inability to stimulate its inputs while monitoring cortical output. To address this, we employed flavoprotein autofluorescence optical imaging to expedite the process of developing a brain slice in mouse with connectivity among the auditory midbrain, thalamus, thalamic reticular nucleus, and cortex. Optical, electrophysiological, anatomic, and pharmacological tools revealed ascending connectivity from midbrain to thalamus and thalamus to cortex as well as descending connectivity from cortex to thalamus and midbrain and from thalamus to midbrain. The slices were relatively thick (600-700 μm), but, based on typical measures of cell health (resting membrane potential, spike height, and input resistance) and use of 2,3,5-triphenyltetrazolium chloride staining, the slices were as viable as thinner slices. As expected, after electrical stimulation of the midbrain, the latency of synaptic responses gradually increased from thalamus to cortex, and spiking responses were seen in thalamic neurons. Therefore, for the first time, it will be possible to manipulate and record simultaneously the activity of most of the key brain structures that are synaptically connected to the thalamus. The details for the construction of such slices are described herein.
Collapse
Affiliation(s)
- Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | | |
Collapse
|
39
|
Bailey CDC, Tian MK, Kang L, O'Reilly R, Lambe EK. Chrna5 genotype determines the long-lasting effects of developmental in vivo nicotine exposure on prefrontal attention circuitry. Neuropharmacology 2013; 77:145-55. [PMID: 24055499 DOI: 10.1016/j.neuropharm.2013.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Maternal smoking during pregnancy repeatedly exposes the developing fetus to nicotine and is linked with attention deficits in offspring. Corticothalamic neurons within layer VI of the medial prefrontal cortex are potential targets in the disruption of attention circuitry by nicotine, a process termed teratogenesis. These prefrontal layer VI neurons would be likely targets because they are developmentally excited and morphologically sculpted by a population of nicotinic acetylcholine receptors (nAChRs) that are sensitive to activation and/or desensitization by nicotine. The maturational effects of these α4β2* nAChRs and their susceptibility to desensitization are both profoundly altered by the incorporation of an α5 subunit, encoded by the chrna5 gene. Here, we investigate nicotine teratogenesis in layer VI neurons of wildtype and α5(-/-) mice. In vivo chronic nicotine exposure during development significantly modified apical dendrite morphology and nAChR currents, compared with vehicle control. The direction of the changes was dependent on chrna5 genotype. Surprisingly, neurons from wildtype mice treated with in vivo nicotine resembled those from α5(-/-) mice treated with vehicle, maintaining into adulthood a morphological phenotype characteristic of immature mice together with reduced nAChR currents. In α5(-/-) mice, however, developmental in vivo nicotine tended to normalize both adult morphology and nAChR currents. These findings suggest that chrna5 genotype can determine the effect of developmental in vivo nicotine on the prefrontal cortex. In wildtype mice, the lasting alterations to the morphology and nAChR activation of prefrontal layer VI neurons are teratogenic changes consistent with the attention deficits observed following developmental nicotine exposure.
Collapse
Affiliation(s)
- Craig D C Bailey
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael K Tian
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lily Kang
- Human Biology Program, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryan O'Reilly
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
40
|
Kaneko T. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front Neural Circuits 2013; 7:75. [PMID: 23754982 PMCID: PMC3664775 DOI: 10.3389/fncir.2013.00075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/03/2013] [Indexed: 11/30/2022] Open
Abstract
In spite of recent progress in brain sciences, the local circuit of the cerebral neocortex, including motor areas, still remains elusive. Morphological works on excitatory cortical circuitry from thalamocortical (TC) afferents to corticospinal neurons (CSNs) in motor-associated areas are reviewed here. First, TC axons of motor thalamic nuclei have been re-examined by the single-neuron labeling method. There are middle layer (ML)-targeting and layer (L) 1-preferring TC axon types in motor-associated areas, being analogous to core and matrix types, respectively, of Jones (1998) in sensory areas. However, the arborization of core-like motor TC axons spreads widely and disregards the columnar structure that is the basis of information processing in sensory areas, suggesting that motor areas adopt a different information-processing framework such as area-wide laminar organization. Second, L5 CSNs receive local excitatory inputs not only from L2/3 pyramidal neurons but also from ML spiny neurons, the latter directly processing cerebellar information of core-like TC neurons (TCNs). In contrast, basal ganglia information is targeted to apical dendrites of L2/3 and L5 pyramidal neurons through matrix TCNs. Third, L6 corticothalamic neurons (CTNs) are most densely innervated by ML spiny neurons located just above CTNs. Since CTNs receive only weak connections from L2/3 and L5 pyramidal neurons, the TC recurrent circuit composed of TCNs, ML spiny neurons and CTNs appears relatively independent of the results of processing in L2/3 and L5. It is proposed that two circuits sharing the same TC projection and ML neurons are embedded in the neocortex: one includes L2/3 and L5 neurons, processes afferent information in a feedforward way and sends the processed information to other cortical areas and subcortical regions; and the other circuit participates in a dynamical system of the TC recurrent circuit and may serve as the basis of autonomous activity of the neocortex.
Collapse
Affiliation(s)
- Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
41
|
Synaptic mechanisms underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons in auditory cortical layer 5. J Neurosci 2013; 33:5326-39. [PMID: 23516297 DOI: 10.1523/jneurosci.4810-12.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Corticofugal projections from the primary auditory cortex (A1) have been shown to play a role in modulating subcortical processing. However, functional properties of the corticofugal neurons and their synaptic circuitry mechanisms remain unclear. In this study, we performed in vivo whole-cell recordings from layer 5 (L5) pyramidal neurons in the rat A1 and found two distinct neuronal classes according to their functional properties. Intrinsic-bursting (IB) neurons, the L5 corticofugal neurons, exhibited early and rather unselective spike responses to a wide range of frequencies. The exceptionally broad spectral tuning of IB neurons was attributable to their broad excitatory inputs with long temporal durations and inhibitory inputs being more narrowly tuned than excitatory inputs. This uncommon pattern of excitatory-inhibitory interplay was attributed initially to a broad thalamocortical convergence onto IB neurons, which also receive temporally prolonged intracortical excitatory input as well as feedforward inhibitory input at least partially from more narrowly tuned fast-spiking inhibitory neurons. In contrast, regular-spiking neurons, which are mainly corticocortical, exhibited sharp frequency tuning similar to L4 pyramidal cells, underlying which are well-matched purely intracortical excitation and inhibition. The functional dichotomy among L5 pyramidal neurons suggests two distinct processing streams. The spectrally and temporally broad synaptic integration in IB neurons may ensure robust feedback signals to facilitate subcortical function and plasticity in a general manner.
Collapse
|
42
|
De Pasquale R, Sherman SM. A modulatory effect of the feedback from higher visual areas to V1 in the mouse. J Neurophysiol 2013; 109:2618-31. [PMID: 23446698 PMCID: PMC3653048 DOI: 10.1152/jn.01083.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 11/22/2022] Open
Abstract
Using a mouse brain slice preparation, we studied the modulatory effects of a feedback projection from higher visual cortical areas, mostly or exclusively area LM (or V2), on two inputs to layer 4 cells in the first visual area (V1). The two inputs to these cells were geniculocortical and an unspecified intracortical input, possibly involving layer 6 cells. We found that activation of metabotropic glutamate receptors (mGluRs) from stimulation of the feedback projection reduced the evoked excitatory postsynaptic currents of both of these inputs to layer 4 but that this modulation acts in an input-specific way. Reducing the strength of the geniculocortical input in adults involved both presynaptic and postsynaptic group I mGluRs (although in younger animals presynaptic group II mGluRs were also involved), whereas modulation of the intracortical input acted entirely via postsynaptic group II mGluRs. These results demonstrate that one of the effects of this feedback pathway is to control the gain of geniculocortical transmission.
Collapse
Affiliation(s)
- Roberto De Pasquale
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
43
|
Engle JR, Recanzone GH. Characterizing spatial tuning functions of neurons in the auditory cortex of young and aged monkeys: a new perspective on old data. Front Aging Neurosci 2013; 4:36. [PMID: 23316160 PMCID: PMC3539457 DOI: 10.3389/fnagi.2012.00036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing deficits are a leading cause of disability among the aged. While some forms of hearing deficits are peripheral in origin, others are centrally mediated. One such deficit is the ability to localize sounds, a critical component for segregating different acoustic objects and events, which is dependent on the auditory cortex. Recent evidence indicates that in aged animals the normal sharpening of spatial tuning between neurons in primary auditory cortex to the caudal lateral field does not occur as it does in younger animals. As a decrease in inhibition with aging is common in the ascending auditory system, it is possible that this lack of spatial tuning sharpening is due to a decrease in inhibition at different periods within the response. It is also possible that spatial tuning was decreased as a consequence of reduced inhibition at non-best locations. In this report we found that aged animals had greater activity throughout the response period, but primarily during the onset of the response. This was most prominent at non-best directions, which is consistent with the hypothesis that inhibition is a primary mechanism for sharpening spatial tuning curves. We also noted that in aged animals the latency of the response was much shorter than in younger animals, which is consistent with a decrease in pre-onset inhibition. These results can be interpreted in the context of a failure of the timing and efficiency of feed-forward thalamo-cortical and cortico-cortical circuits in aged animals. Such a mechanism, if generalized across cortical areas, could play a major role in age-related cognitive decline.
Collapse
Affiliation(s)
- James R Engle
- Department of Psychology and Center for Neuroscience, University of California at Davis Davis, CA, USA ; Evelyn F. McKnight Brain Institute and ARL Division of Neural Systems, Memory and Aging, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
44
|
Slater BJ, Willis AM, Llano DA. Evidence for layer-specific differences in auditory corticocollicular neurons. Neuroscience 2012; 229:144-54. [PMID: 23137545 DOI: 10.1016/j.neuroscience.2012.10.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/26/2012] [Indexed: 11/16/2022]
Abstract
Recent data suggest that there may be distinct processing streams emanating from auditory cortical layers 5 and 6 that influence the auditory midbrain. To determine whether these projections have different physiological properties, we injected rhodamine-tagged latex tracer beads into the inferior colliculus of >30-day-old mice to label these corticofugal cells. Whole-cell recordings were performed on 62 labeled cells to determine their basic electrophysiological properties and cells were filled with biocytin to determine their morphological characteristics. Layer 5 auditory corticocollicular cells have prominent I(h)-mediated sag and rebound currents, have relatively sluggish time constants, and can generate calcium-dependent rhythmic bursts. In contrast, layer 6 auditory corticocollicular cells are non-bursting, do not demonstrate sag or rebound currents and have short time constants. Quantitative analysis of morphology showed that layer 6 cells are smaller, have a horizontal orientation, and have very long dendrites (>500 μm) that branch profusely both near the soma distally near the pia. Layer 5 corticocollicular cells are large pyramidal cells with a long apical dendrite with most branching near the pial surface. The marked differences in physiological properties and dendritic arborization between neurons in layers 5 and 6 make it likely that each type plays a distinct role in controlling auditory information processing in the midbrain.
Collapse
Affiliation(s)
- B J Slater
- Neuroscience Program, University of Illinois at Urbana-Champaign, United States
| | | | | |
Collapse
|
45
|
Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J Neurosci 2012; 32:9159-72. [PMID: 22764225 DOI: 10.1523/jneurosci.0065-12.2012] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Topographically organized maps of the sensory receptor epithelia are regarded as cornerstones of cortical organization as well as valuable readouts of diverse biological processes ranging from evolution to neural plasticity. However, maps are most often derived from multiunit activity recorded in the thalamic input layers of anesthetized animals using near-threshold stimuli. Less distinct topography has been described by studies that deviated from the formula above, which brings into question the generality of the principle. Here, we explicitly compared the strength of tonotopic organization at various depths within core and belt regions of the auditory cortex using electrophysiological measurements ranging from single units to delta-band local field potentials (LFP) in the awake and anesthetized mouse. Unit recordings in the middle cortical layers revealed a precise tonotopic organization in core, but not belt, regions of auditory cortex that was similarly robust in awake and anesthetized conditions. In core fields, tonotopy was degraded outside the middle layers or when LFP signals were substituted for unit activity, due to an increasing proportion of recording sites with irregular tuning for pure tones. However, restricting our analysis to clearly defined receptive fields revealed an equivalent tonotopic organization in all layers of the cortical column and for LFP activity ranging from gamma to theta bands. Thus, core fields represent a transition between topographically organized simple receptive field arrangements that extend throughout all layers of the cortical column and the emergence of nontonotopic representations outside the input layers that are further elaborated in the belt fields.
Collapse
|
46
|
Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 2012; 31:18223-36. [PMID: 22171028 DOI: 10.1523/jneurosci.3139-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity.
Collapse
|
47
|
Sherman SM, Guillery RW. Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 2011; 106:1068-77. [DOI: 10.1152/jn.00429.2011] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Essentially all cortical areas receive thalamic inputs and send outputs to lower motor centers. Cortical areas communicate with each other by means of direct corticocortical and corticothalamocortical pathways, often organized in parallel. We distinguish these functionally, stressing that the transthalamic pathways are class 1 (formerly known as “driver”) pathways capable of transmitting information, whereas the direct pathways vary, being either class 2 (formerly known as “modulator”) or class 1. The transthalamic pathways provide a thalamic gate that can be open or closed (and otherwise more subtly modulated), and these inputs to the thalamus are generally branches of axons with motor functions. Thus the transthalamic corticocortical pathways that can be gated carry information about the cortical processing in one cortical area and also about the motor instructions currently being issued from that area and copied to other cortical areas.
Collapse
Affiliation(s)
- S. Murray Sherman
- Department of Neurobiology, The University of Chicago, Chicago, Illinois; and
| | - R. W. Guillery
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, United Kingdom
| |
Collapse
|
48
|
Abstract
The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory field as well as in the ventral and medial divisions of the medial geniculate body (MGBv and MGBm, respectively). Tracer injections into distinct zones of the BF map in AI retrogradely labeled topographically organized MGBv projections and weaker, mixed projections from MGBm. Stimulating MGBv along the tonotopic axis in the slice produced an orderly shift of voltage-sensitive dye (VSD) signals along the AI tonotopic axis, demonstrating topography in the mouse thalamocortical circuit that is preserved in the slice. However, compared with BF maps of neuronal spiking activity, the topographic order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model.
Collapse
|
49
|
Sloan DM, Zhang D, Bertram EH. Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures. Neurobiol Dis 2011; 43:435-45. [PMID: 21554957 DOI: 10.1016/j.nbd.2011.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 04/10/2011] [Accepted: 04/22/2011] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The midline thalamic nuclei are an important component of limbic seizures. Although the anatomic connections and excitatory influences of the midline thalamus are well known, its physiological role in limbic seizures is unclear. We examined the role of the midline thalamus on two circuits that are involved in limbic seizures: (a) the subiculum-prefrontal cortex (SB-PFC), and (b) the piriform cortex-entorhinal cortex (PC-EC). METHODS Evoked field potentials for both circuits were obtained in anesthetized rats, and the likely direct monosynaptic and polysynaptic contributions to the responses were identified. Seizures were generated in both circuits by 20 Hz stimulus trains. Once stable seizures and evoked potentials were established, the midline thalamus was inactivated through an injection of the sodium channel blocker tetrodotoxin (TTX), and the effects on the evoked responses and seizures were analyzed. RESULTS Inactivation of the midline thalamus suppressed seizures in both circuits. Seizure suppression was associated with a significant reduction in the late thalamic component but no significant change in the early direct monosynaptic component. Injections that did not suppress the seizures did not alter the evoked potentials. CONCLUSIONS Suppression of the late thalamic component of the evoked potential at the time of seizure suppression suggests that the thalamus facilitates seizure induction by extending the duration of excitatory drive through a divergent-convergent excitatory amplification system. This work may have broader implications for understanding signaling in the limbic system.
Collapse
Affiliation(s)
- David M Sloan
- University of Virginia, Neuroscience Graduate Program, Charlottesville 22901, USA
| | | | | |
Collapse
|
50
|
Sloan DM, Zhang D, Bertram EH. Increased GABAergic inhibition in the midline thalamus affects signaling and seizure spread in the hippocampus-prefrontal cortex pathway. Epilepsia 2011; 52:523-30. [PMID: 21204829 PMCID: PMC3058300 DOI: 10.1111/j.1528-1167.2010.02919.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The midline thalamus is an important component of the circuitry in limbic seizures, but it is unclear how synaptic modulation of the thalamus affects that circuitry. In this study, we wished to understand how synaptic modulation of the thalamus can affect interregional signaling and seizure spread in the limbic network. METHODS We examined the effect of γ-aminobutyric acid (GABA) modulation of the mediodorsal (MD) region of the thalamus on responses in the prefrontal cortex (PFC) by stimulation of the subiculum (SB). Muscimol, a GABA(A) agonist, was injected into the MD, and the effect on local responses to subiculum stimulation was examined. Evoked potentials were induced in the MD and the PFC by low-frequency stimulation of the SB, and seizures were generated in the subiculum by repeated 20-Hz stimulations. The effect of muscimol in the MD on the evoked potentials and seizures was measured. KEY FINDINGS Thalamic responses to stimulation of the subiculum were reduced in the presence of muscimol. Reduction of the amplitudes of evoked potentials in the MD resulted in an attenuation of the late, thalamic components of the responses in the PFC, as well as of seizure durations. SIGNIFICANCE Activation of GABA(A) receptors in the midline thalamus not only causes changes within the thalamus, but it has broader effects on the limbic network. This work provides further evidence that synaptic modulation within the midline thalamus alters system excitability more broadly and reduces seizure activity.
Collapse
Affiliation(s)
- David M Sloan
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|