1
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024:10.1038/s41583-024-00869-z. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Koloski MF, Terry A, Lee N, Ramanathan DS. Methylphenidate, but not citalopram, decreases impulsive choice in rats performing a temporal discounting task. Front Psychiatry 2024; 15:1385502. [PMID: 38779546 PMCID: PMC11109432 DOI: 10.3389/fpsyt.2024.1385502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Drugs targeting monoamine systems remain the most common treatment for disorders with impulse control impairments. There is a body of literature suggesting that drugs affecting serotonin reuptake and dopamine reuptake can modulate distinct aspects of impulsivity - though such tests are often performed using distinct behavioral tasks prohibiting easy comparisons. Methods Here, we directly compare pharmacologic agents that affect dopamine (methylphenidate) vs serotonin (citalopram) manipulations on choice impulsivity in a temporal discounting task where rats could choose between a small, immediate reward or a large reward delayed at either 2 or 10s. In control conditions, rats preferred the large reward at a small (2s) delay and discounted the large reward at a long (10s) delay. Results Methylphenidate, a dopamine transport inhibitor that blocks reuptake of dopamine, dose-dependently increased large reward preference in the long delay (10s) block. Citalopram, a selective serotonin reuptake inhibitor, had no effect on temporal discounting behavior. Impulsive behavior on the temporal discounting task was at least partially mediated by the nucleus accumbens shell. Bilateral lesions to the nucleus accumbens shell reduced choice impulsivity during the long delay (10s) block. Following lesions, methylphenidate did not impact impulsivity. Discussion Our results suggest that striatal dopaminergic systems modulate choice impulsivity via actions within the nucleus accumbens shell, whereas serotonin systems may regulate different aspects of behavioral inhibition/impulsivity.
Collapse
Affiliation(s)
- Miranda F. Koloski
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Department of Psychiatry, University of California-San Diego, San Diego, CA, United States
| | - Alyssa Terry
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
| | - Noelle Lee
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
| | - Dhakshin S. Ramanathan
- Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Department of Psychiatry, University of California-San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
van Ruitenbeek P, Franzen L, Mason NL, Stiers P, Ramaekers JG. Methylphenidate as a treatment option for substance use disorder: a transdiagnostic perspective. Front Psychiatry 2023; 14:1208120. [PMID: 37599874 PMCID: PMC10435872 DOI: 10.3389/fpsyt.2023.1208120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
A transition in viewing mental disorders from conditions defined as a set of unique characteristics to one of the quantitative variations on a collection of dimensions allows overlap between disorders. The overlap can be utilized to extend to treatment approaches. Here, we consider the overlap between attention-deficit/hyperactivity disorder and substance use disorder to probe the suitability to use methylphenidate as a treatment for substance use disorder. Both disorders are characterized by maladaptive goal-directed behavior, impaired cognitive control, hyperactive phasic dopaminergic neurotransmission in the striatum, prefrontal hypoactivation, and reduced frontal cortex gray matter volume/density. In addition, methylphenidate has been shown to improve cognitive control and normalize associated brain activation in substance use disorder patients and clinical trials have found methylphenidate to improve clinical outcomes. Despite the theoretical basis and promising, but preliminary, outcomes, many questions remain unanswered. Most prominent is whether all patients who are addicted to different substances may equally profit from methylphenidate treatment.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
4
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
5
|
Saggar M, Bruno J, Gaillard C, Claudino L, Ernst M. Neural resources shift under Methylphenidate: A computational approach to examine anxiety-cognition interplay. Neuroimage 2022; 264:119686. [PMID: 36273770 PMCID: PMC9772074 DOI: 10.1016/j.neuroimage.2022.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The reciprocal interplay between anxiety and cognition is well documented. Anxiety negatively impacts cognition, while cognitive engagement can down-regulate anxiety. The brain mechanisms and dynamics underlying such interplay are not fully understood. To study this question, we experimentally and orthogonally manipulated anxiety (using a threat of shock paradigm) and cognition (using methylphenidate; MPH). The effects of these manipulations on the brain and behavior were evaluated in 50 healthy participants (25 MPH, 25 placebo), using an n-back working memory fMRI task (with low and high load conditions). Behaviorally, improved response accuracy was observed as a main effect of the drug across all conditions. We employed two approaches to understand the neural mechanisms underlying MPH-based cognitive enhancement in safe and threat conditions. First, we performed a hypothesis-driven computational analysis using a mathematical framework to examine how MPH putatively affects cognitive enhancement in the face of induced anxiety across two levels of cognitive load. Second, we performed an exploratory data analysis using Topological Data Analysis (TDA)-based Mapper to examine changes in spatiotemporal brain activity across the entire cortex. Both approaches provided converging evidence that MPH facilitated greater differential engagement of neural resources (brain activity) across low and high working memory load conditions. Furthermore, load-based differential management of neural resources reflects enhanced efficiency that is most powerful during higher load and induced anxiety conditions. Overall, our results provide novel insights regarding brain mechanisms that facilitate cognitive enhancement under MPH and, in future research, may be used to help mitigate anxiety-related cognitive underperformance.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA,Corresponding author: Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, St 1356, Stanford, California 94305, USA. (M. Saggar)
| | - Jennifer Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Claudie Gaillard
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Leonardo Claudino
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA,Corresponding author: 15K North Drive, Bethesda MD, 20892, USA, (M. Ernst)
| |
Collapse
|
6
|
Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 2022; 47:276-291. [PMID: 34408275 PMCID: PMC8617203 DOI: 10.1038/s41386-021-01153-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
A growing preclinical and clinical body of work on the effects of chronic drug use and drug addiction has extended the scope of inquiry from the putative reward-related subcortical mechanisms to higher-order executive functions as regulated by the prefrontal cortex. Here we review the neuroimaging evidence in humans and non-human primates to demonstrate the involvement of the prefrontal cortex in emotional, cognitive, and behavioral alterations in drug addiction, with particular attention to the impaired response inhibition and salience attribution (iRISA) framework. In support of iRISA, functional and structural neuroimaging studies document a role for the prefrontal cortex in assigning excessive salience to drug over non-drug-related processes with concomitant lapses in self-control, and deficits in reward-related decision-making and insight into illness. Importantly, converging insights from human and non-human primate studies suggest a causal relationship between drug addiction and prefrontal insult, indicating that chronic drug use causes the prefrontal cortex damage that underlies iRISA while changes with abstinence and recovery with treatment suggest plasticity of these same brain regions and functions. We further dissect the overlapping and distinct characteristics of drug classes, potential biomarkers that inform vulnerability and resilience, and advancements in cutting-edge psychological and neuromodulatory treatment strategies, providing a comprehensive landscape of the human and non-human primate drug addiction literature as it relates to the prefrontal cortex.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Hosang TJ, Laborde S, Sprengel M, Löw A, Baum N, Hoffmann S, Jacobsen T. Tasting rewards. Effects of orosensory sweet signals on human error processing. Nutr Neurosci 2021; 25:2616-2626. [PMID: 34772324 DOI: 10.1080/1028415x.2021.1993538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human research has shown interactions between rewards and cognitive control. In animal models of affective neuroscience, reward administration typically involves administering orosensory sugar signals (OSS) during caloric-deprived states. We adopted this procedure to investigate neurophysiological mechanisms of reward-cognitive control interactions in humans. We predicted that OSS would affect neurophysiological and behavioral indices of error processing oppositely, depending on the relative weight of the OSS-induced 'wanting' and 'liking' components of reward. We, therefore, conducted a double-blind, non-nutritive sweetener-controlled study with a within-subject design. Fasted (16 hr) participants (N = 61) performed a modified Flanker task to assess neurophysiological (error-related negativity [Ne/ERN]) and behavioral (post-error adaptations) measures of error processing. Non-contingent to task performance, we repeatedly administered either a sugar (glucose) or non-nutritive sweetener (aspartame) solution, which had to be expulsed after short oral stimulation to prevent post-oral effects. Consistent with our hypothesis on how 'liking' would affect Ne/ERN amplitude, we found the latter to be decreased for sugar compared to aspartame. Unexpectedly, we found post-error accuracy, instead of post-error slowing, to be reduced by sugar relative to aspartame. Our findings suggest that OSS may interact with error processing through the 'liking' component of rewards. Adopting our reward-induction procedure (i.e. administering OSS in a state of high reward sensitivity [i.e. fasting], non-contingent to task performance) might help future research investigating the neural underpinnings of reward-cognitive control interactions in humans.
Collapse
Affiliation(s)
- Thomas J Hosang
- Experimental Psychology Unit, Faculty of Humanities and Social Sciences, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Hamburg, Germany.,Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Michael Sprengel
- Experimental Psychology Unit, Faculty of Humanities and Social Sciences, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| | - Andreas Löw
- Experimental Psychology Unit, Faculty of Humanities and Social Sciences, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| | - Niels Baum
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Sven Hoffmann
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Thomas Jacobsen
- Experimental Psychology Unit, Faculty of Humanities and Social Sciences, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Gaillard C, Lago TR, Gorka AX, Balderston NL, Fuchs BA, Reynolds RC, Grillon C, Ernst M. Methylphenidate modulates interactions of anxiety with cognition. Transl Psychiatry 2021; 11:544. [PMID: 34675189 PMCID: PMC8531440 DOI: 10.1038/s41398-021-01621-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
While a large body of literature documents the impairing effect of anxiety on cognition, performing a demanding task was shown to be effective in reducing anxiety. Here we explored the mechanisms of this anxiolytic effect by examining how a pharmacological challenge designed to improve attentional processes influences the interplay between the neural networks engaged during anxiety and cognition. Using a double-blind between-subject design, we pharmacologically manipulated working memory (WM) using a single oral dose of 20 mg methylphenidate (MPH, cognitive enhancer) or placebo. Fifty healthy adults (25/drug group) performed two runs of a WM N-back task in a 3 T magnetic resonance imaging scanner. This task comprised a low (1-Back) and high (3-Back) WM load, which were performed in two contexts, safety or threat of shocks (induced-anxiety). Analyses revealed that (1) WM accuracy was overall improved by MPH and (2) MPH (vs. placebo) strengthened the engagement of regions within the fronto-parietal control network (FPCN) and reduced the default mode network (DMN) deactivation. These MPH effects predominated in the most difficult context, i.e., threat condition, first run (novelty of the task), and 3-Back task. The facilitation of neural activation can be interpreted as an expansion of cognitive resources, which could foster both the representation and integration of anxiety-provoking stimuli as well as the top-down regulatory processes to protect against the detrimental effect of anxiety. This mechanism might establish an optimal balance between FPCN (cognitive processing) and DMN (emotion regulation) recruitment.
Collapse
Affiliation(s)
- C. Gaillard
- grid.416868.50000 0004 0464 0574Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD USA
| | - T. R. Lago
- grid.189504.10000 0004 1936 7558Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - A. X. Gorka
- grid.416868.50000 0004 0464 0574Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD USA
| | - N. L. Balderston
- grid.25879.310000 0004 1936 8972Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - B. A. Fuchs
- grid.29857.310000 0001 2097 4281Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA USA
| | - R. C. Reynolds
- grid.416868.50000 0004 0464 0574Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD USA
| | - C. Grillon
- grid.416868.50000 0004 0464 0574Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD USA
| | - M. Ernst
- grid.416868.50000 0004 0464 0574Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
9
|
Jaeschke RR, Sujkowska E, Sowa-Kućma M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology (Berl) 2021; 238:2667-2691. [PMID: 34436651 PMCID: PMC8455398 DOI: 10.1007/s00213-021-05946-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Psychostimulants, including methylphenidate (MPH), are the mainstay of pharmacotherapy for attention-deficit/hyperactivity disorder (ADHD) in adults. Even though MPH is the most commonly used medication for ADHD these days, there are relatively few resources available that provide comprehensive insight into the pharmacological and clinical features of the compound. OBJECTIVE The aim of this paper is to provide an up-to-date outline of the pharmacology and clinical utility of MPH for ADHD in adult patients. METHODS While conducting the narrative review, we applied structured search strategies covering the two major online databases (MEDLINE and Cochrane Central Register of Controlled Trials). In addition, we performed handsearching of reference lists of relevant papers. RESULTS Methylphenidate exhibits multimodal mechanism of action, working primarily as a dopamine and noradrenaline reuptake inhibitor. It also protects the dopaminergic system against the ongoing 'wearing off' (by securing a substantial reserve pool of the neurotransmitter, stored in the presynaptic vesicles). In placebo-controlled trials, MPH was shown to be moderately effective both against the core ADHD symptoms (standardized mean difference [SMD], 0.49; 95% confidence interval [CI], 0.35-0.64), and the accompanying emotion regulation deficits (SMD, 0.34; 95% CI, 0.23-0.45). The most common adverse events related to long-term treatment with MPH are decreased appetite (~ 20%), dry mouth (15%), heart palpitations (13%), gastrointestinal infections (~ 10%), and agitation/feeling restless (~ 10%). CONCLUSIONS There is substantial body of evidence to suggest that MPH is an effective and safe treatment option for adults with ADHD.
Collapse
Affiliation(s)
- Rafał R Jaeschke
- Section of Affective Disorders, Department of Psychiatry, Jagiellonian University Medical College, ul. Kopernika 21a, 31-501, Kraków, Poland.
| | - Ewelina Sujkowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, ul. Kopisto 2a, 35-315, Rzeszów, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, ul. Kopisto 2a, 35-315, Rzeszów, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszów University, ul. Warzywna 1a, 35-310, Rzeszów, Poland
| |
Collapse
|
10
|
Weidacker K, Johnston SJ, Mullins PG, Boy F, Dymond S. Neurochemistry of response inhibition and interference in gambling disorder: a preliminary study of γ-aminobutyric acid (GABA+) and glutamate-glutamine (Glx). CNS Spectr 2021:1-11. [PMID: 33752778 DOI: 10.1017/s1092852921000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurobehavioral research on the role of impulsivity in gambling disorder (GD) has produced heterogeneous findings. Impulsivity is multifaceted with different experimental tasks measuring different subprocesses, such as response inhibition and distractor interference. Little is known about the neurochemistry of inhibition and interference in GD. METHODS We investigated inhibition with the stop signal task (SST) and interference with the Eriksen Flanker task, and related performance to metabolite levels in individuals with and without GD. We employed magnetic resonance spectroscopy (MRS) to record glutamate-glutamine (Glx/Cr) and inhibitory, γ-aminobutyric acid (GABA+/Cr) levels in the dorsal ACC (dACC), right dorsolateral prefrontal cortex (dlPFC), and an occipital control voxel. RESULTS We found slower processing of complex stimuli in the Flanker task in GD (P < .001, η2p = 0.78), and no group differences in SST performance. Levels of dACC Glx/Cr and frequency of incongruent errors were correlated positively in GD only (r = 0.92, P = .001). Larger positive correlations were found for those with GD between dACC GABA+/Cr and SST Go error response times (z = 2.83, P = .004), as well as between dACC Glx/Cr and frequency of Go errors (z = 2.23, P = .03), indicating general Glx-related error processing deficits. Both groups expressed equivalent positive correlations between posterror slowing and Glx/Cr in the right dlPFC (GD: r = 0.74, P = .02; non-GD: r = .71, P = .01). CONCLUSION Inhibition and interference impairments are reflected in dACC baseline metabolite levels and error processing deficits in GD.
Collapse
Affiliation(s)
| | | | - Paul G Mullins
- School of Psychology, Bangor University, Bangor, United Kingdom
| | - Frederic Boy
- School of Psychology, Swansea University, Swansea, United Kingdom
- School of Management, Swansea University, Swansea, United Kingdom
| | - Simon Dymond
- School of Psychology, Swansea University, Swansea, United Kingdom
- Department of Psychology, Reykjavík University, Reykjavík, Iceland
| |
Collapse
|
11
|
Multimodal investigation of dopamine D 2/D 3 receptors, default mode network suppression, and cognitive control in cocaine-use disorder. Neuropsychopharmacology 2021; 46:316-324. [PMID: 33007778 PMCID: PMC7852666 DOI: 10.1038/s41386-020-00874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Stimulant-use disorders have been associated with lower availability of dopamine type-2 receptors (D2R) and greater availability of type-3 receptors (D3R). Links between D2R levels, cognitive performance, and suppression of the default mode network (DMN) during executive functioning have been observed in healthy and addicted populations; however, there is limited evidence regarding a potential role of elevated D3R in influencing cognitive control processes in groups with and without addictions. Sixteen individuals with cocaine-use disorder (CUD) and 16 healthy comparison (HC) participants completed [11C]-(+)-PHNO PET imaging of D2R and D3R availability and fMRI during a Stroop task of cognitive control. Independent component analysis was performed on fMRI data to assess DMN suppression during Stroop performance. In HC individuals, lower D2R-related binding in the dorsal putamen was associated with improved task performance and greater DMN suppression. By comparison, in individuals with CUD, greater D3R-related binding in the substantia nigra was associated with improved performance and greater DMN suppression. Exploratory moderated-mediation analyses indicated that DMN suppression was associated with Stroop performance indirectly through D2R in HC and D3R in CUD participants, and these indirect effects were different between groups. To our knowledge, this is the first evidence of a dissociative and potentially beneficial role of elevated D3R availability in executive functioning in cocaine-use disorder.
Collapse
|
12
|
Narendran R, Mason NS, Himes ML, Frankle WG. Imaging Cortical Dopamine Transmission in Cocaine Dependence: A [ 11C]FLB 457-Amphetamine Positron Emission Tomography Study. Biol Psychiatry 2020; 88:788-796. [PMID: 32507390 PMCID: PMC7554061 DOI: 10.1016/j.biopsych.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Positron emission tomography studies have demonstrated less dopamine D2/3 receptor availability and blunted psychostimulant-induced dopamine release in cocaine-dependent subjects (CDSs). No studies in CDSs have reported the in vivo status of D2/3 and dopamine release in the cortex. Basic and functional imaging studies suggest a role for prefrontal cortical dopaminergic abnormalities in impaired executive function and relapse in cocaine dependence. We used [11C]FLB 457 positron emission tomography and amphetamine to measure cortical D2/3 receptors and dopamine release in CDSs. METHODS [11C]FLB 457 and positron emission tomography were used to measure D2/3 receptor binding potential in cortical regions of interest in recently abstinent CDSs (n = 24) and healthy control subjects (n = 36) both before and after 0.5 mg kg-1 of oral d-amphetamine. Binding potential relative to nondisplaceable uptake (BPND) and binding potential relative to total plasma concentration (BPP) were derived using an arterial input function-based kinetic analysis. Cortical dopamine release in regions of interest was measured as the change in BPND and BPP after amphetamine. RESULTS Baseline D2/3 receptor availability (BPP and BPND) and amphetamine-induced dopamine release (ΔBPND and ΔBPP) were significantly lower in the cortical regions in CDSs compared with healthy control subjects. Fewer D2/3 receptors and less dopamine release in CDSs were not associated with performance on working memory and attention tasks. CONCLUSIONS The results of this study suggest that deficits in dopamine D2/3 transmission involve the cortex in cocaine dependence. Further studies to understand the clinical relevance of these findings are warranted.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | | | - Michael L. Himes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
13
|
Tan Y, Hagoort P. Catecholaminergic Modulation of Semantic Processing in Sentence Comprehension. Cereb Cortex 2020; 30:6426-6443. [PMID: 32776103 PMCID: PMC7609945 DOI: 10.1093/cercor/bhaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Catecholamine (CA) function has been widely implicated in cognitive functions that are tied to the prefrontal cortex and striatal areas. The present study investigated the effects of methylphenidate, which is a CA agonist, on the electroencephalogram (EEG) response related to semantic processing using a double-blind, placebo-controlled, randomized, crossover, within-subject design. Forty-eight healthy participants read semantically congruent or incongruent sentences after receiving 20-mg methylphenidate or a placebo while their brain activity was monitored with EEG. To probe whether the catecholaminergic modulation is task-dependent, in one condition participants had to focus on comprehending the sentences, while in the other condition, they only had to attend to the font size of the sentence. The results demonstrate that methylphenidate has a task-dependent effect on semantic processing. Compared to placebo, when semantic processing was task-irrelevant, methylphenidate enhanced the detection of semantic incongruence as indexed by a larger N400 amplitude in the incongruent sentences; when semantic processing was task-relevant, methylphenidate induced a larger N400 amplitude in the semantically congruent condition, which was followed by a larger late positive complex effect. These results suggest that CA-related neurotransmitters influence language processing, possibly through the projections between the prefrontal cortex and the striatum, which contain many CA receptors.
Collapse
Affiliation(s)
- Yingying Tan
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
14
|
Roberts CA, Jones A, Sumnall H, Gage SH, Montgomery C. How effective are pharmaceuticals for cognitive enhancement in healthy adults? A series of meta-analyses of cognitive performance during acute administration of modafinil, methylphenidate and D-amphetamine. Eur Neuropsychopharmacol 2020; 38:40-62. [PMID: 32709551 DOI: 10.1016/j.euroneuro.2020.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Modafinil, methyphenidate (MPH) and d-amphetamine (d-amph) are putative cognitive enhancers. However, efficacy of cognitive enhancement has yet to be fully established. We examined cognitive performance in healthy non-sleep-deprived adults following modafinil, MPH, or d-amph vs placebo in 3 meta-analyses, using subgroup analysis by cognitive domain; executive functions (updating, switching, inhibitory control, access to semantic/long term memory), spatial working memory, recall, selective attention, and sustained attention. We adhered to PRISMA. We identified k = 47 studies for analysis; k = 14 studies (64 effect sizes) for modafinil, k = 24 studies (47 effect sizes) for Methylphenidate, and k = 10 (27 effect sizes) for d-amph. There was an overall effect of modafinil (SMD=0.12, p=.01). Modafinil improved memory updating (SMD=0.28, p=.03). There was an overall effect of MPH (SMD=0.21, p=.0004) driven by improvements in recall (SMD=0.43, p=.0002), sustained attention (SMD=0.42, p=.0004), and inhibitory control (SMD=0.27, p=.03). There were no effects for d-amph. MPH and modafinil show enhancing effects in specific sub-domains of cognition. However, data with these stimulants is far from positive if we consider that effects are small, in experiments that do not accurately reflect their actual use in the wider population. There is a user perception that these drugs are effective cognitive enhancers, but this is not supported by the evidence so far.
Collapse
Affiliation(s)
- Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, United Kingdom.
| | - Andrew Jones
- Department of Psychological Sciences, University of Liverpool, United Kingdom
| | - Harry Sumnall
- Public Health Institute, Liverpool John Moores University, Liverpool, United Kingdom
| | - Suzanne H Gage
- Department of Psychological Sciences, University of Liverpool, United Kingdom
| | - Catharine Montgomery
- Department of Psychology, John Moores Liverpool University, Liverpool, United Kingdom
| |
Collapse
|
15
|
Goldstein RZ, Barrot M, Everitt BJ, Foxe JJ. Addiction in focus: molecular mechanisms, model systems, circuit maps, risk prediction and the quest for effective interventions. Eur J Neurosci 2020; 50:2007-2013. [PMID: 31502353 DOI: 10.1111/ejn.14544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rita Z Goldstein
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, The Leon and Norma Hess Center for Science and Medicine, New York, NY, USA
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Mückschel M, Eggert E, Prochnow A, Beste C. Learning Experience Reverses Catecholaminergic Effects on Adaptive Behavior. Int J Neuropsychopharmacol 2019; 23:12-19. [PMID: 31701133 PMCID: PMC7064049 DOI: 10.1093/ijnp/pyz058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Catecholamines are important for cognitive control and the ability to adapt behavior (e.g., after response errors). A prominent drug that modulates the catecholaminergic system is methylphenidate. On the basis of theoretical consideration, we propose that the effects of methylphenidate on behavioral adaptation depend on prior learning experience. METHODS In a double-blind, randomized, placebo-controlled crossover study design, we examined the effect of methylphenidate (0.25 mg/kg) on post error behavioral adaptation processes in a group of n = 43 healthy young adults. Behavioral adaptation processes were examined in a working memory, modulated response selection task. The focus of the analysis was on order effects within the crossover study design to evaluate effects of prior learning/task experience. RESULTS The effect of methylphenidate/placebo on post-error behavioral adaptation processes reverses depending on prior task experience. When there was no prior experience with the task, methylphenidate increased post-error slowing and thus intensified behavioral adaptation processes. However, when there was prior task experience, (i.e., when the placebo session was conducted first in the crossover design), methylphenidate even decreased post-error slowing and behavioral adaptation. Effect sizes were large and the power of the observed effects was higher than 95%. CONCLUSIONS The data suggest that catecholaminergic effects on cognitive control functions vary as a function of prior learning/task experience. The data establish a close link between learning/task familiarization and catecholaminergic effects for executive functions, which has not yet been studied, to our knowledge, but is of considerable clinical relevance. Theoretical implications are discussed.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany,MS Centre, Department of Neurology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany,Correspondence: Christian Beste, Faculty of Medicine Carl Gustav Carus, TU Dresden, Department of Child and Adolescent Psychiatry, Fetscherstrasse 74, 01307 Dresden, Germany ()
| |
Collapse
|
17
|
Ceceli AO, Esposito G, Tricomi E. Habit Expression and Disruption as a Function of Attention-Deficit/Hyperactivity Disorder Symptomology. Front Psychol 2019; 10:1997. [PMID: 31551864 PMCID: PMC6733985 DOI: 10.3389/fpsyg.2019.01997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is associated with neurobehavioral reward system dysfunctions that pose debilitating impairments in adaptive decision-making. A candidate mechanism for such anomalies in ADHD may be a compromise in the control of motivated behaviors. Thus, demonstrating and restoring potential motivational control irregularities may serve significant clinical benefit. The motivational control of action guides goal-directed behaviors that are driven by outcome value, and habits that are inflexibly cue-triggered. We examined whether ADHD symptomology within the general population is linked to habitual control, and whether a motivation-based manipulation can break well-learned habits. We obtained symptom severity scores from 106 participants and administered a Go/NoGo task that capitalizes on familiar, well-learned associations (green-Go and red-NoGo) to demonstrate outcome-insensitivity when compared to newly learned Go/NoGo associations. We tested for outcome-insensitive habits by changing the Go and NoGo contingencies, such that Go signals became NoGo signals and vice versa. We found that generally, participants responded less accurately when green and red stimuli were mapped to color-response contingencies that were incongruent with daily experiences, whereas novel Go/NoGo stimuli evoked similar accuracy regardless of color-response mappings. Thus, our Go/NoGo task successfully elicited outcome-insensitive habits (i.e., persistent responses to familiar stimuli without regard for consequences); however, this effect was independent of ADHD symptomology. Nevertheless, we found an association between hyperactivity and congruent Go response latency, suggesting heightened pre-potency to perform habitual Go actions as hyperactivity increases. To examine habit disruption, participants returned to the lab and underwent the familiar version of the Go/NoGo task, but were given mid-experiment performance tracking information and a monetary incentive prior to contingency change. We found that this motivational boost via dual feedback prevented the incongruency-related accuracy impairment, effectively breaking the habit, albeit independent of ADHD symptomology. Our findings present only a modest link between ADHD symptomology and motivational control, which may be due to compensatory mechanisms in ADHD driving goal-directed control, or our task's potential insensitivity to individual differences in ADHD symptomology. Further investigations may be crucial for determining whether ADHD is related to motivational impairments.
Collapse
Affiliation(s)
- Ahmet O. Ceceli
- Department of Psychology, Rutgers University-Newark, Newark, NJ, United States
| | | | - Elizabeth Tricomi
- Department of Psychology, Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
18
|
Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review. Neuron 2019; 98:886-903. [PMID: 29879391 DOI: 10.1016/j.neuron.2018.03.048] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction.
Collapse
Affiliation(s)
- Anna Zilverstand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Sullivan RM, Perlman G, Moeller SJ. Meta-analysis of aberrant post-error slowing in substance use disorder: implications for behavioral adaptation and self-control. Eur J Neurosci 2019; 50:2467-2476. [PMID: 30383336 PMCID: PMC6494729 DOI: 10.1111/ejn.14229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Individual with substance use disorders have well-recognized impairments in cognitive control, including in behavioral adaptation after mistakes. One way in which this impairment manifests is via diminished post-error slowing, the increase in reaction time following a task-related error that is posited to reflect cautionary or corrective behavior. Yet, in the substance use disorder literature, findings with regard to post-error slowing have been inconsistent, and thus could benefit from quantitative integration. Here, we conducted a meta-analysis of case-control studies examining post-error slowing in addiction. Twelve studies with 15 unique comparisons were identified, comprising 567 substance users and 384 healthy controls across three broad types of inhibitory control paradigms (go-no/go, conflict resolution, and stop signal tasks, respectively). Results of the random-effects meta-analysis revealed a moderate group difference across all studies (Cohen's d = 0.31), such that the individuals with substance use disorder had diminished post-error slowing compared with controls. Despite this omnibus effect, there was also large variability in the magnitude of the effects, explained in part by differences between studies in task complexity. These findings suggest that post-error slowing may serve as a promising and easy-to-implement measure of cognitive control impairment in substance use disorder, with potential links to aberrant brain function in cognitive control areas such as the anterior cingulate cortex.
Collapse
Affiliation(s)
- Ryan M. Sullivan
- Department of Psychiatry, Stony Brook University School of
Medicine
- Department of Psychology, University of
Wisconsin-Milwaukee
| | - Greg Perlman
- Department of Psychiatry, Stony Brook University School of
Medicine
| | - Scott J. Moeller
- Department of Psychiatry, Stony Brook University School of
Medicine
| |
Collapse
|
20
|
Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med 2019; 8:jcm8060841. [PMID: 31212854 PMCID: PMC6617109 DOI: 10.3390/jcm8060841] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.
Collapse
|
21
|
DeVito EE, Kober H, Carroll KM, Potenza MN. fMRI Stroop and behavioral treatment for cocaine-dependence: Preliminary findings in methadone-maintained individuals. Addict Behav 2019; 89:10-14. [PMID: 30240978 DOI: 10.1016/j.addbeh.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although behavioral treatment for cocaine use disorders is common, the use of cognitive neuroscience methods to investigate these treatments' mechanisms of action remains limited. Cognitive control (e.g., as measured by the Stroop task) has been proposed to be central to cocaine-use disorders, including treatment response. METHODS Participants were methadone-maintained, cocaine-dependent individuals who were participating in a randomized clinical trial (RCT) of 8 weeks of treatment for cocaine-use disorder and randomized to outpatient treatment as usual (TAU) or computer-based cognitive-behavioral therapy (CBT4CBT) plus TAU. Participants completed fMRI Color-Word Stroop task at beginning-of-treatment (N = 19) and post-treatment (N = 10). Analyses assessed correlations between beginning-of-treatment Stroop effect with methadone dose or within-treatment cocaine abstinence, change in Stroop-effect at post- versus beginning-of-treatment, and correlations between 'change in Stroop effect' with methadone dose or within-treatment cocaine abstinence. RESULTS Higher methadone dose was associated with higher beginning-of-treatment Stroop-related activity in the declive, culmen, and lingual gyrus. Stroop-related activity was reduced at post-treatment relative to beginning-of-treatment in the medial frontal gyrus/cingulate gyrus and thalamus/midbrain/culmen. Greater reduction in Stroop-related activity was associated with better within-treatment abstinence. CONCLUSIONS Diminished Stroop-related activity following treatment may be consistent with improved efficiency of cognitive-control-related activity. Although preliminary, this study is the first to demonstrate a relationship between better treatment outcomes (lower cocaine use during treatment) and greater reduction in Stroop-related activity at post- versus beginning-of-treatment in cocaine users. These findings extend prior work.
Collapse
|
22
|
Konova AB, Parvaz MA, Bernstein V, Zilverstand A, Moeller SJ, Delgado MR, Alia-Klein N, Goldstein RZ. Neural mechanisms of extinguishing drug and pleasant cue associations in human addiction: role of the VMPFC. Addict Biol 2019; 24:88-99. [PMID: 28872745 PMCID: PMC5837898 DOI: 10.1111/adb.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 01/23/2023]
Abstract
The neurobiological mechanisms that underlie the resistance of drug cue associations to extinction in addiction remain unknown. Fear extinction critically depends on the ventromedial prefrontal cortex (VMPFC). Here, we tested if this same region plays a role in extinction of non-fear, drug and pleasant cue associations. Eighteen chronic cocaine users and 15 matched controls completed three functional MRI scans. Participants first learned to associate an abstract cue (the conditioned stimulus, CS) with a drug-related (CSD+ ) or pleasant (CSP+ ) image. Extinction immediately followed where each CS was repeatedly presented without the corresponding image. Participants underwent a second identical session 24 hours later to assess retention of extinction learning. Results showed that like fear extinction, non-fear-based extinction relies on the VMPFC. However, extinction-related changes in the VMPFC differed by cue valence and diagnosis. In controls, VMPFC activation to the CSD+ (which was unpleasant for participants) gradually increased as in fear extinction, while it decreased to the CSP+ , consistent with a more general role of the VMPFC in flexible value updating. Supporting a specific role in extinction retention, we further observed a cross-day association between VMPFC activation and skin conductance, a classic index of conditioned responses. Finally, cocaine users showed VMPFC abnormalities for both CSs, which, in the case of the CSD+ , correlated with craving. These data suggest a global deficit in extinction learning in this group that may hinder extinction-based treatment efforts. More broadly, these data show that the VMPFC, when functionally intact, supports extinction learning in diverse contexts in humans.
Collapse
Affiliation(s)
- Anna B. Konova
- Center for Neural Science; New York University; New York NY USA
| | - Muhammad A. Parvaz
- Departments of Psychiatry and Neuroscience; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Vladimir Bernstein
- Departments of Psychiatry and Neuroscience; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Anna Zilverstand
- Departments of Psychiatry and Neuroscience; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Scott J. Moeller
- Department of Psychiatry; Stony Brook University School of Medicine; Stony Brook NY USA
| | | | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Rita Z. Goldstein
- Departments of Psychiatry and Neuroscience; Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
23
|
|
24
|
Van Hedger K, Keedy SK, Mayo LM, Heilig M, de Wit H. Neural responses to cues paired with methamphetamine in healthy volunteers. Neuropsychopharmacology 2018; 43:1732-1737. [PMID: 29463908 PMCID: PMC6006246 DOI: 10.1038/s41386-017-0005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
Drug cues, or conditioned responses to stimuli paired with drugs, are widely believed to promote drug use. The acquisition of these conditioned responses has been well characterized in laboratory animals: neutral stimuli paired with drugs elicit conditioned responses resembling the motivational and incentive properties of the drug itself. However, few studies have examined acquisition of conditioning, or the nature of the conditioned response, in humans. In this study, we used fMRI to examine neural responses to stimuli that had been paired with methamphetamine or placebo in healthy young adults. Participants first underwent four conditioning sessions in which visual-auditory stimuli were paired with either methamphetamine (20 mg, oral) or placebo. Then on a drug-free test day, the stimuli were presented during an fMRI scan to assess neural responses to the stimuli. We hypothesized that the stimuli would elicit drug-like brain activity, especially in regions related to reward. Instead, we found that the methamphetamine-paired stimuli, compared to placebo-paired stimuli, produced greater activation in regions related to visual and auditory processing, consistent with the drug's unconditioned effects on sensory processing. This is the first study to demonstrate conditioned neural responses to drug-paired stimuli after just two pairings of methamphetamine in healthy adults. The study also illustrates that conditioned responses may develop to unexpected components of the drug's effects.
Collapse
Affiliation(s)
- Kathryne Van Hedger
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Zhang DD, Zhang YQ, Zhang XH. Prefrontal AMPA receptors are involved in the effect of methylphenidate on response inhibition in rats. Acta Pharmacol Sin 2018; 39:607-615. [PMID: 29265108 DOI: 10.1038/aps.2017.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Response inhibition is a critical executive control function in many species. Deficits in response inhibition have been observed in many disorders, eg, attention deficit/hyperactivity disorder (ADHD). The stop-signal task (SST) is a unique behavior task for evaluating response inhibition via measuring the covert latency of a stop process, and it is widely used in studies of humans, nonhuman primates and rodents. Methylphenidate (MPH; Ritalin®) is a psychostimulant that is widely used for the treatment of ADHD and that effectively improves response inhibition in individuals with ADHD and normal subjects. However, its mechanism of improving response inhibition remains unknown. In this study we adopted a rodent nose-poking version of the SST to examine response inhibition by estimating the stop signal reaction time (SSRT) in rats. Administration of MPH (1 mg/kg, sc) 25 min before the SST test exerted a baseline-dependent effect of MPH on response inhibition, ie, it shortened the SSRTs only in the rats with larger baseline SSRTs, thereby improving response inhibition in these rats. The effect of MPH on response inhibition remained 3 h after MPH administration. Co-administration of PP2 (1 mg/kg, sc), a Src-protein tyrosine kinase (Src-PTKs) inhibitor that inhibited the upregulation of glutamate receptor expression on the plasma membrane of the prefrontal cortex (PFC), abolished the MPH-caused improvement in response inhibition. Furthermore, intra-PFC infusion of a selective AMPAR antagonist.NASPM (0.3 mmol/L, per side) via stainless guide cannulas implanted earlier abolished the effect of MPH on SSRT. These results suggest that AMPA receptors in the PFC are involved in the effect of MPH on response inhibition in rats.
Collapse
|
26
|
Methylphenidate selectively modulates one sub-component of the no-go P3 in pediatric ADHD medication responders. Biol Psychol 2018; 134:30-38. [PMID: 29476840 DOI: 10.1016/j.biopsycho.2018.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 11/20/2022]
Abstract
Methylphenidate (MPH) has been shown to modulate the amplitude of the no-go P3 component of the event-related potential (ERP; Øgrim, Aasen, & Brunner, 2016). Using group independent component analysis, the no-go P3 from a cued go/no-go task has been separated into two sub-components (Brunner et al., 2013). This study investigated whether sub-components of the no-go P3 could be identified in children with ADHD, and how MPH modulates their amplitudes. ERPs were registered twice (on/off MPH) in 57 children with ADHD classified as medication responders in a four-week medication trial. Two no-go P3 sub-components were identified. In the MPH session, the amplitude of one sub-component, the IC P3no-goearly (mean latency 378 ms, with a central distribution), was significantly larger than at baseline, whereas the other sub-component, the IC P3no-golate (mean latency 428 ms, with a centro-frontal distribution), was not significantly affected. These results add to the literature documenting that the no-go P3 consists of two overlapping phenomena with different functional correlates.
Collapse
|
27
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
28
|
Kuula L, Pesonen AK, Heinonen K, Kajantie E, Eriksson JG, Andersson S, Lano A, Lahti J, Wolke D, Räikkönen K. Naturally occurring circadian rhythm and sleep duration are related to executive functions in early adulthood. J Sleep Res 2017; 27:113-119. [DOI: 10.1111/jsr.12581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/10/2017] [Accepted: 06/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Liisa Kuula
- Department of Psychology and Logopedics; Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics; Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics; Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Eero Kajantie
- National Institute for Health and Welfare; Chronic Disease Prevention Unit; Helsinki and Oulu Finland
- Children′s Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- PEDEGO Research Unit; MRC Oulu; Oulu University Hospital and University of Oulu; Oulu Finland
| | - Johan Gunnar Eriksson
- National Institute for Health and Welfare; Chronic Disease Prevention Unit; Helsinki and Oulu Finland
- Department of General Practice and Primary Health Care; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Folkhälsan Research Center; Helsinki Finland
| | - Sture Andersson
- Children′s Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Aulikki Lano
- Children′s Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Jari Lahti
- Department of Psychology and Logopedics; Faculty of Medicine; University of Helsinki; Helsinki Finland
- Helsinki Collegium for Advanced Studies; University of Helsinki; Helsinki Finland
| | - Dieter Wolke
- Department of Psychology and Division of Mental Health and Wellbeing, WMS; University of Warwick; Warwick UK
| | - Katri Räikkönen
- Department of Psychology and Logopedics; Faculty of Medicine; University of Helsinki; Helsinki Finland
| |
Collapse
|
29
|
Bosker WM, Neuner I, Shah NJ. The role of impulsivity in psychostimulant- and stress-induced dopamine release: Review of human imaging studies. Neurosci Biobehav Rev 2017; 78:82-90. [PMID: 28438467 DOI: 10.1016/j.neubiorev.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/13/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Drug addiction is a debilitating disorder and its pivotal problem is the high relapse rate. To solve this problem, the aim is to prevent people from becoming addicted in the first place. One of the key questions that is still unanswered is why some people become addicted to drugs and others, who take drugs regularly, do not. In recent years extensive research has been done to untangle the many factors involved in this disorder. Here, we review some of the factors that are related to dopamine, i.e., impulsivity and stress (hormones), and aim to integrate this into a neurobiological model. Based on this, we draw two conclusions: (1) in order to understand the transition from recreational drug use to addiction, we need to focus more on these recreational users; and (2) research should be aimed at finding therapies that can restore inhibitory control/frontal functioning and improve stress resiliency in addicts.
Collapse
Affiliation(s)
- Wendy M Bosker
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Irene Neuner
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic Disorders, University Clinic Aachen, 52074 Aachen, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic Disorders, University Clinic Aachen, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Franke AG, Gränsmark P, Agricola A, Schühle K, Rommel T, Sebastian A, Balló HE, Gorbulev S, Gerdes C, Frank B, Ruckes C, Tüscher O, Lieb K. Methylphenidate, modafinil, and caffeine for cognitive enhancement in chess: A double-blind, randomised controlled trial. Eur Neuropsychopharmacol 2017; 27:248-260. [PMID: 28119083 DOI: 10.1016/j.euroneuro.2017.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Stimulants and caffeine have been proposed for cognitive enhancement by healthy subjects. This study investigated whether performance in chess - a competitive mind game requiring highly complex cognitive skills - can be enhanced by methylphenidate, modafinil or caffeine. In a phase IV, randomized, double-blind, placebo-controlled trial, 39 male chess players received 2×200mg modafinil, 2×20mg methylphenidate, and 2×200mg caffeine or placebo in a 4×4 crossover design. They played twenty 15-minute games during two sessions against a chess program (Fritz 12; adapted to players' strength) and completed several neuropsychological tests. Marked substance effects were observed since all three substances significantly increased average reflection time per game compared to placebo resulting in a significantly increased number of games lost on time with all three treatments. Treatment effects on chess performance were not seen if all games (n=3059) were analysed. Only when controlling for game duration as well as when excluding those games lost on time, both modafinil and methylphenidate enhanced chess performance as demonstrated by significantly higher scores in the remaining 2876 games compared to placebo. In conjunction with results from neuropsychological testing we conclude that modifying effects of stimulants on complex cognitive tasks may in particular result from more reflective decision making processes. When not under time pressure, such effects may result in enhanced performance. Yet, under time constraints more reflective decision making may not improve or even have detrimental effects on complex task performance.
Collapse
Affiliation(s)
- Andreas G Franke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany; University of Neubrandenburg, University of Applied Sciences, Department of Social Work and Education, Brodaer Str. 2, 17033 Neubrandenburg, Germany.
| | - Patrik Gränsmark
- SOFI, Stockholm University, Swedish Institute for Social Research, Stockholm University, SE - 10691 Stockholm, Sweden.
| | - Alexandra Agricola
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany.
| | - Kai Schühle
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany.
| | - Thilo Rommel
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany; Department of Psychology, Section for Clinical Psychology and Psychotherapy, University of Mainz, Wallstr. 3, 55122 Mainz, Germany.
| | - Alexandra Sebastian
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany.
| | - Harald E Balló
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany; Internistisch-onkologische Gemeinschaftspraxis, Marktplatz 11, 63065 Offenbach am Main, Germany.
| | - Stanislav Gorbulev
- Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Christer Gerdes
- SOFI, Stockholm University, Swedish Institute for Social Research, Stockholm University, SE - 10691 Stockholm, Sweden.
| | - Björn Frank
- University of Kassel, Department of Economics, Nora-Platiel-Str. 4, 34127 Kassel, Germany.
| | - Christian Ruckes
- Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany.
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany.
| |
Collapse
|
31
|
Rosell-Negre P, Bustamante JC, Fuentes-Claramonte P, Costumero V, Llopis-Llacer JJ, Barrós-Loscertales A. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts. PLoS One 2016; 11:e0167400. [PMID: 27907134 PMCID: PMC5131954 DOI: 10.1371/journal.pone.0167400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023] Open
Abstract
The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user's loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards.
Collapse
Affiliation(s)
- Patricia Rosell-Negre
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-Carlos Bustamante
- Departamento de Psicologia y Sociología. Universidad de Zaragoza, Zaragoza, Zaragoza, Spain
| | - Paola Fuentes-Claramonte
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
- FIDMAG Germanes Hospitalàries Research Foundation Barcelona, Cataluña, Spain
| | - Víctor Costumero
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-José Llopis-Llacer
- Unidad de Conductas Adictivas, Hospital General Universitario, Consellería de Sanitat, Castellón de la Plana, Spain
| | - Alfonso Barrós-Loscertales
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| |
Collapse
|
32
|
Ernst M, Lago T, Davis A, Grillon C. The effects of methylphenidate and propranolol on the interplay between induced-anxiety and working memory. Psychopharmacology (Berl) 2016; 233:3565-74. [PMID: 27492789 PMCID: PMC5131568 DOI: 10.1007/s00213-016-4390-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/18/2016] [Indexed: 02/04/2023]
Abstract
RATIONALE Research documents a reciprocal impact of anxiety on working memory (WM), although its strength and direction depend on factors like task difficulty. A better understanding of these factors may generate insights into cognitive mechanisms of action involved in anxiety, culminating into treatment implications. By blocking the physiological effects of anxiety, propranolol might also block anxiety interference on WM. Conversely, by improving task-directed attention, methylphenidate might reduce anxiety, or, alternatively, by improving cognitive efficiency and free up processing resources to compute anxiety. OBJECTIVES To investigate the interplay between induced anxiety and WM, we pharmacologically manipulated either anxiety or cognition, using single doses of 40 mg propranolol (PRO), 20 mg methylphenidate (MPH), or placebo (PLA). In this double-blind parallel-group design study, 60 healthy volunteers (20/drug group) performed a verbal WM task under three loads, 1-, 2- and 3-back, and in two conditions, threat of shock and safety. Startle electromyography (EMG) was used to measure anxiety. RESULTS Findings were twofold: (1) MPH blocked anxiety interference only on the 3-back WM performance, while PRO or PLA had no effects on anxiety-WM interference, and (2) drugs had no effects on anxiety, but, after controlling for baseline anxiety, MPH enhanced anxiety-potentiated startle during the 3-back task. CONCLUSIONS These findings support that MPH-related improvement of cognitive efficiency permits anxiety to be processed and expressed. In conclusion, MPH may be a useful tool to investigate the mechanisms of interaction between anxiety and WM, particularly those under catecholaminergic control.
Collapse
Affiliation(s)
- Monique Ernst
- Neurobiology of Fear and Anxiety, National Institute of Mental Health, 15K North Drive, Bldg 15K, MSC 2670, Bethesda, MD, 20892-2670, USA.
| | - Tiffany Lago
- Neurobiology of Fear and Anxiety, National Institute of Mental Health, 15K North Drive, Bldg 15K, MSC 2670, Bethesda, MD, 20892-2670, USA
| | - Andrew Davis
- Neurobiology of Fear and Anxiety, National Institute of Mental Health, 15K North Drive, Bldg 15K, MSC 2670, Bethesda, MD, 20892-2670, USA
| | - Christian Grillon
- Neurobiology of Fear and Anxiety, National Institute of Mental Health, 15K North Drive, Bldg 15K, MSC 2670, Bethesda, MD, 20892-2670, USA
| |
Collapse
|
33
|
Castells X, Cunill R, Pérez‐Mañá C, Vidal X, Capellà D. Psychostimulant drugs for cocaine dependence. Cochrane Database Syst Rev 2016; 9:CD007380. [PMID: 27670244 PMCID: PMC6457633 DOI: 10.1002/14651858.cd007380.pub4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cocaine dependence is a severe disorder for which no medication has been approved. Like opioids for heroin dependence, replacement therapy with psychostimulants could be an effective therapy for treatment. OBJECTIVES To assess the effects of psychostimulants for cocaine abuse and dependence. Specific outcomes include sustained cocaine abstinence and retention in treatment. We also studied the influence of type of drug and comorbid disorders on psychostimulant efficacy. SEARCH METHODS This is an update of the review previously published in 2010. For this updated review, we searched the Cochrane Drugs and Alcohol Group Trials Register, CENTRAL, MEDLINE, Embase and PsycINFO up to 15 February 2016. We handsearched references of obtained articles and consulted experts in the field. SELECTION CRITERIA We included randomised parallel group controlled clinical trials comparing the efficacy of a psychostimulant drug versus placebo. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 26 studies involving 2366 participants. The included studies assessed nine drugs: bupropion, dexamphetamine, lisdexamfetamine, methylphenidate, modafinil, mazindol, methamphetamine, mixed amphetamine salts and selegiline. We did not consider any study to be at low risk of bias for all domains included in the Cochrane 'Risk of bias' tool. Attrition bias was the most frequently suspected potential source of bias of the included studies. We found very low quality evidence that psychostimulants improved sustained cocaine abstinence (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.05 to 1.77, P = 0.02), but they did not reduce cocaine use (standardised mean difference (SMD) 0.16, 95% CI -0.02 to 0.33) among participants who continued to use it. Furthermore, we found moderate quality evidence that psychostimulants did not improve retention in treatment (RR 1.00, 95% CI 0.93 to 1.06). The proportion of adverse event-induced dropouts and cardiovascular adverse event-induced dropouts was similar for psychostimulants and placebo (RD 0.00, 95% CI -0.01 to 0.01; RD 0.00, 95% CI -0.02 to 0.01, respectively). When we included the type of drug as a moderating variable, the proportion of patients achieving sustained cocaine abstinence was higher with bupropion and dexamphetamine than with placebo. Psychostimulants also appeared to increase the proportion of patients achieving sustained cocaine and heroin abstinence amongst methadone-maintained, dual heroin-cocaine addicts. Retention to treatment was low, though, so our results may be compromised by attrition bias. We found no evidence of publication bias. AUTHORS' CONCLUSIONS This review found mixed results. Psychostimulants improved cocaine abstinence compared to placebo in some analyses but did not improve treatment retention. Since treatment dropout was high, we cannot rule out the possibility that these results were influenced by attrition bias. Existing evidence does not clearly demonstrate the efficacy of any pharmacological treatment for cocaine dependence, but substitution treatment with psychostimulants appears promising and deserves further investigation.
Collapse
Affiliation(s)
- Xavier Castells
- Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesEmili Grahit, 77GironaCataloniaSpain17071
| | - Ruth Cunill
- Parc Sanitari Sant Joan de DéuParc Sanitari Sant Joan de Déu‐NumanciaBarcelonaCatalunyaSpain08735
| | - Clara Pérez‐Mañá
- Universitat Autònoma de BarcelonaIntegrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute‐IMIM, Parc de Salut Mar, and Department of Pharmacology, Therapeutics and ToxicologyDoctor Aiguader 88BarcelonaCataloniaSpain08003
| | - Xavier Vidal
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de BarcelonaDepartment of Clinical PharmacologyPasseig Vall d'Hebron 119‐129BarcelonaCataloniaSpain08035
| | - Dolors Capellà
- Faculty of Medicine, Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesGironaSpain
| | | |
Collapse
|
34
|
Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, Wang GJ, Volkow ND. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016; 41:2596-605. [PMID: 27156854 PMCID: PMC4987858 DOI: 10.1038/npp.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Abstract
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anissa Abi-Dargham
- Division of Translational Imaging, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| |
Collapse
|
35
|
Moeller SJ, Konova AB, Tomasi D, Parvaz MA, Goldstein RZ. Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study. Psychopharmacology (Berl) 2016; 233:2559-69. [PMID: 27150080 PMCID: PMC4916842 DOI: 10.1007/s00213-016-4307-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known. OBJECTIVES We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures. METHODS We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity. RESULTS Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use. CONCLUSIONS Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.
Collapse
Affiliation(s)
- Scott J. Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence may be addressed to: Scott J. Moeller, 1470 Madison Ave (Room 9-115), New York, NY 10029; Tel: 212-824-8973; Fax: 212-803-6743; . Or to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029; tel. (212) 824-9312; fax (212) 996-8931;
| | - Anna B. Konova
- Center for Neural Science, New York University, NY 10003
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | - Muhammad A. Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rita Z. Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence may be addressed to: Scott J. Moeller, 1470 Madison Ave (Room 9-115), New York, NY 10029; Tel: 212-824-8973; Fax: 212-803-6743; . Or to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029; tel. (212) 824-9312; fax (212) 996-8931;
| |
Collapse
|
36
|
Borchert RJ, Rittman T, Passamonti L, Ye Z, Sami S, Jones SP, Nombela C, Vázquez Rodríguez P, Vatansever D, Rae CL, Hughes LE, Robbins TW, Rowe JB. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease. Neuropsychopharmacology 2016; 41:2171-7. [PMID: 26837463 PMCID: PMC4856878 DOI: 10.1038/npp.2016.18] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 11/09/2022]
Abstract
Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,National Research Council, Institute of Bioimaging and Molecular Physiology, Catanzaro, Italy
| | - Zheng Ye
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Saber Sami
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Simon P Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cristina Nombela
- Systems and Automatic Control Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | | | - Charlotte L Rae
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK,Department of Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | - Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- University of Cambridge Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK,University of Cambridge Behavioural and Clinical Neuroscience Institute, Cambridge, UK,Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB3 0SZ, UK, Tel: +44 1223 760695, Fax: +44 1223 336581, E-mail:
| |
Collapse
|
37
|
Köhler S, Bär KJ, Wagner G. Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control. Hum Brain Mapp 2016; 37:2305-18. [PMID: 26970351 DOI: 10.1002/hbm.23173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022] Open
Abstract
Several lines of evidence suggest that the lateral prefrontal cortex (PFC), the dorsal anterior cingulate cortex (dACC), the parietal cortex, and the thalamus are central cortical nodes in a network underlying cognitive control. However, the role of catecholamine producing midbrain and brainstem structures has rarely been addressed by functional magnetic resonance imaging (fMRI). We hypothesized differential activation patterns in the ventral tegmental area (VTA)/substantia nigra (SN) and locus coeruleus (LC) with respect to the degree of cognitive control during a Stroop task in healthy subjects. Forty-five healthy subjects were investigated by the manual version of the Stroop task in an event-related fMRI design. We observed significant BOLD activation of both the SN/VTA and LC during the Stroop interference condition (incongruent vs. congruent condition). LC, but not SN/VTA activation significantly correlated with the Stroop interference. Interestingly, a significant linear decrease in BOLD activation during the incongruent condition during the experiment was mainly observed in the fronto-cingulo-striatal network, but not in SN/VTA and LC. Using psychophysiological (PPI) analyses, a significant functional connectivity during cognitive control was observed between SN/VTA and the nigrostriatal/mesolimbic dopaminergic system. For the LC, distinct functional connectivity pattern was observed mainly to the dorsolateral and ventrolateral PFC. Both regions revealed significant functional connectivity to the dACC, parietal and occipital regions. Thus, we demonstrate for the first time that functional activation patterns in the SN/VTA and the LC are modulated by different demands of cognitive control. In addition, these nuclei exhibit distinguishable functional connectivity patterns to cortical brain networks. Hum Brain Mapp 37:2305-2318, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanie Köhler
- Department of Psychiatry and Psychotherapy, Psychiatric Brain and Body Research Group Jena, University Hospital Jena, 07743, Germany
| | - Karl-Jürgen Bär
- Department of Psychiatry and Psychotherapy, Psychiatric Brain and Body Research Group Jena, University Hospital Jena, 07743, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Psychiatric Brain and Body Research Group Jena, University Hospital Jena, 07743, Germany
| |
Collapse
|
38
|
Ide JS, Hu S, Zhang S, Mujica-Parodi LR, Li CSR. Power spectrum scale invariance as a neural marker of cocaine misuse and altered cognitive control. NEUROIMAGE-CLINICAL 2016; 11:349-356. [PMID: 27294029 PMCID: PMC4888196 DOI: 10.1016/j.nicl.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) has highlighted the effects of chronic cocaine exposure on cerebral structures and functions, and implicated the prefrontal cortices in deficits of cognitive control. Recent investigations suggest power spectrum scale invariance (PSSI) of cerebral blood oxygenation level dependent (BOLD) signals as a neural marker of cerebral activity. We examined here how PSSI is altered in association with cocaine misuse and impaired cognitive control. METHODS Eighty-eight healthy (HC) and seventy-five age and gender matched cocaine dependent (CD) adults participated in functional MRI of a stop signal task (SST). BOLD images were preprocessed using standard procedures in SPM, including detrending, band-pass filtering (0.01-0.25 Hz), and correction for head motions. Voxel-wise PSSI measures were estimated by a linear fit of the power spectrum with a log-log scale. In group analyses, we examined differences in PSSI between HC and CD, and its association with clinical and behavioral variables using a multiple regression. A critical component of cognitive control is post-signal behavioral adjustment, which is compromised in cocaine dependence. Therefore, we examined the PSSI changes in association with post-signal slowing (PSS) in the SST. RESULTS Compared to HC, CD showed decreased PSS and PSSI in multiple frontoparietal regions. PSSI was positively correlated with PSS in HC in multiple regions, including the left inferior frontal gyrus (IFG) and right supramarginal gyrus (SMG), which showed reduced PSSI in CD. CONCLUSIONS These findings suggest disrupted connectivity dynamics in the fronto-parietal areas in association with post-signal behavioral adjustment in cocaine addicts. These new findings support PSSI as a neural marker of impaired cognitive control in cocaine addiction.
Collapse
Affiliation(s)
- Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
39
|
Manza P, Hu S, Ide JS, Farr OM, Zhang S, Leung HC, Li CSR. The effects of methylphenidate on cerebral responses to conflict anticipation and unsigned prediction error in a stop-signal task. J Psychopharmacol 2016; 30:283-93. [PMID: 26755547 PMCID: PMC4837899 DOI: 10.1177/0269881115625102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To adapt flexibly to a rapidly changing environment, humans must anticipate conflict and respond to surprising, unexpected events. To this end, the brain estimates upcoming conflict on the basis of prior experience and computes unsigned prediction error (UPE). Although much work implicates catecholamines in cognitive control, little is known about how pharmacological manipulation of catecholamines affects the neural processes underlying conflict anticipation and UPE computation. We addressed this issue by imaging 24 healthy young adults who received a 45 mg oral dose of methylphenidate (MPH) and 62 matched controls who did not receive MPH prior to performing the stop-signal task. We used a Bayesian Dynamic Belief Model to make trial-by-trial estimates of conflict and UPE during task performance. Replicating previous research, the control group showed anticipation-related activation in the presupplementary motor area and deactivation in the ventromedial prefrontal cortex and parahippocampal gyrus, as well as UPE-related activations in the dorsal anterior cingulate, insula, and inferior parietal lobule. In group comparison, MPH increased anticipation activity in the bilateral caudate head and decreased UPE activity in each of the aforementioned regions. These findings highlight distinct effects of catecholamines on the neural mechanisms underlying conflict anticipation and UPE, signals critical to learning and adaptive behavior.
Collapse
Affiliation(s)
- Peter Manza
- Integrative Neuroscience Program, Department of Psychology, Stony Brook University, Stony Brook, NY, USA Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Jaime S Ide
- Department of Psychiatry, Yale University, New Haven, CT, USA Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Olivia M Farr
- Department of Psychiatry, Yale University, New Haven, CT, USA Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Hoi-Chung Leung
- Integrative Neuroscience Program, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Chiang-shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, USA Department of Neuroscience, Yale University, New Haven, CT, USA Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
40
|
Moeller SJ, Bederson L, Alia-Klein N, Goldstein RZ. Neuroscience of inhibition for addiction medicine: from prediction of initiation to prediction of relapse. PROGRESS IN BRAIN RESEARCH 2015; 223:165-88. [PMID: 26806776 DOI: 10.1016/bs.pbr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior. Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences from healthy nonaddicted controls during tasks of response inhibition accompanied by brain activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether inhibition-related deficits predate the transition to problematic use, and, in turn, whether these deficits predict the transition out of problematic substance use. Here, we review longitudinal studies of response inhibition in children/adolescents with little substance experience and longitudinal studies of already addicted individuals attempting to sustain abstinence. Results show that response inhibition and its underlying neural correlates predict both substance use outcomes (onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex (e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In general, less activation of these regions during response inhibition predicted not only the onset of substance use, but interestingly also better abstinence-related outcomes among individuals already addicted. The role of subcortical areas, although potentially important, is less clear because of inconsistent results and because these regions are less classically reported in studies of healthy response inhibition. Overall, this review indicates that response inhibition is not simply a manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and public health relevance.
Collapse
Affiliation(s)
- Scott J Moeller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Lucia Bederson
- Department of Psychology, New York University, New York, NY, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Moeller SJ, Beebe-Wang N, Schneider KE, Konova AB, Parvaz MA, Alia-Klein N, Hurd YL, Goldstein RZ. Effects of an opioid (proenkephalin) polymorphism on neural response to errors in health and cocaine use disorder. Behav Brain Res 2015; 293:18-26. [PMID: 26164485 DOI: 10.1016/j.bbr.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Chronic exposure to drugs of abuse perturbs the endogenous opioid system, which plays a critical role in the development and maintenance of addictive disorders. Opioid genetics may therefore play an important modulatory role in the expression of substance use disorders, but these genes have not been extensively characterized, especially in humans. In the current imaging genetics study, we investigated a single nucleotide polymorphism (SNP) of the protein-coding proenkephalin gene (PENK: rs2609997, recently shown to be associated with cannabis dependence) in 55 individuals with cocaine use disorder and 37 healthy controls. Analyses tested for PENK associations with fMRI response to error (during a classical color-word Stroop task) and gray matter volume (voxel-based morphometry) as a function of Diagnosis (cocaine, control). Results revealed whole-brain Diagnosis×PENK interactions on the neural response to errors (fMRI error>correct contrast) in the right putamen, left rostral anterior cingulate cortex/medial orbitofrontal cortex, and right inferior frontal gyrus; there was also a significant Diagnosis×PENK interaction on right inferior frontal gyrus gray matter volume. These interactions were driven by differences between individuals with cocaine use disorders and controls that were accentuated in individuals carrying the higher-risk PENK C-allele. Taken together, the PENK polymorphism-and potentially opioid neurotransmission more generally-modulates functioning and structural integrity of brain regions previously implicated in error-related processing. PENK could potentially render a subgroup of individuals with cocaine use disorder (i.e., C-allele carriers) more sensitive to mistakes or other related challenges; in future studies, these results could contribute to the development of individualized genetics-informed treatments.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | - Kristin E Schneider
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Muhammad A Parvaz
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yasmin L Hurd
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pharmacology & Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
42
|
Dürsteler KM, Berger EM, Strasser J, Caflisch C, Mutschler J, Herdener M, Vogel M. Clinical potential of methylphenidate in the treatment of cocaine addiction: a review of the current evidence. Subst Abuse Rehabil 2015; 6:61-74. [PMID: 26124696 PMCID: PMC4476488 DOI: 10.2147/sar.s50807] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Cocaine use continues to be a public health problem, yet there is no proven effective pharmacotherapy for cocaine dependence. A promising approach to treating cocaine dependence may be agonist-replacement therapy, which is already used effectively in the treatment of opioid and tobacco dependence. The replacement approach for cocaine dependence posits that administration of a long-acting stimulant medication should normalize the neurochemical and behavioral perturbations resulting from chronic cocaine use. One potential medication to be substituted for cocaine is methylphenidate (MPH), as this stimulant possesses pharmacobehavioral properties similar to those of cocaine. Aim To provide a qualitative review addressing the rationale for the use of MPH as a cocaine substitute and its clinical potential in the treatment of cocaine dependence. Methods We searched MEDLINE for clinical studies using MPH in patients with cocaine abuse/dependence and screened the bibliographies of the articles found for pertinent literature. Results MPH, like cocaine, increases synaptic dopamine by inhibiting dopamine reuptake. The discriminative properties, reinforcing potential, and subjective effects of MPH and cocaine are almost identical and, importantly, MPH has been found to substitute for cocaine in animals and human volunteers under laboratory conditions. When taken orally in therapeutic doses, its abuse liability, however, appears low, which is especially true for extended-release MPH preparations. Though there are promising data in the literature, mainly from case reports and open-label studies, the results of randomized controlled trials have been disappointing so far and do not corroborate the use of MPH as a substitute for cocaine dependence in patients without attention deficit hyperactivity disorder. Conclusion Clinical studies evaluating MPH substitution for cocaine dependence have provided inconsistent findings. However, the negative findings may be explained by specific study characteristics, among them dosing, duration of treatment, or sample size. This needs to be considered when discussing the potential of MPH as replacement therapy for cocaine dependence. Finally, based on the results, we suggest possible directions for future research.
Collapse
Affiliation(s)
- Kenneth M Dürsteler
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland ; Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Berger
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Johannes Strasser
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Carlo Caflisch
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marc Vogel
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| |
Collapse
|
43
|
Kühn S, Schubert F, Mekle R, Wenger E, Ittermann B, Lindenberger U, Gallinat J. Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided functional MRS at 3 T. Brain Struct Funct 2015; 221:2541-51. [PMID: 25976598 DOI: 10.1007/s00429-015-1057-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Neural activity as indirectly observed in blood oxygenation level-dependent (BOLD) response is thought to reflect changes in neurotransmitter flux. In this study, we used fMRI-guided functional magnetic resonance spectroscopy (MRS) to measure metabolite/BOLD associations during a cognitive task at 3 T. GABA and glutamate concentration in anterior cingulate cortex (ACC) were determined by means of MRS using the SPECIAL pulse sequence before, during and after the performance of a manual Stroop task. MRS voxel positions were centred around individuals' BOLD activity during Stroop performance. Levels of GABA and glutamate showed inverted U-shape patterns across measurement time points (before, during, and after task), glutamine increased linearly and total creatine did not change. The GABA increase during task performance was associated with ACC BOLD signal changes in both congruent and incongruent Stroop conditions. Using an fMRI-guided MRS approach, an association between induced inhibitory neurotransmitter increase and BOLD changes was observed. The proposed procedure might allow the in vivo investigation of normal and dysfunctional associations between neurotransmitters and BOLD signal crucial for cerebral functioning.
Collapse
Affiliation(s)
- Simone Kühn
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany. .,University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246, Hamburg, Germany.
| | - Florian Schubert
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Ralf Mekle
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Elisabeth Wenger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany
| | - Jürgen Gallinat
- St. Hedwig-Krankenhaus, Clinic for Psychiatry and Psychotherapy, Charité University Medicine, Große Hamburger Straße 5-11, 10115, Berlin, Germany.,University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
44
|
Konova AB, Moeller SJ, Tomasi D, Goldstein RZ. Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res 2015; 1628:147-56. [PMID: 25721787 DOI: 10.1016/j.brainres.2015.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.
Collapse
Affiliation(s)
- Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Scott J Moeller
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
45
|
Ilieva IP, Hook CJ, Farah MJ. Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis. J Cogn Neurosci 2015; 27:1069-89. [PMID: 25591060 DOI: 10.1162/jocn_a_00776] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The use of prescription stimulants to enhance healthy cognition has significant social, ethical, and public health implications. The large number of enhancement users across various ages and occupations emphasizes the importance of examining these drugs' efficacy in a nonclinical sample. The present meta-analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning, including inhibitory control, working memory, short-term episodic memory, and delayed episodic memory. In addition, we examined the evidence for publication bias. Forty-eight studies (total of 1,409 participants) were included in the analyses. We found evidence for small but significant stimulant enhancement effects on inhibitory control and short-term episodic memory. Small effects on working memory reached significance, based on one of our two analytical approaches. Effects on delayed episodic memory were medium in size. However, because the effects on long-term and working memory were qualified by evidence for publication bias, we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall. In some situations, a small advantage may be valuable, although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition.
Collapse
|
46
|
Moeller SJ, Froböse MI, Konova AB, Misyrlis M, Parvaz MA, Goldstein RZ, Alia-Klein N. Common and distinct neural correlates of inhibitory dysregulation: stroop fMRI study of cocaine addiction and intermittent explosive disorder. J Psychiatr Res 2014; 58:55-62. [PMID: 25106072 PMCID: PMC4163519 DOI: 10.1016/j.jpsychires.2014.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/20/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
Abstract
Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N = 11), individuals with cocaine use disorder (CUD) (N = 21), and healthy controls (N = 17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally.
Collapse
Affiliation(s)
- Scott J. Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Monja I. Froböse
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6500 HB Nijmegen, the Netherlands
| | - Anna B. Konova
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| | - Michail Misyrlis
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Computer Science, Stony Brook University, Stony Brook, NY 11794
| | - Muhammad A. Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rita Z. Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJB, Loh LTCY, Adam LTCGE, Oskvig D, Curley KC, Salzer W. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 2014; 31:135-58. [PMID: 23968241 DOI: 10.1089/neu.2013.3019] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.
Collapse
Affiliation(s)
- Ramon Diaz-Arrastia
- 1 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Porter JN, Minhas D, Lopresti BJ, Price JC, Bradberry CW. Altered cerebellar and prefrontal cortex function in rhesus monkeys that previously self-administered cocaine. Psychopharmacology (Berl) 2014; 231:4211-8. [PMID: 24733237 PMCID: PMC4194259 DOI: 10.1007/s00213-014-3560-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Differences in brain function in cocaine users can occur even when frank deficits are not apparent, indicating neuroadaptive consequences of use. Using monkeys to investigate altered metabolic activity following chronic cocaine self-administration allows an assessment of altered function due to cocaine use, without confounding pre-existing differences or polysubstance use often present in clinical studies. OBJECTIVES To evaluate alterations in metabolic function during a working memory task in the prefrontal cortex and the cerebellum following 1 year of chronic cocaine self-administration followed by a 20 month drug-free period. METHODS Fluorodeoxyglucose ((18)F) PET imaging was used to evaluate changes in relative regional metabolic activity associated with a delayed match to sample working memory task. Chronic cocaine animals were compared to a control group, and region of interest analyses focused on the dorsolateral prefrontal cortex (DLPFC) and cerebellum. RESULTS Despite no differences in task performance, in the cocaine group, the cerebellum showed greater metabolic activity during the working memory task (relative to the control task) compared to the control group. There was also a trend toward a significant difference between the groups in DLPFC activity (p = 0.054), with the cocaine group exhibiting lower DLPFC metabolic activity during the delay task (relative to the control task) than the control group. CONCLUSION The results support clinical indications of increased cerebellar activity associated with chronic cocaine exposure. Consistent with evidence of functional interactions between cerebellum and prefrontal cortex, these changes may serve to compensate for potential impairments in functionality of DLPFC.
Collapse
Affiliation(s)
- Jessica N. Porter
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie C. Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles W. Bradberry
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- VA Pittsburgh Health Services, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Farr OM, Hu S, Matuskey D, Zhang S, Abdelghany O, Li CSR. The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults. Exp Clin Psychopharmacol 2014; 22:154-65. [PMID: 24188171 PMCID: PMC4105943 DOI: 10.1037/a0034465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Detection of a salient stimulus is critical to cognitive functioning. A stimulus is salient when it appears infrequently, carries high motivational value, and/or when it dictates changes in behavior. Individuals with neurological conditions that implicate altered catecholaminergic signaling, such as those with attention deficit hyperactivity disorder, are impaired in detecting salient stimuli, a deficit that can be remediated by catecholaminergic medications. However, the effects of these catecholaminergic agents on cerebral activities during saliency processing within the context of the stop-signal task are not clear. Here, we examined the effects of a single oral dose (45 mg) of methylphenidate in 24 healthy adults performing the stop-signal task during functional MRI (fMRI). Compared to 92 demographically matched adults who did not receive any medications, the methylphenidate group showed higher activations in bilateral caudate head, primary motor cortex, and the right inferior parietal cortex during stop as compared to go trials (p < .05, corrected for family-wise error of multiple comparisons). These results show that methylphenidate enhances saliency processing by promoting specific cerebral regional activities. These findings may suggest a neural basis for catecholaminergic treatment of attention disorders.
Collapse
Affiliation(s)
- Olivia M. Farr
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - Osama Abdelghany
- Investigational Drug Service, Yale New Haven Hospital, New Haven, CT 06519
| | - Chiang-shan R. Li
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519,Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
50
|
Moeller SJ, Konova AB, Parvaz MA, Tomasi D, Lane RD, Fort C, Goldstein RZ. Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry 2014; 71:61-70. [PMID: 24258223 PMCID: PMC4193926 DOI: 10.1001/jamapsychiatry.2013.2833] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IMPORTANCE Individuals with cocaine use disorder (CUD) have difficulty monitoring ongoing behavior, possibly stemming from dysfunction of brain regions mediating insight and self-awareness. OBJECTIVE To investigate the neural correlates of impaired insight in addiction using a combined functional magnetic resonance imaging and voxel-based morphometry approach. DESIGN, SETTING, AND PARTICIPANTS This multimodal imaging study was performed at the Clinical Research Center at Brookhaven National Laboratory. The study included 33 CUD cases and 20 healthy controls. MAIN OUTCOMES AND MEASURES Functional magnetic resonance imaging, voxel-based morphometry, Levels of Emotional Awareness Scale, and drug use variables. RESULTS Compared with the other 2 study groups, the impaired insight CUD group had lower error-induced rostral anterior cingulate cortex (rACC) activity as associated with more frequent cocaine use, less gray matter within the rACC, and lower Levels of Emotional Awareness Scale scores. CONCLUSIONS AND RELEVANCE These results point to rACC functional and structural abnormalities and diminished emotional awareness in a subpopulation of CUD cases characterized by impaired insight. Because the rACC has been implicated in appraising the affective and motivational significance of errors and other types of self-referential processing, functional and structural abnormalities in this region could result in lessened concern (frequently ascribed to minimization and denial) about behavioral outcomes that could potentially culminate in increased drug use. Treatments that target this CUD subgroup could focus on enhancing the salience of errors (eg, lapses).
Collapse
Affiliation(s)
- Scott J. Moeller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anna B. Konova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | - Richard D. Lane
- Department of Psychiatry, University of Arizona, Tuscon, AZ 85724
| | - Carolyn Fort
- Department of Psychiatry, University of Arizona, Tuscon, AZ 85724
| | - Rita Z. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence and requests for materials should be addressed to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029-6574; tel. (212) 659-8838; fax (212) 996-8931;
| |
Collapse
|