1
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Truong VB, Davis OS, Gracey J, Neal MS, Khokhar JY, Favetta LA. Sperm capacitation and transcripts levels are altered by in vitro THC exposure. BMC Mol Cell Biol 2023; 24:6. [PMID: 36823609 PMCID: PMC9951432 DOI: 10.1186/s12860-023-00468-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol (THC) is the primary phytocannabinoid responsible for the psychoactive properties of cannabis and is known to interact with the endocannabinoid system, which is functionally present in the male reproductive system. Since cannabis consumption is the highest among reproductive aged males, the current study aimed to further investigate the effects of THC exposure to phenotypical, physiological, and molecular parameters in sperm. Bull sperm of known fertility were used as a translational model for human sperm and subjected to in vitro treatment with physiologically relevant experimental doses of THC. Sperm parameters, capacitation, apoptosis, and transcript levels were evaluated following treatment. RESULTS Motility, morphology, and viability of bovine sperm was unaltered from THC exposure. However, 0.32µM of THC caused an increased proportion of capacitating sperm (p < 0.05) compared to control and vehicle group sperm. Transcriptome analysis revealed that 39 genes were found to be differentially expressed by 0.032µM THC exposure, 196 genes were differentially expressed by 0.32µM THC exposure, and 33 genes were differentially expressed by 3.2µM THC. Secondary analysis reveals pathways involving development, nucleosomes, ribosomes and translation, and cellular metabolism to be significantly enriched. CONCLUSION Phytocannabinoid exposure to sperm may adversely affect sperm function by stimulating premature capacitation. These findings also show for the first time that spermatozoal transcripts may be altered by THC exposure. These results add to previous research demonstrating the molecular effects of cannabinoids on sperm and warrant further research into the effects of cannabis on male fertility.
Collapse
Affiliation(s)
- Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Jade Gracey
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
3
|
Xiao J, Zhou Y, Sun L, Wang H. Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy. Front Mol Neurosci 2023; 16:1152167. [PMID: 37122621 PMCID: PMC10130673 DOI: 10.3389/fnmol.2023.1152167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Haichuan Wang,
| |
Collapse
|
4
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
5
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
7
|
Paraíso-Luna J, Aguareles J, Martín R, Ayo-Martín AC, Simón-Sánchez S, García-Rincón D, Costas-Insua C, García-Taboada E, de Salas-Quiroga A, Díaz-Alonso J, Liste I, Sánchez-Prieto J, Cappello S, Guzmán M, Galve-Roperh I. Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB 1 receptors. Development 2020; 147:226034. [PMID: 33168583 DOI: 10.1242/dev.192161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.
Collapse
Affiliation(s)
- Juan Paraíso-Luna
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - José Aguareles
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ricardo Martín
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ane C Ayo-Martín
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Samuel Simón-Sánchez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Daniel García-Rincón
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Carlos Costas-Insua
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Elena García-Taboada
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Adán de Salas-Quiroga
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Javier Díaz-Alonso
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - José Sánchez-Prieto
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | | | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| |
Collapse
|
8
|
Huerga-Gómez A, Aguado T, Sánchez-de la Torre A, Bernal-Chico A, Matute C, Mato S, Guzmán M, Galve-Roperh I, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia 2020; 69:532-545. [PMID: 32956517 PMCID: PMC7821226 DOI: 10.1002/glia.23911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Δ9‐Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so‐called endocannabinoids. Specifically, the endocannabinoid 2‐arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC‐induced‐myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC‐mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.
Collapse
Affiliation(s)
- Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ana Bernal-Chico
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia, Multiple Sclerosis and Other Demyelinating Diseases Unit, Barakaldo, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain
| |
Collapse
|
9
|
Zamberletti E, Rubino T. Impact of Endocannabinoid System Manipulation on Neurodevelopmental Processes Relevant to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:616-626. [PMID: 32855107 DOI: 10.1016/j.bpsc.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The neurodevelopmental hypothesis of schizophrenia has received much support from epidemiological and neuropathological studies and provides a framework to explain how early developmental abnormalities might manifest as psychosis in early adulthood. According to this theory, the onset of schizophrenia is likely the result of a complex interplay between a genetic predisposition and environmental factors whose respective influence might contribute to the etiology and progression of the disorder. The two most sensitive windows for neurodevelopment are the prenatal/perinatal and the adolescent windows, both of which are characterized by specific processes impinging upon brain structure and functionality, whose alterations may contribute to the onset of schizophrenia. An increasing number of articles suggest the involvement of the endocannabinoid system in the modulation of at least some of these processes, especially in the prenatal/perinatal window. Thus, it is not surprising that disturbing the physiological role of endocannabinoid signaling in these sensitive windows might alter the correct formation of neuronal networks, eventually predisposing to neuropsychiatric diseases later in life. We review the most recent preclinical studies that evaluated the impact of endocannabinoid system modulation in the two sensitive developmental windows on neurodevelopmental processes that possess a specific relevance to schizophrenia.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy.
| |
Collapse
|
10
|
Cannabinoid signalling in embryonic and adult neurogenesis: possible implications for psychiatric and neurological disorders. Acta Neuropsychiatr 2019; 31:1-16. [PMID: 29764526 DOI: 10.1017/neu.2018.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cannabinoid signalling modulates several aspects of brain function, including the generation and survival of neurons during embryonic and adult periods. The present review intended to summarise evidence supporting a role for the endocannabinoid system on the control of neurogenesis and neurogenesis-dependent functions. Studies reporting participation of cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid compounds on animal models possessing neurogenesis-dependent features were selected from Medline. Qualitative evaluation of the selected studies indicated that activation of cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. The text offers an overview on the effects of cannabinoids on central nervous system development and the possible links with psychiatric and neurological disorders such as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer's disease. An understanding of the mechanisms by which cannabinoid signalling influences developmental and adult neurogenesis will help foster the development of new therapeutic strategies for neurodevelopmental, psychiatric and neurological disorders.
Collapse
|
11
|
García-Rincón D, Díaz-Alonso J, Paraíso-Luna J, Ortega Z, Aguareles J, de Salas-Quiroga A, Jou C, de Prada I, Martínez-Cerdeño V, Aronica E, Guzmán M, Pérez-Jiménez MÁ, Galve-Roperh I. Contribution of Altered Endocannabinoid System to Overactive mTORC1 Signaling in Focal Cortical Dysplasia. Front Pharmacol 2019; 9:1508. [PMID: 30687088 PMCID: PMC6334222 DOI: 10.3389/fphar.2018.01508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
Alterations of the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are causally involved in a subset of malformations of cortical development (MCDs) ranging from focal cortical dysplasia (FCD) to hemimegalencephaly and megalencephaly. These MCDs represent a frequent cause of refractory pediatric epilepsy. The endocannabinoid system -especially cannabinoid CB1 receptor- exerts a neurodevelopmental regulatory role at least in part via activation of mTORC1 signaling. Therefore, we sought to characterize the possible contribution of endocannabinoid system signaling to FCD. Confocal microscopy characterization of the CB1 receptor expression and mTORC1 activation was conducted in FCD Type II resection samples. FCD samples were subjected to single nucleotide polymorphism screening for endocannabinoid system elements, as well as CB1 receptor gene sequencing. Cannabinoid CB1 receptor levels were increased in FCD with overactive mTORC1 signaling. CB1 receptors were enriched in phospho-S6-positive cells including balloon cells (BCs) that co-express aberrant markers of undifferentiated cells and dysplastic neurons. Pharmacological regulation of CB1 receptors and the mTORC1 pathway was performed in fresh FCD-derived organotypic cultures. HU-210-evoked activation of CB1 receptors was unable to further activate mTORC1 signaling, whereas CB1 receptor blockade with rimonabant attenuated mTORC1 overactivation. Alterations of the endocannabinoid system may thus contribute to FCD pathological features, and blockade of cannabinoid signaling might be a new therapeutic intervention in FCD.
Collapse
Affiliation(s)
- Daniel García-Rincón
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Javier Díaz-Alonso
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Juan Paraíso-Luna
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Zaira Ortega
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - José Aguareles
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Adán de Salas-Quiroga
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Cristina Jou
- Departamento de Anatomía Patológica, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children of Northern California and Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Eleonora Aronica
- Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | | | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria, Department of Biochemistry and Molecular Biology and Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
12
|
Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochem Pharmacol 2018; 157:85-96. [DOI: 10.1016/j.bcp.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
13
|
Role of mTOR Complexes in Neurogenesis. Int J Mol Sci 2018; 19:ijms19051544. [PMID: 29789464 PMCID: PMC5983636 DOI: 10.3390/ijms19051544] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Collapse
|
14
|
EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 2018; 23:1303-1319. [PMID: 28397836 PMCID: PMC5984092 DOI: 10.1038/mp.2017.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with β-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.
Collapse
|
15
|
Iffland PH, Crino PB. Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:547-571. [PMID: 28135561 DOI: 10.1146/annurev-pathol-052016-100138] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway-a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.
Collapse
Affiliation(s)
- Philip H Iffland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
16
|
LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11. J Neurosci 2017; 37:194-203. [PMID: 28053041 PMCID: PMC5214630 DOI: 10.1523/jneurosci.2836-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity. SIGNIFICANCE STATEMENT The functional complexity of the cerebral cortex arises from an array of distinct neuronal subtypes with unique connectivity patterns that are produced from common progenitors. This study reveals that transcription factor LHX2 regulates the numbers of specific cortical output neuron subtypes by controlling the genes that are required to produce them. Loss or increase in LHX2 during neurogenesis is sufficient to increase or decrease, respectively, a particular subcerebrally projecting population. Mechanistically, LHX2 interacts with chromatin modifying protein complexes to edit the chromatin landscape of its targets Fezf2 and Sox11, which regulates their expression and consequently the identities of the neurons produced. Thus, LHX2 is a key component of the control network for producing neurons that will participate in cortical circuitry.
Collapse
|
17
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
18
|
Cannabinoids as Regulators of Neural Development and Adult Neurogenesis. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-49343-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Argue KJ, VanRyzin JW, Falvo DJ, Whitaker AR, Yu SJ, McCarthy MM. Activation of Both CB1 and CB2 Endocannabinoid Receptors Is Critical for Masculinization of the Developing Medial Amygdala and Juvenile Social Play Behavior. eNeuro 2017; 4:ENEURO.0344-16.2017. [PMID: 28144625 PMCID: PMC5272923 DOI: 10.1523/eneuro.0344-16.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/growth & development
- Amygdala/metabolism
- Animals
- Animals, Newborn
- Cannabinoid Receptor Modulators/pharmacology
- Female
- Male
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/growth & development
- Neural Pathways/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Sex Characteristics
- Social Behavior
Collapse
Affiliation(s)
- Kathryn J Argue
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| | - Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| | - David J Falvo
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| | - Allison R Whitaker
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine , Baltimore, MD 21201
| |
Collapse
|
20
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
21
|
Hutch CR, Hegg CC. Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium. NEUROGENESIS 2016; 3:e1118177. [PMID: 27606334 PMCID: PMC4973592 DOI: 10.1080/23262133.2015.1118177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/21/2022]
Abstract
The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212–2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium.
Collapse
Affiliation(s)
- Chelsea R Hutch
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Colleen C Hegg
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Prenderville JA, Kelly ÁM, Downer EJ. The role of cannabinoids in adult neurogenesis. Br J Pharmacol 2015; 172:3950-63. [PMID: 25951750 DOI: 10.1111/bph.13186] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Jack A Prenderville
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland.,Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | - Áine M Kelly
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland.,Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 2014; 15:786-801. [PMID: 25409697 PMCID: PMC4765324 DOI: 10.1038/nrn3846] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among the many signalling lipids, endocannabinoids are increasingly recognized for their important roles in neuronal and glial development. Recent experimental evidence suggests that, during neuronal differentiation, endocannabinoid signalling undergoes a fundamental switch from the prenatal determination of cell fate to the homeostatic regulation of synaptic neurotransmission and bioenergetics in the mature nervous system. These studies also offer novel insights into neuropsychiatric disease mechanisms and contribute to the public debate about the benefits and the risks of cannabis use during pregnancy and in adolescence.
Collapse
Affiliation(s)
- Mauro Maccarrone
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Via del Fosso di Fiorano 65, I-00143 Rome, Italy
| | - Manuel Guzman
- Department of Biochemistry and Molecular Biology I and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Complutense University, E-28040 Madrid, Spain
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, United Kingdom
| | - Tibor Harkany
- Division of Molecular Neuroscience, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
24
|
Endocannabinoid signaling modulates neurons of the pedunculopontine nucleus (PPN) via astrocytes. Brain Struct Funct 2014; 220:3023-41. [DOI: 10.1007/s00429-014-0842-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/02/2014] [Indexed: 12/24/2022]
|