1
|
Li A, Chen C, Wu X, Feng Y, Yang J, Feng X, Hu R, Mei L. Processing demands modulate the activities and functional connectivity patterns of the posterior (VWFA-1) and anterior (VWFA-2) VWFA. Neuroimage 2024; 303:120923. [PMID: 39522790 DOI: 10.1016/j.neuroimage.2024.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Previous studies have shown that the visual word form area (VWFA) has structural and intrinsic functional connectivity with both language and attention networks. Nevertheless, it is still unclear how the functional connectivity pattern of the VWFA is regulated by processing demands induced by experimental tasks, and whether processing demands differentially regulate the posterior (VWFA-1) and anterior (VWFA-2) subregions of the VWFA. To address these questions, the present study adopted two tasks varying in processing demands (i.e., verbal and non-verbal tasks), and used generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses to explore the task-dependent functional connectivity patterns of the two subregions of the VWFA. Activation analysis revealed that the VWFA-2 showed higher activation for the verbal task than the non-verbal task, while there were no activation differences in the VWFA-1 after controlling for the stimulus driven effects. Functional and effective connectivity analyses revealed that, for both VWFA-1 and VWFA-2, the verbal task enhanced connections from VWFAs to the ventral language regions (e.g., the left orbital frontal cortex), while the non-verbal task enhanced connections from VWFAs to the dorsal visuospatial regions (e.g., the left intraparietal sulcus). Results of the present study indicate that processing demands induced by tasks modulate both the local activity and functional connectivity patterns of the VWFA, providing new insights for understanding its domain-general function.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
2
|
Garrett JC, Verzhbinsky IA, Kaestner E, Carlson C, Doyle WK, Devinsky O, Thesen T, Halgren E. Binding of cortical functional modules by synchronous high-frequency oscillations. Nat Hum Behav 2024; 8:1988-2002. [PMID: 39134741 DOI: 10.1038/s41562-024-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Whether high-frequency phase-locked oscillations facilitate integration ('binding') of information across widespread cortical areas is controversial. Here we show with intracranial electroencephalography that cortico-cortical co-ripples (~100-ms-long ~90 Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur. Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200 to 400 ms post-word-onset. Semantically specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400 to 800 ms, with increased co-rippling between semantic, executive and response areas prior to correct responses. Co-ripples were phase-locked at zero lag over long distances (>12 cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition.
Collapse
Affiliation(s)
- Jacob C Garrett
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Ilya A Verzhbinsky
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Werner K Doyle
- Department of Neurosurgery, New York University Langone School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University Langone School of Medicine, New York, NY, USA
| | - Thomas Thesen
- Department of Medical Education, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Huang L, Hu W, Cui L, Zhang Z, Lu Y, Li Q, Huang Q, Wang L, Jiang J, Guo Q. Temporo-frontoparietal hypoconnectivity as a biomarker for isolated language impairment in mild cognitive impairment: A cross-cohort comparison. Alzheimers Dement 2024; 20:6566-6578. [PMID: 39115942 PMCID: PMC11497662 DOI: 10.1002/alz.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Whether brain functional connectivity (FC) is consistently disrupted in individuals with mild cognitive impairment (MCI) with isolated language impairment (ilMCI), and its potential to differentiate between MCI subtypes remains uncertain. METHODS Cross-sectional data from 404 participants in two cohorts (the Chinese Preclinical Alzheimer's Disease Study and the Alzheimer's Disease Neuroimaging Initiative) were analyzed, including neuropsychological tests, resting-state functional magnetic resonance imaging (fMRI), cerebral amyloid positivity, and apolipoprotein E (APOE) status. RESULTS Temporo-frontoparietal FC, particularly between the bilateral superior temporal pole and the left inferior frontal/supramarginal gyri, was consistently decreased in ilMCI compared to amnestic MCI (aMCI) and normal controls, which was correlated with semantic impairment. Using mean temporo-frontoparietal FC as a classifier could improve accuracy in identifying ilMCI subgroups with positive cerebral amyloid deposition and APOE risk alleles. DISCUSSION Temporal-frontoparietal hypoconnectivity was observed in individuals with ilMCI, which may reflect semantic impairment and serve as a valuable biomarker to indicate potential mechanisms of underlying neuropathology. HIGHLIGHTS Temporo-frontoparietal hypoconnectivity was observed in impaired language mild cognitive impairment (ilMCI). Temporo-frontoparietal hypoconnectivity may reflect semantic impairment. Temporo-frontoparietal functional connectivity can classify ilMCI subtypes.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjing Hu
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Zhang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yao Lu
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qinjie Li
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Luyao Wang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Jiehui Jiang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | | |
Collapse
|
4
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
5
|
Cattarinussi G, Meda N, Miola A, Sambataro F. The functional connectivity of the right superior temporal gyrus is associated with psychological risk and resilience factors for suicidality. J Affect Disord 2024; 357:51-59. [PMID: 38653349 DOI: 10.1016/j.jad.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Suicide attempters show increased activation in the right superior temporal gyrus (rSTG). Here, we investigated the rSTG functional connectivity (FC) to identify a functional network involved in suicidality and its associations with psychological suicidality risk and resilience factors. METHODS The resting state functional magnetic resonance imaging data of 151 healthy individuals from the Human Connectome Project Young Adult database were used to explore the FC of the rSTG with itself and with the rest of the brain. The correlation between the rSTG FC and loneliness and purpose in life scores was assessed with the NIH Toolbox. The effect of sex was also investigated. RESULTS The rSTG had a positive FC with bilateral cortical and subcortical regions, including frontal, temporal, parietal, occipital, limbic, and cerebellar regions, and a negative FC with the medulla oblongata. The FC of the rSTG with itself and with the left central operculum were associated with loneliness scores. The within rSTG FC was also negatively correlated with purpose in life scores, although at a trend level. We did not find any effect of sex on FC and its associations with psychological factors. LIMITATIONS The cross-sectional design, the limited age range, and the lack of measures of suicidality limit the generalizability of our findings. CONCLUSIONS The rSTG functional network is associated with loneliness and purpose in life. Together with the existing literature on suicide, this supports the idea that the neural activity of rSTG may contribute to suicidality by modulating risk and resilience factors associated with suicidality.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience, University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Nicola Meda
- Department of Neuroscience, University of Padova, Padua, Italy; Padova University Hospital, Padua, Italy
| | - Alessandro Miola
- Department of Neuroscience, University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy; Casa di Cura Parco dei Tigli, Padova, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy; Padova University Hospital, Padua, Italy.
| |
Collapse
|
6
|
Zhang X, Wang Y, Yang X, Yang Y. The spontaneous activities of the multiple demand network are related to individual differences in indirect replies comprehension. Behav Brain Res 2024; 469:115021. [PMID: 38692358 DOI: 10.1016/j.bbr.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
This study aims to investigate the brain networks engaged in the comprehension of indirect language, as well as the individual difference in this capacity. Specially, we aim to determine whether the difference is solely influenced by the difference in individuals' default network (DN)/language network or whether it also relies on the networks associated with processing of complex cognitive tasks, particularly the multiple demand network (MDN). Conversational indirectness scale (CIS) scores in the interpretation dimension were used as a behavioral indicator of the indirect comprehension tendency. Reading time difference between indirect replies and direct replies collected through a self-paced reading experiment was deemed as a behavioral indicator of comprehension speed of indirect replies comprehension. The two behavioral indicators were combined with resting-state functional magnetic resonance imaging (rs-fMRI). The behaviour-rfMRI analysis showed that ALFF value of right SPL and the functional connectivity (FC) between the right SPL and right IPL/SMA/ITG/Precuneus/bilateral IFG were positively correlated with the interpretation dimension of CIS scores. In addition, the ALFF value of right fusiform gyrus, the FC between the right fusiform gyrus and right precuneus, and the FCs between right SPL and right IPL/Precuneus/IFG were negatively correlated with indirect replies comprehension speed. Overlapping of these regions with large-scale brain network revealed that the right SPL was mainly located in the MDN, and the right fusiform gyrus was mainly located in the language network. Additionally, the areas showing functional connectivity with these regions were primarily located in the MDN, with a smaller subset located in the DN. Our findings suggest that the ability of individuals to actively and rapidly acquire indirect meaning relies not only on the support of the DN and the language network, but also requires collective support from the MDN.
Collapse
Affiliation(s)
- Xiuping Zhang
- School of Psychology, Beijing Language and Culture University, Beijing 100083, China
| | - Yizhu Wang
- School of Psychology, Beijing Language and Culture University, Beijing 100083, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Vijayarajah S, Schlichting ML. Developmental refinements to neural attentional state during semantic memory retrieval through adolescence. Cortex 2024; 176:77-93. [PMID: 38761418 DOI: 10.1016/j.cortex.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 05/20/2024]
Abstract
Despite the fact that attention undergoes protracted development, little is known about how it may support memory refinements in childhood and adolescence. Here, we asked whether people differentially focus their attention on semantic or perceptual information over development during memory retrieval. First, we trained a multivoxel classifier to characterize whole-brain neural patterns reflecting semantic versus perceptual attention in a cued attention task. We then used this classifier to quantify how attention varied in a separate dataset in which children, adolescents, and adults retrieved autobiographical, semantic, and episodic memories. All age groups demonstrated a semantic attentional bias during memory retrieval, with significant age differences in this bias during the semantic task. Trials began with a preparatory picture cue followed by a retrieval question, which allowed us to ask whether attentional biases varied by trial period. Adults showed a semantic bias earlier during the picture cues, whereas adolescents showed this bias during the question. Adults and adolescents also engaged different brain regions-superior parietal cortex and ventral visual regions, respectively-during preparatory picture cues. Our results demonstrate that retrieval-related attention undergoes refinement beyond childhood. These findings suggest that alongside expanding semantic knowledge, attention-related changes may support the maturation of factual knowledge retrieval.
Collapse
|
8
|
Hou M, Hill PF, Aktas ANZ, Ekstrom AD, Rugg MD. Neural correlates of retrieval success and precision: an fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598309. [PMID: 38915680 PMCID: PMC11195065 DOI: 10.1101/2024.06.10.598309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, their neural correlates were examined using a memory task that assessed precision for spatial location. A sample of healthy young adults underwent fMRI scanning during a single study-test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image as having been studied. Memory precision was quantified as the angle between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried across trials with location accuracy. Multi-voxel pattern analysis also revealed a significant item-level reinstatement effect for high-precision trials. There was no evidence of a retrieval success effect in the angular gyrus. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Paul F. Hill
- Department of Psychology, University of Arizona, USA
| | - Ayse N. Z. Aktas
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Arne D. Ekstrom
- Department of Psychology, University of Arizona, USA
- Evelyn McKnight Brain Institute, University of Arizona, USA
| | - Michael D. Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
9
|
Timofeeva P, Finisguerra A, D’Argenio G, García AM, Carreiras M, Quiñones I, Urgesi C, Amoruso L. Switching off: disruptive TMS reveals distinct contributions of the posterior middle temporal gyrus and angular gyrus to bilingual speech production. Cereb Cortex 2024; 34:bhae188. [PMID: 38741267 PMCID: PMC11090997 DOI: 10.1093/cercor/bhae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.
Collapse
Affiliation(s)
- Polina Timofeeva
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
| | - Alessandra Finisguerra
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
| | - Giulia D’Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, Parnassus 513, CA 94143, San Franscisco, United States & Trinity College Dublin, College Green, Dublin 2, D02X9W9, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Av. Libertador B. O'Higgins 3363, 9170022, Santiago de Chile, Chile
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), Doctoral School, 48940, Sarriena s/n, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Ileana Quiñones
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
- Neurosciences Department, BioGipuzkoa Health Research Institute, Paseo Dr. Begiristain s/n, 20014, San Sebastian, Spain
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037, Pasian di Prato, UD, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100, Udine, Italy
| | - Lucia Amoruso
- BCBL, Basque Center on Cognition, Brain, and Language (BCBL), Paseo Mikeletegi 69, 2nd floor, 20009 San Sebastian, Spain
- Cognitive Neuroscience Center (CNC), University of San Andres, Vito Dumas 284, B1644 BID, Buenos Aires, Argentina
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
10
|
Obrenovic M, Mouthon M, Chavan C, Saj A, Dieguez S, Aellen J, Chabwine JN. Acute right opercular stroke-associated polyopic heautoscopy and hallucinations caused by disconnection to the inferior parietal lobule through the superior longitudinal fasciculus III: A single case study. Cortex 2024; 174:125-136. [PMID: 38520766 DOI: 10.1016/j.cortex.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 03/25/2024]
Abstract
Illusory neuropsychiatric symptoms such as hallucinations or the feeling of a presence (FOP) can occur in diffuse brain lesion or dysfunction, in psychiatric diseases as well as in healthy individuals. Their occurrence due to focal brain lesions is rare, most probably due to underreporting, which limits progress in understanding their underlying mechanisms and anatomical determinants. In this single case study, an 86-year-old patient experienced, in the context of an acute right central opercular ischemic stroke, visual hallucinatory symptoms (including palinopsia), differently lateralized auditory hallucinations and FOP. This unusual clinical constellation could be precisely documented and illustrated while still present, allowing a realistic and immersive visual experience validated by the patient. The acute stroke appeared to be their most plausible cause (after exclusion of other etiologies). Furthermore, accurate analysis of tractographic data suggested that disruption in the posterior bundle of the superior longitudinal fasciculus connecting the stroke lesion to the inferior parietal lobule was the anatomical substrate explaining the FOP and, indirectly, also hallucinations through whiter matter involvement, in coherence with existing literature. We could finally elaborate on symptoms taxonomy and phenomenology (e.g., polyopic heautoscopy, hallucinatory FOP, etc), and on patient's remarkable distancing from them (with some therapeutic implications supported by plausibly engaged mechanisms). This case not only authentically enriched the description of such rare combination of heterogenous illusory symptoms through this novel visualization-based reporting approach, but disclosed an unrevealed anatomo-clinical link relating all of them to the acute stroke lesion through an association fiber, thereby contributing to the understanding of these intriguing symptoms and their determinants.
Collapse
Affiliation(s)
- Mihailo Obrenovic
- Department of Neurorehabilitation, Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg Switzerland
| | - Camille Chavan
- Neuropsychology-Logopedy Unit, Fribourg Hospital, Switzerland
| | - Arnaud Saj
- Neuropsychology-Logopedy Unit, Fribourg Hospital, Switzerland
| | - Sebastian Dieguez
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg Switzerland
| | - Jerôme Aellen
- Department of Radiology, Fribourg Hospital, Riaz, Switzerland
| | - Joelle N Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg Switzerland; Division of Neurology, Department of Internal Medicine, Fribourg Hospital, Cantonal Hospital Fribourg, Switzerland.
| |
Collapse
|
11
|
Zhang Y, Wu W, Mirman D, Hoffman P. Representation of event and object concepts in ventral anterior temporal lobe and angular gyrus. Cereb Cortex 2024; 34:bhad519. [PMID: 38185997 PMCID: PMC10839851 DOI: 10.1093/cercor/bhad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Semantic knowledge includes understanding of objects and their features and also understanding of the characteristics of events. The hub-and-spoke theory holds that these conceptual representations rely on multiple information sources that are integrated in a central hub in the ventral anterior temporal lobes. The dual-hub theory expands this framework with the claim that the ventral anterior temporal lobe hub is specialized for object representation, while a second hub in angular gyrus is specialized for event representation. To test these ideas, we used representational similarity analysis, univariate and psychophysiological interaction analyses of fMRI data collected while participants processed object and event concepts (e.g. "an apple," "a wedding") presented as images and written words. Representational similarity analysis showed that angular gyrus encoded event concept similarity more than object similarity, although the left angular gyrus also encoded object similarity. Bilateral ventral anterior temporal lobes encoded both object and event concept structure, and left ventral anterior temporal lobe exhibited stronger coding for events. Psychophysiological interaction analysis revealed greater connectivity between left ventral anterior temporal lobe and right pMTG, and between right angular gyrus and bilateral ITG and middle occipital gyrus, for event concepts compared to object concepts. These findings support the specialization of angular gyrus for event semantics, though with some involvement in object coding, but do not support ventral anterior temporal lobe specialization for object concepts.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
12
|
Ramanan S, Halai AD, Garcia-Penton L, Perry AG, Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, Patterson K, Rowe JB, Garrard P, Ralph MAL. The neural substrates of transdiagnostic cognitive-linguistic heterogeneity in primary progressive aphasia. Alzheimers Res Ther 2023; 15:219. [PMID: 38102724 PMCID: PMC10724982 DOI: 10.1186/s13195-023-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Clinical variants of primary progressive aphasia (PPA) are diagnosed based on characteristic patterns of language deficits, supported by corresponding neural changes on brain imaging. However, there is (i) considerable phenotypic variability within and between each diagnostic category with partially overlapping profiles of language performance between variants and (ii) accompanying non-linguistic cognitive impairments that may be independent of aphasia magnitude and disease severity. The neurobiological basis of this cognitive-linguistic heterogeneity remains unclear. Understanding the relationship between these variables would improve PPA clinical/research characterisation and strengthen clinical trial and symptomatic treatment design. We address these knowledge gaps using a data-driven transdiagnostic approach to chart cognitive-linguistic differences and their associations with grey/white matter degeneration across multiple PPA variants. METHODS Forty-seven patients (13 semantic, 15 non-fluent, and 19 logopenic variant PPA) underwent assessment of general cognition, errors on language performance, and structural and diffusion magnetic resonance imaging to index whole-brain grey and white matter changes. Behavioural data were entered into varimax-rotated principal component analyses to derive orthogonal dimensions explaining the majority of cognitive variance. To uncover neural correlates of cognitive heterogeneity, derived components were used as covariates in neuroimaging analyses of grey matter (voxel-based morphometry) and white matter (network-based statistics of structural connectomes). RESULTS Four behavioural components emerged: general cognition, semantic memory, working memory, and motor speech/phonology. Performance patterns on the latter three principal components were in keeping with each variant's characteristic profile, but with a spectrum rather than categorical distribution across the cohort. General cognitive changes were most marked in logopenic variant PPA. Regardless of clinical diagnosis, general cognitive impairment was associated with inferior/posterior parietal grey/white matter involvement, semantic memory deficits with bilateral anterior temporal grey/white matter changes, working memory impairment with temporoparietal and frontostriatal grey/white matter involvement, and motor speech/phonology deficits with inferior/middle frontal grey matter alterations. CONCLUSIONS Cognitive-linguistic heterogeneity in PPA closely relates to individual-level variations on multiple behavioural dimensions and grey/white matter degeneration of regions within and beyond the language network. We further show that employment of transdiagnostic approaches may help to understand clinical symptom boundaries and reveal clinical and neural profiles that are shared across categorically defined variants of PPA.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Ajay D Halai
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Lorna Garcia-Penton
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Alistair G Perry
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nikil Patel
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Katie A Peterson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ruth U Ingram
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Ian Storey
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Stefano F Cappa
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Eleonora Catricala
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
13
|
Branzi FM, Lambon Ralph MA. Semantic-specific and domain-general mechanisms for integration and update of contextual information. Hum Brain Mapp 2023; 44:5547-5566. [PMID: 37787648 PMCID: PMC10619409 DOI: 10.1002/hbm.26454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Recent research has highlighted the importance of domain-general processes and brain regions for language and semantic cognition. Yet, this has been mainly observed in executively demanding tasks, leaving open the question of the contribution of domain-general processes to natural language and semantic cognition. Using fMRI, we investigated whether neural processes reflecting context integration and context update-two key aspects of naturalistic language and semantic processing-are domain-specific versus domain-general. Thus, we compared neural responses during the integration of contextual information across semantic and non-semantic tasks. Whole-brain results revealed both shared (left posterior-dorsal inferior frontal gyrus, left posterior inferior temporal gyrus, and left dorsal angular gyrus/intraparietal sulcus) and distinct (left anterior-ventral inferior frontal gyrus, left anterior ventral angular gyrus, left posterior middle temporal gyrus for semantic control only) regions involved in context integration and update. Furthermore, data-driven functional connectivity analysis clustered domain-specific versus domain-general brain regions into distinct but interacting functional neural networks. These results provide a first characterisation of the neural processes required for context-dependent integration during language processing along the domain-specificity dimension, and at the same time, they bring new insights into the role of left posterior lateral temporal cortex and left angular gyrus for semantic cognition.
Collapse
Affiliation(s)
- Francesca M. Branzi
- Department of Psychological SciencesInstitute of Population Health, University of LiverpoolLiverpoolUK
- MRC Cognition & Brain Sciences UnitThe University of CambridgeCambridgeUK
| | | |
Collapse
|
14
|
Patel T, Morales M, Pickering MJ, Hoffman P. A common neural code for meaning in discourse production and comprehension. Neuroimage 2023; 279:120295. [PMID: 37536526 DOI: 10.1016/j.neuroimage.2023.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
How does the brain code the meanings conveyed by language? Neuroimaging studies have investigated this by linking neural activity patterns during discourse comprehension to semantic models of language content. Here, we applied this approach to the production of discourse for the first time. Participants underwent fMRI while producing and listening to discourse on a range of topics. We used a distributional semantic model to quantify the similarity between different speech passages and identified where similarity in neural activity was predicted by semantic similarity. When people produced discourse, speech on similar topics elicited similar activation patterns in a widely distributed and bilateral brain network. This network was overlapping with, but more extensive than, the regions that showed similarity effects during comprehension. Critically, cross-task neural similarities between comprehension and production were also predicted by similarities in semantic content. This result suggests that discourse semantics engages a common neural code that is shared between comprehension and production. Effects of semantic similarity were bilateral in all three RSA analyses, even while univariate activation contrasts in the same data indicated left-lateralised BOLD responses. This indicates that right-hemisphere regions encode semantic properties even when they are not activated above baseline. We suggest that right-hemisphere regions play a supporting role in processing the meaning of discourse during both comprehension and production.
Collapse
Affiliation(s)
- Tanvi Patel
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Matías Morales
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Martin J Pickering
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
15
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
16
|
Rahimi S, Jackson R, Farahibozorg SR, Hauk O. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric. Neuroimage 2023; 270:119958. [PMID: 36813063 PMCID: PMC10030313 DOI: 10.1016/j.neuroimage.2023.119958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point tx can linearly predict patterns of ROI Y at time point ty. In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches.
Collapse
Affiliation(s)
- Setareh Rahimi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom.
| | - Rebecca Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| |
Collapse
|
17
|
Jung J, Lambon Ralph MA. Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex 2023; 33:2021-2036. [PMID: 35595542 PMCID: PMC9977382 DOI: 10.1093/cercor/bhac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge, CB2 7EF United Kingdom
| |
Collapse
|
18
|
Rockland KS, Graves WW. The angular gyrus: a special issue on its complex anatomy and function. Brain Struct Funct 2023; 228:1-5. [PMID: 36369274 DOI: 10.1007/s00429-022-02596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
19
|
Bellana B, Ladyka-Wojcik N, Lahan S, Moscovitch M, Grady CL. Recollection and prior knowledge recruit the left angular gyrus during recognition. Brain Struct Funct 2023; 228:197-217. [PMID: 36441240 DOI: 10.1007/s00429-022-02597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
The human angular gyrus (AG) is implicated in recollection, or the ability to retrieve detailed memory content from a specific episode. A separate line of research examining the neural bases of more general mnemonic representations, extracted over multiple episodes, also highlights the AG as a core region of interest. To reconcile these separate views of AG function, the present fMRI experiment used a Remember-Know paradigm with famous (prior knowledge) and non-famous (no prior knowledge) faces to test whether AG activity could be modulated by both task-specific recollection and general prior knowledge within the same individuals. Increased BOLD activity in the left AG was observed during both recollection in the absence of prior knowledge (recollected > non-recollected or correctly rejected non-famous faces) and when prior knowledge was accessed in the absence of experiment-specific recollection (famous > non-famous correct rejections). This pattern was most prominent for the left AG as compared to the broader inferior parietal lobe. Recollection-related responses in the left AG increased with encoding duration and prior knowledge, despite prior knowledge being incidental to the recognition decision. Overall, the left AG appears sensitive to both task-specific recollection and the incidental access of general prior knowledge, thus broadening our notions of the kinds of mnemonic representations that drive activity in this region.
Collapse
Affiliation(s)
- Buddhika Bellana
- Department of Psychology, York University, Glendon Campus, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | | | - Shany Lahan
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Similarity in activity and laterality patterns in the angular gyrus during autobiographical memory retrieval and self-referential processing. Brain Struct Funct 2023; 228:219-238. [PMID: 36166073 DOI: 10.1007/s00429-022-02569-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023]
Abstract
Long-term memory is arguably one of the key cognitive functions. At the neural level, the lateral parietal cortex and the angular gyrus, particularly in the left hemisphere, exhibit strong activations during autobiographical and episodic memory retrieval. In a separate sub-field, left-lateralized activations of the angular gyrus are also found during self-referential processing, defined as higher activity when a trait term is judged by participants as being related to them vs. related to someone else. The question is whether episodic/autobiographical memory retrieval and self-referential processing effects are related. In the present study, thirty participants participated in the fMRI study with two separate experiments: autobiographical memory retrieval (Experiment 1) and self-referential processing (Experiment 2). In a series of analyses, including the most critical spatial correlation analysis between experiments, we found neural similarity between autobiographical memory retrieval and self-referential processing. Given that self-referential processing was identified in a selective way, the most plausible interpretation of our findings is that self-referential processing might partly explain the activation of the left angular gyrus during autobiographical memory retrieval. Our results are in line with the seminal view of Endel Tulving that the sense of self is a fundamental attribute of long-term memory recollection. However, it should be emphasized that: a) our results do not imply that the left angular gyrus is not involved in the retrieval of episodic memory details; and b) given that our experiment included an autobiographical memory task, generalization of our results to the episodic memory laboratory tasks has yet to be tested.
Collapse
|
21
|
Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct Funct 2023; 228:255-271. [PMID: 36326934 DOI: 10.1007/s00429-022-02590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG. To systematically test for correspondence between patterns of neural activation and phonological, orthographic, and semantic representations, we re-analyze a functional magnetic resonance imaging data set of participants reading aloud 465 words. Using representational similarity analysis, we test the hypothesis that within cytoarchitecture-defined subregions of the IPL, phonological representations are primarily associated with the SMG, while semantic representations are primarily associated with the AG. To the extent that orthographic representations can be de-correlated from phonological representations, they will be associated with cortex peripheral to the IPL, such as the intraparietal sulcus. Results largely confirmed these hypotheses, with some nuanced exceptions, which we discuss in terms of neurally inspired computational cognitive models of reading that learn mappings among distributed representations for orthography, phonology, and semantics. De-correlating constituent representations making up complex cognitive processes, such as reading, by careful selection of stimuli, representational formats, and analysis techniques, are promising approaches for bringing additional clarity to brain structure-function relationships.
Collapse
|
22
|
Kolomeets NS, Uranova NA. [Reduced numerical density of oligodendrocytes and oligodendrocyte clusters in the head of the caudate nucleus in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:103-110. [PMID: 36719125 DOI: 10.17116/jnevro2023123011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Morphometric estimation of the numerical density of oligodendrocytes (NcOl) and numerical density of oligodendrocyte clusters (NvOlC) in the rostral part of the caudate head nucleus associated with the cortical regions of the default network in the norm and in schizophrenia. MATERIAL AND METHODS NcOl and NvOlC were determined in the gray matter of the rostral part of the head of the caudate nucleus in Nissl-stained sections using optical dissector in postmortem brains in 18 schizophrenia and 18 healthy control cases. RESULTS The NvOl (-20%, p<0.001) and NvOlC (-28%, p<0.001) were decreased in the schizophrenia group as compared to the control groups. The NvOl correlated with the NvOlC (R≥0.88, p<0.001) in both groups while a lack of correlations was previously found in the central part of the caudate head. CONCLUSION The detected deficits of the NcOl and NvOlC is an agreement with prominent suppressing of cortico-striatal connections and reduced density of gray matter in this part of the caudate in schizophrenia. The differences in the pattern of correlations as compared to the central part of this structure might be associated with the specific features of functional activity of default-mode and fronto-parietal networks associated with these parts of caudate nucleus.
Collapse
Affiliation(s)
- N S Kolomeets
- Federal State Budgetary Scientific Institution Mental Health Research Center, Moscow, Russia
| | - N A Uranova
- Federal State Budgetary Scientific Institution Mental Health Research Center, Moscow, Russia
| |
Collapse
|
23
|
Rounis E, Buccino G, Binkofski F. Parietal control of hand movement. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:127-133. [PMID: 37562866 DOI: 10.1016/b978-0-323-98818-6.00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The parietal lobe has been implicated in the sensorimotor control and integration that supports the skillful use of our hands to reach for, grasp, and manipulate objects in the environment. This area is involved in several circuits within the classic subdivisions of the dorsal stream. Recently, the dorsal stream has been further divided into a "dorso-dorsal" and a "ventro-dorsal" streams. The ventro-dorsal stream is regarded as functionally linked to object manipulation. The dorso-dorsal stream is proposed to subserve reaching and online control of actions. Affordances indicate action possibilities characterized by object properties the environment provides. Affordances are likely represented by the dorsal stream. They code structural object properties that can elicit actions. A further subdivision of affordances into "stable" and "variable" allows an understanding of the neuronal mechanisms underlying object manipulation. Whereas stable affordances emerge from slow processing of visual information based on knowledge of object properties from previous experiences and object interaction, variable affordances emerge from fast online processing of visual information during actual object interaction, within a changing environment. The relevance of the dorsal stream subdivisions in this context is that the dorso-dorsal stream is associated with coding of variable affordances, while that of the dorso-ventral stream is implicated in action representations elicited by stable affordances. A greater interaction between these and ventral stream perceptual and semantic representations allows the parietal control of hand movement. An understanding of these networks is likely to underlie recovery from complex deficits described in limb apraxias.
Collapse
Affiliation(s)
- Elisabeth Rounis
- Chelsea and Westminster NHS Foundation Trust, West Middlesex University Hospital, Isleworth, United Kingdom; Department of Brain Sciences, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Giovanni Buccino
- Division of Neuroscience, University Vita Salute San Raffaele and IRCCS San Raffaele, Milan, Italy
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
24
|
Humphreys GF, Tibon R. Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system. Brain Struct Funct 2023; 228:341-352. [PMID: 35670844 PMCID: PMC9813060 DOI: 10.1007/s00429-022-02510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations. We review the principles derived from computational modelling with neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: a dorsal-ventral axis and an anterior-posterior axis, with variations in task preference arising from underlying connectivity to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
25
|
Yan H, Lau WKW, Eickhoff SB, Long J, Song X, Wang C, Zhao J, Feng X, Huang R, Wang M, Zhang X, Zhang R. Charting the neural circuits disruption in inhibitory control and its subcomponents across psychiatric disorders: A neuroimaging meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110618. [PMID: 36002101 DOI: 10.1016/j.pnpbp.2022.110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Inhibitory control, comprising cognitive inhibition and response inhibition, showed consistent deficits among several major psychiatric disorders. We aim to identify the trans-diagnostic convergence of neuroimaging abnormalities underlying inhibitory control across psychiatric disorders. METHODS Inhibitory control tasks neuroimaging, including functional magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography articles published in PubMed and Web of Science before April 2020 comparing healthy controls with patients with several psychiatric disorders were searched. RESULTS 146 experiments on 2653 patients with different disorders and 2764 control participants were included. Coordinates of case-control differences coded by diagnosis and inhibitory control components were analyzed using activation likelihood estimation. A robust trans-diagnostic pattern of aberrant brain activation in the bilateral cingulate gyri extending to medial frontal gyri, right insula, bilateral lentiform nuclei, right inferior frontal gyrus, right precuneus extending to inferior parietal lobule, and right supplementary motor area were detected. Frontostriatal pathways are the commonly disrupted neural circuits in the inhibitory control across psychiatric disorders. Furthermore, Patients showed aberrant activation in the dorsal frontal inhibitory system in cognitive inhibition, while in the frontostriatal system in response inhibition across disorders. CONCLUSION Consistent with the Research Domain Criteria initiative, current findings show that psychiatric disorders may be productively formulated as a phenotype of trans-diagnostic neurocircuit disruption. Our results provide new insights for future research into mental disorders with inhibition-related dysfunctions.
Collapse
Affiliation(s)
- Haifeng Yan
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, PR China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jüelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Jiubo Zhao
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Xiangang Feng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, PR China
| | - Maosheng Wang
- Department of Science and Education, The People's Hospital of Gaozhou, Gaozhou, PR China
| | - Xiaoyuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, PR China; Department of Psychiatry, Zhujiang Hospital of Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
26
|
Gao Z, Zheng L, Gouws A, Krieger-Redwood K, Wang X, Varga D, Smallwood J, Jefferies E. Context free and context-dependent conceptual representation in the brain. Cereb Cortex 2022; 33:152-166. [PMID: 35196710 PMCID: PMC9758583 DOI: 10.1093/cercor/bhac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have focused on how individual concepts are processed, but the way in which conceptual representation changes to suit the context is unclear. We parametrically manipulated the association strength between words, presented in pairs one word at a time using a slow event-related fMRI design. We combined representational similarity analysis and computational linguistics to probe the neurocomputational content of these trials. Individual word meaning was maintained in supramarginal gyrus (associated with verbal short-term memory) when items were judged to be unrelated, but not when a linking context was retrieved. Context-dependent meaning was instead represented in left lateral prefrontal gyrus (associated with controlled retrieval), angular gyrus, and ventral temporal lobe (regions associated with integrative aspects of memory). Analyses of informational connectivity, examining the similarity of activation patterns across trials between sites, showed that control network regions had more similar multivariate responses across trials when association strength was weak, reflecting a common controlled retrieval state when the task required more unusual associations. These findings indicate that semantic control and representational sites amplify contextually relevant meanings in trials judged to be related.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Li Zheng
- Department of Psychology, University of Arizona, Tucson, AZ 85719, United States
| | - André Gouws
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Xiuyi Wang
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Dominika Varga
- School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| |
Collapse
|
27
|
Humphreys GF, Jung J, Lambon Ralph MA. The convergence and divergence of episodic and semantic functions across lateral parietal cortex. Cereb Cortex 2022; 32:5664-5681. [PMID: 35196706 PMCID: PMC9753060 DOI: 10.1093/cercor/bhac044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Decades of research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, the underlying function of LPC remains unclear. Two domains that have emphasized LPC involvement are semantic memory and episodic memory retrieval. From each domain, sophisticated functional models have been proposed, as well as the more domain-general assumption that LPC is engaged by any form of internally directed cognition (episodic/semantic retrieval being examples). Here we used a combination of functional magnetic resonance imaging, functional connectivity, and diffusion tensor imaging white-matter connectivity to show that (i) ventral LPC (angular gyrus [AG]) was positively engaged during episodic retrieval but disengaged during semantic memory retrieval and (ii) activity negatively varied with task difficulty in the semantic task whereas episodic activation was independent of difficulty. In contrast, dorsal LPC (intraparietal sulcus) showed domain general activation that was positively correlated with task difficulty. Finally, (iii) a dorsal-ventral and anterior-posterior gradient of functional and structural connectivity was found across the AG (e.g. mid-AG connected with episodic retrieval). We propose a unifying model in which LPC as a whole might share a common underlying neurocomputation (multimodal buffering) with variations in the emergent cognitive functions across subregions arising from differences in the underlying connectivity.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG9 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
28
|
Unraveling the functional attributes of the language connectome: crucial subnetworks, flexibility and variability. Neuroimage 2022; 263:119672. [PMID: 36209795 DOI: 10.1016/j.neuroimage.2022.119672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Language processing is a highly integrative function, intertwining linguistic operations (processing the language code intentionally used for communication) and extra-linguistic processes (e.g., attention monitoring, predictive inference, long-term memory). This synergetic cognitive architecture requires a distributed and specialized neural substrate. Brain systems have mainly been examined at rest. However, task-related functional connectivity provides additional and valuable information about how information is processed when various cognitive states are involved. We gathered thirteen language fMRI tasks in a unique database of one hundred and fifty neurotypical adults (InLang [Interactive networks of Language] database), providing the opportunity to assess language features across a wide range of linguistic processes. Using this database, we applied network theory as a computational tool to model the task-related functional connectome of language (LANG atlas). The organization of this data-driven neurocognitive atlas of language was examined at multiple levels, uncovering its major components (or crucial subnetworks), and its anatomical and functional correlates. In addition, we estimated its reconfiguration as a function of linguistic demand (flexibility) or several factors such as age or gender (variability). We observed that several discrete networks could be specifically shaped to promote key functional features of language: coding-decoding (Net1), control-executive (Net2), abstract-knowledge (Net3), and sensorimotor (Net4) functions. The architecture of these systems and the functional connectivity of the pivotal brain regions varied according to the nature of the linguistic process, gender, or age. By accounting for the multifaceted nature of language and modulating factors, this study can contribute to enriching and refining existing neurocognitive models of language. The LANG atlas can also be considered a reference for comparative or clinical studies involving various patients and conditions.
Collapse
|
29
|
Togo M, Matsumoto R, Usami K, Kobayashi K, Takeyama H, Nakae T, Shimotake A, Kikuchi T, Yoshida K, Matsuhashi M, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential. Neuroimage 2022; 263:119639. [PMID: 36155245 DOI: 10.1016/j.neuroimage.2022.119639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices.
Collapse
Affiliation(s)
- Masaya Togo
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Japan; Department of Neurology, Japanese Red Cross Otsu Hospital, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Masao Matsuhashi
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
30
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
31
|
Farahibozorg SR, Henson RN, Woollams AM, Hauk O. Distinct roles for the anterior temporal lobe and angular gyrus in the spatiotemporal cortical semantic network. Cereb Cortex 2022; 32:4549-4564. [PMID: 35094061 PMCID: PMC9574238 DOI: 10.1093/cercor/bhab501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Semantic knowledge is supported by numerous brain regions, but the spatiotemporal configuration of the network that links these areas remains an open question. The hub-and-spokes model posits that a central semantic hub coordinates this network. In this study, we explored distinct aspects that define a semantic hub, as reflected in the spatiotemporal modulation of neural activity and connectivity by semantic variables, from the earliest stages of semantic processing. We used source-reconstructed electro/magnetoencephalography, and investigated the concreteness contrast across three tasks. In a whole-cortex analysis, the left anterior temporal lobe (ATL) was the only area that showed modulation of evoked brain activity from 100 ms post-stimulus. Furthermore, using Dynamic Causal Modeling of the evoked responses, we investigated effective connectivity amongst the candidate semantic hub regions, that is, left ATL, supramarginal/angular gyrus (SMG/AG), middle temporal gyrus, and inferior frontal gyrus. We found that models with a single semantic hub showed the highest Bayesian evidence, and the hub region was found to change from ATL (within 250 ms) to SMG/AG (within 450 ms) over time. Our results support a single semantic hub view, with ATL showing sustained modulation of neural activity by semantics, and both ATL and AG underlying connectivity depending on the stage of semantic processing.
Collapse
Affiliation(s)
- Seyedeh-Rezvan Farahibozorg
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Anna M Woollams
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
32
|
Gao Z, Zheng L, Krieger-Redwood K, Halai A, Margulies DS, Smallwood J, Jefferies E. Flexing the principal gradient of the cerebral cortex to suit changing semantic task demands. eLife 2022; 11:e80368. [PMID: 36169281 PMCID: PMC9555860 DOI: 10.7554/elife.80368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how thought emerges from the topographical structure of the cerebral cortex is a primary goal of cognitive neuroscience. Recent work has revealed a principal gradient of intrinsic connectivity capturing the separation of sensory-motor cortex from transmodal regions of the default mode network (DMN); this is thought to facilitate memory-guided cognition. However, studies have not explored how this dimension of connectivity changes when conceptual retrieval is controlled to suit the context. We used gradient decomposition of informational connectivity in a semantic association task to establish how the similarity in connectivity across brain regions changes during familiar and more original patterns of retrieval. Multivoxel activation patterns at opposite ends of the principal gradient were more divergent when participants retrieved stronger associations; therefore, when long-term semantic information is sufficient for ongoing cognition, regions supporting heteromodal memory are functionally separated from sensory-motor experience. In contrast, when less related concepts were linked, this dimension of connectivity was reduced in strength as semantic control regions separated from the DMN to generate more flexible and original responses. We also observed fewer dimensions within the neural response towards the apex of the principal gradient when strong associations were retrieved, reflecting less complex or varied neural coding across trials and participants. In this way, the principal gradient explains how semantic cognition is organised in the human cerebral cortex: the separation of DMN from sensory-motor systems is a hallmark of the retrieval of strong conceptual links that are culturally shared.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of YorkNew YorkUnited Kingdom
| | - Li Zheng
- Department of Psychology, University of ArizonaTucsonUnited States
| | | | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche ScientifiqueParisFrance
| | | | | |
Collapse
|
33
|
Ramanan S, Irish M, Patterson K, Rowe JB, Gorno-Tempini ML, Lambon Ralph MA. Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain 2022; 145:2955-2966. [PMID: 35857482 PMCID: PMC9473356 DOI: 10.1093/brain/awac208] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 02/02/2023] Open
Abstract
The logopenic variant of primary progressive aphasia is characterized by early deficits in language production and phonological short-term memory, attributed to left-lateralized temporoparietal, inferior parietal and posterior temporal neurodegeneration. Despite patients primarily complaining of language difficulties, emerging evidence points to performance deficits in non-linguistic domains. Temporoparietal cortex, and functional brain networks anchored to this region, are implicated as putative neural substrates of non-linguistic cognitive deficits in logopenic variant primary progressive aphasia, suggesting that degeneration of a shared set of brain regions may result in co-occurring linguistic and non-linguistic dysfunction early in the disease course. Here, we provide a Review aimed at broadening the understanding of logopenic variant primary progressive aphasia beyond the lens of an exclusive language disorder. By considering behavioural and neuroimaging research on non-linguistic dysfunction in logopenic variant primary progressive aphasia, we propose that a significant portion of multidimensional cognitive features can be explained by degeneration of temporal/inferior parietal cortices and connected regions. Drawing on insights from normative cognitive neuroscience, we propose that these regions underpin a combination of domain-general and domain-selective cognitive processes, whose disruption results in multifaceted cognitive deficits including aphasia. This account explains the common emergence of linguistic and non-linguistic cognitive difficulties in logopenic variant primary progressive aphasia, and predicts phenotypic diversification associated with progression of pathology in posterior neocortex.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Cambridge University Centre for Frontotemporal Dementia, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Wang J, Liu WJ, Shi HZ, Zhai HR, Qian JJ, Zhang WN. A Role for PGC-1a in the Control of Abnormal Mitochondrial Dynamics in Alzheimer’s Disease. Cells 2022; 11:cells11182849. [PMID: 36139423 PMCID: PMC9496770 DOI: 10.3390/cells11182849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence suggests that the proper control of mitochondrial dynamics provides a window for therapeutic intervention for Alzheimer’s disease (AD) progression. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator 1 (PGC-1a) has been shown to regulate mitochondrial biogenesis in neurons. Thus far, the roles of PGC-1a in Alzheimer’s disease and its potential value for restoring mitochondrial dysfunction remain largely unknown. In the present study, we explored the impacts of PGC-1a on AD pathology and neurobehavioral dysfunction and its potential mechanisms with a particular focus on mitochondrial dynamics. Paralleling AD-related pathological deposits, neuronal apoptosis, abnormal mitochondrial dynamics and lowered membrane potential, a remarkable reduction in the expression of PGC-1a was shown in the cortex of APP/PS1 mice at 6 months of age. By infusing AAV-Ppargc1α into the lateral parietal association (LPtA) cortex of the APP/PS1 brain, we found that PGC-1a ameliorated AD-like behavioral abnormalities, such as deficits in spatial reference memory, working memory and sensorimotor gating. Notably, overexpressed PGC-1a in LPtA rescued mitochondrial swelling and damage in neurons, likely through correcting the altered balance in mitochondrial fission–fusion and its abnormal distribution. Our findings support the notion that abnormal mitochondrial dynamics is likely an important mechanism that leading to mitochondrial dysfunction and AD-related pathological and cognitive impairments, and they indicate the potential value of PGC-1a for restoring mitochondrial dynamics as an innovative therapeutic target for AD.
Collapse
Affiliation(s)
- Jia Wang
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.W.); (W.-N.Z.)
| | - Wen-Jun Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hou-Zhen Shi
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hong-Ru Zhai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jin-Jun Qian
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Wei-Ning Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.W.); (W.-N.Z.)
| |
Collapse
|
35
|
Tang T, Huang L, Zhang Y, Li Z, Liang S. Aberrant pattern of regional cerebral blood flow in mild cognitive impairment: A meta-analysis of arterial spin labeling magnetic resonance imaging. Front Aging Neurosci 2022; 14:961344. [PMID: 36118708 PMCID: PMC9475306 DOI: 10.3389/fnagi.2022.961344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In mild cognitive impairment (MCI), cognitive decline is associated with abnormal changes of cerebral blood flow (CBF). Arterial spin labeling magnetic resonance imaging (ASL-MRI) is an effective method for assessing regional cerebral blood flow (rCBF). However, the CBF estimated via ASL-MRI in MCI often differs between studies, and the consistency of CBF changes in MCI is unclear. In this study, 13 ASL-MRI studies with 495 MCI patients and 441 health controls were screened out from PubMed, Embase, Cochrane, Web of Science, Wanfang, and CNKI. An activation likelihood estimation (ALE) meta-analysis was performed to explore the brain regions with abnormal CBF in MCI. It showed that the decreased CBF in MCI was identified in the precuneus, inferior parietal lobule (IPL), superior occipital gyrus (SOG), middle temporal gyrus (MTG), and middle occipital gyrus (MOG), while the increased CBF in MCI was identified in the lentiform nucleus (LN) compared with healthy controls. The study characterized the abnormal pattern of regional CBF in MCI, which would promote our knowledge of MCI and might be used as a biomarker in clinic.
Collapse
Affiliation(s)
- Tong Tang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Shengxiang Liang
| |
Collapse
|
36
|
Shao R, Gao M, Lin C, Huang CM, Liu HL, Toh CH, Wu C, Tsai YF, Qi D, Lee SH, Lee TMC. Multimodal Neural Evidence on the Corticostriatal Underpinning of Suicidality in Late-Life Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:905-915. [PMID: 34861420 DOI: 10.1016/j.bpsc.2021.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Suicidality involves thoughts (ideations and plans) and actions related to self-inflicted death. To improve management and prevention of suicidality, it is essential to understand the key neural mechanisms underlying suicidal thoughts and actions. Following empirically informed neural framework, we hypothesized that suicidal thoughts would be primarily characterized by alterations in the default mode network indicating disrupted self-related processing, whereas suicidal actions would be characterized by changes in the lateral prefrontal corticostriatal circuitries implicating compromised action control. METHODS We analyzed the gray matter volume and resting-state functional connectivity of 113 individuals with late-life depression, including 45 nonsuicidal patients, 33 with suicidal thoughts but no action, and 35 with past suicidal action. Between-group analyses revealed key neural features associated with suicidality. The functional directionality of the identified resting-state functional connectivity was examined using dynamic causal modeling to further elucidate its mechanistic nature. Post hoc classification analysis examined the contribution of the neural measures to suicide classification. RESULTS As expected, reduced gray matter volumes in the default mode network and lateral prefrontal regions characterized patients with suicidal thoughts and those with past suicidal actions compared with nonsuicidal patients. Furthermore, region-of-interest analyses revealed that the directionality and strength of the ventrolateral prefrontal cortex-caudate resting-state functional connectivity were related to suicidal thoughts and actions. The neural features significantly improved classification of suicidal thoughts and actions over that based on clinical and suicide questionnaire variables. CONCLUSIONS Gray matter reductions in the default mode network and lateral prefrontal regions and the ventrolateral prefrontal cortex-caudate connectivity alterations characterized suicidal thoughts and actions in patients with late-life depression.
Collapse
Affiliation(s)
- Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong
| | - Chemin Lin
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Taipei, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas M D Anderson Cancer Center, Houston, Texas
| | - Cheng-Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan County, Taiwan
| | - Changwei Wu
- Brain and Consciousness Research Center, Shuang-Ho Hospital, New Taipei, Taiwan; Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Yun-Fang Tsai
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan; Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan County, Taiwan.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
37
|
Reduced number of satellite oligodendrocytes of pyramidal neurons in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:947-955. [PMID: 34822006 DOI: 10.1007/s00406-021-01353-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Neuroimaging, genetic and molecular biological studies have shown impaired intra-cortical myelination in patients with schizophrenia, particularly in the prefrontal cortex. Previously we reported a significant deficit of oligodendrocytes and oligodendrocyte clusters in layers 3 and 5 of the prefrontal cortex, Brodmann area 10 (BA10) in schizophrenia. In this current study, we investigate the number of oligodendrocyte satellites (Sat-Ol) per pyramidal neuron in layer 5 of BA10 in schizophrenia (n = 17) as compared to healthy controls (n = 20) in the same section collection as previously used to study the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters. We find a significant reduction (- 39%, p < 0.001) in the number of Sat-Ol per neuron in schizophrenia as compared to the control group. The number of Sat-Ol per neuron did not correlate with the Nv of oligodendrocytes or with the Nv of oligodendrocyte clusters. Our previous studies of the inferior parietal lobule (BA39 and BA40), demonstrated significant decrease of the number of Sat-Ol only in patient subgroups with poor and fair insight. Additionally, correlation pattern between number of Sat-Ol and Nv of oligodendrocytes and oligodendrocyte clusters was similar between the two functionally interconnected cortical areas, BA10 and BA40, whereas in BA39, strong significant correlations were revealed between the number of Sat-Ol and Nv of oligodendrocyte clusters (0.9 ≤ R ≥ 0.66; p < 0.001). These data suggest that that specific features of Sat-Ol alterations patterns may be associated with specific activity-driven plasticity of corresponding networks in the brain of people with schizophrenia.
Collapse
|
38
|
Gore KR, Woollams AM, Bruehl S, Halai AD, Lambon Ralph MA. Direct Neural Evidence for the Contrastive Roles of the Complementary Learning Systems in Adult Acquisition of Native Vocabulary. Cereb Cortex 2022; 32:3392-3405. [PMID: 34875018 PMCID: PMC9376875 DOI: 10.1093/cercor/bhab422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
The Complementary Learning Systems (CLS) theory provides a powerful framework for considering the acquisition, consolidation, and generalization of new knowledge. We tested this proposed neural division of labor in adults through an investigation of the consolidation and long-term retention of newly learned native vocabulary with post-learning functional neuroimaging. Newly learned items were compared with two conditions: 1) previously known items to highlight the similarities and differences with established vocabulary and 2) unknown/untrained items to provide a control for non-specific perceptual and motor speech output. Consistent with the CLS, retrieval of newly learned items was supported by a combination of regions associated with episodic memory (including left hippocampus) and the language-semantic areas that support established vocabulary (left inferior frontal gyrus and left anterior temporal lobe). Furthermore, there was a shifting division of labor across these two networks in line with the items' consolidation status; faster naming was associated with more activation of language-semantic areas and lesser activation of episodic memory regions. Hippocampal activity during naming predicted more than half the variation in naming retention 6 months later.
Collapse
Affiliation(s)
- Katherine R Gore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
| | - Anna M Woollams
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
| | - Stefanie Bruehl
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
- St Mauritius Rehabilitation Centre, Meerbusch & Heinrich-Heine University, 40225 Duesseldorf, Germany
- Clinical and Cognitive Neurosciences, Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ajay D Halai
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | | |
Collapse
|
39
|
Meier EL, Kelly CR, Hillis AE. Dissociable language and executive control deficits and recovery in post-stroke aphasia: An exploratory observational and case series study. Neuropsychologia 2022; 172:108270. [PMID: 35597266 PMCID: PMC9728463 DOI: 10.1016/j.neuropsychologia.2022.108270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023]
Abstract
A growing body of evidence indicates many, but not all, individuals with post-stroke aphasia experience executive dysfunction. Relationships between language and executive function skills are often reported in the literature, but the degree of interdependence between these abilities remains largely unanswered. Therefore, in this study, we investigated the extent to which language and executive control deficits dissociated in 1) acute stroke and 2) longitudinal aphasia recovery. Twenty-three individuals admitted to Johns Hopkins Hospital with a new left hemisphere stroke completed the Western Aphasia Battery-Revised (WAB-R), several additional language measures (of naming, semantics, spontaneous speech, and oral reading), and three non-linguistic cognitive tasks from the NIH Toolbox (i.e., Pattern Comparison Processing Speed Test, Flanker Inhibitory Control and Attention Test, and Dimensional Change Card Sort Test). Two participants with aphasia (PWA) with temporoparietal lesions, one of whom (PWA1) had greater temporal but less frontal and superior parietal damage than the other (PWA2), also completed testing at subacute (three months post-onset) and early chronic (six months post-onset) time points. In aim 1, principal component analysis on the acute test data (excluding the WAB-R) revealed language and non-linguistic executive control tasks largely loaded onto separate components. Both components were significant predictors of acute aphasia severity per the WAB-R Aphasia Quotient (AQ). Crucially, executive dysfunction explained an additional 17% of the variance in AQ beyond the explanatory power of language impairments alone. In aim 2, both case patients exhibited language and executive control deficits at the acute post-stroke stage. A dissociation was observed in longitudinal recovery of these patients. By the early chronic time point, PWA1 exhibited improved (but persistent) deficits in several language domains and recovered executive control. In contrast, PWA2 demonstrated mostly recovered language but persistent executive dysfunction. Greater damage to language and attention networks in these respective patients may explain the observed behavioral patterns. These results demonstrate that language and executive control can dissociate (at least to a degree), but both contribute to early post-stroke presentation of aphasia and likely influence longitudinal aphasia recovery.
Collapse
Affiliation(s)
| | | | - Argye E Hillis
- Department of Neurology, USA; Physical Medicine and Rehabilitation, USA; Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Schneider F, Marcotte K, Brisebois A, Townsend SAM, Smidarle AD, Soder RB, Marrone LCP, Hübner LC. Macrostructural Aspects in Oral Narratives in Brazilian Portuguese by Left and Right Hemisphere Stroke Patients With Low Education and Low Socioeconomic Status. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:1319-1337. [PMID: 35302896 DOI: 10.1044/2021_ajslp-21-00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Individuals with a stroke in either the left hemisphere (LH) or the right hemisphere (RH) often present macrostructural impairments in narrative abilities. Understanding the potential influence of low education and low socioeconomic status (SES) is critical to a more effective assessment of poststroke language. The first aim was to investigate macrostructural processing in low-education and low-SES individuals with stroke in the LH or RH or without brain damage. The second aim was to verify the relationships between macrolinguistic, neuropsychological, and sociodemographic variables. METHOD Forty-seven adults with LH (n = 15) or RH (n = 16) chronic ischemic stroke and 16 matched (age, education, and SES) healthy controls produced three oral picture-sequence narratives. The macrostructural aspects analyzed were cohesion, coherence, narrativity, macropropositions, and index of lexical informativeness and were compared among the three groups. Then, exploratory correlations were performed to assess associations between sociodemographic (such as SES), neuropsychological, and macrostructural variables. RESULTS Both the LH and the RH presented impairments in the local macrostructural aspect (cohesion), whereas the RH also presented impairments in more global aspects (global coherence and macropropositions). All five macrostructural variables correlated with each other, with higher correlations with narrativity. Naming was correlated with all macrostructural variables, as well as prestroke reading and writing habits (RWH), showing that higher naming accuracy and higher RWH are associated with better macrostructural skills. CONCLUSIONS The present results corroborate the role of the LH in more local processing and that of the RH in more global aspects of discourse. Moreover, this study highlights the importance of investigating discourse processing in healthy and clinical populations of understudied languages such as Brazilian Portuguese, with various levels of education, SES, and RWH.
Collapse
Affiliation(s)
- Fernanda Schneider
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Ibirubá, Brazil
- Linguistics Department, School of Humanities, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Québec, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | - Amélie Brisebois
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Québec, Canada
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | - Sabrine Amaral Martins Townsend
- Linguistics Department, School of Humanities, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Postdoctoral Program in Linguistics, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Anderson Dick Smidarle
- Linguistics Department, School of Humanities, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ricardo Bernardi Soder
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Lilian Cristine Hübner
- Linguistics Department, School of Humanities, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- National Council for Scientific and Technological Development, Brasília, Distrito Federal, Brazil
| |
Collapse
|
41
|
Jablonowski J, Rose M. The functional dissociation of posterior parietal regions during multimodal memory formation. Hum Brain Mapp 2022; 43:3469-3485. [PMID: 35397137 PMCID: PMC9248313 DOI: 10.1002/hbm.25861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
The incidental acquisition of multimodal associations is a key memory function for everyday life. While the posterior parietal cortex has been frequently shown to be involved for these memory functions, ventral and dorsal regions revealed differences in their functional recruitment and the precise difference in multimodal memory processing with respect to the associative process has not been differentiated. Using an incidental multimodal learning task, we isolated the associative process during multimodal learning and recollection. The result of the present functional magnetic resonance imaging (fMRI) study demonstrated that during both learning and recollection a clear functional differentiation between ventral and dorsal posterior parietal regions was found and can be related directly to the associative process. The recruitment of a ventral region, the angular gyrus, was specific for learning and recollection of multimodal associations. In contrast, a dorsal region, the superior parietal lobule, could be attributed to memory guided attentional processing. Independent of the memory stage, we assumed a general role for the angular gyrus in the generation of associative representations and updating of fixed association, episodic memory.
Collapse
Affiliation(s)
- Julia Jablonowski
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Rose
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Meier EL, Kelly CR, Goldberg EB, Hillis AE. Executive control deficits and lesion correlates in acute left hemisphere stroke survivors with and without aphasia. Brain Imaging Behav 2022; 16:868-877. [PMID: 34647269 PMCID: PMC8514281 DOI: 10.1007/s11682-021-00580-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
In contrast to the traditional definition of the disorder, many individuals with aphasia exhibit non-linguistic cognitive impairments, including executive control deficits. Classic lesion studies cite frontal lobe damage in executive dysfunction, but more recent lesion symptom-mapping studies in chronic aphasia present mixed results. In this study, we compared executive control abilities of acute stroke survivors with and without aphasia and investigated lesion correlates of linguistic and non-linguistic cognitive tasks. Twenty-nine participants with acute left hemisphere stroke resulting in aphasia (n = 14) or no aphasia (n = 15) completed clinical MRI and testing, including three NIH Toolbox Cognition Batteries (Pattern Comparison Processing Speed, Flanker Inhibitory Control and Attention, and Dimensional Change Card Sort Tests) and the Boston Naming Test. We compared performance between groups using Wilcoxon rank sum tests. We used Least Absolute Shrinkage and Selection Operator Regression to identify neural markers (percent regional damage, hypoperfusion within vascular territories, and total lesion volume) of executive control deficits and anomia. Group performance was comparable on the Pattern Comparison Processing Speed Test, but people with aphasia had poorer standard scores, lower accuracy, and slower response times on the Dimensional Change Card Sort Test than people without aphasia. Damage to extrasylvian regions (dorsolateral prefrontal cortex, intraparietal sulcus) was related to executive control deficits, whereas language network damage (to inferior frontal and superior and posterior middle temporal gyri) was linked to naming impairments. These results suggest people with aphasia can exhibit comorbid executive control impairments linked to damage outside classic language network areas.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Avenue, 228C FR, Boston, MA, 02215, USA.
| | - Catherine R Kelly
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Emily B Goldberg
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Rahimi S, Farahibozorg SR, Jackson R, Hauk O. Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. Neuroimage 2022; 246:118768. [PMID: 34856376 PMCID: PMC8784826 DOI: 10.1016/j.neuroimage.2021.118768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022] Open
Abstract
How does brain activity in distributed semantic brain networks evolve over time, and how do these regions interact to retrieve the meaning of words? We compared spatiotemporal brain dynamics between visual lexical and semantic decision tasks (LD and SD), analysing whole-cortex evoked responses and spectral functional connectivity (coherence) in source-estimated electroencephalography and magnetoencephalography (EEG and MEG) recordings. Our evoked analysis revealed generally larger activation for SD compared to LD, starting in primary visual area (PVA) and angular gyrus (AG), followed by left posterior temporal cortex (PTC) and left anterior temporal lobe (ATL). The earliest activation effects in ATL were significantly left-lateralised. Our functional connectivity results showed significant connectivity between left and right ATL, PTC and right ATL in an early time window, as well as between left ATL and IFG in a later time window. The connectivity of AG was comparatively sparse. We quantified the limited spatial resolution of our source estimates via a leakage index for careful interpretation of our results. Our findings suggest that the different demands on semantic information retrieval in lexical and semantic decision tasks first modulate visual and attentional processes, then multimodal semantic information retrieval in the ATLs and finally control regions (PTC and IFG) in order to extract task-relevant semantic features for response selection. Whilst our evoked analysis suggests a dominance of left ATL for semantic processing, our functional connectivity analysis also revealed significant involvement of right ATL in the more demanding semantic task. Our findings demonstrate the complementarity of evoked and functional connectivity analysis, as well as the importance of dynamic information for both types of analyses.
Collapse
Affiliation(s)
- Setareh Rahimi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom.
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Neurosciences, University of Oxford, United Kingdom
| | - Rebecca Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
44
|
Shao X, Mckeown B, Karapanagiotidis T, Vos de Wael R, Margulies DS, Bernhardt B, Smallwood J, Krieger-Redwood K, Jefferies E. Individual differences in gradients of intrinsic connectivity within the semantic network relate to distinct aspects of semantic cognition. Cortex 2022; 150:48-60. [DOI: 10.1016/j.cortex.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
45
|
Gentili C, Di Rosa E, Podina I, Popita R, Voinescu B, David D. Resting state predicts neural activity during reward-guided decision making: An fMRI study on Balloon Analogue Risk Task. Behav Brain Res 2022; 417:113616. [PMID: 34606774 DOI: 10.1016/j.bbr.2021.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 11/02/2022]
Abstract
In our previous work [8], we have shown that resting state (RS) functional connectivity metrics are significantly related with behavioural performance at Balloon Analogue Risk Task (BART). In the present study we investigated the hypothesis of an association between RS metrics and neural activity evoked by BART execution. A group-level whole-brain regression was run to assess whether RS metrics predict brain activation during the BART, in a sample of 35 young healthy adults (mean age 23 ± 2 years, 25 F). Results complete the previous findings showing that RS is also significantly associated with the neural activity during BART execution. Specifically, ALFF is positively associated with the activity of both the right inferior parietal lobule and the left caudate. These new results are coherent with previous evidence indicating RS abnormalities in clinical conditions characterised by symptoms of impulse control disorders, and further suggest that RS might be a stable predictor of both behavioural indices and neural correlates of impulsivity and of reward-guided decision-making.
Collapse
Affiliation(s)
- Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy
| | - Elisa Di Rosa
- Department of General Psychology, University of Padua, Padua, Italy; School of Psychology, Keele University, Staffordshire, UK.
| | - Ioana Podina
- Department of Psychology, University of Bucharest, Bucharest, Romania
| | - Raluca Popita
- Department of Radiology, The Oncology Institute "Prof. Dr. Ion Chiricuta" (IOCN), Cluj-Napoca, Romania
| | - Bogdan Voinescu
- Centre for Academic Mental Health, University of Bristol, Bristol, UK; Department of Clinical Psychology and Psychotherapy, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Daniel David
- Department of Clinical Psychology and Psychotherapy, Babeş-Bolyai University, Cluj-Napoca, Romania; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
46
|
Zhang W, Xiang M, Wang S. The role of left angular gyrus in the representation of linguistic composition relations. Hum Brain Mapp 2022; 43:2204-2217. [PMID: 35064707 PMCID: PMC8996362 DOI: 10.1002/hbm.25781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Language comprehension is compositional: individual words are combined structurally to form larger meaning representations. The neural basis for compositionality is at the center of a growing body of recent research. Previous work has largely used univariate analysis to investigate the question, a technique that could potentially lead to the loss of fined‐grained information due to the procedure of averaging over neural responses. In a functional magnetic resonance imaging experiment, the present study examined different types of composition relations in Chinese phrases, using a 1‐back composition relation probe (CRP) task and a 1‐back word probe (WP) task. We first analyzed the data using the multivariate representation similarity analysis, which better captures the fine‐grained representational differences in the stimuli. The results showed that the left angular gyrus (AG) represents different types of composition relations in the CRP task, but no brain areas were identified in the WP task. We also conducted a traditional univariate analysis and found greater activations in the bilateral inferior frontal gyrus in the CRP task relative to the WP task. We discuss the methodological and theoretical implications of our findings in the context of the larger language neural network identified in previous studies. Our findings highlight the role of left AG in representing and distinguishing fine‐grained linguistic composition relations.
Collapse
Affiliation(s)
- Wenjia Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
- School of Psychology South China Normal University Guangzhou China
| | - Ming Xiang
- Department of Linguistics University of Chicago Chicago Illinois USA
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
| |
Collapse
|
47
|
Morales M, Patel T, Tamm A, Pickering MJ, Hoffman P. Similar Neural Networks Respond to Coherence during Comprehension and Production of Discourse. Cereb Cortex 2022; 32:4317-4330. [PMID: 35059718 PMCID: PMC9528896 DOI: 10.1093/cercor/bhab485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
When comprehending discourse, listeners engage default-mode regions associated with integrative semantic processing to construct a situation model of its content. We investigated how similar networks are engaged when we produce, as well as comprehend, discourse. During functional magnetic resonance imaging, participants spoke about a series of specific topics and listened to discourse on other topics. We tested how activation was predicted by natural fluctuations in the global coherence of the discourse, that is, the degree to which utterances conformed to the expected topic. The neural correlates of coherence were similar across speaking and listening, particularly in default-mode regions. This network showed greater activation when less coherent speech was heard or produced, reflecting updating of mental representations when discourse did not conform to the expected topic. In contrast, regions that exert control over semantic activation showed task-specific effects, correlating negatively with coherence during listening but not during production. Participants who showed greater activation in left inferior prefrontal cortex also produced more coherent discourse, suggesting a specific role for this region in goal-directed regulation of speech content. Results suggest strong correspondence of discourse representations during speaking and listening. However, they indicate that the semantic control network plays different roles in comprehension and production.
Collapse
Affiliation(s)
- Matías Morales
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Tanvi Patel
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Andres Tamm
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Martin J Pickering
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Hoffman
- Address correspondence to Dr Paul Hoffman, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
48
|
Taran N, Farah R, DiFrancesco M, Altaye M, Vannest J, Holland S, Rosch K, Schlaggar BL, Horowitz-Kraus T. The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Hum Brain Mapp 2022; 43:1720-1737. [PMID: 34981603 PMCID: PMC8886655 DOI: 10.1002/hbm.25753] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Poor phonological processing has typically been considered the main cause of dyslexia. However, visuo‐attentional processing abnormalities have been described as well. The goal of the present study was to determine the involvement of visual attention during fluent reading in children with dyslexia and typical readers. Here, 75 children (8–12 years old; 36 typical readers, 39 children with dyslexia) completed cognitive and reading assessments. Neuroimaging data were acquired while children performed a fluent reading task with (a) a condition where the text remained on the screen (Still) versus (b) a condition in which the letters were being deleted (Deleted). Cognitive assessment data analysis revealed that visual attention, executive functions, and phonological awareness significantly contributed to reading comprehension in both groups. A seed‐to‐voxel functional connectivity analysis was performed on the fluency functional magnetic resonance imaging task. Typical readers showed greater functional connectivity between the dorsal attention network and the left angular gyrus while performing the Still and Deleted reading tasks versus children with dyslexia. Higher connectivity values were associated with higher reading comprehension. The control group showed increased functional connectivity between the ventral attention network and the fronto‐parietal network during the Deleted text condition (compared with the Still condition). Children with dyslexia did not display this pattern. The results suggest that the synchronized activity of executive, visual attention, and reading‐related networks is a pattern of functional integration which children with dyslexia fail to achieve. The present evidence points toward a critical role of visual attention in dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Mark DiFrancesco
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer Vannest
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel.,Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Behavioral Sciences and Pediatrics, Johns Hopkins University School of Medicine. School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Missing links: The functional unification of language and memory (L∪M). Neurosci Biobehav Rev 2021; 133:104489. [PMID: 34929226 DOI: 10.1016/j.neubiorev.2021.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The field of neurocognition is currently undergoing a significant change of perspective. Traditional neurocognitive models evolved into an integrative and dynamic vision of cognitive functioning. Dynamic integration assumes an interaction between cognitive domains traditionally considered to be distinct. Language and declarative memory are regarded as separate functions supported by different neural systems. However, they also share anatomical structures (notably, the inferior frontal gyrus, the supplementary motor area, the superior and middle temporal gyrus, and the hippocampal complex) and cognitive processes (such as semantic and working memory) that merge to endorse our quintessential daily lives. We propose a new model, "L∪M" (i.e., Language/union/Memory), that considers these two functions interactively. We fractionated language and declarative memory into three fundamental dimensions or systems ("Receiver-Transmitter", "Controller-Manager" and "Transformer-Associative" Systems), that communicate reciprocally. We formalized their interactions at the brain level with a connectivity-based approach. This new taxonomy overcomes the modular view of cognitive functioning and reconciles functional specialization with plasticity in neurological disorders.
Collapse
|
50
|
Zhang M, Nathaniel U, Savill N, Smallwood J, Jefferies E. Intrinsic connectivity of left ventrolateral prefrontal cortex predicts individual differences in controlled semantic retrieval. Neuroimage 2021; 246:118760. [PMID: 34875381 PMCID: PMC8784820 DOI: 10.1016/j.neuroimage.2021.118760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Control processes allow us to constrain the retrieval of semantic information from long-term memory so that it is appropriate for the task or context. Control demands are influenced by the strength of the target information itself and by the circumstances in which it is retrieved, with more control needed when relatively weak aspects of knowledge are required and after the sustained retrieval of related concepts. To investigate the neurocognitive basis of individual differences in these aspects of semantic control, we used resting-state fMRI to characterise the intrinsic connectivity of left ventrolateral prefrontal cortex (VLPFC), implicated in controlled retrieval, and examined associations on a paced serial semantic task, in which participants were asked to detect category members amongst distractors. This task manipulated both the strength of target associations and the requirement to sustain retrieval within a narrow semantic category over time. We found that individuals with stronger connectivity between VLPFC and medial prefrontal cortex within the default mode network (DMN) showed better retrieval of strong associations (which are thought to be recalled more automatically). Stronger connectivity between the same VLPFC seed and another DMN region in medial parietal cortex was associated with larger declines in retrieval over the course of the category. In contrast, participants with stronger connectivity between VLPFC and cognitive control regions within the ventral attention network (VAN) had better controlled retrieval of weak associations and were better able to sustain their comprehension throughout the category. These effects overlapped in left insular cortex within the VAN, indicating that a common pattern of connectivity is associated with different aspects of controlled semantic retrieval induced by both the structure of long-term knowledge and the sustained retrieval of related information.
Collapse
Affiliation(s)
- Meichao Zhang
- Department of Psychology, University of York, Heslington, YO10 5DD, York, UK.
| | - Upasana Nathaniel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, 3498838, Israel
| | - Nicola Savill
- School of Education, Language & Psychology, York St John University, YO31 7EX, York, UK
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, YO10 5DD, York, UK.
| |
Collapse
|