1
|
Whitehead K. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. Dev Cogn Neurosci 2024; 71:101487. [PMID: 39675060 PMCID: PMC11699341 DOI: 10.1016/j.dcn.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
In older children and adults, cognition builds upon waking sensory experience which is consolidated during sleep. In the fetus and newborn, sensory input is instead largely experienced during sleep. The nature of these sensory inputs differs within sleep, between active and quiet sleep, as well as versus wakefulness. Here, sleep-wake organisation in the fetus and newborn is reviewed, and then its interaction with sensory inputs discussed with a focus on somatosensory and auditory modalities. Next, these ideas are applied to how neurological insults affect early development, using fetal growth restriction as a test case. Finally, the argument is made that taking account of sleep-wake state during perinatal functional neuroimaging can better index sensorimotor, language, and cognitive brain activities, potentially improving its diagnostic and prognostic value. To sum up, sensory and sleep-wake functions go hand in hand during early human development. Perturbation of these twinned functions by neurological insults may mediate later neurodevelopmental deficits. Perinatal neuroimaging has the potential to track these trajectories, feasibly identifying opportunities to therapeutically intervene.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Research Division of Digital Health and Applied Technology Assessment (DHATA), Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Rd, London SE1 8WA, UK.
| |
Collapse
|
2
|
Sun H, Mehta S, Khaitova M, Cheng B, Hao X, Spann M, Scheinost D. Brain age prediction and deviations from normative trajectories in the neonatal connectome. Nat Commun 2024; 15:10251. [PMID: 39592647 PMCID: PMC11599754 DOI: 10.1038/s41467-024-54657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We use resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predict PMA for term and preterm infants. Predicted ages from each modality are correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generate accurate PMA prediction. Additionally, BAGs are associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period.
Collapse
Affiliation(s)
- Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Saloni Mehta
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Milana Khaitova
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Bin Cheng
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuejun Hao
- New York State Psychiatric Institute, New York, NY, USA
| | - Marisa Spann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Zhao Z, Shuai Y, Wu Y, Xu X, Li M, Wu D. Age-dependent functional development pattern in neonatal brain: An fMRI-based brain entropy study. Neuroimage 2024; 297:120669. [PMID: 38852805 DOI: 10.1016/j.neuroimage.2024.120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
The relationship between brain entropy (BEN) and early brain development has been established through animal studies. However, it remains unclear whether the BEN can be used to identify age-dependent functional changes in human neonatal brains and the genetic underpinning of the new neuroimaging marker remains to be elucidated. In this study, we analyzed resting-state fMRI data from the Developing Human Connectome Project, including 280 infants who were scanned at 37.5-43.5 weeks postmenstrual age. The BEN maps were calculated for each subject, and a voxel-wise analysis was conducted using a general linear model to examine the effects of age, sex, and preterm birth on BEN. Additionally, we evaluated the correlation between regional BEN and gene expression levels. Our results demonstrated that the BEN in the sensorimotor-auditory and association cortices, along the 'S-A' axis, was significantly positively correlated with postnatal age (PNA), and negatively correlated with gestational age (GA), respectively. Meanwhile, the BEN in the right rolandic operculum correlated significantly with both GA and PNA. Preterm-born infants exhibited increased BEN values in widespread cortical areas, particularly in the visual-motor cortex, when compared to term-born infants. Moreover, we identified five BEN-related genes (DNAJC12, FIG4, STX12, CETN2, and IRF2BP2), which were involved in protein folding, synaptic vesicle transportation and cell division. These findings suggest that the fMRI-based BEN can serve as an indicator of age-dependent brain functional development in human neonates, which may be influenced by specific genes.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yifan Shuai
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yihan Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Yrjölä P, Vanhatalo S, Tokariev A. Neuronal Coupling Modes Show Differential Development in the Early Cortical Activity Networks of Human Newborns. J Neurosci 2024; 44:e1012232024. [PMID: 38769006 PMCID: PMC11211727 DOI: 10.1523/jneurosci.1012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
5
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
6
|
Sun H, Mehta S, Khaitova M, Cheng B, Hao X, Spann M, Scheinost D. Brain age prediction and deviations from normative trajectories in the neonatal connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590811. [PMID: 38712238 PMCID: PMC11071351 DOI: 10.1101/2024.04.23.590811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We used resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predicted PMA for term and preterm infants. Predicted ages from each modality were correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generated accurate PMA prediction. Additionally, BAGs were associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period.
Collapse
|
7
|
França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, Chew A, Falconer S, Dimitrova R, Cordero-Grande L, Price AN, Hughes E, O'Muircheartaigh J, Duff E, Tuulari JJ, Deco G, Counsell SJ, Hajnal JV, Nosarti C, Arichi T, Edwards AD, McAlonan G, Batalle D. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. Nat Commun 2024; 15:16. [PMID: 38331941 PMCID: PMC10853532 DOI: 10.1038/s41467-023-44050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Collapse
Affiliation(s)
- Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sean Fitzgibbon
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Eugene Duff
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500, Turku, Finland
- Turku Collegium for Science and Medicine and Technology, University of Turku, 20500, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, 20500, Turku, Finland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Pompeu Fabra University, 08002, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
8
|
Pinto CR, Duarte JV, Dinis A, Duarte IC, Castelhano J, Pinto J, Oliveira G, Castelo-Branco M. Functional neuroimaging of responses to multiple sensory stimulations in newborns with perinatal asphyxia. Transl Pediatr 2023; 12:1646-1658. [PMID: 37814708 PMCID: PMC10560353 DOI: 10.21037/tp-23-135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 10/11/2023] Open
Abstract
Background Functional neuroimaging can provide pathophysiological information in perinatal asphyxia (PA). However, fundamental unresolved questions remain related to the influence of neurovascular coupling (NVC) maturation on functional responses in early development. We aimed to probe the feasibility and compare the responses to multiple sensory stimulations in newborns with PA using functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). Methods Responses to visual, auditory, and sensorimotor passive stimulation were measured with fMRI and fNIRS and compared in 18 term newborns with PA and six controls. Results Most newborns exhibited a positive fMRI response during visual and sensorimotor stimulation, higher in the sensorimotor. An asymmetric pattern (negative in the left hemisphere) was observed in auditory stimulation. The fNIRS response most resembling the adult pattern (positive) in PA occurred during auditory stimulation, in which oxyhemoglobin (HbO) increased, and deoxyhemoglobin (HbR) decreased. Significative differences were found in the HbO and HbR profiles in newborns with PA compared to the controls, more evident in auditory stimulation. Positive correlations between the fMRI BOLD signal and at least one fNIRS channel (HbO) in all stimuli in newborns with PA were identified: the strongest was in the auditory (r=0.704) and the weakest in the sensorimotor (r=0.544); in more fNIRS channels, in the visual. Conclusions Both techniques are feasible physiological assessment tools, suggesting a distinctive level of maturation in sensory and motor areas. Differences in fNIRS profiles in newborns with PA and controls and the fMRI-fNIRS relationship observed can encourage the fNIRS as a clinically emergent valuable tool.
Collapse
Affiliation(s)
- Carla R. Pinto
- Pediatric Intensive Care Unit, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João V. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra Dinis
- Pediatric Intensive Care Unit, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Pinto
- Neuroradiology Unit, Medical Imaging Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Child Developmental Center, Research and Clinical Training Center, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Nguyen T, Zimmer L, Hoehl S. Your turn, my turn. Neural synchrony in mother-infant proto-conversation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210488. [PMID: 36871582 PMCID: PMC9985967 DOI: 10.1098/rstb.2021.0488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Even before infants utter their first words, they engage in highly coordinated vocal exchanges with their caregivers. During these so-called proto-conversations, caregiver-infant dyads use a presumably universal communication structure-turn-taking, which has been linked to favourable developmental outcomes. However, little is known about potential mechanisms involved in early turn-taking. Previous research pointed to interpersonal synchronization of brain activity between adults and preschool-aged children during turn-taking. Here, we assessed caregivers and infants at 4-6 months of age (N = 55) during a face-to-face interaction. We used functional-near infrared spectroscopy hyperscanning to measure dyads' brain activity and microcoded their turn-taking. We also measured infants' inter-hemispheric connectivity as an index for brain maturity and later vocabulary size and attachment security as developmental outcomes potentially linked to turn-taking. The results showed that more frequent turn-taking was related to interpersonal neural synchrony, but the strength of the relation decreased over the course of the proto-conversation. Importantly, turn-taking was positively associated with infant brain maturity and later vocabulary size, but not with later attachment security. Taken together, these findings shed light on mechanisms facilitating preverbal turn-taking and stress the importance of emerging turn-taking for child brain and language development. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.,Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Center for Life Nano and Neuro Science, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lucie Zimmer
- Department of Psychology, Ludwig-Maximilians University Munich, Leopoldstrasse 13, 80802 Munich, Germany
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| |
Collapse
|
10
|
Liu Y, Yu Q, Cheng L, Chen J, Gao J, Liu Y, Lin X, Wang X, Hou Z. The parcellation of cingulate cortex in neonatal period based on resting-state functional MRI. Cereb Cortex 2023; 33:2548-2558. [PMID: 35689654 DOI: 10.1093/cercor/bhac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
The human cingulate cortex (CC) is a complex region that is characterized by heterogeneous cytoarchitecture, connectivity, and function, and it is associated with various cognitive functions. The adult CC has been divided into various subregions, and this subdivision is highly consistent with its functional differentiation. However, only a few studies have focused on the function of neonatal CC. The aim of this study was to describe the cingulate segregation and the functional connectivity of each subdivision in full-term neonates (n = 60) based on resting-state functional magnetic resonance imaging. The neonatal CC was divided into three subregions, and each subregion showed specific connectivity patterns. The anterior cingulate cortex was mainly correlated with brain regions related to the salience (affected) network and default mode network (DMN), the midcingulate cortex was related to motor areas, and the posterior cingulate cortex was coupled with DMN. Moreover, we found that the cingulate subregions showed distinct functional profiles with major brain networks, which were defined using independent component analysis, and exhibited functional lateralization. This study provided new insights into the understanding of the functional specialization of neonatal CC, and these findings may have significant clinical implications, especially in predicting neurological disorder.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jinge Chen
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jie Gao
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Yujia Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Xiangtao Lin
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Ximing Wang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
11
|
Pinto CR, Duarte JV, Marques C, Vicente IN, Paiva C, Éloi J, Pereira DJ, Correia BR, Castelo-Branco M, Oliveira G. The role of early functional neuroimaging in predicting neurodevelopmental outcomes in neonatal encephalopathy. Eur J Pediatr 2023; 182:1191-1200. [PMID: 36607412 PMCID: PMC10023620 DOI: 10.1007/s00431-022-04778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Reliably assessing the early neurodevelopmental outcomes in infants with neonatal encephalopathy (NE) is of utmost importance to advise parents and implement early and personalized interventions. We aimed to evaluate the accuracy of neuroimaging modalities, including functional magnetic resonance imaging (fMRI) in predicting neurodevelopmental outcomes in NE. Eighteen newborns with NE due to presumed perinatal asphyxia (PA) were included in the study, 16 of whom underwent therapeutic hypothermia. Structural magnetic resonance imaging (MRI), and fMRI during passive visual, auditory, and sensorimotor stimulation were acquired between the 10th and 14th day of age. Clinical follow-up protocol included visual and auditory evoked potentials and a detailed neurodevelopmental evaluation at 12 and 18 months of age. Infants were divided according to sensory and neurodevelopmental outcome: severe, moderate disability, or normal. Structural MRI findings were the best predictor of severe disability with an AUC close to 1.0. There were no good predictors to discriminate between moderate disability versus normal outcome. Nevertheless, structural MRI measures showed a significant correlation with the scores of neurodevelopmental assessments. During sensorimotor stimulation, the fMRI signal in the right hemisphere had an AUC of 0.9 to predict absence of cerebral palsy (CP). fMRI measures during auditory and visual stimulation did not predict sensorineural hearing loss or cerebral visual impairment. CONCLUSION In addition to structural MRI, fMRI with sensorimotor stimulation may open the gate to improve the knowledge of neurodevelopmental/motor prognosis if proven in a larger cohort of newborns with NE. WHAT IS KNOWN • Establishing an early, accurate neurodevelopmental prognosis in neonatal encephalopathy remains challenging. • Although structural MRI has a central role in neonatal encephalopathy, advanced MRI modalities are gradually being explored to optimize neurodevelopmental outcome knowledge. WHAT IS NEW • Newborns who later developed cerebral palsy had a trend towards lower fMRI measures in the right sensorimotor area during sensorimotor stimulation. • These preliminary fMRI results may improve future early delineation of motor prognosis in neonatal encephalopathy.
Collapse
Affiliation(s)
- Carla R Pinto
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Avenida Afonso Romão, Coimbra, 3000-602, Portugal.
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| | - João V Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carla Marques
- Child Developmental Center, Research and Clinical Training Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Inês N Vicente
- Child Developmental Center, Research and Clinical Training Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Paiva
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João Éloi
- Otorhinolaryngology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Daniela J Pereira
- Neuroradiology Unit, Medical Imaging Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bárbara R Correia
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Quantitative Methods, Information and Management Systems Department, Coimbra Business School, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Child Developmental Center, Research and Clinical Training Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Wang W, Yu Q, Liang W, Xu F, Li Z, Tang Y, Liu S. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates. Cereb Cortex 2023; 33:651-662. [PMID: 35259759 DOI: 10.1093/cercor/bhac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Preterm (PT) birth is a potential factor for abnormal brain development. Although various alterations of cortical structure and functional connectivity in preterm infants have been reported, the underlying microstructural foundation is still undetected thoroughly in PT infants relative to full-term (FT) neonates. To detect the very early cortical microstructural alteration noninvasively with advanced neurite orientation dispersion and density imaging (NODDI) on a whole-brain basis, we used multi-shell diffusion MRI of healthy newborns selected from the Developing Human Connectome Project. 73 PT infants and 69 FT neonates scanned at term-equivalent age were included in this study. By extracting the core voxels of gray matter (GM) using GM-based spatial statistics (GBSS), we found that comparing to FT neonates, infants born preterm showed extensive lower neurite density in both primary and higher-order association cortices (FWE corrected, P < 0.025). Higher orientation dispersion was only found in very preterm subgroup in the orbitofrontal cortex, fronto-insular cortex, entorhinal cortex, a portion of posterior cingular gyrus, and medial parieto-occipital cortex. This study provided new insights into exploring structural MR for functional and behavioral variations in preterm population, and these findings may have marked clinical importance, particularly in the guidance of ameliorating the development of premature brain.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Li Q, Zhao W, Kendrick KM. Affective touch in the context of development, oxytocin signaling, and autism. Front Psychol 2022; 13:967791. [PMID: 36506943 PMCID: PMC9728590 DOI: 10.3389/fpsyg.2022.967791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Touch represents one of our most important senses throughout life and particularly in the context of our social and emotional experiences. In this review, we draw on research on touch processing from both animal models and humans. Firstly, we briefly describe the cutaneous touch receptors and neural processing of both affective and discriminative touch. We then outline how our sense of touch develops and summarize increasing evidence demonstrating how essential early tactile stimulation is for the development of brain and behavior, with a particular focus on effects of tactile stimulation in infant animals and pediatric massage and Kangaroo care in human infants. Next, the potential mechanisms whereby early tactile stimulation influences both brain and behavioral development are discussed, focusing on its ability to promote neural plasticity changes and brain interhemispheric communication, development of social behavior and bonding, and reward sensitivity through modulation of growth factor, oxytocin, and opioid signaling. Finally, we consider the implications of evidence for atypical responses to touch in neurodevelopmental disorders such as autism spectrum disorder and discuss existing evidence and future priorities for establishing potential beneficial effects of interventions using massage or pharmacological treatments targeting oxytocin or other neurochemical systems.
Collapse
Affiliation(s)
- Qin Li
- School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Ciarrusta J, Christiaens D, Fitzgibbon SP, Dimitrova R, Hutter J, Hughes E, Duff E, Price AN, Cordero-Grande L, Tournier JD, Rueckert D, Hajnal JV, Arichi T, McAlonan G, Edwards AD, Batalle D. The developing brain structural and functional connectome fingerprint. Dev Cogn Neurosci 2022; 55:101117. [PMID: 35662682 PMCID: PMC9344310 DOI: 10.1016/j.dcn.2022.101117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022] Open
Abstract
In the mature brain, structural and functional 'fingerprints' of brain connectivity can be used to identify the uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the congruence of the later structural connectome to the initial connectivity matrix derived from the earlier timepoint. In contrast, similarity between functional connectomes of the same subject at different time points was low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the functional connectome. These results suggest that structural connectivity is more stable in early life and can represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to their new environment.
Collapse
Affiliation(s)
- Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Center for Brain and Cognition (CBC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Eugene Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Paediatric Neuroimaging Group, Department of Paediatrics, University of Oxford, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
16
|
Jones L, Verriotis M, Cooper RJ, Laudiano-Dray MP, Rupawala M, Meek J, Fabrizi L, Fitzgerald M. Widespread nociceptive maps in the human neonatal somatosensory cortex. eLife 2022; 11:71655. [PMID: 35451960 PMCID: PMC9090328 DOI: 10.7554/elife.71655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Topographic cortical maps are essential for spatial localisation of sensory stimulation and generation of appropriate task-related motor responses. Somatosensation and nociception are finely mapped and aligned in the adult somatosensory (S1) cortex, but in infancy, when pain behaviour is disorganised and poorly directed, nociceptive maps may be less refined. We compared the topographic pattern of S1 activation following noxious (clinically required heel lance) and innocuous (touch) mechanical stimulation of the same skin region in newborn infants (n = 32) using multioptode functional near-infrared spectroscopy (fNIRS). Within S1 cortex, touch and lance of the heel elicit localised, partially overlapping increases in oxygenated haemoglobin concentration (Δ[HbO]), but while touch activation was restricted to the heel area, lance activation extended into cortical hand regions. The data reveals a widespread cortical nociceptive map in infant S1, consistent with their poorly directed pain behaviour.
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Madeleine Verriotis
- Department of Developmental Neuroscience, University College London, London, United Kingdom
| | - Robert J Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Dall'Orso S, Arichi T, Fitzgibbon SP, Edwards AD, Burdet E, Muceli S. Development of functional organization within the sensorimotor network across the perinatal period. Hum Brain Mapp 2022; 43:2249-2261. [PMID: 35088920 PMCID: PMC8996360 DOI: 10.1002/hbm.25785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
In the mature human brain, the neural processing related to different body parts is reflected in patterns of functional connectivity, which is strongest between functional homologs in opposite cortical hemispheres. To understand how this organization is first established, we investigated functional connectivity between limb regions in the sensorimotor cortex in 400 preterm and term infants aged across the equivalent period to the third trimester of gestation (32–45 weeks postmenstrual age). Masks were obtained from empirically derived functional responses in neonates from an independent data set. We demonstrate the early presence of a crude but spatially organized functional connectivity, that rapidly matures across the preterm period to achieve an adult‐like configuration by the normal time of birth. Specifically, connectivity was strongest between homolog regions, followed by connectivity between adjacent regions (different limbs but same hemisphere) already in the preterm brain, and increased with age. These changes were specific to the sensorimotor network. Crucially, these trajectories were strongly dependent on age more than age of birth. This demonstrates that during the perinatal period the sensorimotor cortex undergoes preprogrammed changes determining the functional movement organization that are not altered by preterm birth in absence of brain injury.
Collapse
Affiliation(s)
- Sofia Dall'Orso
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK.,Paediatric Neurosciences, Evelina London Children's Hospital, St. Thomas' Hospital, London, UK.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - Silvia Muceli
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London
| |
Collapse
|
19
|
Kakodkar P, Girgis H, Nabhan P, Chee SS, Tu A. Efficacy of Selective Dorsal Rhizotomy and Intrathecal Baclofen Pump in the Management of Spasticity. Adv Tech Stand Neurosurg 2022; 45:379-403. [PMID: 35976458 DOI: 10.1007/978-3-030-99166-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurosurgical indications and interventions provided in the management of spasticity have evolved significantly over time. Selective dorsal rhizotomy (SDR) and intrathecal baclofen (ITB) pumps have been used to improve mobility, reduce lower extremity spasticity, and increase quality of life in patients with various diagnoses. METHODS Studies describing ITB and SDR outcomes in adult and pediatric patients were identified from Medline and Embase databases. Only publications between January 1990 to January 2021 were included. Combinations of search terms 'Selective Dorsal Rhizotomy', 'Selective Posterior Rhizotomy', 'functional posterior rhizotomy', 'intrathecal baclofen pump', and 'spasticity' were used. Only studies in English language and those that included parameters for lower extremity outcome (i.e., spasticity, ambulation) were included. Only studies describing follow-up 12 months or greater were included. Case reports, reviews without primary data, or inaccessible publications were excluded. RESULTS Two hundred and ninety publications between January 1990 to January 2021 were identified. Of these, 62 fit inclusion and exclusion criteria for a total of 1291 adult and 2263 patients. Etiologies in adult and pediatric populations varied substantially with multiple sclerosis, cerebral palsy, and trauma comprising the majority of causes for spasticity in adult patients. In pediatric patients, cerebral palsy was the predominant etiology of spasticity. While outcomes after SDR and ITB varied, both are effective for long-term tone reduction. SDR appeared to have a greater effect on function compared to baseline when comparing relatively similar subgroups. The complication rates for either intervention were significant; ITB had a much greater incidence of wound and hardware adverse events, whereas SDR was associated with a not insignificant incidence of new bladder or sensory deficit. CONCLUSION ITB and SDR have demonstrated efficacy and utility for tone reduction in a variety of conditions. The selection of a specific intervention may have a variety of determining features including the etiology of spasticity, age of patient, as well as balancing benefit and complication profiles of each technique. Appropriate patient selection is essential for providing optimal patient outcomes.
Collapse
Affiliation(s)
- Pramath Kakodkar
- School of Medicine, National University of Ireland Galway, Galway, Republic of Ireland
| | - Hidy Girgis
- Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
| | - Perla Nabhan
- Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Sharini Sam Chee
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Albert Tu
- Division of Pediatric Neurosurgery, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Lehnert BP, Santiago C, Huey EL, Emanuel AJ, Renauld S, Africawala N, Alkislar I, Zheng Y, Bai L, Koutsioumpa C, Hong JT, Magee AR, Harvey CD, Ginty DD. Mechanoreceptor synapses in the brainstem shape the central representation of touch. Cell 2021; 184:5608-5621.e18. [PMID: 34637701 PMCID: PMC8556359 DOI: 10.1016/j.cell.2021.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.
Collapse
Affiliation(s)
- Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nusrat Africawala
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Yang Zheng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Charalampia Koutsioumpa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jennifer T Hong
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra R Magee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
21
|
DeMauro SB, Burkhardt M, Wood A, Nilan K, Jensen EA, Bamat NA, Zhang H, Gibbs K. Early motor development in infants with moderate or severe bronchopulmonary dysplasia. J Neonatal Perinatal Med 2021; 15:55-62. [PMID: 34657851 DOI: 10.3233/npm-210750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Timely development of early motor skills is essential for later skill development in multiple domains. Infants with severe bronchopulmonary dysplasia (BPD) have significant risk for developmental delays. Early motor skill development in this population has not been described. The aim of the present study was to characterize motor skill acquisition at 3 and 6 months corrected age (CA) and assess trajectories of skill development over this time period in infants with severe BPD. METHODS We performed a single-center, retrospective descriptive study. Motor skills were categorized as present and normal, present but atypical, or absent at 3 and 6 months CA. Logistic regression was used to identify clinical characteristics associated with negative trajectories of skill acquisition. RESULTS Data were available for 232 infants and 187 infants at 3 and 6 months CA, respectively. Ten motor skills were present and normal in 5-44%(range) of subjects at 3 months. Nineteen motor skills were present and normal in 1-63%(range) of subjects at 6 months. Significant postural asymmetry was noted throughout the study period. Loss of skills and worsening asymmetries over time were common. Exposure to sedating medications was significantly associated with poor development. CONCLUSION We report delays in motor skill acquisition and postural asymmetries in infants with severe BPD at both 3 and 6 months CA. The association between sedating medications and poor development suggests that efforts to limit these exposures may lead to improved development. Targeted interventions to facilitate early motor development may improve outcomes of this high-risk population.
Collapse
Affiliation(s)
- S B DeMauro
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Burkhardt
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Wood
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - K Nilan
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E A Jensen
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - N A Bamat
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Zhang
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - K Gibbs
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Dudink I, Hüppi PS, Sizonenko SV, Castillo-Melendez M, Sutherland AE, Allison BJ, Miller SL. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp Neurol 2021; 347:113885. [PMID: 34627856 DOI: 10.1016/j.expneurol.2021.113885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022]
Abstract
Fetal growth restriction (FGR) is principally caused by suboptimal placental function. Poor placental function causes an under supply of nutrients and oxygen to the developing fetus, restricting development of individual organs and overall growth. Estimated fetal weight below the 10th or 3rd percentile with uteroplacental dysfunction, and knowledge regarding the onset of growth restriction (early or late), provide diagnostic criteria for fetuses at greatest risk for adverse outcome. Brain development and function is altered with FGR, with ongoing clinical and preclinical studies elucidating neuropathological etiology. During the third trimester of pregnancy, from ~28 weeks gestation, neurogenesis is complete and neuronal complexity is expanding, through axonal and dendritic outgrowth, dendritic branching and synaptogenesis, accompanied by myelin production. Fetal compromise over this period, as occurs in FGR, has detrimental effects on these processes. Total brain volume and grey matter volume is reduced in infants with FGR, first evident in utero, with cortical volume particularly vulnerable. Imaging studies show that cerebral morphology is disturbed in FGR, with altered cerebral cortex, volume and organization of brain networks, and reduced connectivity of long- and short-range circuits. Thus, FGR induces a deviation in brain development trajectory affecting both grey and white matter, however grey matter volume is preferentially reduced, contributed by cell loss, and reduced neurite outgrowth of surviving neurons. In turn, cell-to-cell local networks are adversely affected in FGR, and whole brain left and right intrahemispheric connections and interhemispheric connections are altered. Importantly, disruptions to region-specific brain networks are linked to cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Hüppi
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Stéphane V Sizonenko
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
24
|
Early magnetic resonance imaging biomarkers of schizophrenia spectrum disorders: Toward a fetal imaging perspective. Dev Psychopathol 2021; 33:899-913. [PMID: 32489161 DOI: 10.1017/s0954579420000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is mounting evidence to implicate the intrauterine environment as the initial pathogenic stage for neuropsychiatric disease. Recent developments in magnetic resonance imaging technology are making a multimodal analysis of the fetal central nervous system a reality, allowing analysis of structural and functional parameters. Exposures to a range of pertinent risk factors whether preconception or in utero can now be indexed using imaging techniques within the fetus' physiological environment. This approach may determine the first "hit" required for diseases that do not become clinically manifest until adulthood, and which only have subtle clinical markers during childhood and adolescence. A robust characterization of a "multi-hit" hypothesis may necessitate a longitudinal birth cohort; within this investigative paradigm, the full range of genetic and environmental risk factors can be assessed for their impact on the early developing brain. This will lay the foundation for the identification of novel biomarkers and the ability to devise methods for early risk stratification and disease prevention. However, these early markers must be followed over time: first, to account for neural plasticity, and second, to assess the effects of postnatal exposures that continue to drive the individual toward disease. We explore these issues using the schizophrenia spectrum disorders as an illustrative paradigm. However, given the potential richness of fetal magnetic resonance imaging, and the likely overlap of biomarkers, these concepts may extend to a range of neuropsychiatric conditions.
Collapse
|
25
|
Poppe T, Willers Moore J, Arichi T. Individual focused studies of functional brain development in early human infancy. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Del Hoyo Soriano L, Rosser TC, Hamilton DR, Harvey DJ, Abbeduto L, Sherman SL. Relationship between Apgar scores and long-term cognitive outcomes in individuals with Down syndrome. Sci Rep 2021; 11:12707. [PMID: 34135349 PMCID: PMC8208985 DOI: 10.1038/s41598-021-90651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
This study examined the contribution of the Apgar score at 1 and 5 min after birth to later cognitive functioning in 168 individuals with Down syndrome who were between 6 and 25 years of age at time of cognitive testing. Our results showed that a lower Apgar score at 1 min was related to a worse performance in later cognitive measures of receptive vocabulary, verbal comprehension and production, visual memory and working memory. Results also showed that a lower Apgar score at 5 min was only related to worse later outcomes of verbal comprehension and production and auditory working memory. Our findings suggest a need for future studies investigating how specific perinatal events reflected in the Apgar score are linked to later cognitive functioning in individuals with Down syndrome.
Collapse
Affiliation(s)
- Laura Del Hoyo Soriano
- Department of Psychiatry and Behavioral Sciences, MIND Institute University of California Davis, Sacramento, CA, USA.
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Debra R Hamilton
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Danielle J Harvey
- Department of Psychiatry and Behavioral Sciences, MIND Institute University of California Davis, Sacramento, CA, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, MIND Institute University of California Davis, Sacramento, CA, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
28
|
Freitas LGA, Liverani MC, Siffredi V, Schnider A, Borradori Tolsa C, Ha-Vinh Leuchter R, Van De Ville D, Hüppi PS. Altered orbitofrontal activation in preterm-born young adolescents during performance of a reality filtering task. NEUROIMAGE-CLINICAL 2021; 30:102668. [PMID: 34215142 PMCID: PMC8102802 DOI: 10.1016/j.nicl.2021.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 10/24/2022]
Abstract
Preterm birth is one of the main causes for neurodevelopmental problems, and has been associated with a wide range of impairments in cognitive functions including executive functions and memory. One of the factors contributing to these adverse outcomes is the intrinsic vulnerability of the premature brain. Neuroimaging studies have highlighted structural and functional alterations in several brain regions in preterm individuals across lifetime. The orbitofrontal cortex (OFC) is crucial for a multitude of complex and adaptive behaviours, and its structure is particularly affected by premature birth. Nevertheless, studies on the functional impact of prematurity on the OFC are still missing. Orbitofrontal Reality filtering (ORFi) refers to the ability to distinguish if a thought is relevant to present reality or not. It can be tested using a continuous recognition task and is mediated by the OFC in adults and typically developing young adolescents. Therefore, the ORFi task was used to investigate whether OFC functioning is affected by prematurity. We compared the neural correlates of ORFi in 35 young adolescents born preterm (below 32 weeks of gestation) and aged 10 to 14 years with 25 full term-born controls. Our findings indicate that OFC activation was required only in the full-term group, whereas preterm young adolescents did not involve OFC in processing the ORFi task, despite being able to correctly perform it.
Collapse
Affiliation(s)
- Lorena G A Freitas
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Vanessa Siffredi
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Armin Schnider
- Department of Clinical Neurosciences, Division of Neurorehabilitation, Geneva University Hospitals, Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
29
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
30
|
Lemaître H, Augé P, Saitovitch A, Vinçon-Leite A, Tacchella JM, Fillon L, Calmon R, Dangouloff-Ros V, Lévy R, Grévent D, Brunelle F, Boddaert N, Zilbovicius M. Rest Functional Brain Maturation during the First Year of Life. Cereb Cortex 2021; 31:1776-1785. [PMID: 33230520 PMCID: PMC7869100 DOI: 10.1093/cercor/bhaa325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
The first year of life is a key period of brain development, characterized by dramatic structural and functional modifications. Here, we measured rest cerebral blood flow (CBF) modifications throughout babies’ first year of life using arterial spin labeling magnetic resonance imaging sequence in 52 infants, from 3 to 12 months of age. Overall, global rest CBF significantly increased during this age span. In addition, we found marked regional differences in local functional brain maturation. While primary sensorimotor cortices and insula showed early maturation, temporal and prefrontal region presented great rest CBF increase across the first year of life. Moreover, we highlighted a late and remarkably synchronous maturation of the prefrontal and posterior superior temporal cortices. These different patterns of regional cortical rest CBF modifications reflect a timetable of local functional brain maturation and are consistent with baby’s cognitive development within the first year of life.
Collapse
Affiliation(s)
- Hervé Lemaître
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux 33000, France
| | - Pierre Augé
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ana Saitovitch
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Alice Vinçon-Leite
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Jean-Marc Tacchella
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ludovic Fillon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphael Calmon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Volodia Dangouloff-Ros
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphaël Lévy
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - David Grévent
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Francis Brunelle
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Nathalie Boddaert
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Monica Zilbovicius
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| |
Collapse
|
31
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
32
|
Dall'Orso S, Fifer WP, Balsam PD, Brandon J, O'Keefe C, Poppe T, Vecchiato K, Edwards AD, Burdet E, Arichi T. Cortical Processing of Multimodal Sensory Learning in Human Neonates. Cereb Cortex 2020; 31:1827-1836. [PMID: 33207366 PMCID: PMC7869081 DOI: 10.1093/cercor/bhaa340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Following birth, infants must immediately process and rapidly adapt to the array of unknown sensory experiences associated with their new ex-utero environment. However, although it is known that unimodal stimuli induce activity in the corresponding primary sensory cortices of the newborn brain, it is unclear how multimodal stimuli are processed and integrated across modalities. The latter is essential for learning and understanding environmental contingencies through encoding relationships between sensory experiences; and ultimately likely subserves development of life-long skills such as speech and language. Here, for the first time, we map the intracerebral processing which underlies auditory-sensorimotor classical conditioning in a group of 13 neonates (median gestational age at birth: 38 weeks + 4 days, range: 32 weeks + 2 days to 41 weeks + 6 days; median postmenstrual age at scan: 40 weeks + 5 days, range: 38 weeks + 3 days to 42 weeks + 1 days) with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI) and magnetic resonance (MR) compatible robotics. We demonstrate that classical conditioning can induce crossmodal changes within putative unimodal sensory cortex even in the absence of its archetypal substrate. Our results also suggest that multimodal learning is associated with network wide activity within the conditioned neural system. These findings suggest that in early life, external multimodal sensory stimulation and integration shapes activity in the developing cortex and may influence its associated functional network architecture.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - W P Fifer
- Department of Psychiatry, Columbia University, New York 10032, NY
| | - P D Balsam
- Department of Psychiatry, Columbia University, New York 10032, NY
| | - J Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - C O'Keefe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - T Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - K Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK.,Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
33
|
Collins-Jones LH, Arichi T, Poppe T, Billing A, Xiao J, Fabrizi L, Brigadoi S, Hebden JC, Elwell CE, Cooper RJ. Construction and validation of a database of head models for functional imaging of the neonatal brain. Hum Brain Mapp 2020; 42:567-586. [PMID: 33068482 PMCID: PMC7814762 DOI: 10.1002/hbm.25242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The neonatal brain undergoes dramatic structural and functional changes over the last trimester of gestation. The accuracy of source localisation of brain activity recorded from the scalp therefore relies on accurate age-specific head models. Although an age-appropriate population-level atlas could be used, detail is lost in the construction of such atlases, in particular with regard to the smoothing of the cortical surface, and so such a model is not representative of anatomy at an individual level. In this work, we describe the construction of a database of individual structural priors of the neonatal head using 215 individual-level datasets at ages 29-44 weeks postmenstrual age from the Developing Human Connectome Project. We have validated a method to segment the extra-cerebral tissue against manual segmentation. We have also conducted a leave-one-out analysis to quantify the expected spatial error incurred with regard to localising functional activation when using a best-matching individual from the database in place of a subject-specific model; the median error was calculated to be 8.3 mm (median absolute deviation 3.8 mm). The database can be applied for any functional neuroimaging modality which requires structural data whereby the physical parameters associated with that modality vary with tissue type and is freely available at www.ucl.ac.uk/dot-hub.
Collapse
Affiliation(s)
- Liam H Collins-Jones
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Biomedical Optics Research Laboratory, Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK.,Department of Bioengineering, Imperial College of Science, Technology, and Medicine, London, UK
| | - Tanya Poppe
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Addison Billing
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Institute for Cognitive Neuroscience, University College London, London, UK
| | - Jiaxin Xiao
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sabrina Brigadoi
- Department of Information Engineering, University of Padova, Padova, Italy.,Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Jeremy C Hebden
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Biomedical Optics Research Laboratory, Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Clare E Elwell
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Robert J Cooper
- DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Biomedical Optics Research Laboratory, Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
34
|
Huang Z, Wang Q, Zhou S, Tang C, Yi F, Nie J. Exploring functional brain activity in neonates: A resting-state fMRI study. Dev Cogn Neurosci 2020; 45:100850. [PMID: 32882651 PMCID: PMC7474406 DOI: 10.1016/j.dcn.2020.100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
The human brain is born with a certain maturity, but quantitatively measuring the maturation and development of functional brain activity in neonates remains a topic of vigorous scientific research, especially the dynamic characteristics. To address this, T1w, T2w, and resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 full-term healthy neonates and 38 adults were adopted in this study. Group differences of local brain activity and functional connectivity between neonates and adults from both static and dynamic perspectives were explored. We found that the neonatal brain is largely immature in general. Sensorimotor areas were the most active, well-connected, and temporally dynamic. Compared with adults, visual and primary auditory areas in neonates showed higher or similar local activity but lower static and dynamic connections with other brain regions. Our findings provide new references and valuable insights for time-varying and local brain functional activity in neonates.
Collapse
Affiliation(s)
- Ziyi Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Qi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Senyu Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Chao Tang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Fa Yi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Jingxin Nie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China.
| |
Collapse
|
35
|
Ciarrusta J, Dimitrova R, McAlonan G. Early maturation of the social brain: How brain development provides a platform for the acquisition of social-cognitive competence. PROGRESS IN BRAIN RESEARCH 2020; 254:49-70. [PMID: 32859293 DOI: 10.1016/bs.pbr.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Across the last century psychology has provided a lot of insight about social-cognitive competence. Recognizing facial expressions, joint attention, discrimination of cues and experiencing empathy are just a few examples of the social skills humans acquire from birth to adolescence. However, how very early brain maturation provides a platform to support the attainment of highly complex social behavior later in development remains poorly understood. Magnetic Resonance Imaging provides a safe means to investigate the typical and atypical maturation of regions of the brain responsible for social cognition in as early as the perinatal period. Here, we first review some technical challenges and advances of using functional magnetic resonance imaging on developing infants to then describe current knowledge on the development of diverse systems associated with social function. We will then explain how these characteristics might differ in infants with genetic or environmental risk factors, who are vulnerable to atypical neurodevelopment. Finally, given the rapid early development of systems necessary for social skills, we propose a new framework to investigate sensitive time windows of development when neural substrates might be more vulnerable to impairment due to a genetic or environmental insult.
Collapse
Affiliation(s)
- Judit Ciarrusta
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
36
|
Whitehead K, Meek J, Fabrizi L, Smith BA. Long-range temporal organisation of limb movement kinematics in human neonates. Clin Neurophysiol Pract 2020; 5:194-198. [PMID: 32984665 PMCID: PMC7493046 DOI: 10.1016/j.cnp.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Movement provides crucial sensorimotor information to the developing brain, evoking somatotopic cortical EEG activity. Indeed, temporal-spatial organisation of these movements, including a diverse repertoire of accelerations and limb combinations (e.g. unilateral progressing to bilateral), predicts positive sensorimotor outcomes. However, in current clinical practice, movements in human neonates are qualitatively characterised only during brief periods (a few minutes) of wakefulness, meaning that the vast majority of sensorimotor experience remains unsampled. Here our objective was to quantitatively characterise the long-range temporal organisation of the full repertoire of newborn movements, over multi-hour recordings. METHODS We monitored motor activity across 2-4 h in 11 healthy newborn infants (median 1 day old), who wore limb sensors containing synchronised tri-axial accelerometers and gyroscopes. Movements were identified using acceleration and angular velocity, and their organisation across the recording was characterised using cluster analysis and spectral estimation. RESULTS Movement occurrence was periodic, with a 1-hour cycle. Peaks in movement occurrence were associated with higher acceleration, and a higher proportion of movements being bilateral. CONCLUSIONS Neonatal movement occurrence is cyclical, with periods consistent with sleep-wake behavioural architecture. Movement kinematics are organised by these fluctuations in movement occurrence. Recordings that exceed 1-hour are necessary to capture the long-range temporal organisation of the full repertoire of newborn limb movements. SIGNIFICANCE Future work should investigate the prognostic value of combining these movement recordings with synchronised EEG, in at-risk infants.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Beth A. Smith
- Division of Biokinesiology and Physical Therapy and Department of Pediatrics, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
37
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Whitehead K, Papadelis C, Laudiano-Dray MP, Meek J, Fabrizi L. The Emergence of Hierarchical Somatosensory Processing in Late Prematurity. Cereb Cortex 2020; 29:2245-2260. [PMID: 30843584 PMCID: PMC6458926 DOI: 10.1093/cercor/bhz030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The somatosensory system has a hierarchical organization. Information processing increases in complexity from the contralateral primary sensory cortex to bilateral association cortices and this is represented by a sequence of somatosensory-evoked potentials recorded with scalp electroencephalographies. The mammalian somatosensory system matures over the early postnatal period in a rostro-caudal progression, but little is known about the development of hierarchical information processing in the human infant brain. To investigate the normal human development of the somatosensory hierarchy, we recorded potentials evoked by mechanical stimulation of hands and feet in 34 infants between 34 and 42 weeks corrected gestational age, with median postnatal age of 3 days. We show that the shortest latency potential was evoked for both hands and feet at all ages with a contralateral somatotopic source in the primary somatosensory cortex (SI). However, the longer latency responses, localized in SI and beyond, matured with age. They gradually emerged for the foot and, although always present for the hand, showed a shift from purely contralateral to bilateral hemispheric activation. These results demonstrate the rostro-caudal development of human somatosensory hierarchy and suggest that the development of its higher tiers is complete only just before the time of normal birth.
Collapse
Affiliation(s)
- K Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - C Papadelis
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M P Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - J Meek
- Neonatal Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London, UK
| | - L Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
39
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
40
|
Abstract
Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system. In addition, sleep uniquely reveals functional activity in the developing primary motor cortex, which establishes a somatosensory map long before its role in motor control emerges. These findings will inform our understanding of the developmental processes that contribute to the nascent sense of embodiment in human infants.
Collapse
|
41
|
Wang Q, Zhu GP, Yi L, Cui XX, Wang H, Wei RY, Hu BL. A Review of Functional Near-Infrared Spectroscopy Studies of Motor and Cognitive Function in Preterm Infants. Neurosci Bull 2019; 36:321-329. [PMID: 31713716 DOI: 10.1007/s12264-019-00441-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022] Open
Abstract
Preterm infants are vulnerable to brain injuries, and have a greater chance of experiencing neurodevelopmental disorders throughout development. Early screening for motor and cognitive functions is critical to assessing the developmental trajectory in preterm infants, especially those who may have motor or cognitive deficits. The brain imaging technology functional near-infrared spectroscopy (fNIRS) is a portable and low-cost method of assessing cerebral hemodynamics, making it suitable for large-scale use even in remote and underdeveloped areas. In this article, we review peer-reviewed, scientific fNIRS studies of motor performance, speech perception, and facial recognition in preterm infants. fNIRS provides a link between hemodynamic activity and the development of brain functions in preterm infants. Research using fNIRS has shown different patterns of hemoglobin change during some behavioral tasks in early infancy. fNIRS helps to promote our understanding of the developmental mechanisms of brain function in preterm infants when performing motor or cognitive tasks in a less-restricted environment.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China.
- Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA.
| | - Guang-Pu Zhu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
| | - Li Yi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Xin-Xin Cui
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
| | - Hui Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
| | - Ru-Yi Wei
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bing-Liang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
42
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|
43
|
Gao W, Grewen K, Knickmeyer RC, Qiu A, Salzwedel A, Lin W, Gilmore JH. A review on neuroimaging studies of genetic and environmental influences on early brain development. Neuroimage 2019; 185:802-812. [PMID: 29673965 PMCID: PMC6191379 DOI: 10.1016/j.neuroimage.2018.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions.
Collapse
Affiliation(s)
- Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States; Department of Medicine, University of California, Los Angeles, CA, United States.
| | - Karen Grewen
- Department of Psychiatry, Neurobiology, and Psychology, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| |
Collapse
|
44
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
45
|
Whitehead K, Meek J, Fabrizi L. Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Sci Rep 2018; 8:17516. [PMID: 30504857 PMCID: PMC6269518 DOI: 10.1038/s41598-018-35850-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
In neonatal animal models, isolated limb movements during active sleep provide input to immature somatomotor cortex necessary for its development and are somatotopically encoded by alpha-beta oscillations as late as the equivalent of human full-term. Limb movements elicit similar neural patterns in very pre-term human infants (average 30 corrected gestational weeks), suggesting an analogous role in humans, but it is unknown until when they subserve this function. In a cohort of 19 neonates (31-42 corrected gestational weeks) we showed that isolated hand movements during active sleep continue to induce these same somatotopically distributed oscillations well into the perinatal period, but that these oscillations decline towards full-term and fully disappear at 41 corrected gestational weeks (equivalent to the end of gestation). We also showed that these highly localised alpha-beta oscillations are associated with an increase in delta oscillations which extends to the frontal area and does not decline with age. These results suggest that isolated limb movements during active sleep could have an important role in experience-dependent somatomotor development up until normal birth in humans.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, WC1E 6BD, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
46
|
Cusack R, McCuaig O, Linke AC. Methodological challenges in the comparison of infant fMRI across age groups. Dev Cogn Neurosci 2018; 33:194-205. [PMID: 29158073 PMCID: PMC6969274 DOI: 10.1016/j.dcn.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 01/31/2023] Open
Abstract
Functional MRI (fMRI) in infants is rapidly growing and providing fundamental insights into the origins of brain functions. Comparing brain development at different ages is particularly powerful, but there are a number of methodological challenges that must be addressed if confounds are to be avoided. With development, brains change in composition in a way that alters their tissue contrast, and in size, shape, and gyrification, requiring careful image processing strategies and age-specific standard templates. The hemodynamic response and other aspects of physiology change with age, requiring careful paradigm design and analysis methods. Infants move more, particularly around the second year of age, and move in a different way to adults. This movement can lead to distortion in fMRI images, and requires tailored techniques during acquisition and post-processing. Infants have different sleep patterns, and their sensory periphery is changing macroscopically and in its neural pathways. Finally, once data have been acquired and analyzed, there are important considerations during mapping of brain processes and cognitive functions across age groups. In summary, new methods are critical to the comparison across age groups, and key to maximizing the rate at which infant fMRI can provide insight into the fascinating questions about the origin of cognition.
Collapse
Affiliation(s)
- Rhodri Cusack
- Brain and Mind Institute, Western University, Canada; Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|
47
|
Verriotis M, Jones L, Whitehead K, Laudiano-Dray M, Panayotidis I, Patel H, Meek J, Fabrizi L, Fitzgerald M. The distribution of pain activity across the human neonatal brain is sex dependent. Neuroimage 2018; 178:69-77. [PMID: 29763673 PMCID: PMC6062722 DOI: 10.1016/j.neuroimage.2018.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/30/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
In adults, there are differences between male and female structural and functional brain connectivity, specifically for those regions involved in pain processing. This may partly explain the observed sex differences in pain sensitivity, tolerance, and inhibitory control, and in the development of chronic pain. However, it is not known if these differences exist from birth. Cortical activity in response to a painful stimulus can be observed in the human neonatal brain, but this nociceptive activity continues to develop in the postnatal period and is qualitatively different from that of adults, partly due to the considerable cortical maturation during this time. This research aimed to investigate the effects of sex and prematurity on the magnitude and spatial distribution pattern of the long-latency nociceptive event-related potential (nERP) using electroencephalography (EEG). We measured the cortical response time-locked to a clinically required heel lance in 81 neonates born between 29 and 42 weeks gestational age (median postnatal age 4 days). The results show that heel lance results in a spatially widespread nERP response in the majority of newborns. Importantly, a widespread pattern is significantly more likely to occur in females, irrespective of gestational age at birth. This effect is not observed for the short latency somatosensory waveform in the same infants, indicating that it is selective for the nociceptive component of the response. These results suggest the early onset of a greater anatomical and functional connectivity reported in the adult female brain, and indicate the presence of pain-related sex differences from birth.
Collapse
Affiliation(s)
- Madeleine Verriotis
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Laura Jones
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Maria Laudiano-Dray
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Ismini Panayotidis
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Hemani Patel
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, WC1E6DB, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E6BT, United Kingdom.
| |
Collapse
|
48
|
Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb Cortex 2018; 28:2507-2515. [PMID: 29901788 PMCID: PMC5998947 DOI: 10.1093/cercor/bhy050] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/26/2023] Open
Abstract
In the mature mammalian brain, the primary somatosensory and motor cortices are known to be spatially organized such that neural activity relating to specific body parts can be somatopically mapped onto an anatomical "homunculus". This organization creates an internal body representation which is fundamental for precise motor control, spatial awareness and social interaction. Although it is unknown when this organization develops in humans, animal studies suggest that it may emerge even before the time of normal birth. We therefore characterized the somatotopic organization of the primary sensorimotor cortices using functional MRI and a set of custom-made robotic tools in 35 healthy preterm infants aged from 31 + 6 to 36 + 3 weeks postmenstrual age. Functional responses induced by somatosensory stimulation of the wrists, ankles, and mouth had a distinct spatial organization as seen in the characteristic mature homunculus map. In comparison to the ankle, activation related to wrist stimulation was significantly larger and more commonly involved additional areas including the supplementary motor area and ipsilateral sensorimotor cortex. These results are in keeping with early intrinsic determination of a somatotopic map within the primary sensorimotor cortices. This may explain why acquired brain injury in this region during the preterm period cannot be compensated for by cortical reorganization and therefore can lead to long-lasting motor and sensory impairment.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - J Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - A G Allievi
- Department of Bioengineering, Imperial College London, London, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| |
Collapse
|
49
|
Hayat TTA, Rutherford MA. Neuroimaging perspectives on fetal motor behavior. Neurosci Biobehav Rev 2018; 92:390-401. [PMID: 29886176 DOI: 10.1016/j.neubiorev.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
We are entering a new era of understanding human development with the ability to perform studies at the earliest time points possible. There is a substantial body of evidence to support the concept that early motor behaviour originates from supraspinal motor centres, reflects neurological integrity, and that altered patterns of behaviour precede clinical manifestation of disease. Cine Magnetic Resonance Imaging (cineMRI) has established its value as a novel method to visualise motor behaviour in the human fetus, building on the wealth of knowledge gleaned from ultrasound based studies. This paper presents a state of the art review incorporating findings from human and preclinical models, the insights from which, we propose, can proceed a reconceptualisation of fetal motor behaviour using advanced imaging techniques. Foremost is the need to better understand the role of the intrauterine environment, and its inherent unique set of stimuli that activate sensorimotor pathways and shape early brain development. Finally, an improved model of early motor development, combined with multimodal imaging, will provide a novel source of in utero biomarkers predictive of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tayyib T A Hayat
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Mary A Rutherford
- Centre for the Developing Brain, Perinatal Imaging & Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, United Kingdom
| |
Collapse
|
50
|
Hayat TTA, Martinez-Biarge M, Kyriakopoulou V, Hajnal JV, Rutherford MA. Neurodevelopmental Correlates of Fetal Motor Behavior Assessed Using Cine MR Imaging. AJNR Am J Neuroradiol 2018; 39:1519-1522. [PMID: 29880478 DOI: 10.3174/ajnr.a5694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Fetal motor behavior is widely used as a clinical indicator for healthy development; however, our understanding of its potential as a marker for neurologic integrity is underdeveloped. MR imaging allows complete views of the whole fetus, which, combined with brain imaging, may improve the characterization of this relationship. This study aimed to combine an analysis of fetal motor behavior, brain MR imaging, and postnatal outcome, to provide insight into neurodevelopmental correlates of motor behavior. MATERIALS AND METHODS Cine MR imaging was used to acquire sequences of fetal motor behavior in subjects with normal and abnormal findings on conventional brain MR imaging between 18 weeks' gestation and term. General movement sequences were analyzed using established criteria. Brain MR imaging was reported by an expert fetal neuroradiologist. Subjects were followed for up to 4 years postnatally with standard postnatal assessments. RESULTS Nineteen of 21 fetuses with normal brain MR imaging findings showed normal general movements, compared with 14 of 22 of the fetuses with abnormal brain MR imaging findings, which, when classified by severity of the malformation, showed a significant relationship with postnatal outcome (P = .021). There was a significant relationship among neurodevelopmental outcome, general movement quality, and MR imaging of the brain (P = .020). CONCLUSIONS The findings from this study demonstrate that a combined structural and functional imaging approach to the fetus will improve the characterization of early neurologic integrity, with the potential to inform postnatal outcome. This also lays the groundwork for further in vivo research as advanced imaging techniques are developed to study fetal neurologic development.
Collapse
Affiliation(s)
- T T A Hayat
- From the Centre for the Developing Brain (T.T.A.H., V.K., J.V.H., M.A.R.), Perinatal Imaging and Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| | - M Martinez-Biarge
- Department of Paediatrics (M.M.-B.), Hammersmith Hospital, Imperial College London, London, UK
| | - V Kyriakopoulou
- From the Centre for the Developing Brain (T.T.A.H., V.K., J.V.H., M.A.R.), Perinatal Imaging and Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| | - J V Hajnal
- From the Centre for the Developing Brain (T.T.A.H., V.K., J.V.H., M.A.R.), Perinatal Imaging and Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| | - M A Rutherford
- From the Centre for the Developing Brain (T.T.A.H., V.K., J.V.H., M.A.R.), Perinatal Imaging and Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| |
Collapse
|