1
|
Hazelton JL, Carneiro F, Maito M, Richter F, Legaz A, Altschuler F, Cubillos-Pinilla L, Chen Y, Doherty CP, Baez S, Ibáñez A. Neuroimaging meta-analyses reveal convergence of interoception, emotion, and social cognition across neurodegenerative diseases. Biol Psychiatry 2024:S0006-3223(24)01697-4. [PMID: 39442786 DOI: 10.1016/j.biopsych.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Simultaneous interoceptive, emotional, and social cognition deficits are observed across neurodegenerative diseases. Indirect evidence suggests shared neurobiological bases underlying these impairments, termed the allostatic-interoceptive network (AIN). However, no study has yet explored the convergence of these deficits in neurodegenerative diseases or examined how structural and functional changes contribute to cross-domain impairments. METHODS A PRISMA Activated Likelihood Estimate (ALE) metanalyses encompassed studies meeting inclusion criteria: interoception, emotion, or social cognition tasks; neurodegenerative diseases (behavioral variant frontotemporal dementia (bvFTD), primary progressive aphasias (PPAs) Alzheimer's disease (AD), Parkinson's Disease (PD), multiple sclerosis (MS)); and neuroimaging (structural: MRI voxel-based morphometry; functional: fMRI and FDG-PET). RESULTS From 20,593 studies, 170 met inclusion criteria (58 interoception, 65 emotion, and 47 social cognition) involving 7032 participants (4963 patients and 2069 healthy controls). In all participants combined, conjunction analyses revealed AIN involvement of the insula, amygdala, orbitofrontal cortex, anterior cingulate, striatum, thalamus, and hippocampus across domains. In bvFTD this conjunction was replicated across domains, with further involvement of the temporal pole, temporal fusiform cortex, and angular gyrus. A convergence of interoception and emotion in the striatum, thalamus, and hippocampus in PD and the posterior insula in PPAs was also observed. In AD and MS, disruptions in the AIN were observed during interoception, but no convergence with emotion was identified. INTERPRETATION Neurodegeneration induces dysfunctional AIN across atrophy, connectivity, and metabolism, more accentuated in bvFTD. Findings bolster the predictive coding theories of large-scale AIN, calling for more synergistic approaches to understanding interoception, emotion, and social cognition impairments in neurodegeneration.
Collapse
Affiliation(s)
- Jessica L Hazelton
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, Australia
| | - Fábio Carneiro
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; Department of Neurology, ULS do Alto Ave, Guimarães, Portugal
| | - Marcelo Maito
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Fabian Richter
- Deutsches Herzzentrum der Charité, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agustina Legaz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Florencia Altschuler
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | | | - Yu Chen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Colin P Doherty
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA, Trinity College Dublin, Dublin, Ireland
| | - Sandra Baez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA, Trinity College Dublin, Dublin, Ireland; Universidad de los Andes, Bogota, Colombia
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Pearson A, Polly PD. Temporal lobe evolution in Hominidae and the origin of human lobe proportions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024:e25027. [PMID: 39360349 DOI: 10.1002/ajpa.25027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Objectives Evolutionary changes in hominin social complexity have been associated with increases in absolute brain size. The temporal lobes are nestled in the middle cranial fossae (MCF) of the skull, the dimensions of which allow estimation of temporal lobe volume (TLV) in extant and fossil taxa. Materials and Methods The main aim of this study is to determine where along the hominid phylogeny, major temporal lobe size transitions occurred. We used computed tomography (CT) scans of crania, 3D photogrammetry data, and laser surface scans of endocranial casts to measure seven MCF metrics in 11 extant anthropoid taxa using multiple regressions to estimate TLV in 5 extant hominids and 10 fossil hominins. Phylogenetic comparative methods mapped temporal lobe size, brain size, and temporal lobe proportions onto phylogenetic trees broadly for Hominidae and specifically for Hominini. Results Extant Homo sapiens were not an outlier in relative brain size, temporal lobe size, or proportions of the temporal lobes, but some proportions within the lobe were uniquely altered. The most notable changes in relative temporal lobe size and proportions saw a decrease in relative temporal lobe size and proportions in the genus Pan compared to other extant great apes and fossil hominins while there was a relative increase in the temporal lobe width and length in Australopithecus-Paranthropus clade compared to the genus Homo and other extant great apes including modern humans. Discussion We do not find support for the social brain, environmental or functional craniology hypotheses alone but think it prudent to consider the implications of cerebral reorganization between the temporal lobes and other regions of the brain within the context of these hypotheses and with future investigation is warranted.
Collapse
Affiliation(s)
- Alannah Pearson
- School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - P David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Ma N, Harasawa N, Ueno K, Cheng K, Nakahara H. Decision-Making with Predictions of Others' Likely and Unlikely Choices in the Human Brain. J Neurosci 2024; 44:e2236232024. [PMID: 39179384 PMCID: PMC11403098 DOI: 10.1523/jneurosci.2236-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
For better decisions in social interactions, humans often must understand the thinking of others and predict their actions. Since such predictions are uncertain, multiple predictions may be necessary for better decision-making. However, the neural processes and computations underlying such social decision-making remain unclear. We investigated this issue by developing a behavioral paradigm and performing functional magnetic resonance imaging and computational modeling. In our task, female and male participants were required to predict others' choices in order to make their own value-based decisions, as the outcome depended on others' choices. Results showed, to make choices, the participants mostly relied on a value difference (primary) generated from the case where others would make a likely choice, but sometimes they additionally used another value difference (secondary) from the opposite case where others make an unlikely choice. We found that the activations in the posterior cingulate cortex (PCC) correlated with the primary difference while the activations in the right dorsolateral prefrontal cortex (rdlPFC) correlated with the secondary difference. Analysis of neural coupling and temporal dynamics suggested a three-step processing network, beginning with the left amygdala signals for predictions of others' choices. Modulated by these signals, the PCC and rdlPFC reflect the respective value differences for self-decisions. Finally, the medial prefrontal cortex integrated these decision signals for a final decision. Our findings elucidate the neural process of constructing value-based decisions by predicting others and illuminate their key variables with social modulations, providing insight into the differential functional roles of these brain regions in this process.
Collapse
Affiliation(s)
- Ning Ma
- Laboratory for Integrated Theoretical Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Norihiro Harasawa
- Laboratory for Integrated Theoretical Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kenichi Ueno
- Support Unit for Functional Magnetic Resonance Imaging, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kang Cheng
- Support Unit for Functional Magnetic Resonance Imaging, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Laboratory for Cognitive Brain Mapping, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hiroyuki Nakahara
- Laboratory for Integrated Theoretical Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
| |
Collapse
|
4
|
Cheng TW, Mills KL, Pfeifer JH. Revisiting adolescence as a sensitive period for sociocultural processing. Neurosci Biobehav Rev 2024; 164:105820. [PMID: 39032845 PMCID: PMC11407824 DOI: 10.1016/j.neubiorev.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Waves of research and public discourse have characterized adolescence as periods of developmental risk and opportunity. Underlying this discussion is the recognition that adolescence is a period of major biological and social transition when experience may have an outsized effect on development. This article updates and expands upon prior work suggesting that adolescence may be a sensitive period for sociocultural processing specifically. By integrating evidence from developmental psychology and neuroscience, we identify how trajectories of social and neurobiological development may relate to adolescents' ability to adapt to and learn from their social environments. However, we also highlight gaps in the literature, including challenges in attributing developmental change to adolescent experiences. We discuss the importance of better understanding variability in biology (e.g., pubertal development) and cultural environments, as well as distinguishing between sensitive periods and periods of heightened sensitivity. Finally, we look toward future directions and translational implications of this research.
Collapse
Affiliation(s)
- Theresa W Cheng
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA; Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA.
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1227 University of Oregon, Eugene, OR 97403-1227, USA.
| |
Collapse
|
5
|
Alcalá-López D, Mei N, Margolles P, Soto D. Brain-wide representation of social knowledge. Soc Cogn Affect Neurosci 2024; 19:nsae032. [PMID: 38804694 PMCID: PMC11173195 DOI: 10.1093/scan/nsae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 05/30/2024] [Indexed: 05/29/2024] Open
Abstract
Understanding how the human brain maps different dimensions of social conceptualizations remains a key unresolved issue. We performed a functional magnetic resonance imaging (MRI) study in which participants were exposed to audio definitions of personality traits and asked to simulate experiences associated with the concepts. Half of the concepts were affective (e.g. empathetic), and the other half were non-affective (e.g. intelligent). Orthogonally, half of the concepts were highly likable (e.g. sincere) and half were socially undesirable (e.g. liar). Behaviourally, we observed that the dimension of social desirability reflected the participant's subjective ratings better than affect. FMRI decoding results showed that both social desirability and affect could be decoded in local patterns of activity through distributed brain regions including the superior temporal, inferior frontal, precuneus and key nodes of the default mode network in posterior/anterior cingulate and ventromedial prefrontal cortex. Decoding accuracy was better for social desirability than affect. A representational similarity analysis further demonstrated that a deep language model significantly predicted brain activity associated with the concepts in bilateral regions of superior and anterior temporal lobes. The results demonstrate a brain-wide representation of social knowledge, involving default model network systems that support the multimodal simulation of social experience, with a further reliance on language-related preprocessing.
Collapse
Affiliation(s)
- Daniel Alcalá-López
- Consciousness group, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Ning Mei
- Psychology Department, Shenzhen University, Nanshan district, Guangdong province 3688, China
| | - Pedro Margolles
- Consciousness group, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - David Soto
- Consciousness group, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| |
Collapse
|
6
|
Lin A, Akafia C, Dal Monte O, Fan S, Fagan N, Putnam P, Tye KM, Chang S, Ba D, Allsop AZAS. An unbiased method to partition diverse neuronal responses into functional ensembles reveals interpretable population dynamics during innate social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593229. [PMID: 38766234 PMCID: PMC11100741 DOI: 10.1101/2024.05.08.593229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In neuroscience, understanding how single-neuron firing contributes to distributed neural ensembles is crucial. Traditional methods of analysis have been limited to descriptions of whole population activity, or, when analyzing individual neurons, criteria for response categorization varied significantly across experiments. Current methods lack scalability for large datasets, fail to capture temporal changes and rely on parametric assumptions. There's a need for a robust, scalable, and non-parametric functional clustering approach to capture interpretable dynamics. To address this challenge, we developed a model-based, statistical framework for unsupervised clustering of multiple time series datasets that exhibit nonlinear dynamics into an a-priori-unknown number of parameterized ensembles called Functional Encoding Units (FEUs). FEU outperforms existing techniques in accuracy and benchmark scores. Here, we apply this FEU formalism to single-unit recordings collected during social behaviors in rodents and primates and demonstrate its hypothesis-generating and testing capacities. This novel pipeline serves as an analytic bridge, translating neural ensemble codes across model systems.
Collapse
Affiliation(s)
- Alexander Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cyril Akafia
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Siqi Fan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Nicholas Fagan
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Philip Putnam
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| | - Steve Chang
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Demba Ba
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Sciences, Harvard University, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Artificial and Natural Intelligence, Harvard University, Cambridge, Massachusetts, USA
| | - AZA Stephen Allsop
- Center for Collective Healing, Department of Psychiatry and Behavioral Sciences, Howard University, Washington DC, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Consonni M, Faltracco V, Dalla Bella E, Telesca A, Bersano E, Nigri A, Demichelis G, Medina JP, Bruzzone MG, Lauria G. Loneliness as neurobehavioral issue in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2024; 11:1122-1134. [PMID: 38389222 DOI: 10.1002/acn3.52028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE In elderly people loneliness represents a risk factor for dementia and may negatively impact on mental and physical health. The specific contribute of loneliness to cognitive and behavioral functioning have not yet been determined in amyotrophic lateral sclerosis (ALS). Our hypothesis was that loneliness may be related to motor dysfunction with a negative impact on cognitive and behavioral decline, possibly related to specific cortical involvement. METHODS In 200 ALS patients (ALSpts) and 50 healthy controls (HCs) we measured loneliness, mood, and quality of life (QoL). ALSpts underwent comprehensive clinical, genetic, and neuropsychological assessment to define phenotypes. Seventy-seven ALSpts performed 3T MRI scans to measure cortical thickness. Between-group, partial correlation and regression analyses were used to examined clinical, neuropsychological, and cortical signatures of loneliness. RESULTS Feelings of loneliness were documented in 38% of ALSpts (ALS/L+pts) and in 47% of HCs. In both groups loneliness was associated with anxiety (P < 0.001), depression (P ≤ 0.005), and poor QoL (P < 0.001). ALS/L+pts had similar motor dysfunctions and cognitive abilities than non-lonely ALSpts, but distinct behavioral profiles (P ≤ 0.005) and frontoparietal involvement (P < 0.05). Loneliness in ALS is related to behavioral changes, apathy, and emotional dysregulation (P < 0.001). INTERPRETATION Our cross-sectional study indicates that, in ALS, the satisfaction of social environment is associated with a sense of life well-being that is not limited to the motor status, proving instead that loneliness can impact on disease-related neurobehavioral changes with a possible flashback on brain architecture. This suggests that sociality could promote personal resilience against behavioral and affective decline in ALS.
Collapse
Affiliation(s)
- Monica Consonni
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Veronica Faltracco
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Alessandra Telesca
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Enrica Bersano
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, Milan, 20133, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Greta Demichelis
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Jean P Medina
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Maria G Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Luigi Celoria 11, Milan, 20133, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, Milan, 20133, Italy
| |
Collapse
|
8
|
Lin Q, Shi Y, Huang H, Jiao B, Kuang C, Chen J, Rao Y, Zhu Y, Liu W, Huang R, Lin J, Ma L. Functional brain network alterations in the co-occurrence of autism spectrum disorder and attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:369-380. [PMID: 36800038 DOI: 10.1007/s00787-023-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.
Collapse
Affiliation(s)
- Qiwen Lin
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huiyuan Huang
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Bingqing Jiao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Changyi Kuang
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Jiawen Chen
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yuyang Rao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yunpeng Zhu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Wenting Liu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Ruiwang Huang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China.
- Institut Des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard, Lyon 1, Lyon, France.
| | - Lijun Ma
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Hadaya L, Vanes L, Karolis V, Kanel D, Leoni M, Happé F, Edwards AD, Counsell SJ, Batalle D, Nosarti C. Distinct Neurodevelopmental Trajectories in Groups of Very Preterm Children Screening Positively for Autism Spectrum Conditions. J Autism Dev Disord 2024; 54:256-269. [PMID: 36273367 DOI: 10.1007/s10803-022-05789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Abstract
Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lucy Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Vyacheslav Karolis
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marguerite Leoni
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
10
|
McNamara P. Religion and the brain: Jordan Grafman's contributions to religion and brain research and the special case of religious language. Cortex 2023; 169:374-379. [PMID: 37995522 DOI: 10.1016/j.cortex.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Grafman and colleagues' papers in religion and brain research have documented the extent to which religious beliefs and behaviors are mediated by standard social cognitive networks in brain. Grafman's work however also points beyond treatments of religious cognition as merely a species of more general social cognitive processes. Data emerging from experiments targeting mystical states as well as reports of encounters with supernatural agents during controlled experiments with psychedelics, suggest that brain mediation of mystical encounters with supernatural agents involves both disruption/downregulation of social cognitive networks and activation of an additional as yet only partially identified neural process suggesting that a full neuroscience account of religious beliefs, behaviors and experiences must extend beyond treatment of religion as an ordinary social process.
Collapse
Affiliation(s)
- Patrick McNamara
- Department of Psychology, National University, USA; Boston University School of Medicine, USA; Boston University School of Theology, USA; Co-PI Cognitive Neuroscience of Religious Cognition (CNRC) Project, USA; Center for Mind and Culture, Boston, MA, USA.
| |
Collapse
|
11
|
Li F, Lin Q, Zhao X, Hu Z. Description length guided nonlinear unified Granger causality analysis. Netw Neurosci 2023; 7:1109-1128. [PMID: 37781142 PMCID: PMC10473308 DOI: 10.1162/netn_a_00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 10/03/2023] Open
Abstract
Most Granger causality analysis (GCA) methods still remain a two-stage scheme guided by different mathematical theories; both can actually be viewed as the same generalized model selection issues. Adhering to Occam's razor, we present a unified GCA (uGCA) based on the minimum description length principle. In this research, considering the common existence of nonlinearity in functional brain networks, we incorporated the nonlinear modeling procedure into the proposed uGCA method, in which an approximate representation of Taylor's expansion was adopted. Through synthetic data experiments, we revealed that nonlinear uGCA was obviously superior to its linear representation and the conventional GCA. Meanwhile, the nonlinear characteristics of high-order terms and cross-terms would be successively drowned out as noise levels increased. Then, in real fMRI data involving mental arithmetic tasks, we further illustrated that these nonlinear characteristics in fMRI data may indeed be drowned out at a high noise level, and hence a linear causal analysis procedure may be sufficient. Next, involving autism spectrum disorder patients data, compared with conventional GCA, the network property of causal connections obtained by uGCA methods appeared to be more consistent with clinical symptoms.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Lin
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiaohu Zhao
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhenghui Hu
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
12
|
van Leeuwen JEP, Crutch SJ, Warren JD. Thinking eyes: visual thinking strategies and the social brain. Front Psychol 2023; 14:1222608. [PMID: 37829065 PMCID: PMC10565500 DOI: 10.3389/fpsyg.2023.1222608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
The foundation of art processes in the social brain can guide the scientific study of how human beings perceive and interact with their environment. Here, we applied the theoretical frameworks of the social and artistic brain connectomes to an eye-tracking paradigm with the aim to elucidate how different viewing conditions and social cues influence gaze patterns and personal resonance with artworks and complex imagery in healthy adults. We compared two viewing conditions that encourage personal or social perspective taking-modeled on the well-known Visual Thinking Strategies (VTS) method-to a viewing condition during which only contextual information about the image was provided. Our findings showed that the viewing conditions that used VTS techniques directed the gaze more toward highly salient social cues (Animate elements) in artworks and complex imagery, compared to when only contextual information was provided. We furthermore found that audio cues also directed visual attention, whereby listening to a personal reflection by another person (VTS) had a stronger effect than contextual information. However, we found no effect of viewing condition on the personal resonance with the artworks and complex images when taking the random effects of the image selection into account. Our study provides a neurobiological grounding of the VTS method in the social brain, revealing that this pedagogical method of engaging viewers with artworks measurably shapes people's visual exploration patterns. This is not only of relevance to (art) education but also has implications for art-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Janneke E. P. van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Thinking Eye, ACAVA Limehouse Art Foundation, London, United Kingdom
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Jimenez AM, Clayson PE, Hasratian AS, Lee J, Reavis EA, Wynn JK, Green MF, Horan WP. Neuroimaging of social motivation during winning and losing: Associations with social anhedonia across the psychosis spectrum. Neuropsychologia 2023; 188:108621. [PMID: 37321406 PMCID: PMC10527321 DOI: 10.1016/j.neuropsychologia.2023.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Individuals with psychosis spectrum disorders (PSD) have difficulty developing social relationships. This difficulty may reflect reduced response to social feedback involving functional alterations in brain regions that support the social motivation system: ventral striatum, orbital frontal cortex, insula, dorsal anterior cingulate cortex, and amygdala. Whether these alterations span PSD is unknown. METHODS 71 individuals with PSD, 27 unaffected siblings, and 37 control participants completed a team-based fMRI task. After each trial, participants received performance feedback paired with the expressive face of a teammate or opponent. A 2 × 2 (win versus loss outcome x teammate versus opponent) repeated measures ANOVA by group was performed on activation in the five key regions of interest during receipt of feedback. RESULTS Across groups, three social motivation regions, ventral striatum, orbital frontal cortex, and amygdala, showed sensitivity to feedback (significant main effect of outcome), with greater activation during win versus loss trials, regardless of whether the feedback was from a teammate or opponent. In PSD, ventral striatum and orbital frontal cortex activation to win feedback was negatively correlated with social anhedonia scores. CONCLUSIONS Patterns of neural activation during social feedback were similar in PSD, their unaffected siblings, and healthy controls. Across the psychosis spectrum, activity in key social motivation regions during social feedback was associated with individual differences in social anhedonia.
Collapse
Affiliation(s)
- Amy M Jimenez
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Peter E Clayson
- Department of Psychology, University of South Florida, Tampa, FL, USA
| | - Arpi S Hasratian
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Junghee Lee
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric A Reavis
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan K Wynn
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael F Green
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
14
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231188147. [PMID: 37669015 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
15
|
Ferrari E, Butti N, Gagliardi C, Romaniello R, Borgatti R, Urgesi C. Cognitive predictors of Social processing in congenital atypical development. J Autism Dev Disord 2023; 53:3343-3355. [PMID: 35729297 DOI: 10.1007/s10803-022-05630-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
According to current accounts of social cognition, the emergence of verbal and non-verbal components of social perception might rely on the acquisition of different cognitive abilities. These components might be differently sensitive to the pattern of neuropsychological impairments in congenital neurodevelopmental disorders. Here, we explored the association between social and non-social cognitive domains by administering subtests of the NEPSY-II battery to 92 patients with Intellectual and Developmental Disability (IDD). Regardless the level of intellectual functioning and presence of congenital brain malformations, results revealed that visuospatial skills predicted emotion recognition and verbal component of Theory of Mind, whereas imitation predicted the non-verbal one. Future interventions might focus on spatial and sensorimotor abilities to boost the development of social cognition in IDD.
Collapse
Affiliation(s)
- Elisabetta Ferrari
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy.
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Gagliardi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- SPAEE, Catholic University of the Sacred Heart, Milan, Italy
| | - Romina Romaniello
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| |
Collapse
|
16
|
Zhang J, Fang S, Yao Y, Li F, Luo Q. Parsing the heterogeneity of brain-symptom associations in autism spectrum disorder via random forest with homogeneous canonical correlation. J Affect Disord 2023; 335:36-43. [PMID: 37156272 DOI: 10.1016/j.jad.2023.04.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous developmental disorder, but the neuroimaging substrates of its heterogeneity remain unknown. The difficulty lies mainly on the significant individual variability in the brain-symptom association. METHODS T1-weighted magnetic resonance imaging data from the Autism Brain Imaging Database Exchange (ABIDE) (NTDC = 1146) were used to generate a normative model to map brain structure deviations of cases (NASD = 571). Voxel-based morphometry (VBM) was used to compute gray matter volume (GMV). Singular Value Decomposition (SVD) was employed to perform dimensionality reduction. A tree-based algorithm was proposed to identify the ASD subtypes according to the pattern of brain-symptom association as assessed by a homogeneous canonical correlation. RESULTS We identified 4 ASD subtypes with distinct association patterns between residual volumes and a social symptom score. More severe the social symptom was associated with greater GMVs in both the frontoparietal regions for the subtype1 (r = 0.29-0.44) and the ventral visual pathway for the subtype3 (r = 0.19-0.23), but lower GMVs in both the right anterior cingulate cortex for the subtype4 (r = -0.25) and a few subcortical regions for the subtype2 (r = -0.31-0.20). The subtyping significantly improved the classification accuracy between cases and controls from 0.64 to 0.75 (p < 0.05, permutation test), which was also better than the accuracy of 0.68 achieved by the k-means-based subtyping (p < 0.01). LIMITATIONS Sample size limited the study due to the missing data. CONCLUSIONS These findings suggest that the heterogeneity of ASD might reflect changes in different subsystems of the social brain, especially including social attention, motivation, perceiving and evaluation.
Collapse
Affiliation(s)
- Jiajun Zhang
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Shuanfeng Fang
- Department of Children Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Yin Yao
- Department of Computational Biology, School of Life Sciences, Fudan University, PR China
| | - Fei Li
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, School of Life Sciences, Fudan University, Shanghai 200433, PR China; Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Ogawa K, Matsuyama Y. Heterogeneity of social cognition between visual perspective-taking and theory of mind in the temporo-parietal junction. Neurosci Lett 2023; 807:137267. [PMID: 37094640 DOI: 10.1016/j.neulet.2023.137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Visual perspective taking (VPT), particularly level 2 VPT (VPT2), which allows an individual to understand that the same object can be seen differently by others, is related to the theory of mind (ToM), because both functions require a decoupled representation from oneself. Although previous neuroimaging studies have shown that VPT and ToM activate the temporo-parietal junction (TPJ), it is unclear whether common neural substrates are involved in VPT and ToM. To clarify this point, we directly compared the TPJ activation patterns of individual participants performing VPT2 and ToM tasks using functional magnetic resonance imaging and within-subjects design. A whole-brain analysis revealed that VPT2 and ToM activated overlapping areas in the posterior part of the TPJ. In addition, we found that both the peak coordinates and activated regions for ToM were located significantly more anteriorly and dorsally within the bilateral TPJ than those measured during the VPT2 task. We further confirmed that these activity areas were spatially distinct from the nearby extrastriate body area (EBA), visual motion area (MT+), and the posterior superior temporal sulcus (pSTS) using independent localizer scans. Our findings revealed that VPT2 and ToM have gradient representations, indicating the functional heterogeneity of social cognition within the TPJ.
Collapse
Affiliation(s)
- Kenji Ogawa
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University.
| | - Yuiko Matsuyama
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University
| |
Collapse
|
18
|
Shaw DJ, Czekóová K, Mareček R, Havlice Špiláková B, Brázdil M. The interacting brain: Dynamic functional connectivity among canonical brain networks dissociates cooperative from competitive social interactions. Neuroimage 2023; 269:119933. [PMID: 36754124 DOI: 10.1016/j.neuroimage.2023.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
We spend much our lives interacting with others in various social contexts. Although we deal with this myriad of interpersonal exchanges with apparent ease, each one relies upon a broad array of sophisticated cognitive processes. Recent research suggests that the cognitive operations supporting interactive behaviour are themselves underpinned by several canonical functional brain networks (CFNs) that integrate dynamically with one another in response to changing situational demands. Dynamic integrations among these CFNs should therefore play a pivotal role in coordinating interpersonal behaviour. Further, different types of interaction should present different demands on cognitive systems, thereby eliciting distinct patterns of dynamism among these CFNs. To investigate this, the present study performed functional magnetic resonance imaging (fMRI) on 30 individuals while they interacted with one another cooperatively or competitively. By applying a novel combination of analytical techniques to these brain imaging data, we identify six states of dynamic functional connectivity characterised by distinct patterns of integration and segregation among specific CFNs that differ systematically between these opposing types of interaction. Moreover, applying these same states to fMRI data acquired from an independent sample engaged in the same kinds of interaction, we were able to classify interpersonal exchanges as cooperative or competitive. These results provide the first direct evidence for the systematic involvement of CFNs during social interactions, which should guide neurocognitive models of interactive behaviour and investigations into biomarkers for the interpersonal dysfunction characterizing many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- D J Shaw
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Department of Psychology, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - K Czekóová
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Institue of Psychology, Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic
| | - R Mareček
- Multimodal and Functional Neuroimaging, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - B Havlice Špiláková
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - M Brázdil
- Behavioural and Social Neuroscience, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
19
|
Maliske LZ, Schurz M, Kanske P. Interactions within the social brain: Co-activation and connectivity among networks enabling empathy and Theory of Mind. Neurosci Biobehav Rev 2023; 147:105080. [PMID: 36764638 DOI: 10.1016/j.neubiorev.2023.105080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/08/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Empathy and Theory of Mind (ToM) have classically been studied as separate social functions, however, recent advances demonstrate the need to investigate the two in interaction: naturalistic settings often blur the distinction of affect and cognition and demand the simultaneous processing of such different stimulus dimensions. Here, we investigate how empathy and ToM related brain networks interact in contexts wherein multiple cognitive and affective demands must be processed simultaneously. Building on the findings of a recent meta-analysis and hierarchical clustering analysis, we perform meta-analytic connectivity modeling to determine patterns of task-context specific network changes. We analyze 140 studies including classical empathy and ToM tasks, as well as complex social tasks. For studies at the intersection of empathy and ToM, neural co-activation patterns included areas typically associated with both empathy and ToM. Network integration is discussed as a means of combining mechanisms across unique behavioral domains. Such integration may enable adaptive behavior in complex, naturalistic social settings that require simultaneous processing of a multitude of different affective and cognitive information.
Collapse
Affiliation(s)
- Lara Z Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Chemnitzer Straße 46, 01187 Dresden, Germany.
| | - Matthias Schurz
- Institute of Psychology and Digital Science Center, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; Donders Institute for Brain, Cognition, & Behaviour, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, Netherlands; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, 13 Mansifield Road, Oxford OX1 3SR, United Kingdom
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Chemnitzer Straße 46, 01187 Dresden, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Tantchik W, Green MJ, Quidé Y, Erk S, Mohnke S, Wackerhagen C, Romanczuk-Seiferth N, Tost H, Schwarz K, Moessnang C, Bzdok D, Meyer-Lindenberg A, Heinz A, Walter H. Investigating the neural correlates of affective mentalizing and their association with general intelligence in patients with schizophrenia. Schizophr Res 2023; 254:190-198. [PMID: 36921404 DOI: 10.1016/j.schres.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mentalizing impairment in schizophrenia has been linked to altered neural responses. This study aimed to replicate previous findings of altered activation of the mentalizing network in schizophrenia and investigate its possible association with impaired domain-general cognition. STUDY DESIGN We analyzed imaging data from two large multi-centric German studies including 64 patients, 64 matched controls and a separate cohort of 300 healthy subjects, as well as an independent Australian study including 46 patients and 61 controls. All subjects underwent functional magnetic resonance imaging while performing the same affective mentalizing task and completed a cognitive assessment battery. Group differences in activation of the mentalizing network were assessed by classical as well as Bayesian two-sample t-tests. Multiple regression analysis was performed to investigate effects of neurocognitive measures on activation of the mentalizing network. STUDY RESULTS We found no significant group differences in activation of the mentalizing network. Bayes factors indicate that these results provide genuine evidence for the null hypothesis. We found a positive association between verbal intelligence and activation of the medial prefrontal cortex, a key region of the mentalizing network, in three independent samples. Finally, individuals with low verbal intelligence showed altered activation in areas previously implicated in mentalizing dysfunction in schizophrenia. CONCLUSIONS Mentalizing activation in patients with schizophrenia might not differ compared to large well-matched groups of healthy controls. Verbal intelligence is an important confounding variable in group comparisons, which should be considered in future studies of the neural correlates of mentalizing dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Wladimir Tantchik
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany.
| | - Melissa J Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Yann Quidé
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Susanne Erk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Sebastian Mohnke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Wackerhagen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Heike Tost
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Kristina Schwarz
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Carolin Moessnang
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Mila - Quebec Artificial Intelligence Institute, 6666 Rue Saint-Urbain, #200, Montreal, Quebec H2S 3H1, Canada
| | | | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
21
|
Atzil S, Satpute AB, Zhang J, Parrish MH, Shablack H, MacCormack JK, Leshin J, Goel S, Brooks JA, Kang J, Xu Y, Cohen M, Lindquist KA. The impact of sociality and affective valence on brain activation: A meta-analysis. Neuroimage 2023; 268:119879. [PMID: 36642154 DOI: 10.1016/j.neuroimage.2023.119879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Thirty years of neuroimaging reveal the set of brain regions consistently associated with pleasant and unpleasant affect in humans-or the neural reference space for valence. Yet some of humans' most potent affective states occur in the context of other humans. Prior work has yet to differentiate how the neural reference space for valence varies as a product of the sociality of affective stimuli. To address this question, we meta-analyzed across 614 social and non-social affective neuroimaging contrasts, summarizing the brain regions that are consistently activated for social and non-social affective information. We demonstrate that across the literature, social and non-social affective stimuli yield overlapping activations within regions associated with visceromotor control, including the amygdala, hypothalamus, anterior cingulate cortex and insula. However, we find that social processing differs from non-social affective processing in that it involves additional cortical activations in the medial prefrontal and posterior cingulum that have been associated with mentalizing and prediction. A Bayesian classifier was able to differentiate unpleasant from pleasant affect, but not social from non-social affective states. Moreover, it was not able to classify unpleasantness from pleasantness at the highest levels of sociality. These findings suggest that highly social scenarios may be equally salient to humans, regardless of their valence.
Collapse
Affiliation(s)
- Shir Atzil
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Jiahe Zhang
- Northeastern University, Boston, MA, United States
| | | | - Holly Shablack
- Washington and Lee University, Lexington, VA, United States
| | | | - Joseph Leshin
- University of North Carolina, Chapel Hill, NC, United States
| | | | - Jeffrey A Brooks
- Hume AI, New York, NY, United States; University of California, Berkeley, CA, United States
| | - Jian Kang
- University of Michigan, Ann Arbor, MI, United States
| | - Yuliang Xu
- University of Michigan, Ann Arbor, MI, United States
| | - Matan Cohen
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
22
|
Li B, Solanas MP, Marrazzo G, Raman R, Taubert N, Giese M, Vogels R, de Gelder B. A large-scale brain network of species-specific dynamic human body perception. Prog Neurobiol 2023; 221:102398. [PMID: 36565985 DOI: 10.1016/j.pneurobio.2022.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This ultrahigh field 7 T fMRI study addressed the question of whether there exists a core network of brain areas at the service of different aspects of body perception. Participants viewed naturalistic videos of monkey and human faces, bodies, and objects along with mosaic-scrambled videos for control of low-level features. Independent component analysis (ICA) based network analysis was conducted to find body and species modulations at both the voxel and the network levels. Among the body areas, the highest species selectivity was found in the middle frontal gyrus and amygdala. Two large-scale networks were highly selective to bodies, dominated by the lateral occipital cortex and right superior temporal sulcus (STS) respectively. The right STS network showed high species selectivity, and its significant human body-induced node connectivity was focused around the extrastriate body area (EBA), STS, temporoparietal junction (TPJ), premotor cortex, and inferior frontal gyrus (IFG). The human body-specific network discovered here may serve as a brain-wide internal model of the human body serving as an entry point for a variety of processes relying on body descriptions as part of their more specific categorization, action, or expression recognition functions.
Collapse
Affiliation(s)
- Baichen Li
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Giuseppe Marrazzo
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Rajani Raman
- Laboratory for Neuro, and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Nick Taubert
- Section for Computational Sensomotorics, Centre for Integrative Neuroscience & Hertie Institute for Clinical Brain Research, University Clinic Tübingen, Tübingen 72076, Germany
| | - Martin Giese
- Section for Computational Sensomotorics, Centre for Integrative Neuroscience & Hertie Institute for Clinical Brain Research, University Clinic Tübingen, Tübingen 72076, Germany
| | - Rufin Vogels
- Laboratory for Neuro, and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands; Department of Computer Science, University College London, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Chen X, Liu J, Luo YJ, Feng C. Brain Systems Underlying Fundamental Motivations of Human Social Conformity. Neurosci Bull 2023; 39:328-342. [PMID: 36287291 PMCID: PMC9905476 DOI: 10.1007/s12264-022-00960-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 01/10/2023] Open
Abstract
From birth to adulthood, we often align our behaviors, attitudes, and opinions with a majority, a phenomenon known as social conformity. A seminal framework has proposed that conformity behaviors are mainly driven by three fundamental motives: a desire to gain more information to be accurate, to obtain social approval from others, and to maintain a favorable self-concept. Despite extensive interest in neuroimaging investigation of social conformity, the relationship between brain systems and these fundamental motivations has yet to be established. Here, we reviewed brain imaging findings of social conformity with a componential framework, aiming to reveal the neuropsychological substrates underlying different conformity motivations. First, information-seeking engages the evaluation of social information, information integration, and modification of task-related activity, corresponding to brain networks implicated in reward, cognitive control, and tasks at hand. Second, social acceptance involves the anticipation of social acceptance or rejection and mental state attribution, mediated by networks of reward, punishment, and mentalizing. Third, self-enhancement entails the excessive representation of positive self-related information and suppression of negative self-related information, ingroup favoritism and/or outgroup derogation, and elaborated mentalizing processes to the ingroup, supported by brain systems of reward, punishment, and mentalizing. Therefore, recent brain imaging studies have provided important insights into the fundamental motivations of social conformity in terms of component processes and brain mechanisms.
Collapse
Affiliation(s)
- Xinling Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jiaxi Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yue-Jia Luo
- Department of Applied Psychology, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- The Research Center of Brain Science and Visual Cognition, Kunming University of Science and Technology, Kunming, 650506, China.
- College of Teacher Education, Qilu Normal University, Jinan, 250200, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
- School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Fujiwara S, Ishibashi R, Tanabe-Ishibashi A, Kawashima R, Sugiura M. Sincere praise and flattery: reward value and association with the praise-seeking trait. Front Hum Neurosci 2023; 17:985047. [PMID: 36875234 PMCID: PMC9974641 DOI: 10.3389/fnhum.2023.985047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Sincere praise reliably conveys positive or negative feedback, while flattery always conveys positive but unreliable feedback. These two praise types have not been compared in terms of communication effectiveness and individual preferences using neuroimaging. Through functional magnetic resonance imaging, we measured brain activity when healthy young participants received sincere praise or flattery after performing a visual search task. Higher activation was observed in the right nucleus accumbens during sincere praise than during flattery, and praise reliability correlated with posterior cingulate cortex activity, implying a rewarding effect of sincere praise. In line with this, sincere praise uniquely activated several cortical areas potentially involved in concern regarding others' evaluations. A high praise-seeking tendency was associated with lower activation of the inferior parietal sulcus during sincere praise compared to flattery after poor task performance, potentially reflecting suppression of negative feedback to maintain self-esteem. In summary, the neural dynamics of the rewarding and socio-emotional effects of praise differed.
Collapse
Affiliation(s)
| | - Ryo Ishibashi
- Smart-Aging Research Center, Tohoku University, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Smart-Aging Research Center, Tohoku University, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Motoaki Sugiura
- Smart-Aging Research Center, Tohoku University, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Fleischman DA, Arfanakis K, Zhang S, Leurgans SE, Barnes LL, Bennett DA, Marquez DX, Lamar M. Acculturation in Context and Brain Health in Older Latino Adults: A Diffusion Tensor Imaging Study. J Alzheimers Dis 2023; 95:1585-1595. [PMID: 37718813 PMCID: PMC10599486 DOI: 10.3233/jad-230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Latinos are at higher risk of developing mild cognitive impairment (MCI) and Alzheimer's disease than non-Latino Whites. Acculturation factors may influence this risk, yet there are few studies that have examined associations of acculturation, particularly in the context of socioenvironmental and familial factors, and brain health in older Latinos. OBJECTIVE To examine potential associations between acculturation in context and brain health in older Latinos. METHODS Using three previously established composites of acculturation-in-context, (acculturation-related: nativity status, language preference, acculturation scores; contextually-related socioenvironmental: perceived discrimination, loneliness/social isolation, social network size; and familism), and diffusion-tensor imaging (DTI), associations with white matter structural integrity were examined in 92 Latino adults without dementia participating in one of three epidemiological studies of aging. Linear regression models were used to test associations with DTI-derived metrics (fractional anisotropy, FA; trace) as separate outcomes and acculturation composite scores as individual predictors, while adjusting for age, sex, education, scanner, and white matter hyperintensities (voxelwise and total volumes normalized by intracranial volume). RESULTS Higher scores on the socioenvironmental composite were associated with lower FA in two clusters of left-hemisphere connections. Cluster 1 was dominated by both short association pathways connecting frontal regions and projection pathways connecting frontal regions with the thalamus. Cluster 2 was dominated by long association pathways connecting parietal, frontal, and temporal regions. CONCLUSIONS This study of older Latino adults demonstrated an association between reduced brain white matter integrity and contextually related socioenvironmental experiences known to increase risk of MCI and Alzheimer's disease.
Collapse
Affiliation(s)
- Debra A. Fleischman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Shengwei Zhang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David X. Marquez
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
26
|
Bzdok D, Dunbar RIM. Social isolation and the brain in the pandemic era. Nat Hum Behav 2022; 6:1333-1343. [PMID: 36258130 DOI: 10.1038/s41562-022-01453-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
Intense sociality has been a catalyst for human culture and civilization, and our social relationships at a personal level play a pivotal role in our health and well-being. These relationships are, however, sensitive to the time we invest in them. To understand how and why this should be, we first outline the evolutionary background in primate sociality from which our human social world has emerged. We then review defining features of that human sociality, putting forward a framework within which one can understand the consequences of mass social isolation during the COVID-19 pandemic, including mental health deterioration, stress, sleep disturbance and substance misuse. We outline recent research on the neural basis of prolonged social isolation, highlighting especially higher-order neural circuits such as the default mode network. Our survey of studies covers the negative effects of prolonged social deprivation and the multifaceted drivers of day-to-day pandemic experiences.
Collapse
Affiliation(s)
- Danilo Bzdok
- The Neuro-Montreal Neurological Institute (MNI), McConnell Brain-Imaging Centre (BIC), Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Learning about threat from friends and strangers is equally effective: An fMRI study on observational fear conditioning. Neuroimage 2022; 263:119648. [PMID: 36162633 DOI: 10.1016/j.neuroimage.2022.119648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Humans often benefit from social cues when learning about the world. For instance, learning about threats from others can save the individual from dangerous first-hand experiences. Familiarity is believed to increase the effectiveness of social learning, but it is not clear whether it plays a role in learning about threats. Using functional magnetic resonance imaging, we undertook a naturalistic approach and investigated whether there was a difference between observational fear learning from friends and strangers. Participants (observers) witnessed either their friends or strangers (demonstrators) receiving aversive (shock) stimuli paired with colored squares (observational learning stage). Subsequently, participants watched the same squares, but without receiving any shocks (direct-expression stage). We observed a similar pattern of brain activity in both groups of observers. Regions related to threat responses (amygdala, anterior insula, anterior cingulate cortex) and social perception (fusiform gyrus, posterior superior temporal sulcus) were activated during the observational phase, possibly reflecting the emotional contagion process. The anterior insula and anterior cingulate cortex were also activated during the subsequent stage, indicating the expression of learned threat. Because there were no differences between participants observing friends and strangers, we argue that social threat learning is independent of the level of familiarity with the demonstrator.
Collapse
|
28
|
Hofhansel L, Weidler C, Clemens B, Habel U, Votinov M. Personal insult disrupts regulatory brain networks in violent offenders. Cereb Cortex 2022; 33:4654-4664. [PMID: 36124828 DOI: 10.1093/cercor/bhac369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The failure to adequately regulate negative emotions represents a prominent characteristic of violent offenders. In this functional magnetic resonance imaging study, we used technical, nonsocial frustration to elicit anger in violent offenders (n = 19) and then increased the provocation by adding personal insults (social provocation). The aim was to investigate neural connectivity patterns involved in anger processing, to detect the effect of increasing provocation by personal insult, and to compare anger-related connectivity patterns between offenders and noncriminal controls (n = 12). During technical frustration, the offenders showed increased neural connectivity between the amygdala and prefrontal cortex compared to the controls. Conversely, personal insults, and thus increased levels of provocation, resulted in a significant reduction of neural connectivity between regions involved in cognitive control in the offenders but not controls. We conclude that, when (nonsocially) frustrated, offenders were able to employ regulatory brain networks by displaying stronger connectivity between regulatory prefrontal and limbic regions than noncriminal controls. In addition, offenders seemed particularly sensitive to personal insults, which led to increased implicit aggression (by means of motoric responses) and reduced connectivity in networks involved in cognitive control (including dorsomedial prefrontal cortex, precuneus, middle/superior temporal regions).
Collapse
Affiliation(s)
- Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Wilhelm-Johnen-Strase 52428 Jülich, Germany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Wilhelm-Johnen-Strase 52428 Jülich, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine (INM-10), Research Center Jülich, Wilhelm-Johnen-Strase 52428 Jülich, Germany
| |
Collapse
|
29
|
Rodríguez-Nieto G, Mercadillo RE, Pasaye EH, Barrios FA. Affective and cognitive brain-networks are differently integrated in women and men while experiencing compassion. Front Psychol 2022; 13:992935. [PMID: 36176793 PMCID: PMC9513369 DOI: 10.3389/fpsyg.2022.992935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Different theoretical models have proposed cognitive and affective components in empathy and moral judgments encompassing compassion. Furthermore, gender differences in psychological and neural functions involving empathic and moral processing, as well as compassionate experiences, have been reported. However, the neurobiological function regarding affective and cognitive integration underlying compassion and gender-associated differences has not been investigated. In this study, we aimed to examine the interaction between cognitive and emotional components through functional connectivity analyzes and to explore gender differences for the recruitment and interaction of these components. Thirty-six healthy participants (21–56 years; 21 women) were exposed to social images in an fMRI session to judge whether the stimuli elicited compassion. The results showed a different connectivity pattern for women and men of the insular cortex, the dorsomedial prefrontal cortex (dmPFC), the orbitofrontal cortex (OFC), and the cingulate cortex. The integration of affective and cognitive components follows a complex functional connectivity pattern that is different for both genders. These differences may indicate that men largely make compassionate judgments based on contextual information, while women tend to notably take internal and introspective processes into account. Women and men can use different affective and cognitive routes that could converge in similar learning of moral values, empathic experiences and compassionate acts.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Roberto E. Mercadillo
- Unidad Iztapalapa, Universidad Autónoma Metropolitana, México City, Mexico
- Consejo Nacional de Ciencia y Tecnología, México City, Mexico
- *Correspondence: Roberto E. Mercadillo, ,
| | - Erick H. Pasaye
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando A. Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
- Fernando A. Barrios,
| |
Collapse
|
30
|
Xie H, Redcay E. A tale of two connectivities: intra- and inter-subject functional connectivity jointly enable better prediction of social abilities. Front Neurosci 2022; 16:875828. [PMID: 36117636 PMCID: PMC9475068 DOI: 10.3389/fnins.2022.875828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Naturalistic functional magnetic resonance imaging (fMRI) paradigms, such as movie viewing, are attracting increased attention, given their ability to mimic the real-world cognitive demands on attention and multimodal sensory integration. Moreover, naturalistic paradigms allow for characterizing brain network responses associated with dynamic social cognition in a model-free manner using inter-subject functional connectivity (ISFC). While intra-subject functional connectivity (FC) characterizes the individual’s brain functional architecture, ISFC characterizes the neural coupling driven by time-locked extrinsic dynamic stimuli across individuals. Here, we hypothesized that ISFC and FC provide distinct and complementary information about individual differences in social cognition. To test this hypothesis, we examined a public movie-viewing fMRI dataset with 32 healthy adults and 90 typically developing children. Building three partial least squares regression (PLS) models to predict social abilities using FC and/or ISFC, we compared predictive performance to determine whether combining two connectivity measures could improve the prediction accuracy of individuals’ social-cognitive abilities measured by a Theory of Mind (ToM) assessment. Our results indicated that the joint model (ISFC + FC) yielded the highest predictive accuracy and significantly predicted individuals’ social cognitive abilities (rho = 0.34, p < 0.001). We also confirmed that the improved accuracy was not due to the increased feature dimensionality. In conclusion, we demonstrated that intra-/inter-subject connectivity encodes unique information about social abilities, and a joint investigation could help us gain a more complete understanding of the complex processes supporting social cognition.
Collapse
|
31
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
32
|
Falter-Wagner CM, Bloch C, Burghof L, Lehnhardt FG, Vogeley K. Autism traits outweigh alexithymia traits in the explanation of mentalising performance in adults with autism but not in adults with rejected autism diagnosis. Mol Autism 2022; 13:32. [PMID: 35804399 PMCID: PMC9264711 DOI: 10.1186/s13229-022-00510-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Pronounced alexithymia traits have been found in autism spectrum disorder (ASD) and recent research has been carving out the impact alexithymia traits might have on mentalising deficits associated with ASD. Method In this cross-sectional study, a large representative referral population for diagnostic examination for possible ASD (n = 400) was screened for clinical alexithymia with a German version of the Reading the Mind in the Eyes test (RME). In contrast to previous attempts to carve out the impact of alexithymia traits on mentalising deficits though, we employed dominance analysis to account for the correlation between predictors. The relative relationship between alexithymia traits and autism traits with RME performance was investigated in the group of individuals with confirmed ASD diagnosis (N = 281) and compared to the clinical referral sample in which ASD was ruled out (N = 119). Results Dominance analysis revealed autism traits to be the strongest predictor for reduced mentalising skills in the ASD sample, whereas alexithymia contributed significantly less. In the sample of individuals with ruled out diagnosis, autism traits were the strongest predictor, but alexithymia traits were in sum equally associated to mentalising, with the External-Oriented Thinking subscale as an important predictor of this association. Limitations It needs to be considered that the cross-sectional study design does not allow for causal inference. Furthermore, mentalising is a highly facetted capacity and measurements need to reduce this complexity into simple quantities which limits the generalizability of results. Discussion While alexithymia traits should be considered for their mental health importance, they do not dominate the explanation of reduced mentalising skills in individuals with ASD, but they might do to a larger degree in individuals with ruled out ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00510-9.
Collapse
Affiliation(s)
- Christine M Falter-Wagner
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Carola Bloch
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Nussbaumstr. 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lana Burghof
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fritz-Georg Lehnhardt
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
33
|
Raucher-Chéné D, Lavigne KM, Makowski C, Lepage M. Altered Surface Area Covariance in the Mentalizing Network in Schizophrenia: Insight Into Theory of Mind Processing. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:706-715. [PMID: 32919946 DOI: 10.1016/j.bpsc.2020.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Theory of mind (ToM), the cognitive capacity to attribute mental states to self and others, is robustly affected in schizophrenia. The neural substrates of ToM impairment have been largely studied with functional imaging, but little is known about structural abnormalities. We compared structural covariance (between-subjects correlations of brain regional measures) of magnetic resonance imaging-based cortical surface area between patients with schizophrenia and healthy control subjects and between schizophrenia subgroups based on the patients' ToM ability to examine ToM-specific effects on structural covariance in schizophrenia. METHODS T1-weighted structural images were acquired on a 3T magnetic resonance imaging scanner, and ToM was assessed with the Hinting Task for 104 patients with schizophrenia and 69 healthy control subjects. The sum of surface area was computed for 12 regions of interest selected and compared between groups to examine structural covariance within the often reported mentalizing network: rostral and caudal middle frontal gyrus, inferior parietal lobule, precuneus, and middle and superior temporal gyrus. High and low ToM groups were defined using a median split on the Hinting Task. RESULTS Cortical surface contraction was observed in the schizophrenia group, predominantly in temporoparietal regions. Patients with schizophrenia also exhibited significantly stronger covariance between the right rostral middle frontal gyrus and the right superior temporal gyrus than control subjects (r = 4.015; p < .001). Direct comparisons between high and low ToM subgroups revealed stronger contralateral frontotemporal covariances in the low ToM group. CONCLUSIONS Our results provide evidence for structural changes underlying ToM impairments in schizophrenia that need to be confirmed to develop new therapeutic perspectives.
Collapse
Affiliation(s)
- Delphine Raucher-Chéné
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Cognition, Health, and Society Laboratory EA 6291, University of Reims Champagne-Ardenne, Reims, France; Academic Department of Psychiatry, University Hospital of Reims, Etablissement Public de Santé Mentale de la Marne, Reims, France
| | - Katie M Lavigne
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, La Jolla, California; Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Martin Lepage
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Yan J, Chen L, Yu Y, Xu H, Xu Z, Sheng Y, Chen J. Neuroimaging-ITM: A Text Mining Pipeline Combining Deep Adversarial Learning with Interaction Based Topic Modeling for Enabling the FAIR Neuroimaging Study. Neuroinformatics 2022; 20:701-726. [PMID: 35235184 DOI: 10.1007/s12021-022-09571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
Sharing various neuroimaging digital resources have received widespread attention in FAIR (Findable, Accessible, Interoperable and Reusable) neuroscience. In order to support a comprehensive understanding of brain cognition, neuroimaging provenance should be constructed to characterize both research processes and results, and integrates various digital resources for quick replication and open cooperation. This brings new challenges to neuroimaging text mining, including fragmented information, lack of labelled corpora, and vague topics. This paper proposes a text mining pipeline for enabling the FAIR neuroimaging study. In order to avoid fragmented information, the Brain Informatics provenance model is redesigned based on NIDM (Neuroimaging Data Model) and FAIR facets. It can systematically capture the provenance requests from the FAIR neuroimaging study and then transform them into a group of text mining tasks. A neuroimaging text mining pipeline combining deep adversarial learning with interaction based topic modeling, called neuroimaging interaction topic model (Neuroimaging-ITM), is proposed to automatically extract neuroimaging provenance and identify research topics in the few-shot scenario. Finally, a group of experiments is completed by using real data from the journal PloS One. The experimental results show that Neuroimaging-ITM can systematically and accurately extract provenance information and obtain high-quality research topics from the full text of neuroimaging articles. Most of the mean F1 values of provenance extraction exceed 0.9. The topic coherence and KL (Kullback-Leibler) divergence reach 9.95 and 0.96 respectively. The results are obviously better than baseline methods.
Collapse
Affiliation(s)
- Jianzhuo Yan
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, 100124, China
| | - Lihong Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, 100124, China
| | - Yongchuan Yu
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, 100124, China
| | - Hongxia Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.,Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, 100124, China
| | - Zhe Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Ying Sheng
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jianhui Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China. .,Beijing International Collaboration Base On Brain Informatics and Wisdom Services, Beijing University of Technology, Beijing, 100124, China. .,Beijing Key Laboratory of MRI and Brain Informatics, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
35
|
Suryoputri N, Kiesow H, Bzdok D. Population variation in social brain morphology: Links to socioeconomic status and health disparity. Soc Neurosci 2022; 17:305-327. [PMID: 35658811 DOI: 10.1080/17470919.2022.2083230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Health disparity across layers of society involves reasons beyond the healthcare system. Socioeconomic status (SES) shapes people's daily interaction with their social environment and is known to impact various health outcomes. Using generative probabilistic modeling, we investigate health satisfaction and complementary indicators of socioeconomic lifestyle in the human social brain. In a population cohort of ~10,000 UK Biobank participants, our first analysis probed the relationship between health status and subjective social standing (i.e., financial satisfaction). We identified volume effects in participants unhappy with their health in regions of the higher associative cortex, especially the dorsomedial prefrontal cortex (dmPFC) and bilateral temporo-parietal junction (TPJ). Specifically, participants in poor subjective health showed deviations in dmPFC and TPJ volume as a function of financial satisfaction. The second analysis on health status and objective social standing (i.e., household income) revealed volume deviations in regions of the limbic system for individuals feeling unhealthy. In particular, low-SES participants dissatisfied with their health showed deviations in volume distributions in the amygdala and hippocampus bilaterally. Thus, our population-level evidence speaks to the possibility that health status and socioeconomic position have characteristic imprints in social brain differentiation.
Collapse
Affiliation(s)
- Nathania Suryoputri
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Hannah Kiesow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, QC, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Québec, Canada.,McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, Montréal, Québec, Canada
| |
Collapse
|
36
|
Della Longa L, Nosarti C, Farroni T. Emotion Recognition in Preterm and Full-Term School-Age Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6507. [PMID: 35682092 PMCID: PMC9180201 DOI: 10.3390/ijerph19116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
Children born preterm (<37 weeks’ gestation) show a specific vulnerability for socio-emotional difficulties, which may lead to an increased likelihood of developing behavioral and psychiatric problems in adolescence and adulthood. The accurate decoding of emotional signals from faces represents a fundamental prerequisite for early social interactions, allowing children to derive information about others’ feelings and intentions. The present study aims to explore possible differences between preterm and full-term children in the ability to detect emotional expressions, as well as possible relationships between this ability and socio-emotional skills and problem behaviors during everyday activities. We assessed 55 school-age children (n = 34 preterm and n = 21 full-term) with a cognitive battery that ensured comparable cognitive abilities between the two groups. Moreover, children were asked to identify emotional expressions from pictures of peers’ faces (Emotion Recognition Task). Finally, children’s emotional, social and behavioral outcomes were assessed with parent-reported questionnaires. The results revealed that preterm children were less accurate than full-term children in detecting positive emotional expressions and they showed poorer social and behavioral outcomes. Notably, correlational analyses showed a relationship between the ability to recognize emotional expressions and socio-emotional functioning. The present study highlights that early difficulties in decoding emotional signals from faces may be critically linked to emotional and behavioral regulation problems, with important implications for the development of social skills and effective interpersonal interactions.
Collapse
Affiliation(s)
- Letizia Della Longa
- Developmental Psychology and Socialization Department, University of Padova, 35131 Padova, Italy;
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, King’s College London, London SE5 8AF, UK;
| | - Teresa Farroni
- Developmental Psychology and Socialization Department, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
37
|
Merchant JS, Alkire D, Redcay E. Neural similarity between mentalizing and live social interaction during the transition to adolescence. Hum Brain Mapp 2022; 43:4074-4090. [PMID: 35545954 PMCID: PMC9374881 DOI: 10.1002/hbm.25903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Social interactions are essential for human development, yet little neuroimaging research has examined their underlying neurocognitive mechanisms using socially interactive paradigms during childhood and adolescence. Recent neuroimaging research has revealed activity in the mentalizing network when children engage with a live social partner, even when mentalizing is not required. While this finding suggests that social‐interactive contexts may spontaneously engage mentalizing, it is not a direct test of how similarly the brain responds to these two contexts. The current study used representational similarity analysis on data from 8‐ to 14‐year‐olds who made mental and nonmental judgments about an abstract character and a live interaction partner during fMRI. A within‐subject, 2 (Mental/Nonmental) × 2 (Peer/Character) design enabled us to examine response pattern similarity between conditions, and estimate fit to three conceptual models of how the two contexts relate: (1) social interaction and mentalizing about an abstract character are represented similarly; (2) interactive peers and abstract characters are represented differently regardless of the evaluation type; and (3) mental and nonmental states are represented dissimilarly regardless of target. We found that the temporal poles represent mentalizing and peer interactions similarly (Model 1), suggesting a neurocognitive link between the two in these regions. Much of the rest of the social brain exhibits different representations of interactive peers and abstract characters (Model 2). Our findings highlight the importance of studying social‐cognitive processes using interactive approaches, and the utility of pattern‐based analyses for understanding how social‐cognitive processes relate to each other.
Collapse
Affiliation(s)
- Junaid S Merchant
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Diana Alkire
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
38
|
Krendl AC, Betzel RF. Social cognitive network neuroscience. Soc Cogn Affect Neurosci 2022; 17:510-529. [PMID: 35352125 PMCID: PMC9071476 DOI: 10.1093/scan/nsac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Over the past three decades, research from the field of social neuroscience has identified a constellation of brain regions that relate to social cognition. Although these studies have provided important insights into the specific neural regions underlying social behavior, they may overlook the broader neural context in which those regions and the interactions between them are embedded. Network neuroscience is an emerging discipline that focuses on modeling and analyzing brain networks-collections of interacting neural elements. Because human cognition requires integrating information across multiple brain regions and systems, we argue that a novel social cognitive network neuroscience approach-which leverages methods from the field of network neuroscience and graph theory-can advance our understanding of how brain systems give rise to social behavior. This review provides an overview of the field of network neuroscience, discusses studies that have leveraged this approach to advance social neuroscience research, highlights the potential contributions of social cognitive network neuroscience to understanding social behavior and provides suggested tools and resources for conducting network neuroscience research.
Collapse
Affiliation(s)
- Anne C Krendl
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Richard F Betzel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Puiu AA, Votinov M, Habel U, Konrad K. Testosterone administration does not alter the brain activity supporting cognitive and affective empathy. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 10:100134. [PMID: 35755204 PMCID: PMC9216345 DOI: 10.1016/j.cpnec.2022.100134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Abstract
Although there is evidence that testosterone has deteriorating effects on cognitive and affective empathy, whether testosterone administration influences both routes to understanding others has not yet been simultaneously investigated. We conducted a functional magnetic resonance imaging (fMRI) pharmacological study using a within-subjects, randomized, placebo-controlled, double-blind crossover design to examine the effects of 100 mg transdermal testosterone administration on brain activation during a task that examines affective and cognitive empathy simultaneously in a sample of 23 healthy right-handed adult men. Relative to placebo, testosterone did not alter affective or cognitive empathy functional brain networks. Instead, the task yielded activation in the canonical networks associated with both types of empathy. Affective empathy yielded activation in the inferior and middle frontal gyri, inferior temporal gyri, and the cingulate cortex. Cognitive empathy was associated with activation of the temporoparietal junction, medial prefrontal cortex, middle and inferior temporal gyri, and temporal pole. Behaviourally, testosterone administration decreased error rates and increased participants' confidence in their responses regardless of response accuracy. Independent of testosterone administration, participants reported higher affective responses during emotionally negative scenarios. Even though our results provide further evidence that testosterone administration in healthy men does not alter brain activity underlying cognitive and affective empathy, testosterone administration does influence the empathic concern and hence socio-cognitive processes. The reproducibility and variability of the current and previous findings should nevertheless be addressed in upcoming studies.
Collapse
Affiliation(s)
- Andrei Alexandru Puiu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| |
Collapse
|
40
|
Maliske L, Kanske P. The Social Connectome - Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective Neuroscience. Front Psychiatry 2022; 13:845492. [PMID: 35449570 PMCID: PMC9016142 DOI: 10.3389/fpsyt.2022.845492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
Collapse
Affiliation(s)
- Lara Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
41
|
Mori K, Haruno M. Resting functional connectivity of the left inferior frontal gyrus with the dorsomedial prefrontal cortex and temporoparietal junction reflects the social network size for active interactions. Hum Brain Mapp 2022; 43:2869-2879. [PMID: 35261111 PMCID: PMC9120559 DOI: 10.1002/hbm.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/08/2022] Open
Abstract
The size of an individual active social network is a key parameter of human social behavior and is correlated with subjective well-being. However, it remains unknown how the social network size of active interactions is represented in the brain. Here, we examined whether resting-state functional magnetic resonance imaging (fMRI) connectivity is associated with the social network size of active interactions using behavioral data of a large sample (N = 222) on Twitter. Region of interest (ROI)-to-ROI analysis, graph theory analysis, seed-based analysis, and decoding analysis together provided compelling evidence that people who have a large social network size of active interactions, as measured by "reply," show higher fMRI connectivity of the left inferior frontal gyrus with the dorsomedial prefrontal cortex and temporoparietal junction, which represents the core of the theory of mind network. These results demonstrated that people who have a large social network size of active interactions maintain activity of the identified functional connectivity in daily life, possibly providing a mechanism for efficient information transmission between the brain networks related to language and theory-of-mind.
Collapse
Affiliation(s)
- Kazuma Mori
- Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan.,Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Masahiko Haruno
- Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan.,Grauduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
42
|
Lin S, Xu Z, Sheng Y, Chen L, Chen J. AT-NeuroEAE: A Joint Extraction Model of Events With Attributes for Research Sharing-Oriented Neuroimaging Provenance Construction. Front Neurosci 2022; 15:739535. [PMID: 35321479 PMCID: PMC8936590 DOI: 10.3389/fnins.2021.739535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Provenances are a research focus of neuroimaging resources sharing. An amount of work has been done to construct high-quality neuroimaging provenances in a standardized and convenient way. However, besides existing processed-based provenance extraction methods, open research sharing in computational neuroscience still needs one way to extract provenance information from rapidly growing published resources. This paper proposes a literature mining-based approach for research sharing-oriented neuroimaging provenance construction. A group of neuroimaging event-containing attributes are defined to model the whole process of neuroimaging researches, and a joint extraction model based on deep adversarial learning, called AT-NeuroEAE, is proposed to realize the event extraction in a few-shot learning scenario. Finally, a group of experiments were performed on the real data set from the journal PLOS ONE. Experimental results show that the proposed method provides a practical approach to quickly collect research information for neuroimaging provenance construction oriented to open research sharing.
Collapse
Affiliation(s)
- Shaofu Lin
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Institute of Smart City, Beijing University of Technology, Beijing, China
| | - Zhe Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Ying Sheng
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Lihong Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, China
| | - Jianhui Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging (MRI) and Brain Informatics, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing University of Technology, Beijing, China
- *Correspondence: Jianhui Chen,
| |
Collapse
|
43
|
van Leeuwen JEP, Boomgaard J, Bzdok D, Crutch SJ, Warren JD. More Than Meets the Eye: Art Engages the Social Brain. Front Neurosci 2022; 16:738865. [PMID: 35281491 PMCID: PMC8914233 DOI: 10.3389/fnins.2022.738865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Here we present the viewpoint that art essentially engages the social brain, by demonstrating how art processing maps onto the social brain connectome-the most comprehensive diagram of the neural dynamics that regulate human social cognition to date. We start with a brief history of the rise of neuroaesthetics as the scientific study of art perception and appreciation, in relation to developments in contemporary art practice and theory during the same period. Building further on a growing awareness of the importance of social context in art production and appreciation, we then set out how art engages the social brain and outline candidate components of the "artistic brain connectome." We explain how our functional model for art as a social brain phenomenon may operate when engaging with artworks. We call for closer collaborations between the burgeoning field of neuroaesthetics and arts professionals, cultural institutions and diverse audiences in order to fully delineate and contextualize this model. Complementary to the unquestionable value of art for art's sake, we argue that its neural grounding in the social brain raises important practical implications for mental health, and the care of people living with dementia and other neurological conditions.
Collapse
Affiliation(s)
- Janneke E. P. van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Thinking Eye, ACAVA Limehouse Arts Foundation, London, United Kingdom
| | - Jeroen Boomgaard
- Research Group Art and Public Space, Gerrit Rietveld Academie, Amsterdam, Netherlands
| | - Danilo Bzdok
- Department of Biomedical Engineering, McGill University, Montréal, ON, Canada
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
44
|
Cosme D, Flournoy JC, Livingston JL, Lieberman MD, Dapretto M, Pfeifer JH. Testing the adolescent social reorientation model during self and other evaluation using hierarchical growth curve modeling with parcellated fMRI data. Dev Cogn Neurosci 2022; 54:101089. [PMID: 35245811 PMCID: PMC8891708 DOI: 10.1016/j.dcn.2022.101089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 12/26/2022] Open
Abstract
Adolescence is characterized as a period when relationships and experiences shift toward peers. The social reorientation model of adolescence posits this shift is driven by neurobiological changes that increase the salience of social information related to peer integration and acceptance. Although influential, this model has rarely been subjected to tests that could falsify it, or studied in longitudinal samples assessing within-person development. We focused on two phenomena that are highly salient and dynamic during adolescence—social status and self-perception—and examined longitudinal changes in neural responses during a self/other evaluation task. We expected status-related social information to uniquely increase across adolescence in social brain regions. Despite using hierarchical growth curve modeling with parcellated whole-brain data to increase power to detect developmental effects, we didn’t find evidence in support of this hypothesis. Social brain regions showed increased responsivity across adolescence, but this trajectory was not unique to status-related information. Additionally, brain regions associated with self-focused cognition showed heightened responses during self-evaluation in the transition to mid-adolescence, especially for status-related information. These results qualify existing models of adolescent social reorientation and highlight the multifaceted changes in self and social development that could be leveraged in novel ways to support adolescent health and well-being.
Collapse
|
45
|
Zajner C, Spreng RN, Bzdok D. Lacking Social Support is Associated With Structural Divergences in Hippocampus-Default Network Co-Variation Patterns. Soc Cogn Affect Neurosci 2022; 17:802-818. [PMID: 35086149 PMCID: PMC9433851 DOI: 10.1093/scan/nsac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the dominating factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40 000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3 and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC–DN co-variation followed a clear segregation into the left and right brain hemispheres. Separable regimes of structural HC–DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - Danilo Bzdok
- Correspondence should be addressed to Danilo Bzdok, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada. E-mail:
| |
Collapse
|
46
|
Yu H, Qu H, Chen A, Du Y, Liu Z, Wang W. Alteration of Effective Connectivity in the Default Mode Network of Autism After an Intervention. Front Neurosci 2022; 15:796437. [PMID: 35002608 PMCID: PMC8727456 DOI: 10.3389/fnins.2021.796437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Neuroimaging has revealed numerous atypical functional connectivity of default mode network (DMN) dedicated to social communications (SC) in autism spectrum disorder (ASD), yet their nature and directionality remain unclear. Here, preschoolers with autism received physical intervention from a 12-week mini-basketball training program (12W-MBTP). Therefore, the directionality and nature of regional interactions within the DMN after the intervention are evaluated while assessing the impact of an intervention on SC. Based on the results of independent component analysis (ICA), we applied spectral dynamic causal modeling (DCM) for participants aged 3–6 years (experimental group, N = 17, control group, N = 14) to characterize the longitudinal changes following intervention in intrinsic and extrinsic effective connectivity (EC) between core regions of the DMN. Then, we analyzed the correlation between the changes in EC and SRS-2 scores to establish symptom-based validation. We found that after the 12W-MBTP intervention, the SRS-2 score of preschoolers with ASD in the experimental group was decreased. Concurrently, the inhibitory directional connections were observed between the core regions of the DMN, including increased self-inhibition in the medial prefrontal cortex (mPFC), and the changes of EC in mPFC were significantly correlated with change in the social responsiveness scale-2 (SRS-2) score. These new findings shed light on DMN as a potential intervention target, as the inhibitory information transmission between its core regions may play a positive role in improving SC behavior in preschoolers with ASD, which may be a reliable neuroimaging biomarker for future studies. Clinical Trial Registration: This study registered with the Chinese Clinical Trial Registry (ChiCTR1900024973) on August 05, 2019.
Collapse
Affiliation(s)
- Han Yu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yifan Du
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Abraham E, Wang Y, Svob C, Semanek D, Gameroff MJ, Shankman SA, Weissman MM, Talati A, Posner J. Organization of the social cognition network predicts future depression and interpersonal impairment: a prospective family-based study. Neuropsychopharmacology 2022; 47:531-542. [PMID: 34162998 PMCID: PMC8674240 DOI: 10.1038/s41386-021-01065-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Deficits in social cognition and functioning are common in major depressive disorder (MDD). Still, no study into the pathophysiology of MDD has examined the social cognition-related neural pathways through which familial risk for MDD leads to depression and interpersonal impairments. Using resting-state fMRI, we applied a graph theoretical analysis to quantify the influence of nodes within the fronto-temporo-parietal cortical social cognition network in 108 generation 2 and generation 3 offspring at high and low-risk for MDD, defined by the presence or absence, respectively, of moderate to severe MDD in generation 1. New MDD episodes, future depressive symptoms, and interpersonal impairments were tested for associations with social cognition nodal influence, using regression analyses applied in a generalized estimating equations approach. Increased familial risk was associated with reduced nodal influence within the network, and this predicted new depressive episodes, worsening depressive symptomatology, and interpersonal impairments, 5-8 years later. Findings remained significant after controlling for current depressive/anxiety symptoms and current/lifetime MDD and anxiety disorders. Path-analysis models indicate that increased familial risk impacted offspring's brain function in two ways. First, high familial risk was indirectly associated with future depression, both new MDD episodes and symptomatology, via reduced nodal influence of the right posterior superior temporal gyrus (pSTG). Second, high familial risk was indirectly associated with future interpersonal impairments via reduced nodal influence of right inferior frontal gyrus (IFG). Finally, reduced nodal influence was associated with high familial risk in (1) those who had never had MDD at the time of scanning and (2) a subsample (n = 52) rescanned 8 years later. Together, findings reveal a potential pathway for the intergenerational transmission of vulnerability via the aberrant social cognition network organization and suggest using the connectome of neural network related to social cognition to identify intervention and prevention targets for those particularly at risk.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA.
| | - Yun Wang
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Connie Svob
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - David Semanek
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Marc J Gameroff
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
48
|
Establishing a role of the semantic control network in social cognitive processing: A meta-analysis of functional neuroimaging studies. Neuroimage 2021; 245:118702. [PMID: 34742940 DOI: 10.1016/j.neuroimage.2021.118702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
The contribution and neural basis of cognitive control is under-specified in many prominent models of socio-cognitive processing. Important outstanding questions include whether there are multiple, distinguishable systems underpinning control and whether control is ubiquitously or selectively engaged across different social behaviours and task demands. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we investigated for the first time whether the neural activation commonly found in social functional neuroimaging studies extends to these 'semantic control' regions. We conducted five coordinate-based meta-analyses to combine results of 499 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This supports the hypothesis that social cognition is partly regulated by the neurocognitive system underpinning semantic control.
Collapse
|
49
|
Meermeier A, Jording M, Alayoubi Y, Vogel DHV, Vogeley K, Tepest R. Brief Report: Preferred Processing of Social Stimuli in Autism: A Perception Task. J Autism Dev Disord 2021; 52:3286-3293. [PMID: 34532839 PMCID: PMC9213359 DOI: 10.1007/s10803-021-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
In this study we investigate whether persons with autism spectrum disorder (ASD) perceive social images differently than control participants (CON) in a graded perception task in which stimuli emerged from noise before dissipating into noise again. We presented either social stimuli (humans) or non-social stimuli (objects or animals). ASD were slower to recognize images during their emergence, but as fast as CON when indicating the dissipation of the image irrespective of its content. Social stimuli were recognized faster and remained discernable longer in both diagnostic groups. Thus, ASD participants show a largely intact preference for the processing of social images. An exploratory analysis of response subsets reveals subtle differences between groups that could be investigated in future studies.
Collapse
Affiliation(s)
- A Meermeier
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany.
| | - M Jording
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany.,Forschungszentrum Jülich, INM3, NRW, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Y Alayoubi
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany
| | - David H V Vogel
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany.,Forschungszentrum Jülich, INM3, NRW, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - K Vogeley
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany.,Forschungszentrum Jülich, INM3, NRW, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - R Tepest
- University Hospital Cologne, NRW, Kerpener Strasse 62, Geb. 31, 50931, Cologne, Germany
| |
Collapse
|
50
|
Sivasathiaseelan H, Marshall CR, Benhamou E, van Leeuwen JEP, Bond RL, Russell LL, Greaves C, Moore KM, Hardy CJD, Frost C, Rohrer JD, Scott SK, Warren JD. Laughter as a paradigm of socio-emotional signal processing in dementia. Cortex 2021; 142:186-203. [PMID: 34273798 PMCID: PMC8438290 DOI: 10.1016/j.cortex.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 11/03/2022]
Abstract
Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer's disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients' brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer's disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers ('numerophilia') in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p < .05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Frost
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|