1
|
Liping W, Minghui L, Jiayuan Z, Aijie W, Ranran H, Zengcai Z, Guowei Z. Abnormal topological structure of structural covariance networks based on fractal dimension in noise induced hearing loss. Sci Rep 2024; 14:29644. [PMID: 39609512 PMCID: PMC11605099 DOI: 10.1038/s41598-024-80731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The topological attributes of structural covariance networks (SCNs) based on fractal dimension (FD) and changes in brain network connectivity were investigated using graph theory and network-based statistics (NBS) in patients with noise-induced hearing loss (NIHL). High-resolution 3D T1 images of 40 patients with NIHL and 38 healthy controls (HCs) were analyzed. FD-based Pearson correlation coefficients were calculated and converted to Fisher's Z to construct the SCNs. Topological attributes and network hubs were calculated using the graph theory. Topological measures between groups were compared using nonparametric permutation tests. Abnormal connection networks were identified using NBS analysis. The NIHL group showed a significantly increased normalized clustering coefficient, normalized characteristic path length, and decreased nodal efficiency of the right medial orbitofrontal gyrus. Additionally, the network hubs based on betweenness centrality and degree centrality were both the right transverse temporal gyrus and left parahippocampal gyrus in the NIHL group. The NBS analysis revealed two subnetworks with abnormal connections. The subnetwork with enhanced connections was mainly distributed in the default mode, frontoparietal, dorsal attention, and somatomotor networks, whereas the subnetwork with reduced connections was mainly distributed in the limbic, visual, default mode, and auditory networks. These findings demonstrate the abnormal topological structure of FD-based SCNs in patients with NIHL, which may contribute to understand the complex mechanisms of brain damage at the network level, providing a new theoretical basis for neuropathological mechanisms.
Collapse
Affiliation(s)
- Wang Liping
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Lv Minghui
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Jiayuan
- Intelligence Control System, Yantai Vocational College, Yantai, China
| | - Wang Aijie
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Huang Ranran
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Zengcai
- Shandong Luhang Intelligent Technology Co., LTD, Yantai, China.
| | - Zhang Guowei
- Imaging Department, Yantaishan Hospital, Yantai, China.
| |
Collapse
|
2
|
Alves CL, Martinelli T, Sallum LF, Rodrigues FA, Toutain TGLDO, Porto JAM, Thielemann C, Aguiar PMDC, Moeckel M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS One 2024; 19:e0305630. [PMID: 39418298 PMCID: PMC11486369 DOI: 10.1371/journal.pone.0305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML classification rests, agree with established diagnostic approaches based on clinical symptoms. Furthermore, complex network analyses highlight differences in brain network integration and segregation among the three groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with established practices, offering a promising avenue for developing trustworthy clinical decision-support systems.
Collapse
Affiliation(s)
- Caroline L. Alves
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Tiago Martinelli
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Loriz Francisco Sallum
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Joel Augusto Moura Porto
- Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- Institute of Biological Information Processing, Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, Germany
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Moeckel
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| |
Collapse
|
3
|
Lin L, Chang Z, Zhang Y, Xue K, Xie Y, Wei L, Li X, Zhao Z, Luo Y, Dong H, Liang M, Liu H, Yu C, Qin W, Ding H. Voxel-based texture similarity networks reveal individual variability and correlate with biological ontologies. Neuroimage 2024; 297:120688. [PMID: 38878916 DOI: 10.1016/j.neuroimage.2024.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The human brain is organized as a complex, hierarchical network. However, the structural covariance patterns among brain regions and the underlying biological substrates of such covariance networks remain to be clarified. The present study proposed a novel individualized structural covariance network termed voxel-based texture similarity networks (vTSNs) based on 76 refined voxel-based textural features derived from structural magnetic resonance images. Validated in three independent longitudinal healthy cohorts (40, 23, and 60 healthy participants, respectively) with two common brain atlases, we found that the vTSN could robustly resolve inter-subject variability with high test-retest reliability. In contrast to the regional-based texture similarity networks (rTSNs) that calculate radiomic features based on region-of-interest information, vTSNs had higher inter- and intra-subject variability ratios and test-retest reliability in connectivity strength and network topological properties. Moreover, the Spearman correlation indicated a stronger association of the gene expression similarity network (GESN) with vTSNs than with rTSNs (vTSN: r = 0.600, rTSN: r = 0.433, z = 39.784, P < 0.001). Hierarchical clustering identified 3 vTSN subnets with differential association patterns with 13 coexpression modules, 16 neurotransmitters, 7 electrophysiology, 4 metabolism, and 2 large-scale structural and 4 functional organization maps. Moreover, these subnets had unique biological hierarchical organization from the subcortex-limbic system to the ventral neocortex and then to the dorsal neocortex. Based on 424 unrelated, qualified healthy subjects from the Human Connectome Project, we found that vTSNs could sensitively represent sex differences, especially for connections in the subcortex-limbic system and between the subcortex-limbic system and the ventral neocortex. Moreover, a multivariate variance component model revealed that vTSNs could explain a significant proportion of inter-subject behavioral variance in cognition (80.0 %) and motor functions (63.4 %). Finally, using 494 healthy adults (aged 19-80 years old) from the Southwest University Adult Lifespan Dataset, the Spearman correlation identified a significant association between aging and vTSN strength, especially within the subcortex-limbic system and between the subcortex-limbic system and the dorsal neocortex. In summary, our proposed vTSN is robust in uncovering individual variability and neurobiological brain processes, which can serve as biologically plausible measures for linking biological processes and human behavior.
Collapse
Affiliation(s)
- Liyuan Lin
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhongyu Chang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaizhong Xue
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Luli Wei
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Zhao
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yun Luo
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyang Dong
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; State Key Laboratory of Experimental Hematology, Beijing, China.
| | - Wen Qin
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Hao Ding
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
4
|
Bedford SA, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok A, Suckling J, Anagnostou E, Lerch JP, Taylor M, Nicolson R, Stelios G, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Courchesne E, Pierce K, Eyler LT, Campbell K, Barnes CC, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bethlehem RAI. Brain-Charting Autism and Attention-Deficit/Hyperactivity Disorder Reveals Distinct and Overlapping Neurobiology. Biol Psychiatry 2024:S0006-3223(24)01513-0. [PMID: 39128574 DOI: 10.1016/j.biopsych.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Autism and attention-deficit/hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology that is still poorly understood. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together and sex differences are often overlooked. Population modeling, often referred to as normative modeling, provides a unified framework for studying age-specific and sex-specific divergences in brain development. METHODS Here, we used population modeling and a large, multisite neuroimaging dataset (N = 4255 after quality control) to characterize cortical anatomy associated with autism and ADHD, benchmarked against models of average brain development based on a sample of more than 75,000 individuals. We also examined sex and age differences and relationship with autistic traits and explored the co-occurrence of autism and ADHD. RESULTS We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume that was localized to the superior temporal cortex, whereas individuals with ADHD showed more global increases in cortical thickness but lower cortical volume and surface area across much of the cortex. The co-occurring autism+ADHD group showed a unique pattern of widespread increases in cortical thickness and certain decreases in surface area. We also found that sex modulated the neuroanatomy of autism but not ADHD, and there was an age-by-diagnosis interaction for ADHD only. CONCLUSIONS These results indicate distinct cortical differences in autism and ADHD that are differentially affected by age and sex as well as potentially unique patterns related to their co-occurrence.
Collapse
Affiliation(s)
- Saashi A Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Amber Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, Canada
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Margot Taylor
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer Crosbie
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell Schachar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kathleen Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge Lifetime Autism Spectrum Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Ding H, Zhang Y, Xie Y, Du X, Ji Y, Lin L, Chang Z, Zhang B, Liang M, Yu C, Qin W. Individualized Texture Similarity Network in Schizophrenia. Biol Psychiatry 2024; 96:176-187. [PMID: 38218309 DOI: 10.1016/j.biopsych.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Structural covariance network disruption has been considered an important pathophysiological indicator for schizophrenia. Here, we introduced a novel individualized structural covariance network measure, referred to as a texture similarity network (TSN), and hypothesized that the TSN could reliably reveal unique intersubject heterogeneity and complex dysconnectivity patterns in schizophrenia. METHODS The TSN was constructed by measuring the covariance of 180 three-dimensional voxelwise gray-level co-occurrence matrix feature maps between brain areas in each participant. We first tested the validity and reproducibility of the TSN in characterizing the intersubject variability in 2 longitudinal test-retest healthy cohorts. The TSN was further applied to elucidate intersubject variability and dysconnectivity patterns in 10 schizophrenia case-control datasets (609 schizophrenia cases vs. 579 controls) as well as in a first-episode depression dataset (69 patients with depression vs. 69 control participants). RESULTS The test-retest analysis demonstrated higher TSN intersubject than intrasubject variability. Moreover, the TSN reliably revealed higher intersubject variability in both chronic and first-episode schizophrenia, but not in depression. The TSN also reproducibly detected coexistent increased and decreased TSN strength in widespread brain areas, increased global small-worldness, and the coexistence of both structural hyposynchronization in the central networks and hypersynchronization in peripheral networks in patients with schizophrenia but not in patients with depression. Finally, aberrant intersubject variability and covariance strength patterns revealed by the TSN showed a missing or weak correlation with other individualized structural covariance network measures, functional connectivity, and regional volume changes. CONCLUSIONS These findings support the reliability of a TSN in revealing unique structural heterogeneity and complex dysconnectivity in patients with schizophrenia.
Collapse
Affiliation(s)
- Hao Ding
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyuan Lin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China; Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
6
|
Lin L, Chen Y, Dai Y, Yan Z, Zou M, Zhou Q, Qian L, Cui W, Liu M, Zhang H, Yang Z, Su S. Quantification of myelination in children with attention-deficit/hyperactivity disorder: a comparative assessment with synthetic MRI and DTI. Eur Child Adolesc Psychiatry 2024; 33:1935-1944. [PMID: 37712949 DOI: 10.1007/s00787-023-02297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Evaluation of myelin content is crucial for attention-deficit/hyperactivity disorder (ADHD). To estimate myelin content in ADHD based on synthetic MRI-based method and compare it with established diffusion tensor imaging (DTI) method. Fifth-nine ADHD and fifty typically developing (TD) children were recruited. Global and regional myelin content (myelin volume fraction [MVF] and myelin volume [MYV]) were assessed using SyMRI and compared with DTI metrics (fractional anisotropy and mean/radial/axial diffusivity). The relationship between significant MRI parameters and clinical variables were assessed in ADHD. No between-group differences of whole-brain myelin content were found. Compared to TDs, ADHD showed higher mean MVF in bilateral internal capsule, external capsule, corona radiata, and corpus callosum, as well as in left tapetum, left superior fronto-occipital fascicular, and right cingulum (all PFDR-corrected < 0.05). Increased MYV were found in similar regions. Abnormalities of DTI metrics were mainly in bilateral corticospinal tract. Besides, MVF in right retro lenticular part of internal capsule was negatively correlated with cancellation test scores (r = - 0.41, P = 0.002), and MYV in right posterior limb of internal capsule (r = 0.377, P = 0.040) and left superior corona radiata (r = 0.375, P = 0.041) were positively correlated with cancellation test scores in ADHD. Increased myelin content underscored the important pathway of frontostriatal tract, posterior thalamic radiation, and corpus callosum underlying ADHD, which reinforced the insights into myelin quantification and its potential role in pathophysiological mechanism and disease diagnosis. Prospectively registered trials number: ChiCTR2100048109; date: 2021-07.
Collapse
Affiliation(s)
- Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengsha Zou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Wang X, Zhao K, Yao L, Fonzo GA, Satterthwaite TD, Rekik I, Zhang Y. Delineating Transdiagnostic Subtypes in Neurodevelopmental Disorders via Contrastive Graph Machine Learning of Brain Connectivity Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582790. [PMID: 38496573 PMCID: PMC10942316 DOI: 10.1101/2024.02.29.582790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Neurodevelopmental disorders, such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), are characterized by comorbidity and heterogeneity. Identifying distinct subtypes within these disorders can illuminate the underlying neurobiological and clinical characteristics, paving the way for more tailored treatments. We adopted a novel transdiagnostic approach across ADHD and ASD, using cutting-edge contrastive graph machine learning to determine subtypes based on brain network connectivity as revealed by resting-state functional magnetic resonance imaging. Our approach identified two generalizable subtypes characterized by robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the somatomotor network. These subtypes exhibited pronounced differences in major cognitive and behavioural measures. We further demonstrated the generalizability of these subtypes using data collected from independent study sites. Our data-driven approach provides a novel solution for parsing biological heterogeneity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xuesong Wang
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Lina Yao
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
- School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Islem Rekik
- BASIRA Lab, Imperial-X and Department of Computing, Imperial College London, London, UK
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
8
|
Xu H, Li J, Huang H, Yin B, Li DD. Abnormal developmental of structural covariance networks in young adults with heavy cannabis use: a 3-year follow-up study. Transl Psychiatry 2024; 14:45. [PMID: 38245512 PMCID: PMC10799944 DOI: 10.1038/s41398-024-02764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore, these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, 325007, China.
| | - Jiahao Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Wang C, Shen Y, Cheng M, Zhu Z, Lv Y, Zhang X, Feng Z, Yang Z, Zhao X. Cortical gray-white matter contrast abnormalities in male children with attention deficit hyperactivity disorder. Front Hum Neurosci 2023; 17:1303230. [PMID: 38188507 PMCID: PMC10768013 DOI: 10.3389/fnhum.2023.1303230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Presently, research concerning alterations in brain structure among individuals with attention deficit hyperactivity disorder (ADHD) predominantly focuses on entire brain volume and cortical thickness. In this study, we extend our examination to the cortical microstructure of male children with ADHD. To achieve this, we employ the gray-white matter tissue contrast (GWC) metric, allowing for an assessment of modifications in gray matter density and white matter microstructure. Furthermore, we explore the potential connection between GWC and the severity of disorder in male children by ADHD. Methods We acquired 3DT1 sequences from the public ADHD-200 database. In this study, we conducted a comparative analysis between 43 male children diagnosed with ADHD and 50 age-matched male controls exhibiting typical development trajectories. Our investigation entailed assessing differences in GWC and cortical thickness. Additionally, we explored the potential correlation between GWC and the severity of ADHD. To delineate the cerebral landscape, each hemisphere was subdivided into 34 cortical regions using freesurfer 7.2.0. For quantification, GWC was computed by evaluating the intensity contrast of non-normalized T1 images above and below the gray-white matter interface. Results Our findings unveiled elevated GWC within the bilateral lingual, bilateral insular, left transverse temporal, right parahippocampal and right pericalcarine regions in male children with ADHD when contrasted with their healthy counterparts. Moreover, the cortical thickness in the ADHD group no notable distinctions that of control group in all areas. Intriguingly, the GWC of left transverse temporal demonstrated a negative correlation with the extent of inattention experienced by male children with ADHD. Conclusion Utilizing GWC as a metric facilitates a more comprehensive assessment of microstructural brain changes in children with ADHD. The fluctuations in GWC observed in specific brain regions might serve as a neural biomarker, illuminating structural modifications in male children grappling with ADHD. This perspective enriches our comprehension of white matter microstructure and cortical density in these children. Notably, the inverse correlation between the GWC of the left transverse temporal and inattention severity underscores the potential role of structural and functional anomalies within this region in ADHD progression. Enhancing our insight into ADHD-related brain changes holds significant promise in deciphering potential neuropathological mechanisms.
Collapse
Affiliation(s)
- Changhao Wang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Yanyong Shen
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Zitao Zhu
- Medicine Division, Wuhan University, Wuhan, China
| | - Yuan Lv
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxue Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Zhanqi Feng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Zhexuan Yang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| |
Collapse
|
10
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
11
|
Bedford SA, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok A, Suckling J, Anagnostou E, Lerch JP, Taylor M, Nicolson R, Stelios G, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Courchesne E, Pierce K, Eyler LT, Campbell K, Barnes CC, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bethlehem RA. Brain-charting autism and attention deficit hyperactivity disorder reveals distinct and overlapping neurobiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299587. [PMID: 38106166 PMCID: PMC10723556 DOI: 10.1101/2023.12.06.23299587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.
Collapse
Affiliation(s)
- Saashi A. Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 100229, Taiwan
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| | - Amber Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P. Lerch
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Margot Taylor
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer Crosbie
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell Schachar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6 Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6 Canada
- Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Jessica Jones
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6 Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6 Canada
- Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Kathleen Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Cambridge Lifetime Autism Spectrum Service (CLASS), Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Richard A.I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
12
|
Liang S, Huang L, Zhan S, Zeng Y, Zhang Q, Zhang Y, Wang X, Peng L, Lin B, Xu H. Altered morphological characteristics and structural covariance connectivity associated with verbal working memory performance in ADHD children. Br J Radiol 2023; 96:20230409. [PMID: 37750842 PMCID: PMC10607391 DOI: 10.1259/bjr.20230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Deficits in verbal working memory (VWM) observed in attention deficit hyperactivity disorder (ADHD) children can persist into adulthood. Although previous studies have identified brain regions that are activated during VWM tasks, the neural mechanisms underlying the relationship between VWM deficits remain unclear. The objective of this study was to investigate the structural covariance network connectivity and brain morphology changes that are associated with VWM performance in ADHD children. METHODS For this study, we selected 26 ADHD children and 26 healthy control (HC) participants. Participants were instructed to perform an n-back VWM task and their accuracy and response times were subsequently recorded. This research utilised voxel-based morphometry to measure the grey matter (GM) volume and conducted structural covariance connectivity network analysis to explore the changes of brain in ADHD. RESULTS Voxel-based morphometry analysis showed that lower GM volume in the right cerebellum lobule VI and the left parahippocampal gryus in ADHD children. Moreover, a positive correlation was found between the GM volume in the right cerebellum lobule VI and the accuracy of 2-back VWM task with verbal, small reward, and delayed feedback (VSD). Structural covariance network analysis found decreased structural connectivity between right cerebellum lobule VI and right precentral gyrus, right postcentral gyrus, left paracentral lobule, right superior parietal gyrus, and left hippocampus in ADHD children. CONCLUSIONS The low GM volume and altered structural covariance connectivity in the right cerebellum lobule VI might potentially affect VWM performance in ADHD children. ADVANCES IN KNOWLEDGE The innovation of this study lies in its more focused discussion on the morphological characteristics and structural covariance connectivity of VWM deficits in ADHD children, and the innovative finding of a positive correlation between grey matter volume in the right cerebellum lobule VI and accuracy in completing the 2-back VWM task with verbal instructions, small reward, and delayed feedback (VSD). This expands upon previous research by elucidating the specific brain structures involved in VWM deficits in ADHD children and highlights the potential importance of the cerebellum in this cognitive process. Overall, these innovative findings advance our understanding of the neural basis of ADHD and may have important implications for the development of targeted interventions for VWM deficits.
Collapse
Affiliation(s)
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuxiu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bohong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Bedford SA, Ortiz-Rosa A, Schabdach JM, Costantino M, Tullo S, Piercy T, Lai MC, Lombardo MV, Di Martino A, Devenyi GA, Chakravarty MM, Alexander-Bloch AF, Seidlitz J, Baron-Cohen S, Bethlehem RA. The impact of quality control on cortical morphometry comparisons in autism. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-21. [PMID: 38495338 PMCID: PMC10938341 DOI: 10.1162/imag_a_00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 03/19/2024]
Abstract
Structural magnetic resonance imaging (MRI) quality is known to impact and bias neuroanatomical estimates and downstream analysis, including case-control comparisons, and a growing body of work has demonstrated the importance of careful quality control (QC) and evaluated the impact of image and image-processing quality. However, the growing size of typical neuroimaging datasets presents an additional challenge to QC, which is typically extremely time and labour intensive. One of the most important aspects of MRI quality is the accuracy of processed outputs, which have been shown to impact estimated neurodevelopmental trajectories. Here, we evaluate whether the quality of surface reconstructions by FreeSurfer (one of the most widely used MRI processing pipelines) interacts with clinical and demographic factors. We present a tool, FSQC, that enables quick and efficient yet thorough assessment of outputs of the FreeSurfer processing pipeline. We validate our method against other existing QC metrics, including the automated FreeSurfer Euler number, two other manual ratings of raw image quality, and two popular automated QC methods. We show strikingly similar spatial patterns in the relationship between each QC measure and cortical thickness; relationships for cortical volume and surface area are largely consistent across metrics, though with some notable differences. We next demonstrate that thresholding by QC score attenuates but does not eliminate the impact of quality on cortical estimates. Finally, we explore different ways of controlling for quality when examining differences between autistic individuals and neurotypical controls in the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrating that inadequate control for quality can alter results of case-control comparisons.
Collapse
Affiliation(s)
- Saashi A. Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Alfredo Ortiz-Rosa
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
| | - Jenna M. Schabdach
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Manuela Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Tom Piercy
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Gabriel A. Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Aaron F. Alexander-Bloch
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Lifetime Asperger Syndrome Service (CLASS), Cambridgeshire and Peterborough, United Kingdom
| | - Richard A.I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Long J, Li J, Xie B, Jiao Z, Shen G, Liao W, Song X, Le H, Xia J, Wu S. Morphometric similarity network alterations in COVID-19 survivors correlate with behavioral features and transcriptional signatures. Neuroimage Clin 2023; 39:103498. [PMID: 37643521 PMCID: PMC10474075 DOI: 10.1016/j.nicl.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES To explore the differences in the cortical morphometric similarity network (MSN) between COVID-19 survivors and healthy controls, and the correlation between these differences and behavioralfeatures and transcriptional signatures. MATERIALS & METHODS 39 COVID-19 survivors and 39 age-, sex- and education years-matched healthy controls (HCs) were included. All participants underwent MRI and behavioral assessments (PCL-17, GAD-7, PHQ-9). MSN analysis was used to compute COVID-19 survivors vs. HCs differences across brain regions. Correlation analysis was used to determine the associations between regional MSN differences and behavioral assessments, and determine the spatial similarities between regional MSN differences and risk genes transcriptional activity. RESULTS COVID-19 survivors exhibited decreased regional MSN in insula, precuneus, transverse temporal, entorhinal, para-hippocampal, rostral middle frontal and supramarginal cortices, and increased regional MSN in pars triangularis, lateral orbitofrontal, superior frontal, superior parietal, postcentral, and inferior temporal cortices. Regional MSN value of lateral orbitofrontal cortex was positively associated with GAD-7 and PHQ-9 scores, and rostral middle frontal was negatively related to PHQ-9 scores. The analysis of spatial similarities showed that seven risk genes (MFGE8, MOB2, NUP62, PMPCA, SDSL, TMEM178B, and ZBTB11) were related to regional MSN values. CONCLUSION The MSN differences were associated with behavioral and transcriptional signatures, early psychological counseling or intervention may be required to COVID-19 survivors. Our study provided a new insight into understanding the altered coordination of structure in COVID-19 and may offer a new endophenotype to further investigate the brain substrate.
Collapse
Affiliation(s)
- Jia Long
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Jiao Li
- School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, 610054, PR China
| | - Bing Xie
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Zhuomin Jiao
- Department of Neurology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Guoqiang Shen
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Wei Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, 610054, PR China
| | - Xiaomin Song
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Hongbo Le
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, PR China.
| | - Song Wu
- South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| |
Collapse
|
15
|
Mu S, Wu H, Zhang J, Chang C. Subcortical structural covariance predicts symptoms in children with different subtypes of ADHD. Cereb Cortex 2023:7161770. [PMID: 37183180 DOI: 10.1093/cercor/bhad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder has increasingly been conceptualized as a disorder of abnormal brain connectivity. However, far less is known about the structural covariance in different subtypes of this disorder and how those differences may contribute to the symptomology of these subtypes. In this study, we used a combined volumetric-based methodology and structural covariance approach to investigate structural covariance of subcortical brain volume in attention-deficit/hyperactivity disorder-combined and attention-deficit/hyperactivity disorder-inattentive patients. In addition, a linear support vector machine was used to predict patient's attention-deficit/hyperactivity disorder symptoms. Results showed that compared with TD children, those with attention-deficit/hyperactivity disorder-combined exhibited decreased volume of both the left and right pallidum. Moreover, we found increased right hippocampal volume in attention-deficit/hyperactivity disorder-inattentive children. Furthermore and when compared with the TD group, both attention-deficit/hyperactivity disorder-combined and attention-deficit/hyperactivity disorder-inattentive groups showed greater nonhomologous inter-regional correlations. The abnormal structural covariance network in the attention-deficit/hyperactivity disorder-combined group was located in the left amygdala-left putamen/left pallidum/right pallidum and right pallidum-left pallidum; in the attention-deficit/hyperactivity disorder-inattentive group, this difference was noted in the left hippocampus-left amygdala/left putamen/right putamen and right hippocampus-left amygdala. Additionally, different combinations of abnormalities in subcortical structural covariance were predictive of symptom severity in different attention-deficit/hyperactivity disorder subtypes. Collectively, our findings demonstrated that structural covariance provided valuable diagnostic markers for attention-deficit/hyperactivity disorder subtypes.
Collapse
Affiliation(s)
- ShuHua Mu
- School of Psychology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - HuiJun Wu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - ChunQi Chang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Wu X, Palaniyappan L, Yu G, Zhang K, Seidlitz J, Liu Z, Kong X, Schumann G, Feng J, Sahakian BJ, Robbins TW, Bullmore E, Zhang J. Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Mol Psychiatry 2023; 28:1146-1158. [PMID: 36473996 DOI: 10.1038/s41380-022-01896-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, QC, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, 999077, Hong Kong SAR, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, 200062, Shanghai, China
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Gunter Schumann
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- PONS Centre, Charite Mental Health, Dept. of Psychiatry and Psychotherapie, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, 200433, China
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Barbara J Sahakian
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Cambridge shire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| | - Edward Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
17
|
Wang XH, Zhao B, Li L. Mapping white matter structural covariance connectivity for single subject using wavelet transform with T1-weighted anatomical brain MRI. Front Neurosci 2022; 16:1038514. [PMID: 36507319 PMCID: PMC9727234 DOI: 10.3389/fnins.2022.1038514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Current studies of structural covariance networks were focused on the gray matter in the human brain. The structural covariance connectivity in the white matter remains largely unexplored. This paper aimed to build novel metrics that can infer white matter structural covariance connectivity, and to explore the predictive power of the proposed features. Methods To this end, a cohort of 315 adult subjects with the anatomical brain MRI datasets were obtained from the publicly available Dallas Lifespan Brain Study (DLBS) project. The 3D wavelet transform was applied on the individual voxel-based morphology (VBM) volume to obtain the white matter structural covariance connectivity. The predictive models for cognitive functions were built using support vector regression (SVR). Results The predictive models exhibited comparable performance with previous studies. The novel features successfully predicted the individual ability of digit comparison (DC) (r = 0.41 ± 0.01, p < 0.01) and digit symbol (DSYM) (r = 0.5 ± 0.01, p < 0.01). The sensorimotor-related white matter system exhibited as the most predictive network node. Furthermore, the node strengths of sensorimotor mode were significantly correlated to cognitive scores. Discussion The results suggested that the white matter structural covariance connectivity was informative and had potential for predictive tasks of brain-behavior research.
Collapse
|
18
|
Faridi F, Seyedebrahimi A, Khosrowabadi R. Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls. Basic Clin Neurosci 2022; 13:815-838. [PMID: 37323949 PMCID: PMC10262285 DOI: 10.32598/bcn.2021.2262.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/02/2023] Open
Abstract
Introduction Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD). Method We compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age=14-50, IQ=92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144). Result The one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is altered in ASD. Conclusion This changed structural covariance could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.
Collapse
Affiliation(s)
- Farnaz Faridi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Afrooz Seyedebrahimi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Portnova G, Nekrashevich M, Morozova M, Martynova O, Sharaev M. New approaches to Clinical Electroencephalography analysis in typically developing children and children with autism. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Deng L, Liu H, Liu W, Liao Y, Liang Q, Wang W. Alteration in topological organization characteristics of gray matter covariance networks in patients with prediabetes. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1375-1384. [PMID: 36411688 PMCID: PMC10930362 DOI: 10.11817/j.issn.1672-7347.2022.220085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Prediabetes is associated with an increased risk of cognitive impairment and neurodegenerative diseases. However, the exact mechanism of prediabetes-related brain diseases has not been fully elucidated. The brain structure of patients with prediabetes has been damaged to varying degrees, and these changes may affect the topological characteristics of large-scale brain networks. The structural covariance of connected gray matter has been demonstrated valuable in inferring large-scale structural brain networks. The alterations of gray matter structural covariance networks in prediabetes remain unclear. This study aims to examine the topological features and robustness of gray matter structural covariance networks in prediabetes. METHODS A total of 48 subjects were enrolled in this study, including 23 patients with prediabetes (the PD group) and 25 age-and sex-matched healthy controls (the Ctr group). All subjects' high-resolution 3D T1 images of the brain were collected by a 3.0 Tesla MR machine. Mini-mental state examination was used to evaluate the cognitive status of each subject. We calculated the gray matter volume of 116 brain regions with automated anatomical labeling (AAL) template, and constructed gray matter structural covariance networks by thresholding interregional structural correlation matrices as well as graph theoretical analysis. The area under the curve (AUC) in conjunction with permutation testing was employed for testing the differences in network measures, which included small world parameter (Sigma), normalized clustering coefficient (Gamma), normalized path length (Lambda), global efficiency, characteristic path length, local efficiency, mean clustering coefficient, and network robustness parameters. RESULTS The network in both groups followed small-world characteristics, showing that Sigma was greater than 1, the Lambda was much higher than 1, and Gamma was close to 1. Compared with the Ctr group, the network of the PD group showed increased Sigma, Lambda, and Gamma across a range of network sparsity. The Gamma of the PD group was significantly higher than that in the Ctr group in the network sparsity range of 0.12-0.16, but there was no difference between the 2 groups (all P>0.05). The grey matter network showed an increased characteristic path length and a decreased global efficiency in the PD group, but AUC analysis showed that there was no significant difference between groups (all P>0.05). For the network separation measures, the local efficiency and mean clustering coefficient of the gray matter network in the PD group were significantly increased and AUC analysis also confirmed it (P=0.001 and P=0.004, respectively). In addition, network robustness analysis showed that the grey matter network of the PD group was more vulnerable to random damage (P=0.001). CONCLUSIONS The prediabetic gray matter network shows an increased average clustering coefficient and local efficiency, and is more vulnerable to random damage than the healthy control, suggesting that the topological characteristics of the prediabetes grey matter covariant network have changed (network separation enhanced and network robustness reduced), which may provide new insights into the brain damage relevant to the disease.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Huasheng Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yunjie Liao
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Liang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wei Wang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
21
|
Kangarani-Farahani M, Izadi-Najafabadi S, Zwicker JG. How does brain structure and function on MRI differ in children with autism spectrum disorder, developmental coordination disorder, and/or attention deficit hyperactivity disorder? Int J Dev Neurosci 2022; 82:681-715. [PMID: 36084947 DOI: 10.1002/jdn.10228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AIM The purpose of this study was to systematically review the neural similarities and differences in brain structure and function, measured by magnetic resonance imaging (MRI), in children with neurodevelopmental disorders that commonly co-occur to understand if and how they have shared neuronal characteristics. METHOD Using systematic review methodology, the following databases were comprehensively searched: MEDLINE, EMBASE, CINAHL, CENTRAL, PsycINFO, and ProQuest from the earliest record up to December 2021. Inclusion criteria were: (1) peer-reviewed studies, case reports, or theses; (2) children under 18 years of age with at least one of the following neurodevelopmental disorders: autism spectrum disorder (ASD), attention hyperactivity deficit disorder (ADHD), developmental coordination disorder (DCD), and their co-occurrence; (3) studies based on MRI modalities (i.e., structural MRI, diffusion tensor imaging (DTI), and resting-state fMRI). Thirty-one studies that met the inclusion criteria were included for quality assessment by two independent reviewers using the Appraisal tool for Cross-Sectional Studies (AXIS). RESULTS Studies compared brain structure and function of children with DCD and ADHD (n=6), DCD and ASD (n=1), ASD and ADHD (n=17), and various combinations of these co-occurring conditions (n=7). Structural neuroimaging (n=15) was the most commonly reported modality, followed by resting-state (n=8), DTI (n=5), and multi-modalities (n=3). INTERPRETATION Evidence indicated that the neural correlates of the co-occurring conditions were more widespread and distinct compared to a single diagnosis. The majority of findings (77%) suggested that each neurodevelopmental disorder had more distinct neural correlates than shared neural features, suggesting that each disorder is distinct despite commonly co-occurring with each other. As the number of papers examining the co-occurrence of ASD, DCD, and/or ADHD was limited and most findings were not corrected for multiple comparisons, these results must be interpreted with caution.
Collapse
Affiliation(s)
- Melika Kangarani-Farahani
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sara Izadi-Najafabadi
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
22
|
Quah SKL, McIver L, Bullmore ET, Roberts AC, Sawiak SJ. Higher-order brain regions show shifts in structural covariance in adolescent marmosets. Cereb Cortex 2022; 32:4128-4140. [PMID: 35029670 PMCID: PMC9476623 DOI: 10.1093/cercor/bhab470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.
Collapse
Affiliation(s)
- Shaun K L Quah
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lauren McIver
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Translational Neuroimaging Laboratory, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
23
|
Zielinski BA, Andrews DS, Lee JK, Solomon M, Rogers SJ, Heath B, Nordahl CW, Amaral DG. Sex-dependent structure of socioemotional salience, executive control, and default mode networks in preschool-aged children with autism. Neuroimage 2022; 257:119252. [PMID: 35500808 PMCID: PMC11107798 DOI: 10.1016/j.neuroimage.2022.119252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/12/2022] [Accepted: 04/16/2022] [Indexed: 12/26/2022] Open
Abstract
The structure of large-scale intrinsic connectivity networks is atypical in adolescents diagnosed with autism spectrum disorder (ASD or autism). However, the degree to which alterations occur in younger children, and whether these differences vary by sex, is unknown. We utilized structural magnetic resonance imaging (MRI) data from a sex- and age- matched sample of 122 autistic and 122 typically developing (TD) children (2-4 years old) to investigate differences in underlying network structure in preschool-aged autistic children within three large scale intrinsic connectivity networks implicated in ASD: the Socioemotional Salience, Executive Control, and Default Mode Networks. Utilizing structural covariance MRI (scMRI), we report network-level differences in autistic versus TD children, and further report preliminary findings of sex-dependent differences within network topology.
Collapse
Affiliation(s)
- Brandon A Zielinski
- Departments of Pediatrics and Neurology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Derek S Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Joshua K Lee
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Marjorie Solomon
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Sally J Rogers
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Brianna Heath
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - David G Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
24
|
Zhang Y, Zhang S, Chen B, Jiang L, Li Y, Dong L, Feng R, Yao D, Li F, Xu P. Predicting the Symptom Severity in Autism Spectrum Disorder Based on EEG Metrics. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1898-1907. [PMID: 35788457 DOI: 10.1109/tnsre.2022.3188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorder (ASD) is associated with the impaired integrating and segregating of related information that is expanded within the large-scale brain network. The varying ASD symptom severities have been explored, relying on their behaviors and related brain activity, but how to effectively predict ASD symptom severity needs further exploration. In this study, we aim to investigate whether the ASD symptom severity could be predicted with electroencephalography (EEG) metrics. Based on a publicly available dataset, the EEG brain networks were constructed, and four types of EEG metrics were calculated. Then, we statistically compared the brain network differences among ASD children with varying severities, i.e., high/low autism diagnostic observation schedule (ADOS) scores, as well as with the typically developing (TD) children. Thereafter, the EEG metrics were utilized to validate whether they could facilitate the prediction of the ASD symptom severity. The results demonstrated that both high- and low-scoring ASD children showed the decreased long-range frontal-occipital connectivity, increased anterior frontal connectivity and altered network properties. Furthermore, we found that the four types of EEG metrics are significantly correlated with the ADOS scores, and their combination can serve as the features to effectively predict the ASD symptom severity. The current findings will expand our knowledge of network dysfunction in ASD children and provide new EEG metrics for predicting the symptom severity.
Collapse
|
25
|
Bolton TAW, Van De Ville D, Régis J, Witjas T, Girard N, Levivier M, Tuleasca C. Morphometric features of drug-resistant essential tremor and recovery after stereotactic radiosurgical thalamotomy. Netw Neurosci 2022; 6:850-869. [PMID: 36605417 PMCID: PMC9810368 DOI: 10.1162/netn_a_00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023] Open
Abstract
Essential tremor (ET) is the most common movement disorder. Its neural underpinnings remain unclear. Here, we quantified structural covariance between cortical thickness (CT), surface area (SA), and mean curvature (MC) estimates in patients with ET before and 1 year after ventro-intermediate nucleus stereotactic radiosurgical thalamotomy, and contrasted the observed patterns with those from matched healthy controls. For SA, complex rearrangements within a network of motion-related brain areas characterized patients with ET. This was complemented by MC alterations revolving around the left middle temporal cortex and the disappearance of positive-valued covariance across both modalities in the right fusiform gyrus. Recovery following thalamotomy involved MC readjustments in frontal brain centers, the amygdala, and the insula, capturing nonmotor characteristics of the disease. The appearance of negative-valued CT covariance between the left parahippocampal gyrus and hippocampus was another recovery mechanism involving high-level visual areas. This was complemented by the appearance of negative-valued CT/MC covariance, and positive-valued SA/MC covariance, in the right inferior temporal cortex and bilateral fusiform gyrus. Our results demonstrate that different morphometric properties provide complementary information to understand ET, and that their statistical cross-dependences are also valuable. They pinpoint several anatomical features of the disease and highlight routes of recovery following thalamotomy.
Collapse
Affiliation(s)
- Thomas A. W. Bolton
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,* Corresponding Author:
| | - Dimitri Van De Ville
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Tatiana Witjas
- Neurology Department, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Centre de Résonance Magnétique Biologique et Médicale, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland,Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Vuksanović V. Brain morphometric similarity and flexibility. Cereb Cortex Commun 2022; 3:tgac024. [PMID: 35854840 PMCID: PMC9283106 DOI: 10.1093/texcom/tgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The cerebral cortex is represented through multiple multilayer morphometric similarity networks to study their modular structures. The approach introduces a novel way for studying brain networks' metrics across individuals, and can quantify network properties usually not revealed using conventional network analyses.
Methods
A total of 8 combinations or types of morphometric similarity networks were constructed – 4 combinations of the inter-regional cortical features on 2 brain atlases. The networks' modular structures were investigated by identifying those modular interactions that stay consistent across the combinations of inter-regional morphometric features and individuals.
Results
The results provide evidence of the community structures as the property of (i) cortical lobar divisions, and also as (ii) the product of different combinations of morphometric features used for the construction of the multilayer representations of the cortex. For the first time, this study has mapped out flexible and inflexible morphometric similarity hubs, and evidence has been provided about variations of the modular network topology across the multilayers with age and IQ.
Conclusions
The results contribute to understanding of intra-regional characteristics in cortical interactions, which potentially can be used to map heterogeneous neurodegeneration patterns in diseased brains.
Collapse
Affiliation(s)
- Vesna Vuksanović
- Health Data Science, Swansea University Medical School, Swansea University, Data Science Building , Swansea SA2 8PP, Wales, United Kingdom
| |
Collapse
|
27
|
Gazzina S, Grassi M, Premi E, Alberici A, Benussi A, Archetti S, Gasparotti R, Bocchetta M, Cash DM, Todd EG, Peakman G, Convery RS, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ber IL, Pasquier F, Ducharme S, Levin J, Danek A, Sorbi S, Otto M, Rohrer JD, Borroni B. Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiol Aging 2022; 114:94-104. [PMID: 35339292 DOI: 10.1016/j.neurobiolaging.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurophysiology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Enrico Premi
- Stroke Unit, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | - Alberto Benussi
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | | | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Chris R Butler
- Nueld Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | | | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jonathan D Rohrer
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
| | | |
Collapse
|
28
|
Bolton TAW, Van De Ville D, Régis J, Witjas T, Girard N, Levivier M, Tuleasca C. Graph Theoretical Analysis of Structural Covariance Reveals the Relevance of Visuospatial and Attentional Areas in Essential Tremor Recovery After Stereotactic Radiosurgical Thalamotomy. Front Aging Neurosci 2022; 14:873605. [PMID: 35677202 PMCID: PMC9168220 DOI: 10.3389/fnagi.2022.873605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Essential tremor (ET) is the most common movement disorder. Its pathophysiology is only partially understood. Here, we leveraged graph theoretical analysis on structural covariance patterns quantified from morphometric estimates for cortical thickness, surface area, and mean curvature in patients with ET before and one year after (to account for delayed clinical effect) ventro-intermediate nucleus (Vim) stereotactic radiosurgical thalamotomy. We further contrasted the observed patterns with those from matched healthy controls (HCs). Significant group differences at the level of individual morphometric properties were specific to mean curvature and the post-/pre-thalamotomy contrast, evidencing brain plasticity at the level of the targeted left thalamus, and of low-level visual, high-level visuospatial and attentional areas implicated in the dorsal visual stream. The introduction of cross-correlational analysis across pairs of morphometric properties strengthened the presence of dorsal visual stream readjustments following thalamotomy, as cortical thickness in the right lingual gyrus, bilateral rostral middle frontal gyrus, and left pre-central gyrus was interrelated with mean curvature in the rest of the brain. Overall, our results position mean curvature as the most relevant morphometric feature to understand brain plasticity in drug-resistant ET patients following Vim thalamotomy. They also highlight the importance of examining not only individual features, but also their interactions, to gain insight into the routes of recovery following intervention.
Collapse
Affiliation(s)
- Thomas A. W. Bolton
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Tatiana Witjas
- Neurology Department, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Centre de Résonance Magnétique Biologique et Médicale, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
29
|
Pardoe HR, Martin SP. In-scanner head motion and structural covariance networks. Hum Brain Mapp 2022; 43:4335-4346. [PMID: 35593313 PMCID: PMC9435006 DOI: 10.1002/hbm.25957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022] Open
Abstract
In-scanner head motion systematically reduces estimated regional gray matter volumes obtained from structural brain MRI. Here, we investigate how head motion affects structural covariance networks that are derived from regional gray matter volumetric estimates. We acquired motion-affected and low-motion whole brain T1-weighted MRI in 29 healthy adult subjects and estimated relative regional gray matter volumes using a voxel-based morphometry approach. Structural covariance network analyses were undertaken while systematically increasing the number of included motion-affected scans. We demonstrate that the standard deviation in regional gray matter estimates increases as the number of motion-affected scans increases. This increases pairwise correlations between regions, a key determinant for construction of structural covariance networks. We further demonstrate that head motion systematically alters graph theoretic metrics derived from these networks. Finally, we present evidence that weighting correlations using image quality metrics can mitigate the effects of head motion. Our findings suggest that in-scanner head motion is a source of error that violates the assumption that structural covariance networks reflect neuroanatomical connectivity between brain regions. Results of structural covariance studies should be interpreted with caution, particularly when subject groups are likely to move their heads in the scanner.
Collapse
Affiliation(s)
- Heath R Pardoe
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Samantha P Martin
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Lai H, Kong X, Zhao Y, Pan N, Zhang X, He M, Wang S, Gong Q. Patterns of a structural covariance network associated with dispositional optimism during late adolescence. Neuroimage 2022; 251:119009. [PMID: 35182752 DOI: 10.1016/j.neuroimage.2022.119009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
Dispositional optimism (hereinafter, optimism), as a vital character strength, reflects the tendency to hold generalized positive expectancies for future outcomes. A great number of studies have consistently shown the importance of optimism to a spectrum of physical and mental health outcomes. However, less attention has been given to the intrinsic neurodevelopmental patterns associated with interindividual differences in optimism. Here, we investigated this important question in a large sample comprising 231 healthy adolescents (16-20 years old) via structural magnetic resonance imaging and behavioral tests. We constructed individual structural covariance networks based on cortical gyrification using a recent novel approach combining probability density estimation and Kullback-Leibler divergence and estimated global (global efficiency, local efficiency and small-worldness) and regional (betweenness centrality) properties of these constructed networks using graph theoretical analysis. Partial correlations adjusted for age, sex and estimated total intracranial volume showed that optimism was positively related to global and local efficiency but not small-worldness. Partial least squares correlations indicated that optimism was positively linked to a pronounced betweenness centrality pattern, in which twelve cognition-, emotion-, and motivation-related regions made robust and reliable contributions. These findings remained basically consistent after additionally controlling for family socioeconomic status and showed significant correlations with optimism scores from 2.5 years before, which replicated the main findings. The current work, for the first time, delineated characteristics of the cortical gyrification covariance network associated with optimism, extending previous neurobiological understandings of optimism, which may navigate the development of interventions on a neural network level aimed at raising optimism.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Department of Psychology, Army Medical University, Chongqing, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Topal Z, Tufan AE, Karadag M, Gokcen C, Akkaya C, Sarp AS, Bahsi I, Kilinc M. Evaluation of peripheral inflammatory markers, serum B12, folate, ferritin levels and clinical correlations in children with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Nord J Psychiatry 2022; 76:150-157. [PMID: 34232109 DOI: 10.1080/08039488.2021.1946712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of the current study is to compare serum B12, folate, and ferritin levels and peripheral inflammatory indicators between children with Autism Spectrum Disorders (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and healthy controls (HC) and to evaluate the correlation of those with symptoms. MATERIALS AND METHODS A total of 203 children were evaluated (ASD = 72; ADHD = 61; HC = 70). Diagnoses of ASD and ADHD were ascertained according to Schedule for Affective Disorders and Schizophrenia for School-Age Children - Present and Lifetime Version (K-SADS-PL). Control group was chosen among the healthy children who applied to general pediatrics outpatient clinic. Gilliam Autism Rating Scale-2 is used to assess autistic symptoms and Atilla Turgay DSM-IV Based Child and Adolescent Behavior Disorders Screening and Rating Scale is used for ADHD symptoms. RESULTS Neutrophil levels (p = 0.014) and neutrophil/lymphocyte ratio (NLR) (p = 0.016) were higher in the ADHD and ASD groups compared to HC. Neutrophil values explained 70.1% of the variance across groups while NLR explained a further 29.9% of the variance. NLR significantly correlated with social interaction problems in ASD (r = 0.26, p = 0.04). There were no significant differences between groups in terms of vitamin B12, folate and ferritin levels. CONCLUSION Our results may support involvement of inflammation in the underlying pathophysiology of neurodevelopmental disorders. However, these parameters should be analyzed in a wider population to clarify the effect on the etiology and symptomatology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zehra Topal
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Mehmet Karadag
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Canan Akkaya
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ayse Sevde Sarp
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ilhan Bahsi
- Department of Anatomy, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Metin Kilinc
- Department of Pediatrics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
32
|
Wang Y, Hu D, Wu Z, Wang L, Huang W, Li G. Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2 years. Cereb Cortex 2022; 32:3786-3798. [PMID: 35034115 PMCID: PMC9433424 DOI: 10.1093/cercor/bhab448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Converging evidence supports that a collection of brain regions is functionally or anatomically abnormal in autistic subjects. Structural covariance networks (SCNs) representing patterns of coordinated regional maturation are widely used to study abnormalities associated with neurodisorders. However, the possible developmental changes of SCNs in autistic individuals during the first 2 postnatal years, which features dynamic development and can potentially serve as biomarkers, remain unexplored. To fill this gap, for the first time, SCNs of cortical thickness and surface area were constructed and investigated in infants at high familial risk for autism and typically developing infants in this study. Group differences of SCNs emerge at 12 months of age in surface area. By 24 months of age, the autism group shows significantly increased integration, decreased segregation, and decreased small-worldness, compared with controls. The SCNs of surface area are deteriorated and shifted toward randomness in autistic infants. The abnormal brain regions changed during development, and the group differences of the left lateral occipital cortex become more prominent with age. These results indicate that autism has more significant influences on coordinated development of surface area than that of cortical thickness and the occipital cortex maybe an important biomarker of autism during infancy.
Collapse
Affiliation(s)
- Ya Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Hu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenhua Huang
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| | - Gang Li
- Address correspondence to Wenhua Huang, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, 11th floor, Southern Medical University, Guangzhou 510515, China. ; Gang Li, The University of North Carolina at Chapel Hill, Bioinformatics Building #3104, Chapel Hill, NC 27599.
| |
Collapse
|
33
|
Li S, Bai R, Yang Y, Zhao R, Upreti B, Wang X, Liu S, Cheng Y, Xu J. Abnormal cortical thickness and structural covariance networks in systemic lupus erythematosus patients without major neuropsychiatric manifestations. Arthritis Res Ther 2022; 24:259. [PMID: 36443835 PMCID: PMC9703716 DOI: 10.1186/s13075-022-02954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Non-neuropsychiatric systemic lupus erythematosus (non-NPSLE) has been confirmed to have subtle changes in brain structure before the appearance of obvious neuropsychiatric symptoms. Previous literature mainly focuses on brain structure loss in non-NPSLE; however, the results are heterogeneous, and the impact of structural changes on the topological structure of patients' brain networks remains to be determined. In this study, we combined neuroimaging and network analysis methods to evaluate the changes in cortical thickness and its structural covariance networks (SCNs) in patients with non-NPSLE. METHODS We compare the cortical thickness of non-NPSLE patients (N=108) and healthy controls (HCs, N=88) using both surface-based morphometry (SBM) and regions of interest (ROI) methods, respectively. After that, we analyzed the correlation between the abnormal cortical thickness results found in the ROI method and a series of clinical features. Finally, we constructed the SCNs of two groups using the regional cortical thickness and analyzed the abnormal SCNs of non-NPSLE. RESULTS By SBM method, we found that cortical thickness of 34 clusters in the non-NPSLE group was thinner than that in the HC group. ROI method based on Destrieux atlas showed that cortical thickness of 57 regions in the non-NPSLE group was thinner than that in the HC group and related to the course of disease, autoantibodies, the cumulative amount of immunosuppressive agents, and cognitive psychological scale. In the SCN analysis, the cortical thickness SCNs of the non-NPSLE group did not follow the small-world attribute at a few densities, and the global clustering coefficient appeared to increase. The area under the curve analysis showed that there were significant differences between the two groups in clustering coefficient, degree, betweenness, and local efficiency. There are a total of seven hubs for non-NPSLE, and five hubs in HCs, the two groups do not share a common hub distribution. CONCLUSION Extensive and obvious reduction in cortical thickness and abnormal topological organization of SCNs are observed in non-NPSLE patients. The observed abnormalities may not only be the realization of brain damage caused by the disease, but also the contribution of the compensatory changes within the nervous system.
Collapse
Affiliation(s)
- Shu Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ru Bai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yifan Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruotong Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bibhuti Upreti
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangyu Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
34
|
Rosello R, Martinez-Raga J, Mira A, Pastor JC, Solmi M, Cortese S. Cognitive, social, and behavioral manifestations of the co-occurrence of autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:743-760. [PMID: 34961363 DOI: 10.1177/13623613211065545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT This work aimed to review recent research on the characteristics of individuals who have both autism spectrum disorder and attention-deficit/hyperactivity disorder due to their high co-occurrence. Thirty-four studies were analyzed and main findings summarized in two content domains focusing on areas that could enhance our understanding of the cognitive and behavioral characteristics of individuals with autism spectrum disorder + attention-deficit/hyperactivity disorder (ASD+). Most of the results suggested that ASD+ is a co-occurring condition associated with more severe impairments in cognitive functioning, adaptive behavior, and increased likelihood to present more emotional/behavioral problems. These results will be helpful to provide improved care plans for individuals with both attention-deficit/hyperactivity disorder and autism spectrum disorder.
Collapse
|
35
|
Oka M, Kobayashi K, Shibata T, Tsuchiya H, Hanaoka Y, Akiyama M, Morooka T, Matsuhashi M, Akiyama T. A study on the relationship between non-epileptic fast (40 - 200 Hz) oscillations in scalp EEG and development in children. Brain Dev 2021; 43:904-911. [PMID: 34052035 DOI: 10.1016/j.braindev.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Physiological gamma and ripple activities may be linked to neurocognitive functions. This study investigated the relationship between development and non-epileptic, probably physiological, fast (40-200 Hz) oscillations (FOs) including gamma (40 - 80 Hz) and ripple (80 - 200 Hz) oscillations in scalp EEG in children with neurodevelopmental disorders. METHODS Participants were 124 children with autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). Gamma and ripple oscillations were explored from 60-second-long sleep EEG data in each subject using a semi-automatic detection tool supplemented with visual confirmation and time-frequency analysis. RESULTS Gamma and ripple oscillations were detected in 25 (20.2%) and 22 (17.7%) children, respectively. The observation of one or more occurrence(s) of ripple oscillations, but not gamma oscillations, was significantly related to lower age at EEG recording (odds ratio, OR: 0.727 [95% confidence interval, CI: 0.568-0.929]), higher intelligence/developmental quotient (OR: 1.041, 95% CI: 1.002-1.082), and lack of a diagnosis with ADHD (OR: 0.191, 95% CI: 0.039 - 0.937) according to a binominal logistic regression analysis that included diagnosis with ASD, sex, history of perinatal complications, history of febrile seizures, and use of a sedative agent for the EEG recording as the other non-significant parameters. Diagnostic group was not related to frequency or power of spectral peaks of FOs. CONCLUSION The production of non-epileptic scalp ripples was confirmed to be associated with brain development and function/dysfunction in childhood. Further investigation is necessary to interpret all of the information on higher brain functions that may be embedded in scalp FOs.
Collapse
Affiliation(s)
- Makio Oka
- Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yoshiyuki Hanaoka
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Teruko Morooka
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
36
|
Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, Zheng Y, Liu Y, Li S. Regional radiomics similarity networks (R2SNs) in the human brain: Reproducibility, small-world properties and a biological basis. Netw Neurosci 2021; 5:783-797. [PMID: 34746627 PMCID: PMC8567836 DOI: 10.1162/netn_a_00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
A structural covariance network (SCN) has been used successfully in structural magnetic resonance imaging (sMRI) studies. However, most SCNs have been constructed by a unitary marker that is insensitive for discriminating different disease phases. The aim of this study was to devise a novel regional radiomics similarity network (R2SN) that could provide more comprehensive information in morphological network analysis. R2SNs were constructed by computing the Pearson correlations between the radiomics features extracted from any pair of regions for each subject (AAL atlas). We further assessed the small-world property of R2SNs, and we evaluated the reproducibility in different datasets and through test-retest analysis. The relationships between the R2SNs and general intelligence/interregional coexpression of genes were also explored. R2SNs could be replicated in different datasets, regardless of the use of different feature subsets. R2SNs showed high reproducibility in the test-retest analysis (intraclass correlation coefficient > 0.7). In addition, the small-word property (σ > 2) and the high correlation between gene expression (R = 0.29, p < 0.001) and general intelligence were determined for R2SNs. Furthermore, the results have also been repeated in the Brainnetome atlas. R2SNs provide a novel, reliable, and biologically plausible method to understand human morphological covariance based on sMRI.
Collapse
Affiliation(s)
- Kun Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Tongtong Che
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Qiongling Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
37
|
He C, Cortes JM, Kang X, Cao J, Chen H, Guo X, Wang R, Kong L, Huang X, Xiao J, Shan X, Feng R, Chen H, Duan X. Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Hum Brain Mapp 2021; 42:3282-3294. [PMID: 33934442 PMCID: PMC8193534 DOI: 10.1002/hbm.25434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.
Collapse
Affiliation(s)
- Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jesus M. Cortes
- Computational Neuroimaging LaboratoryBiocruces‐Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque: The Basque Foundation for ScienceBilbaoSpain
- Department of Cell Biology and HistologyUniversity of the Basque CountryLeioaSpain
| | - Xiaodong Kang
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Jing Cao
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Heng Chen
- School of MedicineMedical College of Guizhou UniversityGuiyangChina
| | - Xiaonan Guo
- School of Information Science and EngineeringYanshan UniversityQinhuangdaoChina
- Hebei Key Laboratory of information transmission and signal processingYanshan UniversityQinhuangdaoChina
| | - Ruishi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
38
|
Nadig A, Seidlitz J, McDermott CL, Liu S, Bethlehem R, Moore TM, Mallard TT, Clasen LS, Blumenthal JD, Lalonde F, Gur RC, Gur RE, Bullmore ET, Satterthwaite TD, Raznahan A. Morphological integration of the human brain across adolescence and adulthood. Proc Natl Acad Sci U S A 2021; 118:e2023860118. [PMID: 33811142 PMCID: PMC8040585 DOI: 10.1073/pnas.2023860118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Brain structural covariance norms capture the coordination of neurodevelopmental programs between different brain regions. We develop and apply anatomical imbalance mapping (AIM), a method to measure and model individual deviations from these norms, to provide a lifespan map of morphological integration in the human cortex. In cross-sectional and longitudinal data, analysis of whole-brain average anatomical imbalance reveals a reproducible tightening of structural covariance by age 25 y, which loosens after the seventh decade of life. Anatomical imbalance change in development and in aging is greatest in the association cortex and least in the sensorimotor cortex. Finally, we show that interindividual variation in whole-brain average anatomical imbalance is positively correlated with a marker of human prenatal stress (birthweight disparity between monozygotic twins) and negatively correlated with general cognitive ability. This work provides methods and empirical insights to advance our understanding of coordinated anatomical organization of the human brain and its interindividual variation.
Collapse
Affiliation(s)
- Ajay Nadig
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115;
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Jakob Seidlitz
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Cassidy L McDermott
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Richard Bethlehem
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Tyler M Moore
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712
| | - Liv S Clasen
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Jonathan D Blumenthal
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - François Lalonde
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Ruben C Gur
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Raquel E Gur
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB2 1TN, United Kingdom
| | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| |
Collapse
|
39
|
Liloia D, Mancuso L, Uddin LQ, Costa T, Nani A, Keller R, Manuello J, Duca S, Cauda F. Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence. Neuroimage Clin 2021; 30:102583. [PMID: 33618237 PMCID: PMC7903137 DOI: 10.1016/j.nicl.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored. METHODS An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD. RESULTS Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations. CONCLUSION These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| |
Collapse
|
40
|
Nigro S, Tafuri B, Urso D, De Blasi R, Frisullo ME, Barulli MR, Capozzo R, Cedola A, Gigli G, Logroscino G. Brain Structural Covariance Networks in Behavioral Variant of Frontotemporal Dementia. Brain Sci 2021; 11:brainsci11020192. [PMID: 33557411 PMCID: PMC7915789 DOI: 10.3390/brainsci11020192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.
Collapse
Affiliation(s)
- Salvatore Nigro
- Institute of Nanotechnology (NANOTEC), National Research Council, 73100 Lecce, Italy; (S.N.); (A.C.); (G.G.)
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
- Department of Radiology, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy
| | - Maria Elisa Frisullo
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
| | - Maria Rosaria Barulli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
| | - Rosa Capozzo
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
| | - Alessia Cedola
- Institute of Nanotechnology (NANOTEC), National Research Council, 73100 Lecce, Italy; (S.N.); (A.C.); (G.G.)
| | - Giuseppe Gigli
- Institute of Nanotechnology (NANOTEC), National Research Council, 73100 Lecce, Italy; (S.N.); (A.C.); (G.G.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro, “Pia Fondazione Cardinale G. Panico”, 73039 Tricase, Italy; (B.T.); (D.U.); (R.D.B.); (M.E.F.); (M.R.B.); (R.C.)
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
- Correspondence: or giancarlo.; Tel.: +39-0833/773904
| |
Collapse
|
41
|
Zanin M, Aitya NA, Basilio J, Baumbach J, Benis A, Behera CK, Bucholc M, Castiglione F, Chouvarda I, Comte B, Dao TT, Ding X, Pujos-Guillot E, Filipovic N, Finn DP, Glass DH, Harel N, Iesmantas T, Ivanoska I, Joshi A, Boudjeltia KZ, Kaoui B, Kaur D, Maguire LP, McClean PL, McCombe N, de Miranda JL, Moisescu MA, Pappalardo F, Polster A, Prasad G, Rozman D, Sacala I, Sanchez-Bornot JM, Schmid JA, Sharp T, Solé-Casals J, Spiwok V, Spyrou GM, Stalidzans E, Stres B, Sustersic T, Symeonidis I, Tieri P, Todd S, Van Steen K, Veneva M, Wang DH, Wang H, Wang H, Watterson S, Wong-Lin K, Yang S, Zou X, Schmidt HH. An Early Stage Researcher's Primer on Systems Medicine Terminology. NETWORK AND SYSTEMS MEDICINE 2021; 4:2-50. [PMID: 33659919 PMCID: PMC7919422 DOI: 10.1089/nsm.2020.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nadim A.A. Aitya
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - José Basilio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arriel Benis
- Faculty of Technology Management, Holon Institute of Technology (HIT), Holon, Israel
| | - Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics, and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Tien-Tuan Dao
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Republic of Ireland
| | - David H. Glass
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Nissim Harel
- Faculty of Sciences, Holon Institute of Technology (HIT), Holon, Israel
| | - Tomas Iesmantas
- Department of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilinka Ivanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Liam P. Maguire
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - João Luís de Miranda
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portalegre, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Annikka Polster
- Centre for Molecular Medicine Norway (NCMM), Forskningparken, Oslo, Norway
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Jose M. Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic–Central University of Catalonia, Vic, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Ioannis Symeonidis
- Center for Research and Technology Hellas, Hellenic Institute of Transport, Thessaloniki, Greece
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Altnagelvin, United Kingdom
| | - Kristel Van Steen
- BIO3-Systems Genetics, GIGA-R, University of Liege, Liege, Belgium
- BIO3-Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and School of Systems Science, Beijing Normal University, Beijing, China
| | - Haiying Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Hui Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Su Yang
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Xin Zou
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Harald H.H.W. Schmidt
- Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
Integration of brain and behavior measures for identification of data-driven groups cutting across children with ASD, ADHD, or OCD. Neuropsychopharmacology 2021; 46:643-653. [PMID: 33168947 PMCID: PMC8027842 DOI: 10.1038/s41386-020-00902-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) are clinically and biologically heterogeneous neurodevelopmental disorders (NDDs). The objective of the present study was to integrate brain imaging and behavioral measures to identify new brain-behavior subgroups cutting across these disorders. A subset of the data from the Province of Ontario Neurodevelopmental Disorder (POND) Network was used including participants with different NDDs (aged 6-16 years) that underwent cross-sectional T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scanning on the same 3T scanner, and behavioral/cognitive assessments. Similarity Network Fusion was applied to integrate cortical thickness, subcortical volume, white matter fractional anisotropy (FA), and behavioral measures in 176 children with ASD, ADHD or OCD with complete data that passed quality control. Normalized mutual information was used to determine top contributing model features. Bootstrapping, out-of-model outcome measures and supervised machine learning were each used to examine stability and evaluate the new groups. Cortical thickness in socio-emotional and attention/executive networks and inattention symptoms comprised the top ten features driving participant similarity and differences between four transdiagnostic groups. Subcortical volumes (pallidum, nucleus accumbens, thalamus) were also different among groups, although white matter FA showed limited differences. Features driving participant similarity remained stable across resampling, and the new groups showed significantly different scores on everyday adaptive functioning. Our findings open the possibility of studying new data-driven groups that represent children with NDDs more similar to each other than others within their own diagnostic group. Future work is needed to build on this early attempt through replication of the current findings in independent samples and testing longitudinally for prognostic value.
Collapse
|
43
|
Cai S, Wang X, Yang F, Chen D, Huang L. Differences in Brain Structural Covariance Network Characteristics in Children and Adults With Autism Spectrum Disorder. Autism Res 2021; 14:265-275. [PMID: 33386783 DOI: 10.1002/aur.2464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/07/2022]
Abstract
Systematically describing the structural topological configuration of human brain during development is an essential task. Autism spectrum disorder (ASD) represents a powerful challenge for psychiatry and neuroscience researchers. In this study, we investigated variations in the structural covariance network properties of 441 patients with ASD ranging in age from 7 to 45 years and in 426 age-matched healthy controls (HCs) using structural magnetic resonance neuroimaging from the ABIDE database. We applied a sliding window approach to study topological variation during development using comprehensive graph theoretical analysis. The main findings are as follows: (1) Cross-sectional trajectories of the network characteristics exhibited inverted U-shapes in both HCs and participants with ASD, with the latter exhibiting a 7-year delay in reaching the maximum value, (2) network resilience to targeted attacks peaked at 18' and 19' in the HCs and at 25' in the participants with ASD, and the weakest resilience occurred at age 7', (3) the HCs and participants with ASD exhibited normalized mean degree differences in the right amygdala, and (4) significant differences in the network characteristics were observed in the 18' age group at most of the densities analyzed. We used cross-sectional analysis to infer distinct neurodevelopmental trajectories in ASD in the brain structural connectome. Our findings are consistent with the notion that adolescence is a sensitive period of brain development with strong potential for brain plasticity, offering opportunities for environmental adaptation and social integration and for increasing vulnerability. ASD may be a product of susceptibility. LAY SUMMARY: We used cross-sectional analysis to preliminarily infer distinct neurodevelopmental trajectories in ASD in the brain structural connectome. The main findings are as follows: (1) Cross-sectional trajectories of the network characteristics exhibited inverted U-shapes in both HCs and participants with ASD, with the latter exhibiting a 7-year delay in reaching the maximum value, (2) Network resilience to targeted attacks peaked at 18' and 19' in the HCs and at 25' in the participants with ASD, and the weakest resilience occurred at age 7', (3) The HCs and participants with ASD exhibited normalized mean degree differences in the right amygdala, and (4) significant differences in the network characteristics were observed in the 18' age group at most of the densities analyzed.
Collapse
Affiliation(s)
- Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xuwen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fan Yang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Dihui Chen
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Mol Psychiatry 2021; 26:7530-7537. [PMID: 34290368 PMCID: PMC8776898 DOI: 10.1038/s41380-021-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Immunoglobulin G (IgG) autoantibodies reactive to fetal brain proteins in mothers of children with ASD have been described by several groups. To understand their pathologic significance, we developed a mouse model of maternal autoantibody related ASD (MAR-ASD) utilizing the peptide epitopes from human autoantibody reactivity patterns. Male and female offspring prenatally exposed to the salient maternal autoantibodies displayed robust deficits in social interactions and increased repetitive self-grooming behaviors as juveniles and adults. In the present study, neuroanatomical differences in adult MAR-ASD and control offspring were assessed via high-resolution ex vivo magnetic resonance imaging (MRI) at 6 months of age. Of interest, MAR-ASD mice displayed significantly larger total brain volume and of the 159 regions examined, 31 were found to differ significantly in absolute volume (mm3) at an FDR of <5%. Specifically, the absolute volumes of several white matter tracts, cortical regions, and basal nuclei structures were significantly increased in MAR-ASD animals. These phenomena were largely driven by female MAR-ASD offspring, as no significant differences were seen with either absolute or relative regional volume in male MAR-ASD mice. However, structural covariance analysis suggests network-level desynchronization in brain volume in both male and female MAR-ASD mice. Additionally, preliminary correlational analysis with behavioral data relates that volumetric increases in numerous brain regions of MAR-ASD mice were correlated with social interaction and repetitive self-grooming behaviors in a sex-specific manner. These results demonstrate significant sex-specific effects in brain size, regional relationships, and behavior for offspring prenatally exposed to MAR-ASD autoantibodies relative to controls.
Collapse
|
45
|
Yun JY, Kim YK. Phenotype Network and Brain Structural Covariance Network of Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:3-18. [PMID: 33834391 DOI: 10.1007/978-981-33-6044-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phenotype networks enable clinicians to elucidate the patterns of coexistence and interactions among the clinical symptoms, negative cognitive styles , neurocognitive performance, and environmental factors in major depressive disorder (MDD). Results of phenotype network approach could be used in finding the target symptoms as these are tightly connected or associated with many other phenomena within the phenotype network of MDD specifically when comorbid psychiatric disorder(s) is/are present. Further, by comparing the differential patterns of phenotype networks before and after the treatment, changing or enduring patterns of associations among the clinical phenomena in MDD have been deciphered.Brain structural covariance networks describe the inter-regional co-varying patterns of brain morphologies, and overlapping findings have been reported between the brain structural covariance network and coordinated trajectories of brain development and maturation. Intra-individual brain structural covariance illustrates the degrees of similarities among the different brain regions for how much the values of brain morphological features are deviated from those of healthy controls. Inter-individual brain structural covariance reflects the degrees of concordance among the different brain regions for the inter-individual distribution of brain morphologic values. Estimation of the graph metrics for these brain structural covariance networks uncovers the organizational profile of brain morphological variations in the whole brain and the regional distribution of brain hubs.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea. .,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
46
|
Yang F, Qu M, Zhang Y, Zhao L, Xing W, Zhou G, Tang J, Wu J, Zhang Y, Liao W. Aberrant Brain Network Integration and Segregation in Diabetic Peripheral Neuropathy Revealed by Structural Connectomics. Front Neurosci 2020; 14:585588. [PMID: 33343281 PMCID: PMC7746555 DOI: 10.3389/fnins.2020.585588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common forms of peripheral neuropathy, and its incidence has been increasing. Mounting evidence has shown that patients with DPN have been associated with widespread alterations in the structure, function and connectivity of the brain, suggesting possible alterations in large-scale brain networks. Using structural covariance networks as well as advanced graph-theory-based computational approaches, we investigated the topological abnormalities of large-scale brain networks for a relatively large sample of patients with DPN (N = 67) compared to matched healthy controls (HCs; N = 88). Compared with HCs, the structural covariance networks of patients with DPN showed an increased characteristic path length, clustering coefficient, sigma, transitivity, and modularity, suggestive of inefficient global integration and increased local segregation. These findings may improve our understanding of the pathophysiological mechanisms underlying alterations in the central nervous system of patients with DPN from the perspective of large-scale structural brain networks.
Collapse
Affiliation(s)
- Fangxue Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XiangYa), Changsha, China
| |
Collapse
|
47
|
Zheng W, Zhao Z, Zhang Z, Liu T, Zhang Y, Fan J, Wu D. Developmental pattern of the cortical topology in high-functioning individuals with autism spectrum disorder. Hum Brain Mapp 2020; 42:660-675. [PMID: 33085836 PMCID: PMC7814766 DOI: 10.1002/hbm.25251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
A number of studies have indicated alterations of brain morphology in individuals with autism spectrum disorder (ASD); however, how ASD influences the topological organization of the brain cortex at different developmental stages is not yet well characterized. In this study, we used structural images of 492 high‐functioning participants in the Autism Brain Imaging Data Exchange database acquired from 17 international imaging centers, including 75 autistic children (age 7–11 years), 91 adolescents with ASD (age 12–17 years), and 80 young adults with ASD (age 18–29 years), and 246 typically developing controls (TDCs) that were age, gender, handedness, and full‐scale IQ matched. Cortical thickness (CT) and surface area (SA) were extracted and the covariance between cortical regions across participants were treated as a network to examine developmental patterns of the cortical topological organization at different stages. A center‐paired resampling strategy was developed to control the center bias during the permutation test. Compared with the TDCs, network of SA (but not CT) of individuals with ASD showed reduced small‐worldness in childhood, and the network hubs were reorganized in the adulthood such that hubs inclined to connect with nonhub nodes and demonstrated more dispersed spatial distribution. Furthermore, the SA network of the ASD cohort exhibited increased segregation of the inferior parietal lobule and prefrontal cortex, and insular‐opercular cortex in all three age groups, resulting in the emergence of two unique modules in the autistic brain. Our findings suggested that individuals with ASD may undergo remarkable remodeling of the cortical topology from childhood to adulthood, which may be associated with the altered social and cognitive functions in ASD.
Collapse
Affiliation(s)
- Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, New York, New York, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
48
|
Hong JS, Singh V, Kalb L. Attention Deficit Hyperactivity Disorder Symptoms in Young Children with Autism Spectrum Disorder. Autism Res 2020; 14:182-192. [PMID: 33073542 DOI: 10.1002/aur.2414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
The purpose of the current study was to examine the prevalence of attention deficit hyperactivity disorder (ADHD) symptoms among young children with autism spectrum disorder (ASD), child and parent-related demographic and clinical correlates of ADHD symptoms, and the relationships between co-occurring mental health problems and ADHD symptoms. Data for this cross-sectional study came from 979 toddlers and preschoolers, ages 1.5-5 years, with ASD. The primary outcome, ADHD symptoms, was measured using the Child Behavior Check List 1.5-5 (CBCL). Additional information from the medical record included demographics, parenting stress, and Autism Diagnostic Observation Schedule Second Edition. Descriptive and bivariate (ANOVA, Chi-Square) statistics and multivariate, multinomial regression analyses were used to examine demographic and clinical differences between low, moderate, and high ADHD symptom groups, as defined by 2 ADHD-related subscales. There were 418 (43%) children in the low ADHD symptom group, 294 (30%) in the moderate ADHD symptom group, and 267 (27%) in the high ADHD symptom group. Those with high ADHD symptoms were less likely to be Black or Hispanic and less likely to have parents with a graduate-level education compared to those with low ADHD symptoms. Parenting stress and all CBCL DSM-oriented subscales were positively associated with increasing ADHD symptoms. Among young children with ASD, ADHD symptoms were highly prevalent. The presence of ADHD symptoms was associated with increasing parenting stress and greater levels of other psychopathologies. These data suggest that young children with ASD should be evaluated for ADHD, and mental health as a whole. LAY SUMMARY: We investigated attention deficit hyperactivity disorder (ADHD) symptoms in toddlers and preschoolers with autism spectrum disorder (ASD) from a large sample with diverse race and socioeconomic background. In our study, we found that ADHD symptoms are highly prevalent in young children with ASD and are associated with increasing parenting stress and greater level of other psychopathologies, both internalizing and externalizing problems.
Collapse
Affiliation(s)
- Ji S Hong
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vini Singh
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Luke Kalb
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Carmon J, Heege J, Necus JH, Owen TW, Pipa G, Kaiser M, Taylor PN, Wang Y. Reliability and comparability of human brain structural covariance networks. Neuroimage 2020; 220:117104. [PMID: 32621973 DOI: 10.1016/j.neuroimage.2020.117104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets of healthy human subjects, as well as the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurfer versions. In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after univariate site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Down-stream graph theoretic analyses further show statistically significant differences. In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, image resolutions, and even FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using cortical thickness as a morphological measure. Using simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors. Practically, we make the following recommendations (1) combining subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, subject demographics, or preprocessing steps; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects (n≫30 for the Desikan-Killiany parcellation) should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly measured and modelled.
Collapse
Affiliation(s)
- Jona Carmon
- Institute of Cognitive Science, Osnabrueck University, Osnabrueck, Germany
| | - Jil Heege
- Humboldt University Berlin, Berlin, Germany
| | - Joe H Necus
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas W Owen
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Pipa
- Institute of Cognitive Science, Osnabrueck University, Osnabrueck, Germany
| | - Marcus Kaiser
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK.
| |
Collapse
|
50
|
Jung M, Mizuno Y, Fujisawa TX, Takiguchi S, Kong J, Kosaka H, Tomoda A. The Effects of COMT Polymorphism on Cortical Thickness and Surface Area Abnormalities in Children with ADHD. Cereb Cortex 2020; 29:3902-3911. [PMID: 30508034 DOI: 10.1093/cercor/bhy269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Indexed: 11/12/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is associated with frontal cortex development and the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, how the COMT gene impacts brain structure and behavior in ADHD remains unknown. In the present study, we identify the effect of COMT on cortical thickness and surface area in children with ADHD and children with typically developing (TD) using a machine learning approach. In a sample of 39 children with ADHD and 34 age- and IQ-matched TD children, we found that cortical thickness and surface area differences were predominantly observed in the frontal cortex. Furthermore, a path analysis revealed that a COMT genotype affected abnormal development of the frontal cortex in terms of both cortical thickness and surface area and was associated with working memory changes in children with ADHD. Our study confirms that the role of COMT in ADHD is not restricted to the development of behavior but may also affect the cortical thickness and surface area. Thus, our findings may help to improve the understanding of the neuroanatomic basis for the relationship between the COMT genotype and ADHD pathogenesis.
Collapse
Affiliation(s)
- Minyoung Jung
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Neuropsychiatry, University of Fukui, University of Fukui, Eiheiji, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|