1
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zhang M, Liu M, Zhang L, Chen Z, Zhou YB, Li HT, Liu JM. Impact of cesarean section on metabolic syndrome components in offspring rats. Pediatr Res 2024; 95:1775-1782. [PMID: 38347169 DOI: 10.1038/s41390-024-03079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Epidemiological evidence suggests an association between CS and offspring metabolic syndrome (MetS), but whether a causal relationship exists is unknown. METHODS In this study, timed-mated Wistar rat dams were randomly assigned to cesarean section (CS), vaginal delivery (VD), and surrogate groups. The offspring from both CS and VD groups were reared by surrogate dams until weaning, and weaned male offspring from both groups were randomly assigned to receive normal diet (ND) or high-fat/high-fructose diet (HFF) ad libitum for 39 weeks. RESULTS By the end of study, CS-ND offspring gained 17.8% more weight than VD-ND offspring, while CS-HFF offspring gained 36.4% more weight than VD-HFF offspring. Compared with VD-ND offspring, CS-ND offspring tended to have increased triglycerides (0.27 mmol/l, 95% CI, 0.05 to 0.50), total cholesterol (0.30 mmol/l, -0.08 to 0.68), and fasting plasma glucose (FPG) (0.30 mmol/l, -0.01 to 0.60); more pronounced differences were observed between CS-HFF and VD-HFF offspring in these indicators (triglyceride, 0.66 mmol/l, 0.35 to 0.97; total cholesterol, 0.46 mmol/l, 0.13 to 0.79; and FPG, 0.55 mmol/l, 0.13 to 0.98). CONCLUSIONS CS offspring were more prone to adverse metabolic profile and HFF might exacerbate this condition, indicating the association between CS and MetS is likely to be causal. IMPACT Whether the observed associations between CS and MetS in non-randomized human studies are causally relevant remains undetermined. Compared with vaginally born offspring rats, CS born offspring gained more body weight and tended to have compromised lipid profiles and abnormal insulin sensitivity, suggesting a causal relationship between CS and MetS that may be further amplified by a high-fat/high-fructose diet. Due to the high prevalence of CS births globally, greater clinical consideration must be given to the potential adverse effects of CS, and whether these risks should be made known to patients in clinical practice merits evaluation.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Mengjiao Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Long Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Bo Zhou
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
| | - Hong-Tian Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China.
| | - Jian-Meng Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China
| |
Collapse
|
3
|
Morin C, Bokobza C, Fleiss B, Hill-Yardin EL, Van Steenwinckel J, Gressens P. Preterm Birth by Cesarean Section: The Gut-Brain Axis, a Key Regulator of Brain Development. Dev Neurosci 2023; 46:179-187. [PMID: 37717575 DOI: 10.1159/000534124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders, with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
| | - Bobbi Fleiss
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
4
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front Integr Neurosci 2023; 17:1149159. [PMID: 37255843 PMCID: PMC10225509 DOI: 10.3389/fnint.2023.1149159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N = 29) and term (N = 28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm (N = 6) and term (N = 9) mice and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524993. [PMID: 36711801 PMCID: PMC9882279 DOI: 10.1101/2023.01.20.524993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N=29) and term (N=28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm mice (N=6 preterm and 9 term mice) and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
6
|
Kenkel WM, Kingsbury MA, Reinhart JM, Cetinbas M, Sadreyev RI, Carter CS, Perkeybile AM. Lasting consequences on physiology and social behavior following cesarean delivery in prairie voles. Horm Behav 2023; 150:105314. [PMID: 36731301 PMCID: PMC10023354 DOI: 10.1016/j.yhbeh.2023.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Cesarean delivery is associated with diminished plasma levels of several 'birth-signaling' hormones, such as oxytocin and vasopressin. These same hormones have been previously shown to exert organizational effects when acting in early life. For example, our previous work found a broadly gregarious phenotype in prairie voles exposed to oxytocin at birth. Meanwhile, cesarean delivery has been previously associated with changes in social behavior and metabolic processes related to oxytocin and vasopressin. In the present study, we investigated the long-term neurodevelopmental consequences of cesarean delivery in prairie voles. After cross-fostering, vole pups delivered either via cesarean or vaginal delivery were studied throughout development. Cesarean-delivered pups responded to isolation differently in terms of their vocalizations (albeit in opposite directions in the two experiments), huddled in less cohesive groups under warmed conditions, and shed less heat. As young adults, we observed no differences in anxiety-like or alloparental behavior. However, in adulthood, cesarean-delivered voles of both sexes failed to form partner preferences with opposite sex conspecifics. In a follow-up study, we replicated this deficit in partner-preference formation among cesarean-delivered voles and were able to normalize pair-bonding behavior by treating cesarean-delivered vole pups with oxytocin (0.25 mg/kg) at delivery. Finally, we detected minor differences in regional oxytocin receptor expression within the brains of cesarean-delivered voles, as well as microbial composition of the gut. Gene expression changes in the gut epithelium indicated that cesarean-delivered male voles have altered gut development. These results speak to the possibility of unintended developmental consequences of cesarean delivery, which currently accounts for 32.9 % of deliveries in the U.S. and suggest that further research should be directed at whether hormone replacement at delivery influences behavioral outcomes in later life.
Collapse
Affiliation(s)
- William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America.
| | - Marcy A Kingsbury
- Department of Pediatrics, Massachusetts General Hospital, Cambridge, MA, United States of America
| | - John M Reinhart
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States of America
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America; Department of Genetics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America; Harvard Medical School, Department of Pathology, Massachusetts General Hospital, Boston, MA, United States of America
| | - C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, United States of America
| | - Allison M Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
7
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Dufour A, Dumon C, Gouty-Colomer LA, Eftekhari S, Ferrari DC, Ben-Ari Y. Prenatal reduction of E14.5 embryonically fate-mapped pyramidal neurons in a mouse model of autism. Eur J Neurosci 2022; 56:3875-3888. [PMID: 35636970 DOI: 10.1111/ejn.15724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Although several observations suggest that the constitutive biological, genetic or physiological changes leading to Autism Spectrum Disorders (ASD) start in utero, their early impact on the number and density of neurons in the brain remains unknown. Using genetic fate mapping associated with the iDISCO clearing method we identified and counted a selective population of neocortical and hippocampal pyramidal neurons in the in utero valproate (VPA) mouse model of autism. We report that one day before birth the number of pyramidal neurons born at E14.5 in the neocortex and hippocampus of VPA-mice is smaller than in age-matched controls. VPA also induced a reduction of the neocortical -but not hippocampal- volume one day before birth. Interestingly, VPA-mice present an increase in both neocortical and hippocampal volumes 2 days after birth compared to controls. These results suggest that the VPA-exposed hippocampus and neocortex differ substantially from controls during the highly complex perinatal period, and specially one day before birth, reflecting the early pathogenesis of ASD.
Collapse
Affiliation(s)
- Amandine Dufour
- Fundamental Research Department, Neurochlore, Marseille, France
| | - Camille Dumon
- Fundamental Research Department, Neurochlore, Marseille, France
| | | | - Sanaz Eftekhari
- Fundamental Research Department, Neurochlore, Marseille, France
| | - Diana C Ferrari
- Fundamental Research Department, Neurochlore, Marseille, France
| | | |
Collapse
|
9
|
Cabré S, Ratsika A, Rea K, Stanton C, Cryan JF. Animal Models for Assessing Impact of C-Section Delivery on Biological Systems. Neurosci Biobehav Rev 2022; 135:104555. [PMID: 35122781 DOI: 10.1016/j.neubiorev.2022.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/02/2022]
Abstract
There has been a significant increase in Caesarean section (C-section) births worldwide over the past two decades and although it is can be a life-saving procedure, the enduring effects on host physiology are now undergoing further scrutiny. Indeed, epidemiological data have linked C-section birth with multiple immune, metabolic and neuropsychiatric diseases. Birth by C-section is known to alter the colonisation of the neonatal gut microbiota (with C-section delivered infants lacking vaginal microbiota associated with passing along the birth canal), which in turn can impact the development and maintenance of many important biological systems. Appropriate animal models are key to disentangling the role of missing microbes in brain health and disease in C-section births. In this review of preclinical studies, we interrogate the effects of C-section birth on the development (and maintenance) of several biological systems and we discuss the involvement of the gut microbiome on C-section-related alterations.
Collapse
Affiliation(s)
- Sílvia Cabré
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy P61 C996, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
10
|
Ramlall EK, Hall MAL, Forger NG, Castillo-Ruiz A. Cesarean birth elicits long-term effects on vasopressin and oxytocin neurons in the hypothalamic paraventricular nucleus of mice. Horm Behav 2021; 136:105080. [PMID: 34749276 DOI: 10.1016/j.yhbeh.2021.105080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Birth is an extraordinary event for placental mammals and occurs at a time when key developmental processes are shaping the brain. Remarkably, little is known about the contributions of birth to brain development and whether birth mode (vaginal vs. Cesarean) alters neurodevelopmental trajectories. We previously reported that Cesarean birth reduces vasopressin (VP) neuron number in the hypothalamic paraventricular nucleus (PVN) of mice at weaning. In this study, we investigated whether this effect extends to adulthood and whether birth mode affects oxytocin (OT) neurons, which are another prominent population in the PVN. We found that Cesarean-born adults had fewer VP neurons in the PVN, specifically in magnocellular regions. Interestingly, these regions also had more dying cells following a Cesarean birth, suggesting that cell death may be the underlying mechanism. The PVN of Cesarean-born adults also had smaller VP neuron somas and reduced VP efferent projections. Additionally, Cesarean-born mice showed fewer and smaller OT neurons in the PVN, but these effects were less robust than for VP neurons. We also examined VP and OT neuron number in the supraoptic and suprachiasmatic nuclei but found no effect of birth mode in these regions. Thus, Cesarean birth causes long-term effects on the VP and, to a lesser extent, OT systems in the PVN, suggesting that this region is particularly sensitive to the effects of birth mode. Our findings may help explain the social deficits reported for Cesarean-born mice, and are also of clinical significance given the widespread practice of Cesarean births across the world.
Collapse
Affiliation(s)
- Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Megan A L Hall
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
11
|
Chiesa M, Rabiei H, Riffault B, Ferrari DC, Ben-Ari Y. Brain Volumes in Mice are Smaller at Birth After Term or Preterm Cesarean Section Delivery. Cereb Cortex 2021; 31:3579-3591. [PMID: 33754629 DOI: 10.1093/cercor/bhab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
The rate of cesarean section (CS) delivery has steadily increased over the past decades despite epidemiological studies reporting higher risks of neonatal morbidity and neurodevelopmental disorders. Yet, little is known about the immediate impact of CS birth on the brain, hence the need of experimental studies to evaluate brain parameters following this mode of delivery. Using the solvent clearing method iDISCO and 3D imaging technique, we report that on the day of birth, whole-brain, hippocampus, and striatum volumes are reduced in CS-delivered as compared to vaginally-born mice, with a stronger effect observed in preterm CS pups. These results stress the impact of CS delivery, at term or preterm, during parturition and at birth. In contrast, cellular activity and apoptosis are reduced in mice born by CS preterm but not term, suggesting that these early-life processes are only impacted by the combination of preterm birth and CS delivery.
Collapse
Affiliation(s)
- Morgane Chiesa
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Hamed Rabiei
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Baptiste Riffault
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Diana Carolina Ferrari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Yehezkel Ben-Ari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| |
Collapse
|
12
|
Zuena AR, Casolini P, Venerosi A, Alemà GS, Nicoletti F, Calamandrei G. Selective reduction in the expression of type-1 metabotropic glutamate receptors in the hippocampus of adult rats born by caesarean section. Int J Dev Neurosci 2021; 81:333-341. [PMID: 33759234 DOI: 10.1002/jdn.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia causes long-term neurobiological consequences, including alterations in mechanisms of activity-dependent synaptic plasticity and cognitive dysfunction. Changes in neurotransmitter receptors have been associated with these alterations, but little is known on how early hypoxia influences the expression and function of metabotropic glutamate (mGlu) receptors in adult life. This is an important issue because mGlu receptors are implicated in mechanisms of synaptic plasticity. Here, we examined the expression of mGlu1, mGlu5, and mGlu2/3 receptor subtypes in the hippocampus, nucleus accumbens, prefrontal cortex, and dorsal striatum in 6-month old Wistar rats (a) born by vaginal delivery; (b) born by caesarean section; and (c) born by caesarean section followed by 20 min of asphyxia. Unexpectedly, we found a large reduction of mGlu1α protein levels in the hippocampus of rats born by caesarean section regardless of the presence of asphyxia. No changes in mGlu1α receptor protein levels were found in the other brain regions. Levels of mGlu5 and mGlu2/3 receptors and levels of GluA2/3 and GluN1 subunits of AMPA and NMDA receptors did not differ among the three groups of rats in any brain region. These results are consistent with previous findings showing that changes in mGlu1 receptors occur within the epigenetic programming caused by early-life events.
Collapse
Affiliation(s)
- Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Paola Casolini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Aldina Venerosi
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanita, Roma, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Gemma Calamandrei
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanita, Roma, Italy
| |
Collapse
|
13
|
Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021; 13:423. [PMID: 33525617 PMCID: PMC7912058 DOI: 10.3390/nu13020423] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Microbes colonize the human body during the first moments of life and coexist with the host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming of important bodily systems such as the immune and the central nervous system during critical temporal windows of development, with possible structural and functional implications throughout the lifespan. These critical developmental windows perinatally (during the first 1000 days) are susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally, are all factors that are able to modulate the microbiota composition of mother and infant and may thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal role in perinatal programming and in the modulation of offspring microbiota from birth throughout lifespan. This review aims to present current data on the impact of early life nutrition and microbiota priming of important bodily systems and all the factors influencing the microbial coexistence with the host during early life development.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Martin C. Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Siobhain O’Mahony
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy P61 C996, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
14
|
Kenkel W. Birth signalling hormones and the developmental consequences of caesarean delivery. J Neuroendocrinol 2021; 33:e12912. [PMID: 33145818 PMCID: PMC10590550 DOI: 10.1111/jne.12912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Rates of delivery by caesarean section (CS) are increasing around the globe and, although several epidemiological associations have already been observed between CS and health outcomes in later life, more are sure to be discovered as this practice continues to gain popularity. The components of vaginal delivery that protect offspring from the negative consequences of CS delivery in later life are currently unknown, although much attention to date has focused on differences in microbial colonisation. Here, we present the case that differing hormonal experiences at birth may also contribute to the neurodevelopmental consequences of CS delivery. Levels of each of the 'birth signalling hormones' (oxytocin, arginine vasopressin, epinephrine, norepinephrine and the glucocorticoids) are lower following CS compared to vaginal delivery, and there is substantial evidence for each that manipulations in early life results in long-term neurodevelopmental consequences. We draw from the research traditions of neuroendocrinology and developmental psychobiology to suggest that the perinatal period is a sensitive period, during which hormones achieve organisational effects. Furthermore, there is much to be learned from research on developmental programming by early-life stress that may inform research on CS, as a result of shared neuroendocrine mechanisms at work. We compare and contrast the effects of early-life stress with those of CS delivery and propose new avenues of research based on the links between the two bodies of literature. The research conducted to date suggests that the differences in hormone signalling seen in CS neonates may produce long-term neurodevelopmental consequences.
Collapse
Affiliation(s)
- William Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
15
|
Vertical transmission of gut microbiota: Points of action of environmental factors influencing brain development. Neurosci Res 2020; 168:83-94. [PMID: 33309866 DOI: 10.1016/j.neures.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Environmental factors in early life interact with genetics to exert a long-lasting and broad influence on health and disease. There has been a marked growth in the number of environmental factors studied in association with neurodevelopmental disorders. Colonization of the gut microbiota in the offspring uses the maternal resident flora as a primary source of bacteria during perinatal periods. Several lines of evidence have shown that various environmental factors including the mode of delivery, exposure to antibiotics, infection, stress, diet, quality of breast milk, and type of infant-feeding during the perinatal periods can perturb the gut microbiota colonization in the offspring, finally leading to disturbances in brain development. This study proposes that the gut microbiota seeded primarily by maternal microbiota, and the postnatal colonization of the microbiota in the offspring can be critical action points of environmental factors when deciphering the mechanisms of actions of environmental factors in brain development. This research reviews the inheritance and colonization of the microbiota during early life and the potential actions of the environmental factors influencing brain development in the offspring by modulating the vertical transmission of gut microbiota.
Collapse
|
16
|
Zachariassen LF, Sørensen DB, Krych L, Hansen AK, Hansen CHF. Effects of delivery mode on behavior in mouse offspring. Physiol Behav 2020; 230:113285. [PMID: 33309952 DOI: 10.1016/j.physbeh.2020.113285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Cesarean section (CS) has been associated with an increased risk of mental disorders in the offspring. This could possibly be explained by an inadequate microbial colonization early in life with a consequential disturbed gut-brain interaction. To investigate the link between delivery mode and behavior and develop a suitable animal model for further research of the gut-brain axis, the aim of this study was to characterize the gut microbiota (GM) together with the behavioral response in various behavioral tests in CS-delivered mice. We hypothesized that mice delivered by CS would present with disturbances in normal physiological behavior possibly due to an inadequate microbial colonization. C57BL/6 mice delivered by CS or vaginal delivery (VD) were cross fostered and, as adults, observed for anxiety-related behavior in the open field test, social deficits in a sociability test and compulsive behavior in the marble burying test. GM was analyzed by 16S rRNA gene amplicon sequencing. The open field test showed that CS-delivered mice had a decreased activity and accelerated defecation compared to VD-delivered mice. In addition, CS-delivered female mice spend less time interacting with cage mates in the sociability test, whereas there was no effect of CS delivery on the average number of marbles buried. In conclusion, CS-delivered mice had a more pronounced anxiety-like behavior and showed less preference for sociability in female offspring.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
17
|
Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse. Curr Biol 2020; 30:3761-3774.e6. [DOI: 10.1016/j.cub.2020.07.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/15/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
|
18
|
Alteration in the time and/or mode of delivery differentially modulates early development in mice. Mol Brain 2020; 13:34. [PMID: 32151280 PMCID: PMC7063737 DOI: 10.1186/s13041-020-00578-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Delivery is a complex biological process involving hormonal and mechanical stimuli that together condition the survival and development of the fetus out of the womb. Accordingly, changes in the time or way of being born are associated with an alteration of fundamental biological functions and hypothesized to promote the emergence of neurodevelopmental disorders. Hence, the steadily rise in preterm birth and cesarean section (CS) delivery rates over the past years has become a worldwide health concern. In our previous work, we reported that even though no long-term autistic-like deficits were observed, mice born preterm by CS presented early transient neuronal and communicative defects. However, understanding if these alterations were due to an early birth combined with CS delivery, or if prematurity solely could lead to a similar outcome remained to be evaluated. Using mice born either at term or preterm by vaginal or CS delivery, we assessed early life ultrasonic vocalizations and the onset of eye opening. We report that alterations in communicative behaviors are finely attuned and specifically affected either by preterm birth or by the association between CS delivery and preterm birth in mice, while delayed onset of eye opening is due to prematurity. Moreover, our work further underlies a gender-dependent vulnerability to changes in the time and/or way of being born with distinct outcomes observed in males and females. Thus, our results shed light on the intricacy of birth alterations and might further explain the disparities reported in epidemiological studies.
Collapse
|
19
|
Taylor-Giorlando M, Scheinost D, Ment L, Rothman D, Horvath TL. Prefrontal Cortical and Behavioral Adaptations to Surgical Delivery Mediated by Metabolic Principles. Cereb Cortex 2019; 29:5061-5071. [PMID: 30877804 PMCID: PMC6918927 DOI: 10.1093/cercor/bhz046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
We previously observed an association between mode of delivery and brain mitochondrial mechanisms in pups. We also showed that mitochondrial processes impact adult behavior. However, no experimental data is available to causally connect mode of delivery with cellular processes of neurons in the cerebral cortex and adult behavior. Here we show that surgical delivery of pups alters mitochondrial dynamics and spine synapses of layer 3 pyramidal neurons of the prefrontal cortex compared to the values of mice delivered vaginally. These alterations in ultrastructure seen in adult mice delivered surgically were associated with the development of behavioral phenotypes resembling those characteristic of animal models of psychiatric illness. This included impaired performance in prepulse inhibition as well as hyperlocomotion in the open field and elevated plus maze tests. Knocking out a mitochondria-related gene, UCP-2, blocked cellular and behavioral adaptations induced by surgical delivery. These results highlight a crucial role for brain mitochondrial adaptations in the process of birth to affect neuronal circuitry in support of normal and altered adult behaviors. Further, these findings were supported with neuroimaging data from human neonates delivered vaginally and surgically, suggesting that the murine findings have human clinical relevance.
Collapse
Affiliation(s)
- Melissa Taylor-Giorlando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Laura Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Dough Rothman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Ob/Gyn and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
20
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2425] [Impact Index Per Article: 404.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plast 2019; 2019:2382639. [PMID: 31354805 PMCID: PMC6636579 DOI: 10.1155/2019/2382639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring. Clinical trials conducted in parallel confirmed the usefulness of bumetanide treatment to attenuate the symptoms in children with ASD. Collectively, these observations suggest that an alteration of the GABA developmental sequence is a hallmark of ASD. Here, we investigated whether similar alterations occur in the Shank3 mouse model of ASD. We report that in CA3 pyramidal neurons, the driving force and inhibitory action of GABA are not different in naïve and Shank3-mutant age-matched animals at birth and during the second postnatal week. In contrast, the frequency of spontaneous excitatory postsynaptic currents is already enhanced at birth and persists through postnatal day 15. Therefore, in CA3 pyramidal neurons of Shank3-mutant mice, glutamatergic but not GABAergic activity is affected at early developmental stages, hence reflecting the heterogeneity of mechanisms underlying the pathogenesis of ASD.
Collapse
|
22
|
Codagnone MG, Stanton C, O'Mahony SM, Dinan TG, Cryan JF. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. ANNALS OF NUTRITION AND METABOLISM 2019; 74 Suppl 2:16-27. [PMID: 31234188 DOI: 10.1159/000499144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy and early life are characterized by marked changes in body microbial composition. Intriguingly, these changes take place simultaneously with neurodevelopmental plasticity, suggesting a complex dialogue between the microbes that inhabit the gastrointestinal tract and the brain. The purpose of this chapter is to describe the natural trajectory of microbiota during pregnancy and early life, as well as review the literature available on its interaction with neurodevelopment. Several lines of evidence show that the gut microbiota interacts with diet, drugs and stress both prenatally and postnatally. Clinical and preclinical studies are illuminating how these disruptions result in different developmental outcomes. Understanding the role of the microbiota in neurodevelopment may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Martin G Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland, .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| |
Collapse
|
23
|
Consequences of cesarean delivery for neural development. Proc Natl Acad Sci U S A 2018; 115:11664-11666. [PMID: 30373843 DOI: 10.1073/pnas.1816335115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci U S A 2018; 115:11826-11831. [PMID: 30322936 DOI: 10.1073/pnas.1811962115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Labor and a vaginal delivery trigger changes in peripheral organs that prepare the mammalian fetus to survive ex utero. Surprisingly little attention has been given to whether birth also influences the brain, and to how alterations in birth mode affect neonatal brain development. These are important questions, given the high rates of cesarean section (C-section) delivery worldwide, many of which are elective. We examined the effect of birth mode on neuronal cell death, a widespread developmental process that occurs primarily during the first postnatal week in mice. Timed-pregnant dams were randomly assigned to C-section deliveries that were yoked to vaginal births to carefully match gestation length and circadian time of parturition. Compared with rates of cell death just before birth, vaginally-born offspring had an abrupt, transient decrease in cell death in many brain regions, suggesting that a vaginal delivery is neuroprotective. In contrast, cell death was either unchanged or increased in C-section-born mice. Effects of delivery mode on cell death were greatest for the paraventricular nucleus of the hypothalamus (PVN), which is central to the stress response and brain-immune interactions. The greater cell death in the PVN of C-section-delivered newborns was associated with a reduction in the number of PVN neurons expressing vasopressin at weaning. C-section-delivered mice also showed altered vocalizations in a maternal separation test and greater body mass at weaning. Our results suggest that vaginal birth acutely impacts brain development, and that alterations in birth mode may have lasting consequences.
Collapse
|
25
|
Ben-Ari Y. Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes? Front Cell Neurosci 2018; 12:254. [PMID: 30186114 PMCID: PMC6110879 DOI: 10.3389/fncel.2018.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are usually associated with sociability and reduced stress for the former and antidiuretic agent associated with severe stress and pathological conditions for the latter. Both OT and AVP play major roles during labor and birth. Recent contradictory studies suggest that they might exert different roles on the GABA excitatory/inhibitory developmental shift. We reported (Tyzio et al., 2006) that at birth, OT exerts a neuro-protective action mediated by an abrupt reduction of intracellular chloride levels ([Cl-]i) that are high in utero, reinforcing GABAergic inhibition and modulating the generation of the first synchronized patterns of cortical networks. This reduction of [Cl-]i levels is abolished in rodent models of Fragile X Syndrome and Autism Spectrum Disorders, and its restoration attenuates the severity of the pathological sequels, stressing the importance of the shift at birth (Tyzio et al., 2014). In contrast, Kaila and co-workers (Spoljaric et al., 2017) reported excitatory GABA actions before and after birth that are modulated by AVP but not by OT, challenging both the developmental shift and the roles of OT. Here, I analyze the differences between these studies and suggest that the ratio AVP/OT like that of excitatory/inhibitory GABA depend on stress and pathological conditions.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore and Ben-Ari Institute of Neuroarcheology (IBEN), Marseille, France
| |
Collapse
|