1
|
Hamidi F, Taghipour N. miRNA, New Perspective to World of Intestinal Protozoa and Toxoplasma. Acta Parasitol 2024; 69:1690-1703. [PMID: 39158784 DOI: 10.1007/s11686-024-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND miRNAs are known as non-coding RNAs that can regulate gene expression. They are reported in many microorganisms and their host cells. Parasite infection can change or shift host miRNAs expression, which can aim at both parasite eradication and infection. PURPOSE This study dealt with examination of miRNA expressed in intestinal protozoan, coccidia , as well as profile changes in host cell miRNA after parasitic infection and their role in protozoan clearance/ survival. METHODS The authors searched ISI Web of Sciences, Pubmed, Scholar, Scopus, another databases and articles published up to 2024 were included. The keywords of miRNA, intestinal protozoa, toxoplasma and some words associated with topics were used in this search. RESULTS Transfection of miRNA mimics or inhibitors can control parasitic diseases, and be introduced as a new therapeutic option in parasitology. CONCLUSION This review can be used to provide up-to date knowledge for future research on these issues.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Vicentini LPP, Pereira-Chioccola VL, Fux B. Involvement of extracellular vesicles in the interaction of hosts and Toxoplasma gondii. CURRENT TOPICS IN MEMBRANES 2024; 94:133-155. [PMID: 39370205 DOI: 10.1016/bs.ctm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is widely distributed. This protozoan parasite is one of the best adapted, being able to infect innumerous species of animals and different types of cells. This chapter reviews current literature on extracellular vesicles secreted by T. gondii and by its hosts. The topics describe the life cycle and transmission (1); toxoplasmosis epidemiology (2); laboratorial diagnosis approach (3); The T. gondii interaction with extracellular vesicles and miRNAs (4); and the perspectives on T. gondii infection. Each topic emphases the host immune responses to the parasite antigens and the interaction with the extracellular vesicles and miRNAs.
Collapse
Affiliation(s)
| | - Vera Lucia Pereira-Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e Micologia Instituto Adolfo Lutz, São Paulo, SP, Brazil.
| | - Blima Fux
- Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil; Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
3
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Zhou Y, Leahy K, Grose A, Lykins J, Siddiqui M, Leong N, Goodall P, Withers S, Ashi K, Schrantz S, Tesic V, Abeleda AP, Beavis K, Clouser F, Ismail M, Christmas M, Piarroux R, Limonne D, Chapey E, Abraham S, Baird I, Thibodeau J, Boyer KM, Torres E, Conrey S, Wang K, Staat MA, Back N, L’Ollivier C, Mahinc C, Flori P, Gomez-Marin J, Peyron F, Houzé S, Wallon M, McLeod R. Novel paradigm enables accurate monthly gestational screening to prevent congenital toxoplasmosis and more. PLoS Negl Trop Dis 2024; 18:e0011335. [PMID: 38805559 PMCID: PMC11132520 DOI: 10.1371/journal.pntd.0011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/01/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Congenital toxoplasmosis is a treatable, preventable disease, but untreated causes death, prematurity, loss of sight, cognition and motor function, and substantial costs worldwide. OBJECTIVES We asked whether high performance of an Immunochromatographic-test (ICT) could enable accurate, rapid diagnosis/treatment, establishing new, improved care-paradigms at point-of-care and clinical laboratory. METHODS Data were obtained in 12 studies/analyses addressing: 1-feasibility/efficacy; 2-false-positives; 3-acceptability; 4-pink/black-line/all studies; 5-time/cost; 6-Quick-Information/Limit-of-detection; 7, 8-acute;-chronic; 9-epidemiology; 10-ADBio; 11,12-Commentary/Cases/Chronology. FINDINGS ICT was compared with gold-standard or predicate-tests. Overall, ICT performance for 1093 blood/4967 sera was 99.2%/97.5% sensitive and 99.0%/99.7% specific. However, in clinical trial, FDA-cleared-predicate tests initially caused practical, costly problems due to false-positive-IgM results. For 58 persons, 3/43 seronegative and 2/15 chronically infected persons had false positive IgM predicate tests. This caused substantial anxiety, concerns, and required costly, delayed confirmation in reference centers. Absence of false positive ICT results contributes to solutions: Lyon and Paris France and USA Reference laboratories frequently receive sera with erroneously positive local laboratory IgM results impeding patient care. Therefore, thirty-two such sera referred to Lyon's Reference laboratory were ICT-tested. We collated these with other earlier/ongoing results: 132 of 137 USA or French persons had false-positive local laboratory IgM results identified correctly as negative by ICT. Five false positive ICT results in Tunisia and Marseille, France, emphasize need to confirm positive ICT results with Sabin-Feldman-Dye-test or western blot. Separate studies demonstrated high performance in detecting acute infections, meeting FDA, CLIA, WHO REASSURED, CEMark criteria and patient and physician satisfaction with monthly-gestational-ICT-screening. CONCLUSIONS/SIGNIFICANCE This novel paradigm using ICT identifies likely false positives or raises suspicion that a result is truly positive, rapidly needing prompt follow up and treatment. Thus, ICT enables well-accepted gestational screening programs that facilitate rapid treatment saving lives, sight, cognition and motor function. This reduces anxiety, delays, work, and cost at point-of-care and clinical laboratories. TRIAL REGISTRATION NCT04474132, https://clinicaltrials.gov/study/NCT04474132 ClinicalTrials.gov.
Collapse
Affiliation(s)
- Ying Zhou
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Karen Leahy
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
| | - Andrew Grose
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
| | - Joseph Lykins
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
| | - Maryam Siddiqui
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
| | - Nicole Leong
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
| | - Perpetua Goodall
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
| | - Shawn Withers
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Kevin Ashi
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen Schrantz
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Vera Tesic
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Ana Precy Abeleda
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kathleen Beavis
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Fatima Clouser
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Mahmoud Ismail
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Monica Christmas
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Chicago Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | | | | | - Emmanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hôpital, Paris, France
| | - Isabelle Baird
- The College, The University of Chicago, Chicago, Illinois, United States of America
- Global Health Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Juliette Thibodeau
- The College, The University of Chicago, Chicago, Illinois, United States of America
- Global Health Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth M. Boyer
- Department of Pediatrics, Division of Infectious Diseases, Rush Presbyterian Hospital and Medical Center, Chicago, Illinois, United States of America
| | - Elizabeth Torres
- Group of Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, University of Quindio, Armenia (Quindio), Colombia
| | - Shannon Conrey
- University of Cincinnati and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Kanix Wang
- Carl H. Lindner College of Business, The University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mary Allen Staat
- University of Cincinnati and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nancy Back
- University of Cincinnati and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Coralie L’Ollivier
- Centre National de Référence Toxoplasmose—Pôle Sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- IHU-Méditerranée Infection, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France; Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée, Marseille, France
| | - Caroline Mahinc
- Parasitology and Mycology Laboratory, Pôle de Biologie-Pathologie, University Hospital of Saint Etienne, Saint Etienne, France
| | - Pierre Flori
- Parasitology and Mycology Laboratory, Pôle de Biologie-Pathologie, University Hospital of Saint Etienne, Saint Etienne, France
| | - Jorge Gomez-Marin
- Group of Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, University of Quindio, Armenia (Quindio), Colombia
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Sandrine Houzé
- Laboratory of Parasitologie, Bichat-Claude Bernard Hôpital, Paris, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Rima McLeod
- Departments of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Pritzker School of Medicine, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- The College, The University of Chicago, Chicago, Illinois, United States of America
- Global Health Center, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
6
|
Zhou Y, Leahy K, Grose A, Lykins J, Siddiqui M, Leong N, Goodall P, Withers S, Ashi K, Schrantz S, Tesic V, Abeleda AP, Beavis K, Clouser F, Ismail M, Christmas M, Piarroux R, Limonne D, Chapey E, Abraham S, Baird I, Thibodeau J, Boyer K, Torres E, Conrey S, Wang K, Staat MA, Back N, Gomez Marin J, Peyron F, Houze S, Wallon M, McLeod R. Novel paradigm enables accurate monthly gestational screening to prevent congenital toxoplasmosis and more. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.26.23289132. [PMID: 37162985 PMCID: PMC10168490 DOI: 10.1101/2023.04.26.23289132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Congenital toxoplasmosis is a treatable, preventable disease, but untreated causes death, prematurity, loss of sight, cognition and motor function, and substantial costs worldwide. Methods/Findings In our ongoing USA feasibility/efficacy clinical trial, data collated with other ongoing and earlier published results proved high performance of an Immunochromatographic-test(ICT) that enables accurate, rapid diagnosis/treatment, establishing new paradigms for care. Overall results from patient blood and/or serum samples tested with ICT compared with gold-standard-predicate-test results found ICT performance for 4606 sera/1876 blood, 99.3%/97.5% sensitive and 98.9%/99.7% specific. However, in the clinical trial the FDA-cleared-predicate test initially caused practical, costly problems due to false-positive-IgM results. For 58 persons, 3/43 seronegative and 2/15 chronically infected persons had false positive IgM predicate tests. This caused substantial anxiety, concerns, and required costly, delayed confirmation in reference centers. Absence of false positive ICT results contributes to solutions: Lyon and Paris France and USA Reference laboratories frequently receive sera with erroneously positive local laboratory IgM results impeding patient care. Therefore, thirty-two such sera referred to Lyon's Reference laboratory were ICT-tested. We collated these with other earlier/ongoing results: 132 of 137 USA or French persons had false positive local laboratory IgM results identified correctly as negative by ICT. Five false positive ICT results in Tunisia and Marseille, France, emphasize need to confirm positive ICT results with Sabin-Feldman-Dye-test or western blot. Separate studies demonstrated high performance in detecting acute infections, meeting FDA, CLIA, WHO ASSURED, CEMark criteria and patient and physician satisfaction with monthly-gestational-ICT-screening. Conclusions/Significance This novel paradigm using ICT identifies likely false positives or raises suspicion that a result is truly positive, rapidly needing prompt follow up and treatment. Thus, ICT enables well-accepted gestational screening programs that facilitate rapid treatment saving lives, sight, cognition and motor function. This reduces anxiety, delays, work, and cost at point-of-care and clinical laboratories. Author’s Summary Toxoplasmosis is a major health burden for developed and developing countries, causing damage to eyes and brain, loss of life and substantial societal costs. Prompt diagnosis in gestational screening programs enables treatment, thereby relieving suffering, and leading to > 14-fold cost savings for care. Herein, we demonstrate that using an ICT that meets WHO ASSURED-criteria identifying persons with/without antibody to Toxoplasma gondii in sera and whole blood with high sensitivity and specificity, is feasible to use in USA clinical practice. We find this new approach can help to obviate the problem of detection of false positive anti- T.gondii IgM results for those without IgG antibodies to T.gondii when this occurs in present, standard of care, predicate USA FDA cleared available assays. Thus, this accurate test facilitates gestational screening programs and a global initiative to diagnose and thereby prevent and treat T.gondii infection. This minimizes likelihood of false positives (IgG and/or IgM) while maintaining maximum sensitivity. When isolated IgM antibodies are detected, it is necessary to confirm and when indicated continue follow up testing in ∼2 weeks to establish seroconversion. Presence of a positive ICT makes it likely that IgM is truly positive and a negative ICT makes it likely that IgM will be a false positive without infection. These results create a new, enthusiastically-accepted, precise paradigm for rapid diagnosis and validation of results with a second-line test. This helps eliminate alarm and anxiety about false-positive results, while expediting needed treatment for true positive results and providing back up distinguishing false positive tests.
Collapse
|
7
|
Sousa S, Fernandes M, Correia da Costa JM. Serotyping, a challenging approach for Toxoplasma gondii typing. Front Med (Lausanne) 2023; 10:1111509. [PMID: 37089607 PMCID: PMC10115974 DOI: 10.3389/fmed.2023.1111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Genotype analysis has revealed a high genetic diversity in strains of Toxoplasma gondii, isolated from a wide range of intermediate hosts and different geographic origins. Diversity is notably striking for parasites from wild hosts in South America, generally referred as non-archetypal genotypes. Those genotypes are implicated in the etiology of severe clinical disease, multivisceral toxoplasmosis, associated with high rate of mortality in immunocompetent individuals. Can we accept specific antibodies produced during T. gondii infection as biomarkers to identify infecting genotypes? Scientific evidence supports a positive response to this question; however, the genetic diversity of T. gondii genotypes organized into 16 haplogroups and collectively defined in 6 major clades, provides a reminder of the complexity and difficulty for the purpose. This review discusses serological approaches to genotyping T. gondii.
Collapse
Affiliation(s)
- Susana Sousa
- Center for the Study of Animal Science (CECA), University of Porto, Porto, Portugal
- Department of Infectious Diseases, R&D Unit, National Health Institute Dr. Ricardo Jorge (INSA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Porto, Porto, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- *Correspondence: Susana Sousa,
| | - Maria Fernandes
- Center for the Study of Animal Science, University of Porto, Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science (CECA), University of Porto, Porto, Portugal
- Department of Infectious Diseases, R&D Unit, National Health Institute Dr. Ricardo Jorge (INSA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Kochanowsky JA, Chandrasekaran S, Sanchez JR, Thomas KK, Koshy AA. ROP16-mediated activation of STAT6 enhances cyst development of type III Toxoplasma gondii in neurons. PLoS Pathog 2023; 19:e1011347. [PMID: 37068104 PMCID: PMC10138205 DOI: 10.1371/journal.ppat.1011347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Toxoplasma gondii establishes a long-lived latent infection in the central nervous system (CNS) of its hosts. Reactivation in immunocompromised individuals can lead to life threatening disease. Latent infection is driven by the ability of the parasite to convert from the acute-stage tachyzoite to the latent-stage bradyzoite which resides in long-lived intracellular cysts. While much work has focused on the parasitic factors that drive cyst development, the host factors that influence encystment are not well defined. Here we show that a polymorphic secreted parasite kinase (ROP16), that phosphorylates host cell proteins, mediates efficient encystment of T. gondii in a stress-induced model of encystment and primary neuronal cell cultures (PNCs) in a strain-specific manner. Using short-hairpin RNA (shRNA) knockdowns in human foreskin fibroblasts (HFFs) and PNCs from transgenic mice, we determined that ROP16's cyst enhancing abilities are mediated, in part, by phosphorylation-and therefore activation-of the host cell transcription factor STAT6. To test the role of STAT6 in vivo, we infected wild-type (WT) and STAT6KO mice, finding that, compared to WT mice, STAT6KO mice have a decrease in CNS cyst burden but not overall parasite burden or dissemination to the CNS. Finally, we found a similar ROP16-dependent encystment defect in human pluripotent stem cell-derived neurons. Together, these findings identify a host cell factor (STAT6) that T. gondii manipulates in a strain-specific manner to generate a favorable encystment environment.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Jacqueline R. Sanchez
- Postbaccalaureate Research Education Program, University of Arizona, Tucson, Arizona, United States of America
| | - Kaitlin K. Thomas
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
9
|
Milne GC, Webster JP, Walker M. Is the incidence of congenital toxoplasmosis declining? Trends Parasitol 2023; 39:26-37. [PMID: 36400672 DOI: 10.1016/j.pt.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Prenatal infection with the protozoan parasite Toxoplasma gondii can cause congenital toxoplasmosis (CT), an often fatal or lifelong-disabling condition. Several studies of human populations have reported temporal decreases in seroprevalence, suggesting declining CT incidence. However, the consistency of this trend among diverse populations remains unclear, as does its implication for prenatal screening programmes, the major intervention against CT. Using temporally resolved data on the seroprevalence of T. gondii in various countries, we discuss how the parasite's changing epidemiology may affect trends in CT incidence in varying and counterintuitive ways. We argue that parasite stage-specific serology could be helpful for understanding underlying causes of secular changes in seroprevalence. Furthermore, we highlight the importance of updating cost-effectiveness estimates of screening programmes, accounting for neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Gregory Colin Milne
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Herts, AL9 7TA, UK; London Centre for Neglected Tropical Disease Research, Imperial College London Faculty of Medicine, London, UK
| |
Collapse
|
10
|
A Systematic Review to Evaluate a Possible Association Between Congenital Toxoplasmosis and Preterm Labor. Pediatr Infect Dis J 2022; 41:e520-e524. [PMID: 36375103 DOI: 10.1097/inf.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Congenital toxoplasmosis (CT) is a widespread infection in several countries, and it is defined as an infection of a fetus, newborn, or infant under 1 year of age. Moreover, it represents a thread to pregnant women globally. The objective of our study is to evaluate a potential association between prematurity and CT and whether intrauterine transmission impacts gestational length during pregnancy. METHODS PubMed, Cochrane Library and Google Scholar databases were searched from 1950 to 2019. Case-control studies, retrospective, and prospective cohort studies were eligible. Seven studies were included from a total of 314. The Newcastle-Ottawa scale was used to establish the quality of the articles included. RESULTS Based on our review, an association between CT and preterm labor was not established, which may reflect heterogeneity in screening, treatments administered, and differing reported incidences of CT across continents over 69 years. A multicenter prospective cohort study powered to investigate a potential association is indicated. CONCLUSION Further studies are needed including multicenter prospective cohort studies powered to investigate key clinical associations such as vertical transmission and preterm birth.
Collapse
|
11
|
Garweg JG, Kieffer F, Mandelbrot L, Peyron F, Wallon M. Long-Term Outcomes in Children with Congenital Toxoplasmosis-A Systematic Review. Pathogens 2022; 11:pathogens11101187. [PMID: 36297244 PMCID: PMC9610672 DOI: 10.3390/pathogens11101187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Even in the absence of manifestations at birth, children with congenital toxoplasmosis (CT) may develop serious long-term sequelae later in life. This systematic review aims to present the current state of knowledge to base an informed decision on how to optimally manage these pregnancies and children. For this, a systematic literature search was performed on 28 July 2022 in PubMed, CENTRAL, ClinicalTrials.gov, Google Scholar and Scopus to identify all prospective and retrospective studies on congenital toxoplasmosis and its long-term outcomes that were evaluated by the authors. We included 31 research papers from several countries. Virulent parasite strains, low socioeconomic status and any delay of treatment seem to contribute to a worse outcome, whereas an early diagnosis of CT as a consequence of prenatal screening may be beneficial. The rate of ocular lesions in treated children increases over time to 30% in European and over 70% in South American children and can be considerably reduced by early treatment in the first year of life. After treatment, new neurological manifestations are not reported, while ocular recurrences are observed in more than 50% of patients, with a mild to moderate impact on quality of life in European cohorts when compared to a significantly reduced quality of life in the more severely affected South American children. Though CT is rare and less severe in Europe when compared with South America, antenatal screening is the only effective way to diagnose and treat affected individuals at the earliest possible time in order to reduce the burden of disease and achieve satisfying outcomes.
Collapse
Affiliation(s)
- Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, and Uveitis Clinic, Berner Augenklinik, Zieglerstrasse 29, 3007 Bern, Switzerland
- Department of Ophthalmology, Inselspital, University Hospital, 3010 Bern, Switzerland
- Correspondence:
| | - François Kieffer
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Néonatologie, 75012 Paris, France
| | - Laurent Mandelbrot
- Assistance Publique-Hôpitaux de Paris, Hôpital Louis-Mourier Service de Gynécologie-Obstétrique, 178 rue des Renouillers, 92700 Colombes, France
- Inserm IAME-U1137, 75000 Paris, France
| | - François Peyron
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Department of Parasitology and Medical Mycology, 69004 Lyon, France
| | - Martine Wallon
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Department of Parasitology and Medical Mycology, 69004 Lyon, France
- Walking Team, Centre for Research in Neuroscience in Lyon, 69500 Bron, France
| |
Collapse
|
12
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. CURRENT PEDIATRICS REPORTS 2022; 10:57-92. [PMID: 36034212 PMCID: PMC9395898 DOI: 10.1007/s40124-022-00269-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00269-w.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Academia Interamericana de Panamá, Ciudad de Panamá, Panamá
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
| | - Kristen Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Arturo Rebellon
- Sanofi Aventis de Panamá S.A., University of South Florida, Ciudad de Panamá, Panamá
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | | | | | | | | | | | | | - Dan L. Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, D.C. USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Eduardo Ortega-Barria
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
- GSK Vaccines, Panamá, Panamá
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Michael Grigg
- Molecular Parasitology, NIAID, NIH, Bethesda, MD USA
| | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, IL USA
| |
Collapse
|
13
|
Vargas-Villavicencio JA, Cañedo-Solares I, Correa D. Anti-Toxoplasma gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms 2022; 10:microorganisms10081659. [PMID: 36014077 PMCID: PMC9415799 DOI: 10.3390/microorganisms10081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of Toxoplasma gondii acute infection was first attempted by detection of specific IgM antibodies, as for other infectious diseases. However, it was noted that this immunoglobulin declines slowly and may last for months or even years. Apart from the diagnostic problem imposed on clinical management, this phenomenon called our attention due to the underlying phenomena that may be causing it. We performed a systematic comparison of reports studying IgM antibody kinetics, and the data from the papers were used to construct comparative plots and other graph types. It became clear that this phenomenon is quite generalized, and it may also occur in animals. Moreover, this is not a technical issue, although some tests make more evident the prolonged IgM decay than others. We further investigated biological reasons for its occurrence, i.e., infection dynamics (micro-reactivation–encystment, reinfection and reactivation), parasite strain relevance, as well as host innate, natural B cell responses and Ig class-switch problems inflicted by the parasite. The outcomes of these inquiries are presented and discussed herein.
Collapse
Affiliation(s)
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Dolores Correa
- Dirección de Investigación/Centro de Investigación en Ciencias de la Salud, FCS, Universidad Anáhuac México Campus Norte, Av Universidad Anáhuc 46, Lomas Anáhuac, Huixquilucan 52786, Mexico
- Correspondence: ; Tel.: +52-(55)-5627-0210-7637
| |
Collapse
|
14
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances "Take a Village". CURRENT PEDIATRICS REPORTS 2022; 10:125-154. [PMID: 35991908 PMCID: PMC9379243 DOI: 10.1007/s40124-022-00268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Academia Interamericana de Panama, Ciudad de Panama, Panama
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Hospital San Miguel Arcángel, Ciudad de Panama, Panama
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Arturo Rebellon
- Sanofi Aventis de Panama S.A., University of South Florida, Ciudad de Panama, Panama
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, DC USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Eduardo Ortega-Barria
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
- GSK Vaccines, Panama, Panama
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL USA
| |
Collapse
|
15
|
Hurt K, Kodym P, Stejskal D, Zikan M, Mojhova M, Rakovic J. Toxoplasmosis impact on prematurity and low birth weight. PLoS One 2022; 17:e0262593. [PMID: 35025961 PMCID: PMC8758008 DOI: 10.1371/journal.pone.0262593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Toxoplasma gondii, one of the most common parasites, causes toxoplasmosis, one of the most frequent zoonotic diseases worldwide. T. gondii infects about one-third of the world’s population. T. gondii infection is generally considered a major risk for spontaneous abortion, prematurity and low birth weight in the animal sphere. Less commonly, a toxoplasma serological profile is correlated with the particular data of delivery. Acute T. gondii infection during pregnancy often leads to spontaneous abortion and/or a severe injury of the eyes, brain, and other structures of the foetus. Latent T. gondii infection of pregnant women could lead to less obvious but important changes during pregnancy, including the end product of pregnancy and the timing of labour. This study aimed to contribute to the current knowledge by comparing serological T. gondii profiles of pregnant women with prematurity and low birth weights of newborns. Material and methods A retrospective study design was adopted. The study participants included a cohort of 1733 pregnant women who consecutively gave birth to their children and underwent regular antenatal biochemical screening between the 14th and 16th weeks of pregnancy. Prematurity was defined as the liveborn preterm delivery in gestational age of pregnancy <37 weeks. Low birth weight was defined as weight at birth of ≤2499 grams. The complement-fixation test (CFT) provided serological profiles for toxoplasmosis that expresses the overall levels of toxoplasma immunoglobulins of all classes. Enzyme-linked immunosorbent assay (ELISA) tests for IgG and IgM were used simultaneously. IgM positivity helped to differentiate acute from the latent stage of toxoplasmosis. Birth data, especially the week of delivery and fetal weight, were evaluated accordingly. Results Of the 1733 pregnant women, 25% were diagnosed as latent toxoplasma positive, and 75% as toxoplasma negative. There were 87 premature deliveries versus 1646 timely births. We observed 88 low birth weights and 1645 normal fetal weights. We found a statistically significant association between latent toxoplasmosis and prematurity, χ2(1) = 5.471, p = .019 and between latent toxoplasmosis and low birth weight of newborns, χ2(1) = 7.663, p = .006. There was a 1.707 times higher risk of prematurity for toxoplasma-positive women, while the risk for low birth weight was 1.861 times higher. The strength of both tests of association was mild. We tested the correlation between the levels of CFT titres and week of delivery and weight of newborns. No association was found between the level of latent toxoplasmosis and the week of delivery and fetal weight. Conclusion Latent toxoplasmosis was associated with premature birth rate and lower birth weight of newborns. The odds of premature delivery was 1.7 and low birth weight 1.9 times higher in women with latent toxoplasmosis compared to toxoplasma negative women. Even though the strength of the association in our large sample is relatively mild, the combination of latent toxoplasmosis with other adverse factors could cause serious harm. Whole CFT and specific IgG levels of latent toxoplasmosis are not linked to the severity of prematurity or low birth weight in newborns.
Collapse
Affiliation(s)
- Karel Hurt
- Obstetrics and Gynaecology dpt., First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
- * E-mail:
| | - Petr Kodym
- National Institute of Public Health in Prague, Prague, Czech Republic
| | | | - Michal Zikan
- Obstetrics and Gynaecology dpt., First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Martina Mojhova
- Obstetrics and Gynaecology dpt., First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | |
Collapse
|
16
|
Bollani L, Auriti C, Achille C, Garofoli F, De Rose DU, Meroni V, Salvatori G, Tzialla C. Congenital Toxoplasmosis: The State of the Art. Front Pediatr 2022; 10:894573. [PMID: 35874584 PMCID: PMC9301253 DOI: 10.3389/fped.2022.894573] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii occurs worldwide and usually causes no symptoms. However, a primary infection of pregnant women, may infect the fetus by transplacental transmission. The risk of mother-to-child transmission depends on week of pregnancy at the time of maternal infection: it is low in the first trimester, may reach 90% in the last days of pregnancy. Inversely, however, fetal disease is more severe when infection occurs early in pregnancy than later. Systematic serologic testing in pregnant women who have no antibodies at the beginning of pregnancy, can accurately reveal active maternal infection. Therefore, the risk of fetal infection should be assessed and preventive treatment with spiramycin must be introduced as soon as possible to reduce the risk of mother-to-child transmission, and the severity of fetal infection. When maternal infection is confirmed, prenatal diagnosis with Polymerase Chain Reaction (PCR) on amniotic fluid is recommended. If fetal infection is certain, the maternal treatment is changed to a combination of pyrimethamine-sulfonamide and folinic acid. Congenitally infected newborns are usually asymptomatic at birth, but at risk for tardive sequelae, such as blindness. When congenital infection is evident, disease include retinochoroiditis, cerebral calcifications, hydrocephalus, neurocognitive impairment. The diagnosis of congenital infection must be confirmed at birth and management, specific therapy, and follow-up with multidisciplinary counseling, must be guaranteed.
Collapse
Affiliation(s)
- Lina Bollani
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Cristian Achille
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Valeria Meroni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Chryssoula Tzialla
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
17
|
Montoya JG, Laessig K, Fazeli MS, Siliman G, Yoon SS, Drake-Shanahan E, Zhu C, Akbary A, McLeod R. A fresh look at the role of spiramycin in preventing a neglected disease: meta-analyses of observational studies. Eur J Med Res 2021; 26:143. [PMID: 34895348 PMCID: PMC8665510 DOI: 10.1186/s40001-021-00606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We aimed to investigate the effect of antepartum treatment with spiramycin with or without subsequent pyrimethamine-sulfonamide-folinic acid, compared to no treatment, on the rate of mother-to-child transmission (MTCT) of Toxoplasma gondii (T. gondii) and incidence/severity of sequelae in the offspring. METHODS Embase and PubMed were searched for literature on spiramycin in pregnant women suspected/diagnosed with T. gondii infection. Meta-analyses were performed using random-effects model. RESULTS Thirty-three studies (32 cohorts and 1 cross-sectional study), with a total of 15,406 mothers and 15,250 offspring, were pooled for analyses. The MTCT rate for all treated patients was significantly lower than the untreated [19.5% (95% CI 14-25.5%) versus 50.7% (95% CI 31.2-70%), p < 0.001]. The transmission rate in patients on spiramycin monotherapy was also significantly lower than untreated [17.6% (95% CI 9.9-26.8%) versus 50.7% (95% CI 31.2-70%), p < 0.001]. CONCLUSION Results indicate significant reduction in MTCT rates following spiramycin treatment of suspected/diagnosed maternal T. gondii infection.
Collapse
Affiliation(s)
- Jose G Montoya
- Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto, CA, USA
| | | | | | | | | | | | - Chengyue Zhu
- Department of General Medicines, Sanofi S.A, Bridgewater, NJ, USA
| | - Akbar Akbary
- Department of General Medicines, Sanofi S.A, Bridgewater, NJ, USA
| | - Rima McLeod
- Division of Biologic Sciences, Departments of Pediatrics (Infectious Diseases) and Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Souza SP, Splitt SD, Sànchez-Arcila JC, Alvarez JA, Wilson JN, Wizzard S, Luo Z, Baumgarth N, Jensen KDC. Genetic mapping reveals Nfkbid as a central regulator of humoral immunity to Toxoplasma gondii. PLoS Pathog 2021; 17:e1010081. [PMID: 34871323 PMCID: PMC8675933 DOI: 10.1371/journal.ppat.1010081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/16/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Protective immunity to parasitic infections has been difficult to elicit by vaccines. Among parasites that evade vaccine-induced immunity is Toxoplasma gondii, which causes lethal secondary infections in chronically infected mice. Here we report that unlike susceptible C57BL/6J mice, A/J mice were highly resistant to secondary infection. To identify correlates of immunity, we utilized forward genetics to identify Nfkbid, a nuclear regulator of NF-κB that is required for B cell activation and B-1 cell development. Nfkbid-null mice (“bumble”) did not generate parasite-specific IgM and lacked robust parasite-specific IgG, which correlated with defects in B-2 cell maturation and class-switch recombination. Though high-affinity antibodies were B-2 derived, transfer of B-1 cells partially rescued the immunity defects observed in bumble mice and were required for 100% vaccine efficacy in bone marrow chimeric mice. Immunity in resistant mice correlated with robust isotype class-switching in both B cell lineages, which can be fine-tuned by Nfkbid gene expression. We propose a model whereby humoral immunity to T. gondii is regulated by Nfkbid and requires B-1 and B-2 cells for full protection. Eukaryotic parasitic diseases account for approximately one fifth of all childhood deaths, yet no highly protective vaccine exists for any human parasite. More research must be done to discover how to elicit protective vaccine-induced immunity to parasitic pathogens. We used an unbiased genetic screen to find key genes responsible for immunity to the eukaryotic parasite Toxoplasma gondii. Our screen found Nfkbid, a transcription factor regulator, which controls B cell activation and innate-like B-1 cell development. Mice without Nfkbid were not protected against T. gondii and were deficient at making antibodies against the parasite. Our survival studies of vaccinated mice with and without B-1 compartments found that B-1 cells improved survival, suggesting that B-1 cells act in conjunction with B-2 cells to provide vaccine-induced immunity. Nfkbid and other loci identified in our unbiased screen represent potential targets for vaccines to elicit protective immune responses against parasitic pathogens.
Collapse
Affiliation(s)
- Scott P. Souza
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Samantha D. Splitt
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Juan C. Sànchez-Arcila
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Julia A. Alvarez
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Jessica N. Wilson
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Safuwra Wizzard
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Zheng Luo
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Kirk D. C. Jensen
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Science Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Villena I. Congenital toxoplasmosis in humans: an update of worldwide rate of congenital infections. Parasitology 2021; 148:1406-1416. [PMID: 34254575 PMCID: PMC11010219 DOI: 10.1017/s0031182021001013] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
The morbidity due to congenital toxoplasmosis in humans is very high. Most of these infected children are likely to develop symptoms of clinical toxoplasmosis. Sequelae in fetus resulting from Toxoplasma gondii infections in women who become infected with this parasite during pregnancy can be devastating and enormous efforts are directed in some countries to prevent these consequences. Here, an update on congenital toxoplasmosis in humans, especially the rate of congenital infections in humans worldwide, is provided. Although several countries have surveillance programmes, most information on the rate of congenital transmission is from France and Brazil. Because of compulsory national screening programme in France to detect and treat women with recently acquired T. gondii infection with anti-toxoplasma therapy, the rate of congenital transmission and the severity of disease in children are declining. Infections by this parasite are widely prevalent in Brazil. The severity of clinical toxoplasmosis in Brazilian children is very high and may be associated with the genetic characteristics of T. gondii isolates prevailing in animals and humans in Brazil. Virtually little or no information is available on this topic from China, India and other countries in Asia.
Collapse
Affiliation(s)
- J. P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - F. H. A. Murata
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - C. K. Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - O. C. H. Kwok
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - I. Villena
- Parasitology, Mycology Laboratory, National Reference Centre for Toxoplasmosis, Toxoplasma Biological Resources Centre, CHU Reims and University Reims Champagne Ardenne ESCAPE EA7510, 51097, Reims, France
| |
Collapse
|
20
|
Biosensor Based Immunoassay: A New Approach for Serotyping of Toxoplasma gondii. NANOMATERIALS 2021; 11:nano11082065. [PMID: 34443896 PMCID: PMC8401488 DOI: 10.3390/nano11082065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis is the most reported parasitic zoonosis in Europe, with implications in human health and in the veterinary field. There is an increasing need to develop serotyping of Toxoplasma gondii (T. gondii) in view of greater sensitivity and efficiency, through the definition of new targets and new methodologies. Nanotechnology is a promising approach, with impact in the development of point-of-care devices. The aim of this work was to develop a simple but highly efficient method for Toxoplasma gondii serotyping based on gold nanoparticles. A simple colorimetric method was developed using gold nanoparticles modified with the synthetic polymorphic peptide derived from GRA6 antigen specific for type II T. gondii. The method of preparation of the gold nanoprobes and the experimental conditions for the detection were found to be critical for a sensitive discrimination between positive and negative sera. The optimized method was used to detect antibodies anti-GRA6II both in mice and human serum samples. These results clearly demonstrate that a biosensor-based immunoassay using AuNPs conjugated with polymorphic synthetic peptides can be developed and used as a serotyping device
Collapse
|
21
|
Kalogeropoulos D, Kalogeropoulos C, Sakkas H, Mohammed B, Vartholomatos G, Malamos K, Sreekantam S, Kanavaros P, de-la-Torre A. Pathophysiological Aspects of Ocular Toxoplasmosis: Host-parasite Interactions. Ocul Immunol Inflamm 2021; 30:560-569. [PMID: 34242103 DOI: 10.1080/09273948.2021.1922706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose: This review aims to present the state of the art to understand the pathophysiology of ocular toxoplasmosis (OT), providing further foundations that would help to improve the future treatment and prognosis of this potentially blinding disease.Methods: A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items.Results: Toxoplasma gondii ocular infection is one of the most frequent causes of posterior uveitis. Despite the ocular barriers, the parasite reaches the eye through different mechanisms. Once inside, it remains encysted livelong within the retina, and recurrences cannot be completely avoided. The complexity of host-parasite interactions, leading to the success of this parasite, encompasses host factors such as genetic predisposition, immune status, and age; and parasite factors such as strain diversity, virulence, phylogenetic origin, and geographical distribution. These factors influence the clinical presentation, course, and progression of the disease. Additional elements, such as pregnancy, eating behavior, and environmental, social, and cultural factors may also contribute to this complex balance.Conclusions: The host-parasite interaction in OT is a complex and multifactorial relationship, with the parasite always on the driving edge of the game. There are still multiple incompletely understood fields to be investigated. Future research would permit further insight into the immune-biology of the parasite and recognition of the host-parasite interplay to improve the diagnostic and management performance.
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Hercules Sakkas
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Bashar Mohammed
- Department of Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, UK
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Konstantinos Malamos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | | | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Alejandra de-la-Torre
- Immunology Unit, NeURos Research Group, NeuroVitae Research Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
22
|
Schumacher AC, Elbadawi LI, DeSalvo T, Straily A, Ajzenberg D, Letzer D, Moldenhauer E, Handly TL, Hill D, Dardé ML, Pomares C, Passebosc-Faure K, Bisgard K, Gomez CA, Press C, Smiley S, Montoya JG, Kazmierczak JJ. Toxoplasmosis Outbreak Associated With Toxoplasma gondii-Contaminated Venison-High Attack Rate, Unusual Clinical Presentation, and Atypical Genotype. Clin Infect Dis 2021; 72:1557-1565. [PMID: 32412062 DOI: 10.1093/cid/ciaa285] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/29/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND During 2017, in response to a physician's report, the Wisconsin Department of Health Services, Division of Public Health, began investigating an outbreak of febrile illness among attendees of a retreat where never frozen, intentionally undercooked, locally harvested venison was served. Preliminary testing tentatively identified the illness as toxoplasmosis. METHODS Confirmatory human serology panels and testing of the venison to confirm and categorize the presence and type of Toxoplasma gondii were completed by French and American national reference laboratories. All 12 retreat attendees were interviewed; medical records were reviewed. RESULTS All attendees were male; median age was 51 years (range: 22-75). After a median incubation period of 7 days, 9 (82%) of 11 exposed persons experienced illness lasting a median of 12 days. All 9 sought outpatient healthcare for symptoms including fever, chills, sweats, and headache (100%) and ocular disturbances (33%). Testing confirmed the illness as toxoplasmosis and venison as the infection source. Multiple laboratory results were atypical for toxoplasmosis, including transaminitis (86%), lymphocytopenia (88%), thrombocytopenia (38%), and leukopenia (63%). One exposed but asymptomatic person was seronegative; the other had immunity from prior infection. The T. gondii strain was identified as closely related to an atypical genotype (haplogroup 12, polymerase chain reaction restriction fragment length polymorphism genotype 5) common in North American wildlife but with previously uncharacterized human clinical manifestations. CONCLUSIONS The T. gondii strain contaminating the venison might explain the unusual clinical presentations. In North America, clinicians and venison consumers should be aware of risk for severe or unusual presentations of acute toxoplasmosis after consuming undercooked game meat.
Collapse
Affiliation(s)
- Amy C Schumacher
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Bureau of Communicable Diseases, Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - Lina I Elbadawi
- Bureau of Communicable Diseases, Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA.,Center for Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Traci DeSalvo
- Bureau of Communicable Diseases, Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - Anne Straily
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Daniel Ajzenberg
- INSERM, Université de Limoges, UMR_S 1094, Tropical Neuroepidemiology, Limoges, France.,University Hospital, French National Reference Center for Toxoplasmosis and Biological Resource Center for Toxoplasma, Limoges, France
| | - David Letzer
- Infectious Disease Specialists of Southeast Wisconsin, Brookfield, Wisconsin, USA
| | - Ellen Moldenhauer
- Jackson County Health and Human Services, Black River Falls, Wisconsin, USA
| | - Tammy L Handly
- Jackson County Health and Human Services, Black River Falls, Wisconsin, USA
| | - Dolores Hill
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, Maryland, USA
| | - Marie-Laure Dardé
- INSERM, Université de Limoges, UMR_S 1094, Tropical Neuroepidemiology, Limoges, France.,University Hospital, French National Reference Center for Toxoplasmosis and Biological Resource Center for Toxoplasma, Limoges, France
| | - Christelle Pomares
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Nice, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Faculté de Médecine, Virulence microbienne et signalisation inflammatoire - Université de la Côte d'Azur, Nice, France
| | - Karine Passebosc-Faure
- University Hospital, French National Reference Center for Toxoplasmosis and Biological Resource Center for Toxoplasma, Limoges, France
| | - Kristine Bisgard
- Center for Surveillance, Epidemiology and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carlos A Gomez
- The Jack S. Remington Laboratory for Specialty Diagnostics, National Reference Center for the Study and Diagnosis of Toxoplasmosis, Palo Alto, California, USA.,Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cindy Press
- The Jack S. Remington Laboratory for Specialty Diagnostics, National Reference Center for the Study and Diagnosis of Toxoplasmosis, Palo Alto, California, USA
| | - Stephanie Smiley
- Bureau of Communicable Diseases, Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - José G Montoya
- The Jack S. Remington Laboratory for Specialty Diagnostics, National Reference Center for the Study and Diagnosis of Toxoplasmosis, Palo Alto, California, USA
| | - James J Kazmierczak
- Bureau of Communicable Diseases, Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Dubey JP. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit Vectors 2021; 14:263. [PMID: 34011387 PMCID: PMC8136135 DOI: 10.1186/s13071-021-04769-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background The protozoan parasite Toxoplasma gondii has a worldwide distribution and a very wide host range, infecting most warm-blooded hosts. Approximately 30% of humanity is infected with T. gondii, but clinical toxoplasmosis is relatively infrequent. Toxoplasmosis has a wide range of clinical symptoms involving almost all organ systems. In most persons that acquire infection postnatally, symptoms (when present) are mild and mimic other diseases such as flu, Lyme disease, Q fever, hematological alterations, or mumps. It is likely that clinical disease is more common than reported. The ingestion of infected meat or food and water contaminated with oocysts are the two main modes of postnatal transmission of Toxoplasma gondii. The infective dose and the incubation period of T. gondii infection are unknown because there are no human volunteer experiments. Methods Here, I have critically reviewed outbreaks of clinical toxoplasmosis in humans for the past 55 years, 1966–2020. Information from oocyst-acquired versus meat-acquired infections was assessed separately. Results Most outbreaks were from Brazil. There were no apparent differences in types or severity of symptoms in meat- versus oocyst-acquired infections. Fever, cervical lymphadenopathy, myalgia, and fatigue were the most important symptoms, and these symptoms were not age-dependent. The incubation period was 7–30 days. A genetic predisposition to cause eye disease is suspected in the parasites responsible for three outbreaks (in Brazil, Canada, and India). Only a few T. gondii tissue cysts might suffice to cause infection, as indicated by outbreaks affecting some (but not all) individuals sharing a meal of infected meat. Conclusions Whether the high frequency of outbreaks of toxoplasmosis in humans in Brazil is related to environmental contamination, poor hygiene, socioeconomic conditions, or to genotypes of T. gondii needs investigation. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
24
|
Guevara RB, Fox BA, Bzik DJ. A Family of Toxoplasma gondii Genes Related to GRA12 Regulate Cyst Burdens and Cyst Reactivation. mSphere 2021; 6:e00182-21. [PMID: 33883265 PMCID: PMC8546695 DOI: 10.1128/msphere.00182-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that renders the immunocompromised human host susceptible to toxoplasmic encephalitis triggered by cyst reactivation in the central nervous system. The dense granule protein GRA12 is a major parasite virulence factor required for parasite survival during acute infection. Here, we characterized the role of four GRA12-related genes in acute and chronic stages of infection. While GRA12A, GRA12B, and GRA12D were highly expressed in asexual stage tachyzoites and bradyzoites, expression of GRA12C appeared to be restricted to the sexual stages. In contrast to deletion of GRA12 (Δgra12), no major defects in acute virulence were observed in Δgra12A, Δgra12B, or Δgra12D parasites, though Δgra12B parasites exhibited an increased tachyzoite replication rate. Bradyzoites secreted GRA12A, GRA12B, and GRA12D and incorporated these molecules into the developing cyst wall, as well as the cyst matrix in distinct patterns. Similar to GRA12, GRA12A, GRA12B, and GRA12D colocalized with the dense granules in extracellular tachyzoites, with GRA2 and the intravacuolar network in the tachyzoite stage parasitophorous vacuole and with GRA2 in the cyst matrix and cyst wall. Chronic stage cyst burdens were decreased in mice infected with Δgra12A parasites and were increased in mice infected with Δgra12B parasites. However, Δgra12B cysts were not efficiently maintained in vivo Δgra12A, Δgra12B, and Δgra12D in vitro cysts displayed a reduced reactivation efficiency, and reactivation of Δgra12A cysts was delayed. Collectively, our results suggest that a family of genes related to GRA12 play significant roles in the formation, maintenance, and reactivation of chronic stage cysts.IMPORTANCE If host immunity weakens, Toxoplasma gondii cysts recrudesce in the central nervous system and cause a severe toxoplasmic encephalitis. Current therapies target acute stage infection but do not eliminate chronic cysts. Parasite molecules that mediate the development and persistence of chronic infection are poorly characterized. Dense granule (GRA) proteins such as GRA12 are key virulence factors during acute infection. Here, we investigated four GRA12-related genes. GRA12-related genes were not major virulence factors during acute infection. Instead, GRA12-related proteins localized at the cyst wall and cyst matrix and played significant roles in cyst development, persistence, and reactivation during chronic infection. Similar to GRA12, the GRA12-related proteins selectively associated with the intravacuolar network of membranes inside the vacuole. Collectively, our results support the hypothesis that GRA12 proteins associated with the intravacuolar membrane system support parasite virulence during acute infection and cyst development, persistence, and reactivation during chronic infection.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
25
|
Arranz-Solís D, Mukhopadhyay D, Saeij JJP. Toxoplasma Effectors that Affect Pregnancy Outcome. Trends Parasitol 2021; 37:283-295. [PMID: 33234405 PMCID: PMC7954850 DOI: 10.1016/j.pt.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
As an immune-privileged organ, the placenta can tolerate the introduction of antigens without inducing a strong inflammatory response that would lead to abortion. However, for the control of intracellular pathogens, a strong Th1 response characterized by the production of interferon-γ is needed. Thus, invasion of the placenta by intracellular parasites puts the maternal immune system in a quandary: The proinflammatory response needed to eliminate the pathogen can also lead to abortion. Toxoplasma is a highly successful parasite that causes lifelong chronic infections and is a major cause of abortions in humans and livestock. Here, we discuss how Toxoplasma strain type and parasite effectors influence host cell signaling pathways, and we speculate about how this might affect the outcome of gestation.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jeroen J P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
26
|
Arranz-Solís D, Carvalheiro CG, Zhang ER, Grigg ME, Saeij JPJ. Toxoplasma GRA Peptide-Specific Serologic Fingerprints Discriminate Among Major Strains Causing Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:621738. [PMID: 33680990 PMCID: PMC7935526 DOI: 10.3389/fcimb.2021.621738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The severity of toxoplasmosis depends on a combination of host and parasite factors. Among them, the Toxoplasma strain causing the infection is an important determinant of the disease outcome. Type 2 strains dominate in Europe, whereas in North America type 2, followed by type 3 and 12 strains are commonly isolated from wildlife and patients. To identify the strain type a person is infected with, serological typing provides a promising alternative to the often risky and not always possible biopsy-based DNA methods of genotyping. However, despite recent advances in serotyping, improvements in the sensitivity and specificity are still needed, and it does not yet discriminate among the major Toxoplasma lineages infecting people. Moreover, since infections caused by non-1/2/3 strains have been associated with more severe disease, the ability to identify these is critical. In the present study we investigated the diagnostic potential of an ELISA-based assay using 28 immunogenic Toxoplasma peptides derived from a recent large-scale peptide array screen. Our results show that a discrete number of peptides, derived from Toxoplasma dense granule proteins (GRA3, GRA5, GRA6, and GRA7) was sufficient to discriminate among archetypal strains that infect mice and humans. The assay specifically relies on ratios that compare individual serum reactivities against GRA-specific polymorphic peptide variants in order to determine a "reactivity fingerprint" for each of the major strains. Importantly, nonarchetypal strains that possess a unique combination of alleles, different from types 1/2/3, showed either a non-reactive, or different combinatorial, mixed serum reactivity signature that was diagnostic in its own right, and that can be used to identify these strains. Of note, we identified a distinct "HG11/12" reactivity pattern using the GRA6 peptides that is able to distinguish HG11/12 from archetypal North American/European strain infections.
Collapse
Affiliation(s)
- David Arranz-Solís
- Pathology, Microbiology and Immunology Department, Veterinary Medicine School 3A, University of California Davis, Davis, CA, United States
| | - Cristina G. Carvalheiro
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth R. Zhang
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology Department, Veterinary Medicine School 3A, University of California Davis, Davis, CA, United States,*Correspondence: Jeroen P. J. Saeij,
| |
Collapse
|
27
|
Eroglu S, Asgin N. Awareness, knowledge and risk factors of Toxoplasma gondii infection among pregnant women in the Western Black Sea region of Turkey. J OBSTET GYNAECOL 2020; 41:714-720. [PMID: 33045851 DOI: 10.1080/01443615.2020.1789954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii (T. gondii) infection causes serious problems leading to maternal complications and foetal anomalies during pregnancy. The aim of this study was to identify risk factors for toxoplasmosis and to determine the seroprevalence of the disease with regard to the awareness levels of patients. A total of 214 pregnant women who were admitted to Karabuk University, Gynaecology and Obstetrics Clinic between July 2018 and November 2018 and accepted to participate were included this cross-sectional study. Venous blood samples were obtained and anti-T. gondii IgG and IgM levels were analysed. The demographic characteristics of the patients were recorded and a questionnaire investigating about T. gondii risk factors were completed. The relationship between toxoplasmosis and risk factors was evaluated using multivariate regression analysis. The prevalence of toxoplasmosis among the pregnant women was 14% (35/214). The potential risk factors of toxoplasmosis were primigravidity (AOR = 2.56 95% CI: [1.26-8.26]), cat ownership (AOR = 10.29, 95% CI: [3.58-29.60]), and sausage/salami consumption (AOR = 2.96, 95%CI: [2.10-7.46]);22.4% of the women were aware of toxoplasmosis, and awareness was significantly higher in multigravida women compared with primigravida women (p=.042). Congenital toxoplasmosis can be prevented through pregnancy screening programmes and education aimed at increasing awareness and protection.IMPACT STATEMENTWhat is already known on this subject? The seroprevalence of toxoplasmosis is very variable and may differ significantly between countries, and even different geographic regions of the same country. Raising awareness of the disease among persons in risk groups through education is a primary objective in prevention.What do the results of this study add? T. gondii seropositivity was found to be related with being primigravid, cat ownership and having close contact with cats, and consumption of meat products such as salami and sausages. In addition, primigravidity is a risk factor for toxoplasmosis because the awareness of the disease was lower than in multiparous women.What are the implications of these findings for clinical practice and/or further research? It should also be known that women of childbearing age are in the high-risk group for toxoplasmosis, and studies on preventive measures should be performed. Increased awareness can prevent infection and the possibility of complications due to congenital toxoplasmosis, especially in the reproductive period of women.
Collapse
Affiliation(s)
- Semra Eroglu
- Department of Gynecology and Obstetrics, Baskent University, Konya, Turkey
| | - Nergis Asgin
- Department of Microbiology, Educational and Research Hospital, Karabuk University, Karabuk, Turkey
| |
Collapse
|
28
|
El Bissati K, Zhou Y, Paulillo SM, Raman SK, Karch CP, Reed S, Estes A, Estes A, Lykins J, Burkhard P, McLeod R. Engineering and characterization of a novel Self Assembling Protein for Toxoplasma peptide vaccine in HLA-A*11:01, HLA-A*02:01 and HLA-B*07:02 transgenic mice. Sci Rep 2020; 10:16984. [PMID: 33046728 PMCID: PMC7552409 DOI: 10.1038/s41598-020-73210-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 08/09/2020] [Indexed: 11/09/2022] Open
Abstract
Fighting smart diseases requires smart vaccines. Novel ways to present protective immunogenic peptide epitopes to human immune systems are needed. Herein, we focus on Self Assembling Protein Nanoparticles (SAPNs) as scaffolds/platforms for vaccine delivery that produce strong immune responses against Toxoplasma gondii in HLA supermotif, transgenic mice. Herein, we present a useful platform to present peptides that elicit CD4+, CD8+ T and B cell immune responses in a core architecture, formed by flagellin, administered in combination with TLR4 ligand-emulsion (GLA-SE) adjuvant. We demonstrate protection of HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02 mice against toxoplasmosis by (i) this novel chimeric polypeptide, containing epitopes that elicit CD8+ T cells, CD4+ T helper cells, and IgG2b antibodies, and (ii) adjuvant activation of innate immune TLR4 and TLR5 pathways. HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02q11 transgenic mouse splenocytes with peptides demonstrated predicted genetic restrictions. This creates a new paradigm-shifting vaccine approach to prevent toxoplasmosis, extendable to other diseases.
Collapse
Grants
- R01 AI027530 NIAID NIH HHS
- R01 AI071319 NIAID NIH HHS
- U01 AI077887 NIAID NIH HHS
- U01 AI082180 NIAID NIH HHS
- Cornwell MannFamily Fdn;, Morel, Engel, Rooney&#x2013;Alden, Pritzker, Langel, Drago, Mussilami,Quinn, Rodriguez, and Rosenthal families for their support of this work. This work was also funded by the National Institutes of Health, Grant numbers R01 AI027530, R01 AI071319, U01 AI077887, and U01 AI082180 from NIH NIAID DMID (to RM) and Toxoplasmosis Research Institute. The research was also supported by the Knights Templar Eye Foundation and the Institute of translational Medicine at University of Chicago (to KE)
Collapse
Affiliation(s)
- Kamal El Bissati
- Institute of Molecular Engineering, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Sara M Paulillo
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125, Riehen, Switzerland
| | - Senthil K Raman
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125, Riehen, Switzerland
| | - Christopher P Karch
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT, 06269, USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Ashley Estes
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Amber Estes
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Joseph Lykins
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Peter Burkhard
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125, Riehen, Switzerland
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT, 06269, USA
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
- Department of Pediatrics (Infectious Diseases), The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
29
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
GENOTYPE IDENTIFICATION OF TOXOPLASMA GONDII IN MACROPODS FROM A ZOOLOGICAL PARK IN FLORIDA, USA. J Zoo Wildl Med 2020; 51:131-139. [PMID: 32212556 DOI: 10.1638/2019-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2019] [Indexed: 11/21/2022] Open
Abstract
There are limited reports of the genetic characterization of Toxoplasma gondii infecting captive macropods in North America. A novel genotype, ToxoDB PCR-RFLP genotype 263, was reported from six wallabies at a zoological facility in Virginia, USA, prompting an investigation into the genotypes from T. gondii strains infecting macropods at a zoological park in Florida, USA. Cardiac muscle and/or lung samples from an agile wallaby (Macropus agilis, n = 1), red kangaroos (Macropus rufus, n = 8), red-necked wallaby (Macropus rufogriseus, n = 1), and a tammar wallaby (Macropus eugenii, n = 1) that died between 2014 and 2018 were collected. All 11 cases were confirmed to have died from systemic toxoplasmosis by histopathology and immunohistochemical staining. Multilocus PCR-RFLP genotyping of T. gondii was performed directly on tissue samples or on parasites isolated from myocardium by mouse bioassay. Two cases of toxoplasmosis were identified as the reported novel genotype, ToxoDB PCR-RFLP genotype 263, but no common source of exposure could be identified. Five cases were identified as genotype 2 (type III strain, haplogroup 3), and four cases were identified as genotype 216, which has been previously reported in North American wildlife. There were no overt differences in lesion severity or distribution related to genotype. These results suggest that the premise was contaminated with at least three genotypes of T. gondii causing systemic toxoplasmosis in macropods. The largest cluster of fatal toxoplasmosis in macropods in the study period occurred following severe rainfall flooding of the exhibit, suggesting the transmission of T. gondii by water and pointing out the importance of this transmission mechanism. In summary, our study revealed three T. gondii outbreaks that caused significant loss of macropods within 5 yr in a zoological facility in Florida. More studies are needed to understand transmission and prevention of toxoplasmosis in sensitive zoo animals.
Collapse
|
31
|
Abstract
BACKGROUND Congenital toxoplasmosis (CT) can cause significant neurologic manifestations and other untoward sequelae. Neither the current epidemiology nor the disease severity of CT in Israel is known. METHODS Records of CT were collected from the National Toxoplasmosis Reference Laboratory and from 15 medical centers across Israel between 2001 and 2017. Eligible case-patients were fetuses or infants <12 months of age at the time of diagnosis. RESULTS Of the 43 CT cases identified, 24 (55%) were in Jews and the remaining 19 cases were in patients of Arab (non-Bedouin) origin. The overall annual estimated rate of symptomatic CT was calculated as 0.55 per 100,000 live births. One or more severe clinical manifestations were reported in 12 (46%) of the 28 live-born infants and included cerebral calcifications (7 cases), chorioretinitis (4 cases), hydrocephalus (2 cases) and 1 case of death. Sensitivities of blood polymerase chain reaction (PCR), cerebrospinal fluid PCR and IgM antibody tests were 50% each. However, analyzing PCR samples from both sites, together with IgM testing, increased the sensitivity to 93%. CONCLUSIONS The relative rate of severe manifestations was higher than in previous European reports. It is possible that the greater disease severity observed in Israel is in part due to the lack of systematic antenatal treatment and screening. Arab (non-Bedouin) infants are at higher risk for contracting CT. Performing serologic and PCR tests simultaneously is essential to improve CT diagnosis. This study demonstrates a need for an educational program to target high-risk populations.
Collapse
|
32
|
Guevara RB, Fox BA, Bzik DJ. Succinylated Wheat Germ Agglutinin Colocalizes with the Toxoplasma gondii Cyst Wall Glycoprotein CST1. mSphere 2020; 5:e00031-20. [PMID: 32132158 PMCID: PMC7056803 DOI: 10.1128/msphere.00031-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022] Open
Abstract
The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall.IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
33
|
Is Real-Time PCR Targeting Rep 529 Suitable for Diagnosis of Toxoplasmosis in Patients Infected with Non-Type II Strains in North America? J Clin Microbiol 2020; 58:JCM.01223-19. [PMID: 31694976 DOI: 10.1128/jcm.01223-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii DNA detection is essential to antenatally diagnose a congenital infection and reactivation of a past infection in an immunocompromised patient. Initially, PCR methods targeted the 35-fold repetitive B1 gene, and more recently, coding sequence Rep 529 has been preferred, as it was reported to be repeated 200- to 300-fold and yielded far better sensitivity than amplification of the B1 sequence. To date, few data are available in regard to the efficacy of Rep 529 for non-type II genotypes. In this study, we compared the results of B1 quantitative PCR (qPCR) with those of two different Rep 529 qPCRs performed on 111 samples in two different laboratories (Rep 529-1 and Rep 529-2). The performances of the 3 qPCRs were also compared according to the genotypes of the isolates for 13 type II and 21 non-type II samples. The performance of the Rep 529 target was superior to that of the B1 target regardless of the genotype (threshold cycle [CT ] values for the Rep 529-1 and Rep 529-2 qPCRs were lower than those for the B1 qPCR [P < 0.001 and P < 0.01, respectively]). The same results were observed when a comparison was made according to the genotype of the strain (type II and non-type II genotypes). To our knowledge, these results provide the first relative quantitative data revealing that the efficiency of Rep 529 qPCR does not depend on the genotype of T. gondii isolates and that, in fact, it is superior to B1 qPCR.
Collapse
|
34
|
Arranz-Solís D, Cordeiro C, Young LH, Dardé ML, Commodaro AG, Grigg ME, Saeij JPJ. Serotyping of Toxoplasma gondii Infection Using Peptide Membrane Arrays. Front Cell Infect Microbiol 2019; 9:408. [PMID: 31850240 PMCID: PMC6895565 DOI: 10.3389/fcimb.2019.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii can cause chronic infections in most warm-blooded animals, including humans. In the USA, strains belonging to four different Toxoplasma clonal lineages (types 1, 2, 3, and 12) are commonly isolated, whereas strains not belonging to these lineages are predominant in other continents such as South America. Strain type plays a pivotal role in determining the severity of Toxoplasma infection. Therefore, it is epidemiologically relevant to develop a non-invasive and inexpensive method for determining the strain type in Toxoplasma infections and to correlate the genotype with disease outcome. Serological typing is based on the fact that many host antibodies are raised against immunodominant parasite proteins that are highly polymorphic between strains. However, current serological assays can only reliably distinguish type 2 from non-type 2 infections. To improve these assays, mouse, rabbit, and human infection serum were reacted against 950 peptides from 62 different polymorphic Toxoplasma proteins by using cellulose membrane peptide arrays. This allowed us to identify the most antigenic peptides and to pinpoint the most relevant polymorphisms that determine strain specificity. Our results confirm the utility of previously described peptides and identify novel peptides that improve and increase the specificity of the assay. In addition, a large number of novel proteins showed potential to be used for Toxoplasma diagnosis. Among these, peptides derived from several rhoptry, dense granule, and surface proteins represented promising candidates that may be used in future experiments to improve Toxoplasma serotyping. Moreover, a redesigned version of the published GRA7 typing peptide performed better and specifically distinguished type 3 from non-type 3 infections in sera from mice, rabbits, and humans.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cynthia Cordeiro
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States.,Biology Department, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lucy H Young
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Marie Laure Dardé
- Faculty of Medicine, Parasitologie-Mycologie, UMR INSERM 1094, National Reference Center and Biological Resource Center for Toxoplasmosis, CHU Dupuytren 2, Limoges, France
| | - Alessandra G Commodaro
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Vargas-Montes M, Cardona N, Moncada DM, Molina DA, Zhang Y, Gómez-Marín JE. Enzyme-Linked Aptamer Assay (ELAA) for Detection of Toxoplasma ROP18 Protein in Human Serum. Front Cell Infect Microbiol 2019; 9:386. [PMID: 31799213 PMCID: PMC6863806 DOI: 10.3389/fcimb.2019.00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii engenders the common parasitic disease toxoplasmosis in almost all warm-blooded animals. Being a critical secretory protein, ROP18 is a major virulence factor of Toxoplasma. There are no reports about ROP18 detection in human serum samples with different clinical manifestations. New aptamers against ROP18 protein were developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX). An Enzyme-Linked Aptamer Assay (ELAA) platform was developed using SELEX-derived aptamers, namely AP001 and AP002. The ELAA was used to evaluate total antigen from T. gondii RH strain (RH Ag) and recombinant protein of ROP18 (rROP18). The results showed that the ELAA presented higher affinity and specificity to RH Ag and rROP18, compared to negative controls. Detection limit of rROP18 protein in serum samples was measured by standard addition method, achieving a lower concentration of 1.56 μg/mL. Moreover, 62 seropositive samples with different clinical manifestations of toxoplasmosis and 20 seronegative samples were tested. A significant association between ELAA test positive for human serum samples and severe congenital toxoplasmosis was found (p = 0.006). Development and testing of aptamers-based assays opens a window for low-cost and rapid tests looking for biomarkers and improves our understanding about the role of ROP18 protein on the pathogenesis of human toxoplasmosis.
Collapse
Affiliation(s)
| | - Nestor Cardona
- Centre for Biomedical Research CIBM, University of Quindío, Armenia, Colombia.,Dentistry Faculty, University Antonio Nariño, Armenia, Colombia
| | | | | | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen, China
| | | |
Collapse
|
36
|
McLone D, Frim D, Penn R, Swisher CN, Heydemann P, Boyer KM, Noble AG, Rabiah PK, Withers S, Wroblewski K, Karrison T, Hutson S, Wheeler K, Cohen W, Lykins J, McLeod R. Outcomes of hydrocephalus secondary to congenital toxoplasmosis. J Neurosurg Pediatr 2019; 24:601-608. [PMID: 31491752 DOI: 10.3171/2019.6.peds18684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Hydrocephalus occurs in children with congenital toxoplasmosis and can lead to severe disability. In these cases, the decision to intervene is often influenced by the expectation of neurological recovery. In this study, clinical responses to neurosurgical intervention in children with hydrocephalus secondary to congenital toxoplasmosis are characterized. METHODS Sixty-five participants with hydrocephalus due to congenital Toxoplasma gondii infection were evaluated as part of the National Collaborative Chicago-based Congenital Toxoplasmosis Study, and their neuroradiographic findings were reviewed. Clinical outcomes were scored on the basis of cognition and motor skills through the use of IQ scores and Gross Motor Function Classification System (GMFCS) level. Outcomes were then analyzed in relation to approach to management, anatomy of hydrocephalus, and time from diagnosis of hydrocephalus to surgical intervention. RESULTS There was considerable variation in the outcomes of patients whose hydrocephalus was treated in early life, ranging from normal cognitive and motor function to profound developmental delay and functional limitation. Of the 65 participants included in the study, IQ and GMFCS level were available for 46 (70.8%). IQ and motor score were highly correlated (r = -0.82, p < 0.001). There were people with differing patterns of hydrocephalus or thickness of cortical mantle on initial presentation who had favorable outcomes. Time to neurosurgical intervention data were available for 31 patients who underwent ventriculoperitoneal (VP) shunt placement. Delayed shunt placement beyond 25 days after diagnosis of hydrocephalus was associated with greater cognitive impairment (p = 0.02). Motor impairment also appeared to be associated with shunt placement beyond 25 days but the difference did not achieve statistical significance (p = 0.13). Among those with shunt placement within 25 days after diagnosis (n = 19), the mean GMFCS level was 1.9 ± 1.6 (range 1-5). Five (29.4%) of 17 of these patients were too disabled to participate in formal cognitive testing, after excluding 2 patients with visual difficulties or language barriers that precluded IQ testing. Of the patients who had VP shunt placement 25 or more days after diagnosis (n = 12), the mean GMFCS level was 2.7 ± 1.4 (range 1-4). Of these, 1 could not participate in IQ testing due to severe visual difficulties and 8 (72.7%) of the remaining 11 due to cognitive disability. CONCLUSIONS VP shunt placement in patients with hydrocephalus caused by congenital toxoplasmosis can contribute to favorable clinical outcomes, even in cases with severe hydrocephalus on neuroimaging. Shunt placement within 25 days of diagnosis was statistically associated with more favorable cognitive outcomes. Motor function appeared to follow the same pattern although it did not achieve statistical significance.
Collapse
Affiliation(s)
- David McLone
- 1Northwestern University and Lurie Children's Hospital and Medical Center, Chicago
| | | | - Richard Penn
- 3Department of Bioengineering, College of Engineering, College of Medicine, University of Illinois at Chicago
| | - Charles N Swisher
- 1Northwestern University and Lurie Children's Hospital and Medical Center, Chicago
| | - Peter Heydemann
- 4Department of Pediatrics, Rush University Medical Center, Chicago
| | - Kenneth M Boyer
- 4Department of Pediatrics, Rush University Medical Center, Chicago
| | - A Gwendolyn Noble
- 1Northwestern University and Lurie Children's Hospital and Medical Center, Chicago
| | | | | | | | | | | | | | | | - Joseph Lykins
- 8Pritzker School of Medicine, The University of Chicago
| | - Rima McLeod
- 6Department of Ophthalmology and Visual Science
- 9Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, The University of Chicago, Illinois
| |
Collapse
|
37
|
The cost-effectiveness of neonatal versus prenatal screening for congenital toxoplasmosis. PLoS One 2019; 14:e0221709. [PMID: 31532766 PMCID: PMC6750576 DOI: 10.1371/journal.pone.0221709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023] Open
Abstract
Background Congenital Toxoplasmosis (CT) can have severe consequences. France, Austria, and Slovenia have prenatal screening programs whereas some other countries are considering universal screening to reduce congenital transmission and severity of infection in children. The efficiency of such programs is debated increasingly as seroprevalence among pregnant women and incidence of congenital toxoplasmosis show a steady decrease. In addition, uncertainty remains regarding the effectiveness of pre- and postnatal treatments. Method To identify cost-effective strategies, prenatal and neonatal screenings were compared using a decision-analytic model based on French guidelines and current knowledge of long-term evolution of the disease in treated children. Epidemiological data were extracted from the scientific literature and clinical data from the French Lyon cohort. Strategies were compared at one year of age, when infection can be definitively evaluated, and at 15 years of age, after which validated outcome data become scarce. The analysis was performed from the French Health Insurance System perspective and included direct medical costs for pregnant women and their children. Results The 1-year Incremental Cost-Effectiveness Ratio showed that prenatal screening would require investing €14,826 to avoid one adverse event (liveborn with CT, fetal loss, neonatal death or pregnancy termination) compared to neonatal screening. Extra investment increased up to €21,472 when considering the 15-year endpoint. Conclusions Prenatal screening is cost-effective as compared to neonatal screening in moderate prevalence areas with predominant Type II strains. In addition, prenatal screening, by providing closer follow-up of women at risk increases the number of occasions for education avoiding toxoplasmosis.
Collapse
|
38
|
Pomares C, Devillard S, Holmes TH, Olariu TR, Press CJ, Ramirez R, Talucod J, Estran R, Su C, Dubey JP, Ajzenberg D, Montoya JG. Genetic Characterization of Toxoplasma gondii DNA Samples Isolated From Humans Living in North America: An Unexpected High Prevalence of Atypical Genotypes. J Infect Dis 2019; 218:1783-1791. [PMID: 29982713 DOI: 10.1093/infdis/jiy375] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/12/2022] Open
Abstract
Background Whereas in Europe most of Toxoplasma gondii genotypes belong to the type II lineage, in Latin America, type II is rare and atypical strains predominate. In North America, data on T. gondii genotypes in humans are scarce. Methods In this study, T. gondii DNA samples from 67 patients with diagnosed toxoplasmosis in the United States were available for genotyping. Discriminant analysis of principal components was used to infer each atypical genotype to a geographic area where patients were probably infected. Associations between genotype, disease severity, immune status, and geographic region were also estimated. Results Of 67 DNA samples, 41 were successfully genotyped: 18 (43.9%) and 5 (12.2%) were characterized as types II and III, respectively. The remaining 18 genotypes (43.9%) were atypical and were assigned to a geographic area. Ten genotypes originated from Latin America, 7 from North America, and 1 from Asia (China). In North America, unlike in Europe, T. gondii atypical genotypes are common in humans and, unlike in Latin America, type II strains are still present with significant frequency. Conclusions Clinicians should be aware that atypical genotypes are common in North America and have been associated with severe ocular and systemic disease and unusual presentations of toxoplasmosis in immunocompetent patients.
Collapse
Affiliation(s)
- Christelle Pomares
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California.,Division of Infectious Diseases, Department of Medicine, California.,Institut national de la santé et de la recherche médicale, U1065, Centre Méditerranéen de Médecine Moléculaire, Virulence Microbienne et Signalisation Inflammatoire-Université de la Côte d'Azur, Faculté de Médecine.,Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, Nice
| | - Sébastien Devillard
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Tyson H Holmes
- Division of Infectious Diseases, Department of Medicine, California.,Stanford University Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, California
| | | | - Cynthia J Press
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Raymund Ramirez
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Jeanne Talucod
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Remy Estran
- Ecole Supérieure de Commerce de Paris Europe, Paris
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Maryland
| | - Daniel Ajzenberg
- Institut national de la santé et de la recherche médicale, University of Limoges, Centre Hospitalier Universitaire Limoges, Unité Mixte de Recherche_S, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, Limoges, France
| | - Jose G Montoya
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California.,Division of Infectious Diseases, Department of Medicine, California
| |
Collapse
|
39
|
Innes EA, Hamilton C, Garcia JL, Chryssafidis A, Smith D. A one health approach to vaccines against Toxoplasma gondii. Food Waterborne Parasitol 2019; 15:e00053. [PMID: 32095623 PMCID: PMC7034027 DOI: 10.1016/j.fawpar.2019.e00053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/22/2022] Open
Abstract
Toxoplasmosis is a serious disease with global impact, now recognised as one of the most important food borne diseases worldwide and a major cause of production loss in livestock. A one health approach to develop a vaccination programme to tackle toxoplasmosis is an attractive and realistic prospect. Knowledge of disease epidemiology, parasite transmission routes and main risk groups has helped to target key host species and outcomes for a vaccine programme and these would be to prevent/reduce congenital disease in women and sheep; prevent/reduce T. gondii tissue cysts in food animal species and to prevent/reduce T. gondii oocyst shedding in cats. Most animals, including humans, develop good protective immunity following infection, involving cell mediated immune responses, which may explain why live vaccines are generally more effective to protect against T. gondii. Recent advances in our knowledge of parasite genetics and gene manipulation, strain variation, key antigenic epitopes, delivery systems and induction of immune responses are all contributing to the prospects of developing new vaccines which may be more widely applicable. A key area in progressing vaccine development is to devise standard vaccine efficacy models in relevant animal hosts and this is where a one health approach bringing together researchers across different disciplines can be of major benefit. The tools and technologies are in place to make a real impact in tackling toxoplasmosis using vaccination and it just requires a collective will to make it happen.
Collapse
Affiliation(s)
- Elisabeth A. Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Scotland EH26 OPZ, United Kingdom of Great Britain and Northern Ireland
| | - Clare Hamilton
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Scotland EH26 OPZ, United Kingdom of Great Britain and Northern Ireland
| | - Joao L. Garcia
- Universidade Estadual de Londrina, Campus Universitario, Rodovia Celso Garcia Cid, Pr 380, CEP 86057-970 Londrina, Parana, Brazil
| | - Andreas Chryssafidis
- Universidade Estadual de Londrina, Campus Universitario, Rodovia Celso Garcia Cid, Pr 380, CEP 86057-970 Londrina, Parana, Brazil
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - David Smith
- 5740A Medical Science Building II, 1150 W. Medical Centre Dr, University of Michigan, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
40
|
Lim SSY, Chua KH, Nölke G, Spiegel H, Goh WL, Chow SC, Kee BP, Fischer R, Schillberg S, Othman RY. Plant-derived chimeric antibodies inhibit the invasion of human fibroblasts by Toxoplasma gondii. PeerJ 2018; 6:e5780. [PMID: 30581655 PMCID: PMC6294049 DOI: 10.7717/peerj.5780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/17/2018] [Indexed: 11/25/2022] Open
Abstract
The parasite Toxoplasma gondii causes an opportunistic infection, that is, particularly severe in immunocompromised patients, infants, and neonates. Current antiparasitic drugs are teratogenic and cause hypersensitivity-based toxic side effects especially during prolonged treatment. Furthermore, the recent emergence of drug-resistant toxoplasmosis has reduced the therapeutic impact of such drugs. In an effort to develop recombinant antibodies as a therapeutic alternative, a panel of affinity-matured, T. gondii tachyzoite-specific single-chain variable fragment (scFv) antibodies was selected by phage display and bioinformatic analysis. Further affinity optimization was attempted by introducing point mutations at hotspots within light chain complementarity-determining region 2. This strategy yielded four mutated scFv sequences and a parental scFv that were used to produce five mouse-human chimeric IgGs in Nicotiana benthamiana plants, with yields of 33-72 mg/kg of plant tissue. Immunological analysis confirmed the specific binding of these plant-derived antibodies to T. gondii tachyzoites, and in vitro efficacy was demonstrated by their ability to inhibit the invasion of human fibroblasts and impair parasite infectivity. These novel recombinant antibodies could therefore be suitable for the development of plant-derived immunotherapeutic interventions against toxoplasmosis.
Collapse
Affiliation(s)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Wai Leong Goh
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Sek Chuen Chow
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rofina Yasmin Othman
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Lykins JD, Filippova EV, Halavaty AS, Minasov G, Zhou Y, Dubrovska I, Flores KJ, Shuvalova LA, Ruan J, El Bissati K, Dovgin S, Roberts CW, Woods S, Moulton JD, Moulton H, McPhillie MJ, Muench SP, Fishwick CWG, Sabini E, Shanmugam D, Roos DS, McLeod R, Anderson WF, Ngô HM. CSGID Solves Structures and Identifies Phenotypes for Five Enzymes in Toxoplasma gondii. Front Cell Infect Microbiol 2018; 8:352. [PMID: 30345257 PMCID: PMC6182094 DOI: 10.3389/fcimb.2018.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.
Collapse
Affiliation(s)
- Joseph D. Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristin J. Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ludmilla A. Shuvalova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Sarah Dovgin
- Illinois Math and Science Academy, Aurora, IL, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Martin J. McPhillie
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Colin W. G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Elisabetta Sabini
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- BrainMicro LLC, New Haven, CT, United States
| |
Collapse
|
42
|
El Bissati K, Levigne P, Lykins J, Adlaoui EB, Barkat A, Berraho A, Laboudi M, El Mansouri B, Ibrahimi A, Rhajaoui M, Quinn F, Murugesan M, Seghrouchni F, Gómez-Marín JE, Peyron F, McLeod R. Global initiative for congenital toxoplasmosis: an observational and international comparative clinical analysis. Emerg Microbes Infect 2018; 7:165. [PMID: 30262847 PMCID: PMC6160433 DOI: 10.1038/s41426-018-0164-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Globally, congenital toxoplasmosis remains a significant cause of morbidity and mortality, and outbreaks of infection with T. gondii represent a significant, emerging public health burden, especially in the developing world. This parasite is a threat to public health. Disease often is not recognized and is inadequately managed. Herein, we analyze the status of congenital toxoplasmosis in Morocco, Colombia, the United States, and France. We identify the unique challenges faced by each nation in the implementation of optimal approaches to congenital toxoplasmosis as a public health problem. We suggest that developed and developing countries use a multipronged approach, modeling their public health management protocols after those in France. We conclude that education, screening, appropriate treatment, and the development of novel modalities will be required to intervene successfully in caring for individuals with this infection. Gestational screening has been demonstrated to be cost-effective, morbidity-sparing, and life-saving. Recognition of the value and promise of public health interventions to prevent human suffering from this emerging infection will facilitate better patient and societal outcomes.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Pauline Levigne
- Institut de Parasitologie et de Mycologie Médicale Hôpital de la Croix Rousse, 103 grande rue de la Croix Rousse, 69317, Lyon, France
| | - Joseph Lykins
- Department of Emergency Medicine, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, 23219, USA
| | | | - Amina Barkat
- Research Team on Mother-Child Health and Nutrition, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V, Rabat, Morocco
| | - Amina Berraho
- Department d'Ophtalmologie, Hôpital des Spécialités, CHU, P6220, Rabat, Morocco
| | | | | | - Azeddine Ibrahimi
- Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V, Rabat, Morocco
| | | | - Fred Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | | | | | - Jorge Enrique Gómez-Marín
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Centro de Investigaciones Biomédicas, Universidad del Quindio, Av. Bolivar 12N, Armenia, Quindio, Colombia
| | - François Peyron
- Institut de Parasitologie et de Mycologie Médicale Hôpital de la Croix Rousse, 103 grande rue de la Croix Rousse, 69317, Lyon, France
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
43
|
Khan K, Khan W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol Int 2018; 67:715-721. [PMID: 30041005 DOI: 10.1016/j.parint.2018.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite which is known to infect one-third of the total world population chronically though it is asymptomatic in immunocompetent patients. However, in an immunocompromised patient or an infected fetus, it may cause devastating effects. The parasite may cross the placenta of an infected pregnant woman and probably infect the fetus congenitally. The severity of the infection depends on the gestational age at which the infection has occurred i.e., if it has occurred in the early phase, the rate of transmission is low but the severity is high if the fetus is infected and if it has occurred in the later phase then transmission rate is higher while the severity would be low. Congenital toxoplasmosis may result in non-specific consequences like abortion, intra-uterine growth restriction, jaundice, hepatosplenomegaly or even intra-uterine death. It may also result in neurological or ocular manifestations like intracranial calcifications, hydrocephalus or retinochoroiditis. The diagnosis may be done by serological screening of anti-Toxoplasma antibodies (IgM and IgG) while PCR of the amniotic fluid or the placenta is the confirmatory test. Acute or chronic infections may be differentiated by IgG avidity tests. The treatment regimens include spiramycin to prevent congenital transmission from an infected mother, pyrimethamine, sulfadoxine and folinic acid to treat the infected fetus, CSF shunting for the treatment of hydrocephalus and a combination of pyrimethamine, azithromycin, and corticosteroids for treating ocular toxoplasmosis.
Collapse
Affiliation(s)
- Khadija Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India
| | - Wajihullah Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India.
| |
Collapse
|
44
|
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci Rep 2017; 7:11496. [PMID: 28904337 PMCID: PMC5597608 DOI: 10.1038/s41598-017-10675-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Collapse
Affiliation(s)
- Huân M Ngô
- The University of Chicago, Chicago, IL, 60637, USA.,Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,BrainMicro LLC, New Haven, CT, 06511, USA
| | - Ying Zhou
- The University of Chicago, Chicago, IL, 60637, USA
| | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ernest Mui
- The University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | - Fiona L Henriquez
- The University of Chicago, Chicago, IL, 60637, USA.,FLH, IBEHR School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Alexandre Montpetit
- Genome Quebec, Montréal, QC H3B 1S6, Canada; McGill University, Montréal, QC H3A 0G4, Canada
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.,Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | - Charles Cobbs
- California Pacific Medical Center, San Francisco, CA, 94114, USA
| | - Dennis A Steindler
- JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Kenneth Boyer
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - A Gwendolyn Noble
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Charles N Swisher
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Peter Rabiah
- Northshore University Health System, Evanston, IL, 60201, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rima McLeod
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
45
|
Cai Y, Shen J. Modulation of host immune responses to Toxoplasma gondii by microRNAs. Parasite Immunol 2017; 39. [PMID: 28170109 DOI: 10.1111/pim.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
To survive successfully, Toxoplasma counteracts the strictly regulated host innate response to downregulate inflammation that could be deleterious for the parasite. MicroRNAs are vital regulators of both innate and adaptive immunity, controlling the maintenance and development of immune progenitors as well as the differentiation and the functions of host mature immune cells. Thus, the complexity of mechanisms underlying the connection between Toxoplasma and host immunity has led to investigations of miRNAs as additional key molecular players. The knowledge acquired from these studies will be useful for aiding the discovery of new targets for diagnosis or therapeutic approaches for toxoplasmosis and insight into the interaction between host and parasite.
Collapse
Affiliation(s)
- Y Cai
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - J Shen
- Department of Parasitology, Provincial Laboratory of Pathogen Biology Anhui and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
The Lymphotoxin β Receptor Is Essential for Upregulation of IFN-Induced Guanylate-Binding Proteins and Survival after Toxoplasma gondii Infection. Mediators Inflamm 2017; 2017:7375818. [PMID: 28845089 PMCID: PMC5563413 DOI: 10.1155/2017/7375818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphotoxin β receptor (LTβR) signaling plays an important role in efficient initiation of host responses to a variety of pathogens, encompassing viruses, bacteria, and protozoans via induction of the type I interferon response. The present study reveals that after Toxoplasma gondii infection, LTβR−/− mice show a substantially reduced survival rate when compared to wild-type mice. LTβR−/− mice exhibit an increased parasite load and a more pronounced organ pathology. Also, a delayed increase of serum IL-12p40 and a failure of the protective IFNγ response in LTβR−/− mice were observed. Serum NO levels in LTβR−/− animals rose later and were markedly decreased compared to wild-type animals. At the transcriptional level, LTβR−/− animals exhibited a deregulated expression profile of several cytokines known to play a role in activation of innate immunity in T. gondii infection. Importantly, expression of the IFNγ-regulated murine guanylate-binding protein (mGBP) genes was virtually absent in the lungs of LTβR−/− mice. This demonstrates clearly that the LTβR is essential for the induction of a type II IFN-mediated immune response against T. gondii. The pronounced inability to effectively upregulate host defense effector molecules such as GBPs explains the high mortality rates of LTβR−/− animals after T. gondii infection.
Collapse
|
47
|
Prusa AR, Kasper DC, Sawers L, Walter E, Hayde M, Stillwaggon E. Congenital toxoplasmosis in Austria: Prenatal screening for prevention is cost-saving. PLoS Negl Trop Dis 2017; 11:e0005648. [PMID: 28692640 PMCID: PMC5503164 DOI: 10.1371/journal.pntd.0005648] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Primary infection of Toxoplasma gondii during pregnancy can be transmitted to the unborn child and may have serious consequences, including retinochoroiditis, hydrocephaly, cerebral calcifications, encephalitis, splenomegaly, hearing loss, blindness, and death. Austria, a country with moderate seroprevalence, instituted mandatory prenatal screening for toxoplasma infection to minimize the effects of congenital transmission. This work compares the societal costs of congenital toxoplasmosis under the Austrian national prenatal screening program with the societal costs that would have occurred in a No-Screening scenario. METHODOLOGY/PRINCIPAL FINDINGS We retrospectively investigated data from the Austrian Toxoplasmosis Register for birth cohorts from 1992 to 2008, including pediatric long-term follow-up until May 2013. We constructed a decision-analytic model to compare lifetime societal costs of prenatal screening with lifetime societal costs estimated in a No-Screening scenario. We included costs of treatment, lifetime care, accommodation of injuries, loss of life, and lost earnings that would have occurred in a No-Screening scenario and compared them with the actual costs of screening, treatment, lifetime care, accommodation, loss of life, and lost earnings. We replicated that analysis excluding loss of life and lost earnings to estimate the budgetary impact alone. Our model calculated total lifetime costs of €103 per birth under prenatal screening as carried out in Austria, saving €323 per birth compared with No-Screening. Without screening and treatment, lifetime societal costs for all affected children would have been €35 million per year; the implementation costs of the Austrian program are less than €2 million per year. Calculating only the budgetary impact, the national program was still cost-saving by more than €15 million per year and saved €258 million in 17 years. CONCLUSIONS/SIGNIFICANCE Cost savings under a national program of prenatal screening for toxoplasma infection and treatment are outstanding. Our results are of relevance for health care providers by supplying economic data based on a unique national dataset including long-term follow-up of affected infants.
Collapse
Affiliation(s)
- Andrea-Romana Prusa
- Department of Pediatrics and Adolescent Medicine, Toxoplasmosis Reference Laboratory, Medical University of Vienna, Vienna, Austria
| | - David C. Kasper
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Larry Sawers
- Department of Economics, American University, Washington DC, United States of America
| | - Evelyn Walter
- Institute for Pharmaeconomic Research, Vienna, Austria
| | - Michael Hayde
- Department of Pediatrics and Adolescent Medicine, Toxoplasmosis Reference Laboratory, Medical University of Vienna, Vienna, Austria
| | - Eileen Stillwaggon
- Department of Economics, Gettysburg College, Gettysburg, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Eldeek HEM, Ahmad AAR, El-Mokhtar MA, Abdel Kader ARMM, Mandour AM, Mounib MEM. Toxoplasma genotyping in congenital toxoplasmosis in Upper Egypt: evidence of type I strain. Parasitol Res 2017; 116:2393-2406. [PMID: 28668985 DOI: 10.1007/s00436-017-5541-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii has subpopulation structures in different geographical regions caused by less frequent sexual recombination, population sweeps, and biogeography. The majority of strains isolated in North America and Europe fall into one of three clonal lineages, referred to as types I, II, and III. So far, little is known about genetics of Toxoplasma strains in Africa. The present study aimed to determine the genotype of Toxoplasma strains obtained directly from trophoblastic/placental tissues of 29 complicated pregnant women using multilocus nested-PCR-RFLP technique depending on four independent genetic loci (5' SAG2 and 3' SAG2), SAG3, GRA6, and BTUB genes. All samples gave positive amplicons at 5'-3' SAG2 and SAG3 genes. Meanwhile, no amplification products were observed in 12 (41.37%) and 10 (34.48%) samples with GRA6 and BTUB genes, respectively. The restriction pattern revealed the presence of genotype I in all samples, except one sample, which revealed atypical genotype with unusual restriction pattern at 3' SAG2 gene. The negative amplifications in some samples could be due to presence of mutations or polymorphisms in the primer binding sites of these isolates, raising the possibility of mixed or recombinant genotypes. To the best of our knowledge, this is the first time to perform genotype analysis study based on Multiplex nPCR-RFLP technique for genetic characterization of T. gondii in Egypt. Besides, it is the first time to prove that the most prevalent strain of T. gondii, responsible for congenital toxoplasmosis in Upper Egypt, is the highly virulent type I. Atypical genotype was detected as well.
Collapse
Affiliation(s)
- Hanan E M Eldeek
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Mohamed Ahmed El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ahmad M Mandour
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
49
|
Begeman IJ, Lykins J, Zhou Y, Lai BS, Levigne P, El Bissati K, Boyer K, Withers S, Clouser F, Noble AG, Rabiah P, Swisher CN, Heydemann PT, Contopoulos-Ioannidis DG, Montoya JG, Maldonado Y, Ramirez R, Press C, Stillwaggon E, Peyron F, McLeod R. Point-of-care testing for Toxoplasma gondii IgG/IgM using Toxoplasma ICT IgG-IgM test with sera from the United States and implications for developing countries. PLoS Negl Trop Dis 2017. [PMID: 28650970 PMCID: PMC5501679 DOI: 10.1371/journal.pntd.0005670] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Congenital toxoplasmosis is a serious but preventable and treatable disease. Gestational screening facilitates early detection and treatment of primary acquisition. Thus, fetal infection can be promptly diagnosed and treated and outcomes can be improved. Methods We tested 180 sera with the Toxoplasma ICT IgG-IgM point-of-care (POC) test. Sera were from 116 chronically infected persons (48 serotype II; 14 serotype I-III; 25 serotype I-IIIa; 28 serotype Atypical, haplogroup 12; 1 not typed). These represent strains of parasites infecting mothers of congenitally infected children in the U.S. 51 seronegative samples and 13 samples from recently infected persons known to be IgG/IgM positive within the prior 2.7 months also were tested. Interpretation was confirmed by two blinded observers. A comparison of costs for POC vs. commercial laboratory testing methods was performed. Results We found that this new Toxoplasma ICT IgG-IgM POC test was highly sensitive (100%) and specific (100%) for distinguishing IgG/IgM-positive from negative sera. Use of such reliable POC tests can be cost-saving and benefit patients. Conclusions Our work demonstrates that the Toxoplasma ICT IgG-IgM test can function reliably as a point-of-care test to diagnose Toxoplasma gondii infection in the U.S. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available. This infection has serious, lifelong consequences for infected persons and their families. From the present study, it appears a simple, low-cost POC test is now available to help prevent morbidity/disability, decrease cost, and make gestational screening feasible. It also offers new options for improved prenatal care in low- and middle-income countries. Toxoplasmosis, a disease caused by the parasite Toxoplasma gondii, presents a major health burden in both the developed and developing world. Untreated congenital toxoplasmosis causes damage to the eye and brain, but early detection and treatment reduce transmission and disease. Fetal infection can be promptly diagnosed and treated and outcomes can be improved. Gestational screening for toxoplasmosis has international precedent. In this paper, we demonstrated that the new Toxoplasma ICT IgG-IgM test had 100% sensitivity and specificity in detecting Toxoplasma infection (N = 180 U.S. sera from uninfected persons and those with varying parasite serotypes). The use of an inexpensive, easy-to-use point-of-care test facilitates screening of pregnant women for T. gondii infection. In turn, this facilitates prompt treatment for the infection and thereby reduces the health burden caused by this disease. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available.
Collapse
Affiliation(s)
- Ian J. Begeman
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Ying Zhou
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Bo Shiun Lai
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Pauline Levigne
- Institut de Parasitologie et de Mycologie Médicale Hôpital de la Croix Rousse, Lyon, France
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth Boyer
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Rush University and Medical Center, Chicago, Illinois, United States of America
| | - Shawn Withers
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Fatima Clouser
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Lurie Children’s Hospital and Northwestern University, Chicago, Illinois, United States of America
| | - Peter Rabiah
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Northshore Hospital, Evanston, Illinois, United States of America
| | - Charles N. Swisher
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Lurie Children’s Hospital and Northwestern University, Chicago, Illinois, United States of America
| | - Peter T. Heydemann
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Rush University and Medical Center, Chicago, Illinois, United States of America
| | - Despina G. Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, United States of America
| | - Raymund Ramirez
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, California, United States of America
| | - Cindy Press
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, California, United States of America
| | | | - François Peyron
- Institut de Parasitologie et de Mycologie Médicale Hôpital de la Croix Rousse, Lyon, France
| | - Rima McLeod
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, the Center for Health and the Social Sciences, CHeSS, the College, The University of Chicago, Chicago Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
Evaluation of serological and molecular tests used to identify Toxoplasma gondii infection in pregnant women attended in a public health service in São Paulo state, Brazil. Diagn Microbiol Infect Dis 2017; 89:13-19. [PMID: 28689893 DOI: 10.1016/j.diagmicrobio.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis during pregnancy can have severe consequences. The use of sensitive and specific serological and molecular methods is extremely important for the correct diagnosis of the disease. We compared the ELISA and ELFA serological methods, conventional PCR (cPCR), Nested PCR and quantitative PCR (qPCR) in the diagnosis of Toxoplasma gondii infection in pregnant women without clinical suspicion of toxoplasmosis (G1=94) and with clinical suspicion of toxoplasmosis (G2=53). The results were compared using the Kappa index, and the sensitivity, specificity, positive predictive value and negative predictive value were calculated. The results of the serological methods showed concordance between the ELISA and ELFA methods even though ELFA identified more positive cases than ELISA. Molecular methods were discrepant with cPCR using B22/23 primers having greater sensitivity and lower specificity compared to the other molecular methods.
Collapse
|