1
|
Green N, Miller C, Suskind D, Brown M, Pope C, Hayden H, McNamara S, Kanter A, Nay L, Hoffman L, Rosenfeld M. The impact of a whole foods dietary intervention on gastrointestinal symptoms, inflammation, and fecal microbiota in pediatric patients with cystic fibrosis: A pilot study. Clin Nutr 2024; 43:156-163. [PMID: 39383549 DOI: 10.1016/j.clnu.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Gastrointestinal (GI) complications are a significant source of morbidity for people with cystic fibrosis (PwCF). Historically, dietary recommendations in CF have focused on calories, typically emphasizing a high fat diet. The changing landscape of CF highlights the need to update this nutritional strategy. There is little research into how the quality of calories consumed by PwCF influences nutritional outcomes, GI symptoms, or likely contributors: intestinal inflammation and GI microbiology. We assessed the feasibility of a whole foods-based diet (WFD) and avoidance of ultra-processed foods, measuring safety/tolerability, adherence, and GI symptoms, as well as fecal measures of inflammation and microbiota among children with CF (CwCF) with GI symptoms. METHODS Single center, 4-week dietary intervention involving CwCF aged 5-14 years who screened positive on GI symptom questionnaire. Assessments included weight, symptom questionnaires and adverse events (AEs). Stool was analyzed for microbiota (16S rRNA) and calprotectin. RESULTS 108 children were pre-screened, 9 enrolled and 8 initiated and completed the study. There were no significant changes in weight and no AEs. PEDS-QL GI identified overall improvement in symptoms. Certain symptom domains (constipation, diarrhea, gas/bloating, stomach pain and hurt) demonstrated significant improvement on the WFD. Of two participants with abnormal fecal calprotectin at enrollment, both exhibited decreased values on WFD. There was no significant change in microbiota diversity. CONCLUSION A WFD diet was feasible and safe in CwCF. There was improvement in GI symptom scores based on both parent and child assessments. Larger studies are needed to further investigate effects on intestinal inflammation and microbiota.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Washington School of Medicine, Seattle, WA, USA.
| | - Carson Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Suskind
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christopher Pope
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hillary Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Anna Kanter
- Seattle Children's Hospital, Seattle, WA, USA
| | - Laura Nay
- Seattle Children's Hospital, Seattle, WA, USA
| | - Lucas Hoffman
- Department of Microbiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret Rosenfeld
- Department of Epidemiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Cecchetti M, Scarallo L, Lionetti P, Ooi CY, Terlizzi V. Impact of highly effective modulator therapy on gastrointestinal symptoms and features in people with cystic fibrosis. Paediatr Respir Rev 2024:S1526-0542(24)00076-9. [PMID: 39341749 DOI: 10.1016/j.prrv.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
Highly effective modulator therapy (HEMT), particularly the triple combination elexacaftor-tezacaftor-ivacaftor (ETI), significantly improved clinical outcomes and quality of life in people with Cystic Fibrosis (pwCF). This review analyzes current knowledge on the impact of HEMTs on gastrointestinal (GI) symptoms and features in pwCF. A descriptive review of English literature until February 29, 2024, was conducted using medical databases. Observational studies and clinical trials addressing GI reflux disease (GERD), lower GI symptoms and pancreatic disease were considered. Studies report positive effects of HEMTs on pH levels and bicarbonate secretion as well as improvement on intestinal inflammation. HEMTs also demonstrated positive effects on GERD and lower GI symptoms or conditions CF related such as dysbiosis. Taking ETI during pregnancy could also allow resolution of meconium ileus in fetuses with CF. The best benefits were observed in pancreatic function, potentially delaying CF-related diabetes and recovering pancreatic function in some children on ETI. Larger trials, particularly in pediatric populations, need to confirm these findings and explore long-term effects.
Collapse
Affiliation(s)
- Martina Cecchetti
- Department of Health Sciences, University of Florence, Florence, Italy; Meyer Children Hospital IRCCS, Florence, Italy
| | - Luca Scarallo
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCCS, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Vito Terlizzi
- Meyer Children's Hospital, IRCCS, Department of Paediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children's Hospital, Florence, Italy.
| |
Collapse
|
3
|
Marsh R, Santos CD, Yule A, Dellschaft NS, Hoad CL, Ng C, Major G, Smyth AR, Rivett D, van der Gast C. Impact of extended Elexacaftor/Tezacaftor/Ivacaftor therapy on the gut microbiome in cystic fibrosis. J Cyst Fibros 2024; 23:967-976. [PMID: 38749891 DOI: 10.1016/j.jcf.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND There is a paucity of knowledge on the longer-term effects of CF transmembrane conductance regulator (CFTR) modulator therapies upon the gut microbiome and associated outcomes. In a pilot study, we investigated longitudinal Elexacaftor/Tezacaftor/Ivacaftor (ETI) therapy on the gut microbiota, metabolomic functioning, and clinical outcomes in people with CF (pwCF). STUDY DESIGN Faecal samples from 20 pwCF were acquired before and then following 3, 6, and 17+ months of ETI therapy. Samples were subjected to microbiota sequencing and targeted metabolomics to profile and quantify short-chain fatty acid composition. Ten healthy matched controls were included for comparison. Clinical data, including markers of intestinal function were integrated to investigate relationships. RESULTS Extended ETI therapy increased core microbiota diversity and composition, which translated to gradual shifts in whole microbiota composition towards that observed in healthy controls. Despite becoming more similar over time, CF microbiota and functional metabolite compositions remained significantly different to healthy controls. Antibiotic treatment for pulmonary infection significantly explained a relatively large degree of variation within the whole microbiota and rarer satellite taxa. Clinical outcomes were not significantly different following ETI. CONCLUSIONS Whilst differences persisted, a positive trajectory towards the microbiota observed in healthy controls was found. We posit that progression was predominately impeded by pulmonary antibiotics administration. We recommend future studies use integrated omics approaches within a combination of long-term longitudinal patient studies and model experimental systems. This will deepen our understanding of the impacts of CFTR modulator therapy and respiratory antibiotic interventions upon the gut microbiome and gastrointestinal pathophysiology in CF.
Collapse
Affiliation(s)
- Ryan Marsh
- Department of Applied Sciences, Northumbria University, Newcastle, UK
| | | | - Alexander Yule
- School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, UK
| | | | - Caroline L Hoad
- Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
| | - Christabella Ng
- School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, UK
| | - Giles Major
- School of Medicine, University of Nottingham, UK; Nestlé Institute of Health Sciences, Société des Produits Nestlé, Lausanne, Switzerland
| | - Alan R Smyth
- School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, UK; School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | - Damian Rivett
- Department of Natural Sciences, Manchester Metropolitan University, UK
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, UK; Department of Respiratory Medicine, Northern Care Alliance NHS Foundation Trust, Salford, UK.
| |
Collapse
|
4
|
Green N, Chan C, Ooi CY. The gastrointestinal microbiome, small bowel bacterial overgrowth, and microbiome modulators in cystic fibrosis. Pediatr Pulmonol 2024; 59 Suppl 1:S70-S80. [PMID: 39105345 DOI: 10.1002/ppul.26913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 08/07/2024]
Abstract
People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Christopher Chan
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
5
|
Frayman KB, Macowan M, Caparros-Martin J, Ranganathan SC, Marsland BJ. The longitudinal microbial and metabolic landscape of infant cystic fibrosis: the gut-lung axis. Eur Respir J 2024; 63:2302290. [PMID: 38485151 DOI: 10.1183/13993003.02290-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND AIM In cystic fibrosis, gastrointestinal dysfunction and lower airway infection occur early and are independently associated with poorer outcomes in childhood. This study aimed to define the relationship between the microbiota at each niche during the first 2 years of life, its association with growth and airway inflammation, and explanatory features in the metabolome. MATERIALS AND METHODS 67 bronchoalveolar lavage fluid (BALF), 62 plasma and 105 stool samples were collected from 39 infants with cystic fibrosis between 0 and 24 months who were treated with prophylactic antibiotics. 16S rRNA amplicon and shotgun metagenomic sequencing were performed on BALF and stool samples, respectively; metabolomic analyses were performed on all sample types. Sequencing data from healthy age-matched infants were used as controls. RESULTS Bacterial diversity increased over the first 2 years in both BALF and stool, and microbial maturation was delayed in comparison to healthy controls from the RESONANCE cohort. Correlations between their respective abundance in both sites suggest stool may serve as a noninvasive alternative for detecting BALF Pseudomonas and Veillonella. Multisite metabolomic analyses revealed age- and growth-related changes, associations with neutrophilic airway inflammation, and a set of core systemic metabolites. BALF Pseudomonas abundance was correlated with altered stool microbiome composition and systemic metabolite alterations, highlighting a complex gut-plasma-lung interplay and new targets with therapeutic potential. CONCLUSION Exploration of the gut-lung microbiome and metabolome reveals diverse multisite interactions in cystic fibrosis that emerge in early life. Gut-lung metabolomic links with airway inflammation and Pseudomonas abundance warrant further investigation for clinical utility, particularly in non-expectorating patients.
Collapse
Affiliation(s)
- Katherine B Frayman
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | - Matthew Macowan
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | | | - Sarath C Ranganathan
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| |
Collapse
|
6
|
Asensio-Grau A, Heredia A, García-Hernández J, Cabrera-Rubio R, Masip E, Ribes-Koninckx C, Collado MC, Andrés A, Calvo-Lerma J. Effect of beta-glucan supplementation on cystic fibrosis colonic microbiota: an in vitro study. Pediatr Res 2024; 95:1519-1527. [PMID: 38092964 DOI: 10.1038/s41390-023-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 05/26/2024]
Abstract
BACKGROUND Children with cystic fibrosis (CF) present with gut dysbiosis, and current evidence impedes robust recommendations on the use of prebiotics. This study aimed at establishing the prebiotic potential of a commercial beta-glucan on the in vitro colonic microbiota of a child with CF compared to a healthy counterpart (H). METHODS A dynamic simulator of colonic fermentation (twin-SHIME® model) was set up including the simulation of the proximal (PC) and distal colon (DC) of the CF and the H subjects by colonizing the bioreactors with faecal microbiota. During two weeks the system was supplied with the beta-glucan. At baseline, during treatment and post-treatment, microbiota composition was profiled by 16 S rRNA and short-chain fatty acids (SCFA) production was determined by GS-MS. RESULTS At baseline, Faecalibacterium, was higher in CF' DC than in the H, along higher Acidaminococcus and less Megasphaera and Sutterella. Beta-glucan supplementation induced increased microbiota richness and diversity in both subjects during the treatment. At genus level, Pseudomonas and Veillonella decreased, while Akkermansia and Faecalibacterium increased significantly in CF. CONCLUSION The supplementation with beta-glucan suggests positive results on CF colonic microbiota in the in vitro context, encouraging further research in the in vivo setting. IMPACT Current evidence supports assessing the effect of prebiotics on modifying cystic fibrosis microbiota. The effect of beta-glucan supplementation was evaluated in a controlled dynamic in vitro colonic ecosystem. Beta-glucan supplement improved diversity in cystic fibrosis colonic microbiota. The treatment showed increased abundance of Faecalibacterium and Akkermansia in cystic fibrosis. New evidence supports the use of prebiotics in future clinical studies.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain.
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain.
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Jorge García-Hernández
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Etna Masip
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo. Universitat Politècnica de València, València, Spain
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
| | - Joaquim Calvo-Lerma
- Unidad Mixta de Investigación (NutriCuraPDig), Valencia, Spain
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
7
|
Duong JT, Pope CE, Hayden HS, Miller C, Salipante SJ, Rowe SM, Solomon GM, Nichols D, Hoffman LR, Narkewicz MR, Green N. Alterations in the fecal microbiota in patients with advanced cystic fibrosis liver disease after 6 months of elexacaftor/tezacaftor/ivacaftor. J Cyst Fibros 2024; 23:490-498. [PMID: 38448281 PMCID: PMC11182717 DOI: 10.1016/j.jcf.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Cystic fibrosis associated liver disease (CFLD) carries a significant disease burden with no effective preventive therapies. According to the gut-liver axis hypothesis for CFLD pathogenesis, dysbiosis and increased intestinal inflammation and permeability permit pathogenic bacterial translocation into the portal circulation, leading to hepatic inflammation and fibrosis. Evaluating the effect of CFTR (cystic fibrosis transmembrane conductance regulator) modulation with elexacaftor/tezacaftor/ivacaftor (ETI) may help determine the role of CFTR in CFLD and increase understanding of CFLD pathogenesis, which is critical for developing therapies. We aimed to characterize the fecal microbiota in participants with CF with and without advanced CFLD (aCFLD) before and after ETI. METHODS This is an ancillary analysis of stool samples from participants ages ≥12 y/o enrolled in PROMISE (NCT04038047). Included participants had aCFLD (cirrhosis with or without portal hypertension, or non-cirrhotic portal hypertension) or CF without liver disease (CFnoLD). Fecal microbiota were defined by shotgun metagenomic sequencing at baseline and 1 and 6 months post-ETI. RESULTS We analyzed 93 samples from 34 participants (11 aCFLD and 23 CFnoLD). Compared to CFnoLD, aCFLD had significantly higher baseline relative abundances of potential pathogens Streptococcus salivarius and Veillonella parvula. Four of 11 aCFLD participants had an initially abnormal fecal calprotectin that normalized 6 months post-ETI, correlating with a significant decrease in S. salivarius and a trend towards decreasing V. parvula. CONCLUSIONS These results support an association between dysbiosis and intestinal inflammation in CFLD with improvements in both post-ETI, lending further support to the gut-liver axis in aCFLD.
Collapse
Affiliation(s)
- Jennifer T Duong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Francisco School of Medicine, San Francisco, CA, USA.
| | - Christopher E Pope
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Carson Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Steven M Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George M Solomon
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Nichols
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Lucas R Hoffman
- Department of Microbiology and Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael R Narkewicz
- Digestive Health Institute, Children's Hospital Colorado and Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado SOM, Aurora, CO, USA
| | - Nicole Green
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Bernard R, Shilts MH, Strickland BA, Boone HH, Payne DC, Brown RF, Edwards K, Das SR, Nicholson MR. The relationship between the intestinal microbiome and body mass index in children with cystic fibrosis. J Cyst Fibros 2024; 23:242-251. [PMID: 37953184 PMCID: PMC11480998 DOI: 10.1016/j.jcf.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The nutritional status of children with cystic fibrosis (CF), as assessed by their body mass index percentile (BMIp), is a critical determinant of long-term health outcomes. While the intestinal microbiome plays an important role in nutrition, little is known regarding the relationship of the microbiome and BMIp in children with CF. METHODS Pediatric patients (< 18 years old) with CF and healthy comparison patients (HCs) were enrolled in the study and stool samples obtained. BMIp was categorized as Green Zone (BMIp > 50th), Yellow Zone (BMIp 25th-49th) and Red Zone (BMIp < 25th). Intestinal microbiome assessment was performed via 16S rRNA gene sequencing; microbial richness, diversity, and differential species abundance were assessed. RESULTS Stool samples were collected from 107 children with CF and 50 age-matched HCs. Compared to HCs, children with CF were found to have lower bacterial richness, alpha-diversity, and a different microbial composition. When evaluating them by their BMIp color zone, richness and alpha-diversity were lowest in those in the Red Zone. In addition, an unclassified amplicon sequence variant (ASV) of Blautia, a known butyrate-producing anaerobe, was of lowest abundance in children in the Red Zone. CONCLUSION Children with CF have a dysbiotic intestinal microbiome with specific changes that accompany changes in BMIp. Longitudinal assessments of the microbiome and its metabolic activities over time are needed to better understand how improvements in the microbiome may improve nutrition and enhance long-term survival in children with CF.
Collapse
Affiliation(s)
- Rachel Bernard
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Meghan H Shilts
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA.
| | - Britton A Strickland
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Tennessee, USA.
| | - Helen H Boone
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA.
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA.
| | - Rebekah F Brown
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Kathryn Edwards
- Department of Pediatrics, Division of Infectious Diseases, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Suman R Das
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Tennessee, USA; Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maribeth R Nicholson
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| |
Collapse
|
10
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Price CE, Valls RA, Ramsey AR, Loeven NA, Jones JT, Barrack KE, Schwartzman JD, Royce DB, Cramer RA, Madan JC, Ross BD, Bliska J, O'Toole GA. Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis. mBio 2024; 15:e0314423. [PMID: 38179971 PMCID: PMC10865972 DOI: 10.1128/mbio.03144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1β-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.
Collapse
Affiliation(s)
- Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Alexis R. Ramsey
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Nicole A. Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Jane T. Jones
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | | | - Darlene B. Royce
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - Juliette C. Madan
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanove, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - James Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, USA
| |
Collapse
|
12
|
Reasoner SA, Bernard R, Waalkes A, Penewit K, Lewis J, Sokolow AG, Brown RF, Edwards KM, Salipante SJ, Hadjifrangiskou M, Nicholson MR. Longitudinal profiling of the intestinal microbiome in children with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor. mBio 2024; 15:e0193523. [PMID: 38275294 PMCID: PMC10865789 DOI: 10.1128/mbio.01935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores the function of the pathogenic mutated CF transmembrane conductance regulator (CFTR) channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in body mass index and percent predicted forced expiratory volume in one second, and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.IMPORTANCECystic fibrosis (CF) is an autosomal recessive disease with significant gastrointestinal symptoms in addition to pulmonary complications. Recently approved treatments for CF, CF transmembrane conductance regulator (CFTR) modulators, are anticipated to substantially improve the care of people with CF and extend their lifespans. Prior work has shown that the intestinal microbiome correlates with health outcomes in CF, particularly in children. Here, we study the intestinal microbiome of children with CF before and after the CFTR modulator, ELX/TEZ/IVA. We identify promising improvements in microbiome diversity, reduced measures of intestinal inflammation, and reduced antibiotic resistance genes. We present specific bacterial taxa and protein groups which change following ELX/TEZ/IVA. These results will inform future mechanistic studies to understand the microbial improvements associated with CFTR modulator treatment. This study demonstrates how the microbiome can change in response to a targeted medication that corrects a genetic disease.
Collapse
Affiliation(s)
- Seth A. Reasoner
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Bernard
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Janessa Lewis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew G. Sokolow
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Rebekah F. Brown
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Division of Infectious Diseases, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maribeth R. Nicholson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Barrack KE, Hampton TH, Valls RA, Surve SV, Gardner TB, Sanville JL, Madan JL, O’Toole GA. An in vitro medium for modeling gut dysbiosis associated with cystic fibrosis. J Bacteriol 2024; 206:e0028623. [PMID: 38169295 PMCID: PMC10810206 DOI: 10.1128/jb.00286-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.
Collapse
Affiliation(s)
- Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sarvesh V. Surve
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Julie L. Sanville
- Division of Pediatric Gastroenterology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Juliette L. Madan
- Departments of Psychiatry and Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Species- and subspecies-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. Gut Microbes 2024; 16:2414975. [PMID: 39428758 PMCID: PMC11497992 DOI: 10.1080/19490976.2024.2414975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The human gut microbiome develops rapidly during infancy, a key window of development coinciding with the maturation of the adaptive immune system. However, little is known about the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n = 94) from a cohort of infants (n = 15) at monthly intervals in the first 6 months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. RESULTS Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a published cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. CONCLUSION By augmenting published metagenomic datasets with data from a newly established cohort, we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Department of Pediatrics, Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
15
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Strain-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.16.23300077. [PMID: 38168439 PMCID: PMC10760300 DOI: 10.1101/2023.12.16.23300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The human gut microbiome develops rapidly during infancy, a key window of development coinciding with maturation of the adaptive immune system. However, little is known of the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n=94) from a cohort of infants (n=15) at monthly intervals in the first six months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. Results Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. Conclusion By augmenting published metagenomic datasets with data from a newly established cohort we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
16
|
Viteri-Echeverría J, Calvo-Lerma J, Ferriz-Jordán M, Garriga M, García-Hernández J, Heredia A, Ribes-Koninckx C, Andrés A, Asensio-Grau A. Association between Dietary Intake and Faecal Microbiota in Children with Cystic Fibrosis. Nutrients 2023; 15:5013. [PMID: 38140272 PMCID: PMC10745571 DOI: 10.3390/nu15245013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
A "high-fat, high-energy diet" is commonly recommended for children with cystic fibrosis (CF), leading to negative consequences on dietary patterns that could contribute to altered colonic microbiota. The aim of this study was to assess dietary intake and to identify possible associations with the composition of faecal microbiota in a cohort of children with CF. A cross-sectional observational study was conducted, including a 3-day food record simultaneously with the collection of faecal samples. The results showed a high fat intake (43.9% of total energy intake) and a mean dietary fibre intake of 10.6 g/day. The faecal microbiota was characterised at the phylum level as 54.5% Firmicutes and revealed an altered proportion between Proteobacteria (32%) and Bacteroidota (2.2%). Significant associations were found, including a negative association between protein, meat, and fish intake and Bifidobacterium, a positive association between lipids and Escherichia/Shigella and Streptococcus, a negative association between carbohydrates and Veillonella and Klebsiella, and a positive association between total dietary fibre and Bacteroides and Roseburia. The results reveal that a "high-fat, high-energy" diet does not satisfy dietary fibre intake from healthy food sources in children with CF. Further interventional studies are encouraged to explore the potential of shifting to a high-fibre or standard healthy diet to improve colonic microbiota.
Collapse
Affiliation(s)
- Jazmín Viteri-Echeverría
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
| | - Joaquim Calvo-Lerma
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
- Joint Research Unit NutriCuraPDig, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Miguel Ferriz-Jordán
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
| | - María Garriga
- Cystic Fibrosis Unit, University Hospital Ramón y Cajal, M-607, 9, 100, 28034 Madrid, Spain
| | - Jorge García-Hernández
- Advanced Food Microbiology Centre (CAMA), University of Valencia, Camino de Vera s/n, 46022 València, Spain
| | - Ana Heredia
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
- Joint Research Unit NutriCuraPDig, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Carmen Ribes-Koninckx
- Health Research Institute La Fe, Celiac Disease and Digestive Immunopathology Unit, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Ana Andrés
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
- Joint Research Unit NutriCuraPDig, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Andrea Asensio-Grau
- University Institute of Food Engineering (FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
- Joint Research Unit NutriCuraPDig, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| |
Collapse
|
17
|
Reasoner SA, Bernard R, Waalkes A, Penewit K, Lewis J, Sokolow AG, Brown RF, Edwards KM, Salipante SJ, Hadjifrangiskou M, Nicholson MR. Longitudinal Profiling of the Intestinal Microbiome in Children with Cystic Fibrosis Treated with Elexacaftor-Tezacaftor-Ivacaftor. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.11.23293949. [PMID: 37645804 PMCID: PMC10462202 DOI: 10.1101/2023.08.11.23293949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores function of the pathogenic mutated CFTR channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in BMI, ppFEV1 and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic-resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.
Collapse
Affiliation(s)
- Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel Bernard
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Janessa Lewis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew G. Sokolow
- Division of Allergy, and Immunology, and Pulmonary Medicine, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Rebekah F. Brown
- Division of Allergy, and Immunology, and Pulmonary Medicine, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Kathryn M. Edwards
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maribeth R. Nicholson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Deschamp AR, Chen Y, Wang WF, Rasic M, Hatch J, Sanders DB, Ranganathan SC, Ferkol T, Perkins D, Finn P, Davis SD. The association between gut microbiome and growth in infants with cystic fibrosis. J Cyst Fibros 2023; 22:1010-1016. [PMID: 37598041 PMCID: PMC10840679 DOI: 10.1016/j.jcf.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND In cystic fibrosis (CF), pathophysiologic changes in the gastrointestinal tract lead to malnutrition and altered gut microbiome. Microbiome alterations have been linked to linear growth, gut inflammation and respiratory manifestations. Elucidating these gut microbiome alterations may provide insight into future nutritional management in CF. METHODS Infants were followed for 12-months at four sites in the United States (US-CF) and Australia (AUS-CF). 16S rRNA gene sequencing was performed on longitudinal stool samples. Associations between microbial abundance and age, antibiotic prophylaxis, malnutrition, and breast feeding were evaluated using generalized linear mixed models. Taxonomic and predictive functional features were compared between groups. RESULTS Infants with CF (N = 78) were enrolled as part of a larger study. AUS-CF infants had higher mean weight-for-age z-scores than US-CF infants (p = 0.02). A subset of participants (CF N = 40, non-CF disease controls N = 10) provided stool samples for microbiome analysis. AUS-CF infants had lower stool alpha diversity compared to US-CF infants (p < 0.001). AUS-CF infants had higher relative abundance of stool Proteobacteria compared to US-CF infants which was associated with antibiotic prophylaxis (p < 0.001). Malnutrition (weight-for-age <10th percentile) was associated with depleted Lactococcus (p < 0.001). Antibiotic prophylaxis (p = 0.002) and malnutrition (p = 0.012) were linked with predicted decreased activity of metabolic pathways responsible for short chain fatty acid processing. CONCLUSIONS In infants with CF, gut microbiome composition and diversity differed between the two continents. Gut microbial diversity was not linked to growth. The relationship between malnutrition and antibiotic prophylaxis with reduced SCFA fermentation could have implications for gut health and function and warrants additional investigation.
Collapse
Affiliation(s)
- A R Deschamp
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America.
| | - Y Chen
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - W F Wang
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - M Rasic
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - J Hatch
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| | - D B Sanders
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| | - S C Ranganathan
- Royal Children's Hospital, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - T Ferkol
- Washington University, 660 S Euclid Ave, St. Louis, MO 63110, United States of America
| | - D Perkins
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - P Finn
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - S D Davis
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| |
Collapse
|
19
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
Asensio-Grau A, Calvo-Lerma J, Ferriz-Jordán M, García-Hernández J, Heredia A, Andrés A. Effect of Lactobacillaceae Probiotics on Colonic Microbiota and Metabolite Production in Cystic Fibrosis: A Comparative In Vitro Study. Nutrients 2023; 15:3846. [PMID: 37686878 PMCID: PMC10490339 DOI: 10.3390/nu15173846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Cystic Fibrosis-related gut dysbiosis (CFRGD) has become a recognised complication in children with this condition, and current evidence remains insufficient to guide the selection of probiotic strains for supplementation treatments. The aim of this study was to characterise the effect of three probiotic strains on CFRGD by means of a dynamic in vitro simulation of the colonic fermentation (SHIME®). The configuration of the system included three bioreactors colonised with the faecal inoculum of a child with cystic fibrosis. For 20 days, each bioreactor was supplied daily with either Lacticaseibacillus rhamnosus GG (ATCC 53103 TM), Limosilactobacillus reuteri (DSM 17938) or Lactiplantibacillus plantarum (DSM 22266). The baseline microbiota was characterised by a high abundance of Prevotella, Faecalibacterium and Acidaminococcus genera. After 20 days of supplementation, L. rhamnosus and L. plantarum reduced Prevotella significantly, and the three strains led to increased Faecalibacterium and Bifidobacterium and decreased Acidaminococcus, with some of these changes being maintained 10 days after ceasing supplementation. The metabolic activity remained unaltered in terms of short-chain fatty acids, but branched-chain fatty acids showed a significant decrease, especially with L. plantarum. Additionally, ammonia decreased at 20 days of supplementation, and lactate continuously increased with the three strains. The effects on colonic microbiota of L. rhamnosus, L. reuteri or L. plantarum were established, including increased beneficial bacteria, such as Faecalibacterium, and beneficial metabolites such as lactate; and on the other hand, a reduction in pathogenic genera, including Prevotella or Acidaminococcus and branched-chain fatty acids, overall supported their use as probiotics in the context of CFRGD.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Institute of Food Engineering (IIA-FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain; (A.A.-G.); (M.F.-J.); (A.A.)
- Joint Research Unit NutriCura, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Joaquim Calvo-Lerma
- Institute of Food Engineering (IIA-FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain; (A.A.-G.); (M.F.-J.); (A.A.)
- Joint Research Unit NutriCura, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Miguel Ferriz-Jordán
- Institute of Food Engineering (IIA-FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain; (A.A.-G.); (M.F.-J.); (A.A.)
| | - Jorge García-Hernández
- Advanced Food Microbiology Centre (CAMA), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain
| | - Ana Heredia
- Institute of Food Engineering (IIA-FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain; (A.A.-G.); (M.F.-J.); (A.A.)
- Joint Research Unit NutriCura, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| | - Ana Andrés
- Institute of Food Engineering (IIA-FoodUPV), Polytechnic University of Valencia, Camino de Vera s/n, 46022 València, Spain; (A.A.-G.); (M.F.-J.); (A.A.)
- Joint Research Unit NutriCura, Avda. Fernando Abril Martorell 106, 46026 València, Spain
| |
Collapse
|
21
|
Price CE, Hampton TH, Valls RA, Barrack KE, O’Toole GA, Madan JC, Coker MO. Development of the intestinal microbiome in cystic fibrosis in early life. mSphere 2023; 8:e0004623. [PMID: 37404016 PMCID: PMC10449510 DOI: 10.1128/msphere.00046-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 07/06/2023] Open
Abstract
Cystic fibrosis (CF) is a heritable disease that causes altered physiology at mucosal sites; these changes result in chronic infections in the lung, significant gastrointestinal complications as well as dysbiosis of the gut microbiome, although the latter has been less well explored. Here, we describe the longitudinal development of the gut microbiome in a cohort of children with CF (cwCF) from birth through early childhood (0-4 years of age) using 16S rRNA gene amplicon sequencing of stool samples as a surrogate for the gut microbiota. Similar to healthy populations, alpha diversity of the gut microbiome increases significantly with age, but diversity plateaus at ~2 years of age for this CF cohort. Several taxa that have been associated with dysbiosis in CF change with age toward a more healthy-like composition; notable exceptions include Akkermansia, which decreases with age, and Blautia, which increases with age. We also examined the relative abundance and prevalence of nine taxa associated with CF lung disease, several of which persist across early life, highlighting the possibility of the lung being seeded directly from the gut early in life. Finally, we applied the Crohn's Dysbiosis Index to each sample, and found that high Crohn's-associated dysbiosis early in life (<2 years) was associated with significantly lower Bacteroides in samples collected from 2 to 4 years of age. Together, these data comprise an observational study that describes the longitudinal development of the CF-associated gut microbiota and suggest that early markers associated with inflammatory bowel disease may shape the later gut microbiota of cwCF. IMPORTANCE Cystic fibrosis is a heritable disease that disrupts ion transport at mucosal surfaces, causing a buildup of mucus and dysregulation of microbial communities in both the lungs and the intestines. Persons with CF are known to have dysbiotic gut microbial communities, but the development of these communities over time beginning at birth has not been thoroughly studied. Here, we describe an observation study following the development of the gut microbiome of cwCF throughout the first 4 years of life, during the critical window of both gut microbiome and immune development. Our findings indicate the possibility of the gut microbiota as a reservoir of airway pathogens and a surprisingly early indication of a microbiota associated with inflammatory bowel disease.
Collapse
Affiliation(s)
- Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Juliette C. Madan
- Department of Pediatrics, Children’s Hospital at Dartmouth, Dartmouth Health, Lebanon, New Hampshire, USA
- Department of Psychiatry, Children’s Hospital at Dartmouth, Dartmouth Health, Lebanon, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Quantitative Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Modupe O. Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Quantitative Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
22
|
Barrack KE, Hampton TH, Valls RA, Surve SV, Gardner TB, Sanville JL, Madan JC, O’Toole GA. An In Vitro Medium for Modeling Gut Dysbiosis Associated with Cystic Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551570. [PMID: 37577487 PMCID: PMC10418193 DOI: 10.1101/2023.08.01.551570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting non-CF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of gut dysbiosis in CF.
Collapse
Affiliation(s)
- Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sarvesh V. Surve
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Julie L. Sanville
- Division of Pediatric Gastroenterology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Juliette C. Madan
- Departments of Psychiatry and Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
de Souza Furtado J, de Almeida Brasiel PG, Luquetti SCPD. Profile of the intestinal microbiota of patients with cystic fibrosis: A systematic review. Clin Nutr ESPEN 2023; 55:400-406. [PMID: 37202074 DOI: 10.1016/j.clnesp.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is a multisystem disease that can compromise several human body organs. The autosomal recessive genetic disorder is caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for chloride ion transport across apical membranes of epithelial cells in tissues and bicarbonate secretion. In this study, we provide a systematic review of the profile of the intestinal microbiota of cystic fibrosis individuals. METHODS The review was conducted according to Preferred Items of Reports for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed/MEDLINE and Scopus databases were searched for relevant articles until Jully 2022. RESULTS Eighteen studies (1304 participants) met the inclusion criteria. The quality and bias was assessed using the Methodological index for non-randomized studies (MINORS) tool, with the majority of the studies indicating medium to high quality. Results showed significant changes in the composition of the intestinal microbiota of the individuals with CF compared with healthy controls, with increased of Enterococcus, Veillonella, and Streptococcus, and decreased of Bifidobacterium, Roseburia, and Alistipes genus. The intestinal bacterial community of CF patients was marked by a reduction in its richness and diversity. CONCLUSION The systematic review suggests a change in the intestinal microbiota of CF individuals, characterized by a reduction in microbial diversity and abundance of some bacterial markers.
Collapse
|
24
|
Salerno P, Verster A, Valls R, Barrack K, Price C, Madan J, O'Toole GA, Ross BD. Persistent delay in maturation of the developing gut microbiota in infants with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539134. [PMID: 37205374 PMCID: PMC10187160 DOI: 10.1101/2023.05.02.539134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases. One pediatric disease linked to altered gut microbiota composition is cystic fibrosis (CF), a multi-organ genetic disease involving impaired chloride secretion across epithelia and heightened inflammation both in the gut and at other body sites. Here, we use shotgun metagenomics to profile the strain-level composition and developmental dynamics of the infant fecal microbiota from several CF and non-CF longitudinal cohorts spanning from birth to greater than 36 months of life. We identify a set of keystone species whose prevalence and abundance reproducibly define microbiota development in early life in non-CF infants, but are missing or decreased in relative abundance in infants with CF. The consequences of these CF-specific differences in gut microbiota composition and dynamics are a delayed pattern of microbiota maturation, persistent entrenchment in a transitional developmental phase, and subsequent failure to attain an adult-like stable microbiota. We also detect the increased relative abundance of oral-derived bacteria and higher levels of fungi in CF, features that are associated with decreased gut bacterial density in inflammatory bowel diseases. Our results define key differences in the gut microbiota during ontogeny in CF and suggest the potential for directed therapies to overcome developmental delays in microbiota maturation.
Collapse
|
25
|
Yorki S, Shea T, Cuomo CA, Walker BJ, LaRocque RC, Manson AL, Earl AM, Worby CJ. Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes. Brief Bioinform 2023; 24:bbad050. [PMID: 36804804 PMCID: PMC10025444 DOI: 10.1093/bib/bbad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy, long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy. However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler type's strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.
Collapse
Affiliation(s)
- Sosie Yorki
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terrance Shea
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce J Walker
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Applied Invention, LLC, Cambridge, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Colin J Worby
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
26
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
27
|
Zhao C, Sun C, Yuan J, Tsopmejio ISN, Li Y, Jiang Y, Song H. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115721. [PMID: 36115601 DOI: 10.1016/j.jep.2022.115721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional edible fungus in China and many other Asian countries, Hericium caput-medusae (Bull. Fr.) Pers. is widely used to improve the health of the gastrointestinal tract. For example, the drug "Weilexin Granules" is mainly composed of H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate. However, the mechanism of action remains to be elucidated. AIMS OF THE STUDY The purpose of this study was to assess whether polysaccharides from H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate (HFP) exerts a gut protective effect and a regulatory effect on the intestinal microbiota through the chloride channels and mucus secretion. MATERIALS AND METHODS HFP was extracted, characterized and different concentrations of HFP (100, 200, 400 mg/kg) were administered to mice for 14 days. The changes in gut microbiota were observed via 16S high throughput sequencing. Short-chain fatty acids (SCFAs) was detected by GC-MS. AB-PAS staining was used to observe the secretion of mucus. The chloride channel activity and protein expression were verified by short-circuit current measurement and Western blot. RESULTS HFP regulated the abundance of gut microbiota in mice, with increased levels of Ruminococcaceae and Lachnospiraceae and reduced proportions of Staphylococcus and Enterobacter. HFP enhanced mucus volume as well as increased intestinal fluid secretion by activating the chloride channels. In addition, short-circuit current experiments also proved that HFP activates Cl⁻ currents targeting cystic fibrosis transmembrane conductance regulator (CFTR) and Anoamin1 (ANO1). CONCLUSION In conclusion, HFP might increase intestinal fluid secretion by promoting Cl⁻ secretion, which in turn advanced mucus hydration as well as regulated gut microbiota to improve intestinal health. Therefore, H. caput-medusae (Bull. Fr.) Pers. could be potentially used in the regulation of intestinal secretion and microbes.
Collapse
Affiliation(s)
- Cong Zhao
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Chang Sun
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Jing Yuan
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | | | - Yuting Li
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Yu Jiang
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, China.
| |
Collapse
|
28
|
Caley LR, White H, de Goffau MC, Floto RA, Parkhill J, Marsland B, Peckham DG. Cystic Fibrosis-Related Gut Dysbiosis: A Systematic Review. Dig Dis Sci 2023; 68:1797-1814. [PMID: 36600119 DOI: 10.1007/s10620-022-07812-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Cystic Fibrosis (CF) is associated with gut dysbiosis, local and systemic inflammation, and impaired immune function. Gut microbiota dysbiosis results from changes in the complex gut milieu in response to CF transmembrane conductance regulator (CFTR) dysfunction, pancreatic malabsorption, diet, medications, and environmental influences. In several diseases, alteration of the gut microbiota influences local and systemic inflammation and disease outcomes. We conducted a systematic review of the gut microbiota in CF and explored factors influencing dysbiosis. METHODS An electronic search of three databases was conducted in January 2019, and re-run in June 2021. Human, animal, and in vitro studies were included. The primary outcome was differences in the gut microbiota between people with CF (pwCF) and healthy controls. Secondary outcomes included the relationship between the gut microbiota and other factors, including diet, medication, inflammation, and pulmonary function in pwCF. RESULTS Thirty-eight studies were identified. The literature confirmed the presence of CF-related gut dysbiosis, characterized by reduced diversity and several taxonomic changes. There was a relative increase of bacteria associated with a pro-inflammatory response coupled with a reduction of those considered anti-inflammatory. However, studies linking gut dysbiosis to systemic and lung inflammation were limited. Causes of gut dysbiosis were multifactorial, and findings were variable. Data on the impact of CFTR modulators on the gut microbiota were limited. CONCLUSIONS CF-related gut dysbiosis is evident in pwCF. Whether this influences local and systemic disease and is amenable to interventions with diet and drugs, such as CFTR modulators, requires further investigation.
Collapse
Affiliation(s)
- L R Caley
- Leeds Institute of Medical Research, St James's University Hospital, Clinical Sciences Building, Leeds, LS9 7TF, UK
| | - H White
- Nutrition, Health & Environment, Leeds Beckett University, Leeds, UK
| | - M C de Goffau
- Wellcome Sanger Institute, Cambridge, UK.,Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - R A Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - J Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - B Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - D G Peckham
- Leeds Institute of Medical Research, St James's University Hospital, Clinical Sciences Building, Leeds, LS9 7TF, UK. .,Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
29
|
Testa I, Crescenzi O, Esposito S. Gut Dysbiosis in Children with Cystic Fibrosis: Development, Features and the Role of Gut-Lung Axis on Disease Progression. Microorganisms 2022; 11:microorganisms11010009. [PMID: 36677301 PMCID: PMC9865868 DOI: 10.3390/microorganisms11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease among Caucasians. Over the last 20 years, culture-independent analysis, including next-generation sequencing, has paired with culture-based microbiology, offering deeper insight into CF lung and gut microbiota. The aim of this review is to analyse the features of gut microbiota in patients with CF and its possible role in the progression of the disease, establishing the basis for a potential role in microbe-based therapies. The literature analysis showed that the gut environment in CF patients has unique features due to the characteristics of the disease, such as decreased bicarbonate secretion, increased luminal viscosity, and an acidic small intestinal environment, which, due to the treatment, includes regular antibiotic use or a high-energy and fat-dense diet. As a result, the gut microbial composition appears altered, with reduced richness and diversity. Moreover, the population of pro-inflammatory bacteria is higher, while immunomodulatory genera, such as Bacteroides and Bifidobacterium, are scarcer. The imbalanced gut microbial population has a potential role in the development of systemic inflammation and may influence clinical outcomes, such as respiratory exacerbations, spirometry results, and overall growth. Although a better understanding of the pathophysiology behind the gut-lung axis is needed, these findings support the rationale for considering gut microbiota manipulation as a possible intervention to regulate the severity and progression of the disease.
Collapse
Affiliation(s)
- Ilaria Testa
- Respiratory Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1LE, UK
| | - Oliviero Crescenzi
- Department of Anaesthesia, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London WC1N 1LE, UK
| | - Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
30
|
Wrigley-Carr HE, van Dorst JM, Ooi CY. Intestinal dysbiosis and inflammation in cystic fibrosis impacts gut and multi-organ axes. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Aggarwal V, Sunder S, Verma SR. Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Folia Microbiol (Praha) 2022; 67:811-824. [PMID: 35596115 PMCID: PMC9122250 DOI: 10.1007/s12223-022-00973-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
The unique functionality of Akkermansia muciniphila in gut microbiota indicates it to be an indispensable microbe for human welfare. The importance of A. muciniphila lies in its potential to convert mucin into beneficial by-products, regulate intestinal homeostasis and maintain gut barrier integrity. It is also known to competitively inhibit other mucin-degrading bacteria and improve metabolic functions and immunity responses in the host. It finds a pivotal perspective in various diseases and their treatment. It has future as a promising probiotic, disease biomarker and therapeutic agent for chronic diseases. Disease-associated dysbiosis of A. muciniphila in the gut microbiome makes it a potential candidate as a biomarker for some diseases and can provide future theranostics by suggesting ways of diagnosis for the patients and best treatment method based on the screening results. Manipulation of A. muciniphila in gut microbiome may help in developing a novel personalized therapeutic action and can be a suitable next generation medicine. However, the actual pathway governing A. muciniphila interaction with hosts remains to be investigated. Also, due to the limited availability of products containing A. muciniphila, it is not exploited to its full potential. The present review aims at highlighting the potential of A. muciniphila in mucin degradation, contribution towards the gut health and host immunity and management of metabolic diseases such as obesity and type 2 diabetes, and respiratory diseases such as cystic fibrosis and COVID-19.
Collapse
Affiliation(s)
- Vidushi Aggarwal
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Sushant Sunder
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Smita Rastogi Verma
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
32
|
Kelly J, Al-Rammahi M, Daly K, Flanagan PK, Urs A, Cohen MC, di Stefano G, Bijvelds MJC, Sheppard DN, de Jonge HR, Seidler UE, Shirazi-Beechey SP. Alterations of mucosa-attached microbiome and epithelial cell numbers in the cystic fibrosis small intestine with implications for intestinal disease. Sci Rep 2022; 12:6593. [PMID: 35449374 PMCID: PMC9023491 DOI: 10.1038/s41598-022-10328-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Defective CFTR leads to accumulation of dehydrated viscous mucus within the small intestine, luminal acidification and altered intestinal motility, resulting in blockage. These changes promote gut microbial dysbiosis, adversely influencing the normal proliferation and differentiation of intestinal epithelial cells. Using Illumina 16S rRNA gene sequencing and immunohistochemistry, we assessed changes in mucosa-attached microbiome and epithelial cell profile in the small intestine of CF mice and a CF patient compared to wild-type mice and non-CF humans. We found increased abundance of pro-inflammatory Escherichia and depletion of beneficial secondary bile-acid producing bacteria in the ileal mucosa-attached microbiome of CFTR-null mice. The ileal mucosa in a CF patient was dominated by a non-aeruginosa Pseudomonas species and lacked numerous beneficial anti-inflammatory and short-chain fatty acid-producing bacteria. In the ileum of both CF mice and a CF patient, the number of absorptive enterocytes, Paneth and glucagon-like peptide 1 and 2 secreting L-type enteroendocrine cells were decreased, whereas stem and goblet cell numbers were increased. These changes in mucosa-attached microbiome and epithelial cell profile suggest that microbiota-host interactions may contribute to intestinal CF disease development with implications for therapy.
Collapse
Affiliation(s)
- Jennifer Kelly
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Miran Al-Rammahi
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, 58002, Iraq
| | - Kristian Daly
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Paul K Flanagan
- Arrowe Park University Teaching Hospital NHS Trust, Wirral, CH49 5PE, UK.,Gastrointestinal and Liver Services, Aintree University Hospital, Lower Lane, Liverpool, Merseyside, L9 7AL, UK
| | - Arun Urs
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Marta C Cohen
- Histopathology Department, Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Gabriella di Stefano
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Soraya P Shirazi-Beechey
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
33
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:jcm11030649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
34
|
van Dorst JM, Tam RY, Ooi CY. What Do We Know about the Microbiome in Cystic Fibrosis? Is There a Role for Probiotics and Prebiotics? Nutrients 2022; 14:nu14030480. [PMID: 35276841 PMCID: PMC8840103 DOI: 10.3390/nu14030480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disorder that affects the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the gastrointestinal (GI) tract, CFTR dysfunction results in low intestinal pH, thick and inspissated mucus, a lack of endogenous pancreatic enzymes, and reduced motility. These mechanisms, combined with antibiotic therapies, drive GI inflammation and significant alteration of the GI microbiota (dysbiosis). Dysbiosis and inflammation are key factors in systemic inflammation and GI complications including malignancy. The following review examines the potential for probiotic and prebiotic therapies to provide clinical benefits through modulation of the microbiome. Evidence from randomised control trials suggest probiotics are likely to improve GI inflammation and reduce the incidence of CF pulmonary exacerbations. However, the highly variable, low-quality data is a barrier to the implementation of probiotics into routine CF care. Epidemiological studies and clinical trials support the potential of dietary fibre and prebiotic supplements to beneficially modulate the microbiome in gastrointestinal conditions. To date, limited evidence is available on their safety and efficacy in CF. Variable responses to probiotics and prebiotics highlight the need for personalised approaches that consider an individual’s underlying microbiota, diet, and existing medications against the backdrop of the complex nutritional needs in CF.
Collapse
Affiliation(s)
- Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Sydney 2031, Australia
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia
- Correspondence:
| |
Collapse
|
35
|
Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis. J Cyst Fibros 2021; 21:506-513. [PMID: 34895838 DOI: 10.1016/j.jcf.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health. STUDY DESIGN Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. RESULTS pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. CONCLUSIONS Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.
Collapse
|
36
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|
37
|
Abstract
Cystic fibrosis (CF) is a heritable, multiorgan disease that impacts all tissues that normally express cystic fibrosis transmembrane conductance regulator (CFTR) protein. While the importance of the airway microbiota has long been recognized, the intestinal microbiota has only recently been recognized as an important player in both intestinal and lung health outcomes for persons with CF (pwCF). Here, we summarize current literature related to the gut-lung axis in CF, with a particular focus on three key ideas: (i) mechanisms through which microbes influence the gut-lung axis, (ii) drivers of microbiota alterations, and (iii) the potential for intestinal microbiota remediation.
Collapse
Affiliation(s)
- Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover New Hampshire, USA
| |
Collapse
|
38
|
Eng A, Hayden HS, Pope CE, Brittnacher MJ, Vo AT, Weiss EJ, Hager KR, Leung DH, Heltshe SL, Raftery D, Miller SI, Hoffman LR, Borenstein E. Infants with cystic fibrosis have altered fecal functional capacities with potential clinical and metabolic consequences. BMC Microbiol 2021; 21:247. [PMID: 34525965 PMCID: PMC8444586 DOI: 10.1186/s12866-021-02305-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Infants with cystic fibrosis (CF) suffer from gastrointestinal (GI) complications, including pancreatic insufficiency and intestinal inflammation, which have been associated with impaired nutrition and growth. Recent evidence identified altered fecal microbiota taxonomic compositions in infants with CF relative to healthy infants that were characterized by differences in the abundances of taxa associated with GI health and nutrition. Furthermore, these taxonomic differences were more pronounced in low length infants with CF, suggesting a potential link to linear growth failure. We hypothesized that these differences would entail shifts in the microbiome’s functional capacities that could contribute to inflammation and nutritional failure in infants with CF. Results To test this hypothesis, we compared fecal microbial metagenomic content between healthy infants and infants with CF, supplemented with an analysis of fecal metabolomes in infants with CF. We identified notable differences in CF fecal microbial functional capacities, including metabolic and environmental response functions, compared to healthy infants that intensified during the first year of life. A machine learning-based longitudinal metagenomic age analysis of healthy and CF fecal metagenomic functional profiles further demonstrated that these differences are characterized by a CF-associated delay in the development of these functional capacities. Moreover, we found metagenomic differences in functions related to metabolism among infants with CF that were associated with diet and antibiotic exposure, and identified several taxa as potential drivers of these functional differences. An integrated metagenomic and metabolomic analysis further revealed that abundances of several fecal GI metabolites important for nutrient absorption, including three bile acids, correlated with specific microbes in infants with CF. Conclusions Our results highlight several metagenomic and metabolomic factors, including bile acids and other microbial metabolites, that may impact nutrition, growth, and GI health in infants with CF. These factors could serve as promising avenues for novel microbiome-based therapeutics to improve health outcomes in these infants. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02305-z.
Collapse
Affiliation(s)
- Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | - Anh T Vo
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Eli J Weiss
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kyle R Hager
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Daniel H Leung
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sonya L Heltshe
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Samuel I Miller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA. .,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel. .,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
39
|
Clostridioides difficile colonization and infection in a cohort of Australian adults with cystic fibrosis. J Hosp Infect 2021; 113:44-51. [PMID: 33775742 DOI: 10.1016/j.jhin.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Little is known about Clostridioides difficile infection (CDI) in patients with cystic fibrosis (CF). The aim of this study was to investigate the prevalence, molecular epidemiology and risk factors for CDI in asymptomatic and symptomatic adults with CF in Western Australia. METHODS Faecal samples from symptomatic and asymptomatic patients were prospectively collected and tested for the presence of C. difficile by toxigenic culture. Ribotyping was performed by established protocols. Logistic regression analysis was performed to analyse the risk factors for C. difficile colonization and infection. Extensive environmental sampling was performed within the CF clinic in Perth. RESULTS The prevalence rates of asymptomatic toxigenic and non-toxigenic C. difficile colonization were 30% (14/46 patients) and 24% (11/46 patients), respectively. Fifteen ribotypes (RTs) of C. difficile were identified, of which non-toxigenic RT 039 was the most common. Among the symptomatic patients, the prevalence of toxigenic CDI was 33% (11/33 patients). Impaired glucose tolerance/diabetes mellitus and duration of intravenous antibiotic use in the past 12 months were significantly associated with increased risk of asymptomatic toxigenic C. difficile carriage and CDI. A trend towards higher CF transmembrane conductance regulator modulator treatment was observed in the CDI group. Extensive environmental sampling showed no evidence of toxigenic C. difficile contamination within the CF clinic. CONCLUSIONS A high prevalence of asymptomatic carriage of toxigenic C. difficile was observed in adults with CF, comparable with that observed in the symptomatic CF population. There was no evidence of direct person-to-person transmission.
Collapse
|
40
|
Thavamani A, Salem I, Sferra TJ, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021; 11:metabo11020123. [PMID: 33671639 PMCID: PMC7926988 DOI: 10.3390/metabo11020123] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal, multisystemic genetic disorder in Caucasians. Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) protein are responsible for impairment of epithelial anionic transport, leading to impaired fluid regulation and pH imbalance across multiple organs. Gastrointestinal (GI) manifestations in CF may begin in utero and continue throughout the life, resulting in a chronic state of an altered intestinal milieu. Inherent dysfunction of CFTR leads to dysbiosis of the gut. This state of dysbiosis is further perpetuated by acquired factors such as use of antibiotics for recurrent pulmonary exacerbations. Since the gastrointestinal microbiome and their metabolites play a vital role in nutrition, metabolic, inflammatory, and immune functions, the gut dysbiosis will in turn impact various manifestations of CF-both GI and extra-GI. This review focuses on the consequences of gut dysbiosis and its metabolic implications on CF disease and possible ways to restore homeostasis.
Collapse
Affiliation(s)
- Aravind Thavamani
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Iman Salem
- Center for Medial Mycology, Case Western Reserve University School of Medicine, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Thomas J. Sferra
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
- Correspondence: ; Tel.: +1-216-844-1765
| |
Collapse
|
41
|
Pope CE, Vo AT, Hayden HS, Weiss EJ, Durfey S, McNamara S, Ratjen A, Grogan B, Carter S, Nay L, Parsek MR, Singh PK, McKone EF, Aitken ML, Rosenfeld MR, Hoffman LR. Changes in fecal microbiota with CFTR modulator therapy: A pilot study. J Cyst Fibros 2021; 20:742-746. [PMID: 33390317 DOI: 10.1016/j.jcf.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
Studies have demonstrated that people with CF with pancreatic insufficiency (PI) have fecal dysbioses. Evidence suggests the causes of these dysbioses are multifactorial, and that important drivers include antibiotic exposure, dietary intake, and CF gastrointestinal tract dysfunction, including nutrient malabsorption. In this pilot study, we tested whether initiation of the CFTR modulator treatments ivacaftor (in a cohort of pancreatic sufficient (PS) people with CF and an R117H CFTR variant) or lumacaftor/ivacaftor (in a cohort of PI people with CF and an F508del variant) changed fecal measures of malabsorption or fecal microbiomes. While we identified no statistically significant fecal changes with either treatment, we detected trends in the PI cohort when initiating lumacaftor/ivacaftor towards decreased fecal fat content and towards fecal microbiomes that more closely resembled the fecal microbiota of people without PI. While these findings support a model in which nutrient malabsorption resulting from CF-induced PI drives fecal dysbiosis, they must be validated in future, larger studies of fecal microbiome and malabsorption outcomes with highly effective CFTR modulator therapies.
Collapse
Affiliation(s)
- C E Pope
- University of Washington, Seattle, USA
| | - A T Vo
- University of Washington, Seattle, USA
| | | | - E J Weiss
- University of Washington, Seattle, USA
| | - S Durfey
- University of Washington, Seattle, USA
| | | | - A Ratjen
- University of Washington, Seattle, USA
| | - B Grogan
- St. Vincent's University Hospital, Dublin, Ireland
| | - S Carter
- St. Vincent's University Hospital, Dublin, Ireland
| | - L Nay
- University of Washington, Seattle, USA
| | | | - P K Singh
- University of Washington, Seattle, USA
| | - E F McKone
- St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
42
|
Reduced Intestinal Inflammation With Lumacaftor/Ivacaftor in Adolescents With Cystic Fibrosis. J Pediatr Gastroenterol Nutr 2020; 71:778-781. [PMID: 32740537 DOI: 10.1097/mpg.0000000000002864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A chronic intestinal inflammation may occur in patients with cystic fibrosis (CF), while no therapeutic management is proposed. Although Lumacaftor/Ivacaftor is well-known to modulate the defective cystic fibrosis transmembrane conductance regulator (CFTR) protein in lungs, no data are available on the impact of this treatment on CF intestinal disorders. We, therefore, investigated the evolution of intestinal inflammation after initiation of Lumacaftor/Ivacaftor in CF adolescents (median of follow-up: 336 days [IQR: 278;435]). Median fecal calprotectin concentrations decreased significantly after Lumacaftor/Ivacaftor initiation (102 μg/g [IQR: 69-210]) compared with the baseline (713 μg/g (IQR:148-852), P = 0.001). To our knowledge, this study showed for the first time that CF-related intestinal inflammation is improved by Lumacaftor/Ivacaftor treatment.
Collapse
|
43
|
The intestinal virome in children with cystic fibrosis differs from healthy controls. PLoS One 2020; 15:e0233557. [PMID: 32442222 PMCID: PMC7244107 DOI: 10.1371/journal.pone.0233557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal bacterial dysbiosis is evident in children with cystic fibrosis (CF) and intestinal viruses may be contributory, given their influence on bacterial species diversity and biochemical cycles. We performed a prospective, case-control study on children with CF and age and gender matched healthy controls (HC), to investigate the composition and function of intestinal viral communities. Stool samples were enriched for viral DNA and RNA by viral extraction, random amplification and purification before sequencing (Illumina MiSeq). Taxonomic assignment of viruses was performed using Vipie. Functional annotation was performed using Virsorter. Inflammation was measured by calprotectin and M2-pyruvate kinase (M2-PK). Eight CF and eight HC subjects were included (50% male, mean age 6.9 ± 3.0 and 6.4 ± 5.3 years, respectively, p = 0.8). All CF subjects were pancreatic insufficient. Regarding the intestinal virome, no difference in Shannon index between CF and HC was identified. Taxonomy-based beta-diversity (presence-absence Bray-Curtis dissimilarity) was significantly different between CF and HC (R2 = 0.12, p = 0.001). Myoviridae, Faecalibacterium phage FP Taranis and unclassified Gokushovirinae were significantly decreased in CF compared with HC (q<0.05). In children with CF (compared to HC), the relative abundance of genes annotated to (i) a peptidoglycan-binding domain of the peptidoglycan hydrolases (COG3409) was significantly increased (q<0.05) and (ii) capsid protein (F protein) (PF02305.16) was significantly decreased (q<0.05). Picornavirales, Picornaviridae, and Enterovirus were found to positively correlate with weight and BMI (r = 0.84, q = 0.01). Single-stranded DNA viruses negatively correlated with M2-PK (r = -0.86, q = 0.048). Children with CF have an altered intestinal virome compared to well-matched HC, with both taxonomic and predicted functional changes. Further exploration of Faecalibacterium phages, Gokushovirinae and phage lysins are warranted. Intestinal viruses and their functions may have important clinical implications for intestinal inflammation and growth in children with CF, potentially providing novel therapeutic targets.
Collapse
|
44
|
Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol 2020; 10:9. [PMID: 32140452 PMCID: PMC7042389 DOI: 10.3389/fcimb.2020.00009] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The gut and lungs are anatomically distinct, but potential anatomic communications and complex pathways involving their respective microbiota have reinforced the existence of a gut-lung axis (GLA). Compared to the better-studied gut microbiota, the lung microbiota, only considered in recent years, represents a more discreet part of the whole microbiota associated to human hosts. While the vast majority of studies focused on the bacterial component of the microbiota in healthy and pathological conditions, recent works have highlighted the contribution of fungal and viral kingdoms at both digestive and respiratory levels. Moreover, growing evidence indicates the key role of inter-kingdom crosstalks in maintaining host homeostasis and in disease evolution. In fact, the recently emerged GLA concept involves host-microbe as well as microbe-microbe interactions, based both on localized and long-reaching effects. GLA can shape immune responses and interfere with the course of respiratory diseases. In this review, we aim to analyze how the lung and gut microbiota influence each other and may impact on respiratory diseases. Due to the limited knowledge on the human virobiota, we focused on gut and lung bacteriobiota and mycobiota, with a specific attention on inter-kingdom microbial crosstalks which are able to shape local or long-reached host responses within the GLA.
Collapse
Affiliation(s)
- Raphaël Enaud
- CHU de Bordeaux, CRCM Pédiatrique, CIC 1401, Bordeaux, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Renaud Prevel
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Médecine Intensive Réanimation, Bordeaux, France
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Beaufils
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux, Service d'Explorations Fonctionnelles Respiratoires, Bordeaux, France
| | - Gregoire Wieërs
- Clinique Saint Pierre, Department of Internal Medicine, Ottignies, Belgium
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
45
|
Meeker SM, Mears KS, Sangwan N, Brittnacher MJ, Weiss EJ, Treuting PM, Tolley N, Pope CE, Hager KR, Vo AT, Paik J, Frevert CW, Hayden HS, Hoffman LR, Miller SI, Hajjar AM. CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathog 2020; 16:e1008251. [PMID: 31961914 PMCID: PMC6994172 DOI: 10.1371/journal.ppat.1008251] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/31/2020] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome. It has been difficult to establish causal relationships between host genetics and the selection of the vast multitude of micro-organisms that live in and on us (i.e. the microbiota). Cystic fibrosis has been shown to be associated with changes in the fecal microbiome (the genetic constitution of the microbiota) although it was not evident whether mutation of CFTR, the gene mutated in CF, could drive this selection or whether the frequent use of antibiotics in this population was at fault. Here, by using a germfree (i.e. sterile, lacking all microbiota) mouse model of CF we clearly demonstrate that mutated CFTR alone can alter the microbiome. We also show an increase in an adaptive immune cell type (TH17 cells) in the mesenteric lymph nodes and spleens of CF mice compared to control mice. Our study provides new insights into the dominant role that CFTR plays in microbiome determination and suggests that therapies restoring CFTR function could also correct the microbial dysbiosis observed in CF.
Collapse
Affiliation(s)
- Stacey M. Meeker
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kevin S. Mears
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Naseer Sangwan
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | | | - Eli J. Weiss
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Nicholas Tolley
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Christopher E. Pope
- Department Pediatrics, University of Washington, Seattle, WA, United States of America
| | - Kyle R. Hager
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Anh T. Vo
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Hillary S. Hayden
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Department Pediatrics, University of Washington, Seattle, WA, United States of America
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Departments of Medicine, Allergy and Infectious Disease, and Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
46
|
Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure. Nat Med 2020; 26:215-221. [PMID: 31959989 PMCID: PMC7018602 DOI: 10.1038/s41591-019-0714-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Most infants with cystic fibrosis (CF) have pancreatic exocrine insufficiency that results in nutrient malabsorption and requires oral pancreatic enzyme replacement. Newborn screening for CF has enabled earlier diagnosis, nutritional intervention, and enzyme replacement for these infants, allowing most infants with CF to achieve their weight goals by 12 months of age1. Nevertheless, most infants with CF continue to have poor linear growth during their first year of life1. Although this early linear growth failure is associated with worse long-term respiratory function and survival2,3, the determinants of stature in infants with CF have not been defined. Several characteristics of the CF gastrointestinal (GI) tract, including inflammation, maldigestion and malabsorption, could promote intestinal dysbiosis4,5. As GI microbiome activities are known to affect endocrine functions6,7, the intestinal microbiome of infants with CF might also impact growth. We identified an early, progressive fecal dysbiosis that distinguished infants with CF and low length from infants with CF and normal length. This dysbiosis included altered abundances of taxa that perform functions important for GI health, nutrient harvest, and growth hormone signaling, including decreased Bacteroidetes and increased Proteobacteria. Thus, the GI microbiota represent a potential therapeutic target to correct linear growth defects among infants with CF.
Collapse
|
47
|
Coffey MJ, Nielsen S, Wemheuer B, Kaakoush NO, Garg M, Needham B, Pickford R, Jaffe A, Thomas T, Ooi CY. Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis. Sci Rep 2019; 9:18593. [PMID: 31819107 PMCID: PMC6901462 DOI: 10.1038/s41598-019-55028-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Intestinal dysbiosis has been observed in children with cystic fibrosis (CF), yet the functional consequences are poorly understood. We investigated the functional capacity of intestinal microbiota and inflammation in children with CF. Stool samples were collected from 27 children with CF and 27 age and gender matched healthy controls (HC) (aged 0.8-18 years). Microbial communities were investigated by iTag sequencing of 16S rRNA genes and functional profiles predicted using Tax4Fun. Inflammation was measured by faecal calprotectin and M2-pyruvate kinase. Paediatric CF gastrointestinal microbiota demonstrated lower richness and diversity compared to HC. CF samples exhibited a marked taxonomic and inferred functional dysbiosis when compared to HC. In children with CF, we predicted an enrichment of genes involved in short-chain fatty acid (SCFA), antioxidant and nutrient metabolism (relevant for growth and nutrition) in CF. The notion of pro-inflammatory GI microbiota in children with CF is supported by positive correlations between intestinal inflammatory markers and both genera and functional pathways. We also observed an association between intestinal genera and both growth z-scores and FEV1%. These taxonomic and functional changes provide insights into gastrointestinal disease in children with CF and future gastrointestinal therapeutics for CF should explore the aforementioned pathways and microbial changes.
Collapse
Affiliation(s)
- Michael J Coffey
- Discipline of Paediatrics, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Shaun Nielsen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Millie Garg
- Discipline of Paediatrics, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Bronwen Needham
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre (MWAC), University of New South Wales, Sydney, NSW, Australia
| | - Adam Jaffe
- Discipline of Paediatrics, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, High Street, Randwick, NSW, Australia
- Department of Respiratory, Sydney Children's Hospital, High Street, Randwick, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, High Street, Randwick, NSW, Australia.
- Department of Gastroenterology, Sydney Children's Hospital, High Street, Randwick, NSW, Australia.
| |
Collapse
|
48
|
Human gut bacteria contain acquired interbacterial defence systems. Nature 2019; 575:224-228. [PMID: 31666699 PMCID: PMC6938237 DOI: 10.1038/s41586-019-1708-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
Abstract
The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.
Collapse
|
49
|
Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth. J Bacteriol 2019; 201:JB.00274-19. [PMID: 31209076 DOI: 10.1128/jb.00274-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.
Collapse
|
50
|
Enaud R, Hooks KB, Barre A, Barnetche T, Hubert C, Massot M, Bazin T, Clouzeau H, Bui S, Fayon M, Berger P, Lehours P, Bébéar C, Nikolski M, Lamireau T, Delhaes L, Schaeverbeke T. Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn's-Like Microbiota Disturbances. J Clin Med 2019; 8:jcm8050645. [PMID: 31083321 PMCID: PMC6572243 DOI: 10.3390/jcm8050645] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a systemic genetic disease that leads to pulmonary and digestive disorders. In the majority of CF patients, the intestine is the site of chronic inflammation and microbiota disturbances. The link between gut inflammation and microbiota dysbiosis is still poorly understood. The main objective of this study was to assess gut microbiota composition in CF children depending on their intestinal inflammation. We collected fecal samples from 20 children with CF. Fecal calprotectin levels were measured and fecal microbiota was analyzed by 16S rRNA sequencing. We observed intestinal inflammation was associated with microbiota disturbances characterized mainly by increased abundances of Staphylococcus, Streptococcus, and Veillonella dispar, along with decreased abundances of Bacteroides, Bifidobacterium adolescentis, and Faecalibacterium prausnitzii. Those changes exhibited similarities with that of Crohn's disease (CD), as evidenced by the elevated CD Microbial-Dysbiosis index that we applied for the first time in CF. Furthermore, the significant over-representation of Streptococcus in children with intestinal inflammation appears to be specific to CF and raises the issue of gut-lung axis involvement. Taken together, our results provide new arguments to link gut microbiota and intestinal inflammation in CF and suggest the key role of the gut-lung axis in the CF evolution.
Collapse
Affiliation(s)
- Raphaël Enaud
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Katarzyna B Hooks
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Aurélien Barre
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thomas Barnetche
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Christophe Hubert
- INSERM, MRGM, University Bordeaux, U1211, F-33000 Bordeaux, France.
- PGTB, University Bordeaux, F-33000 Bordeaux, France.
| | - Marie Massot
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France.
| | - Thomas Bazin
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Haude Clouzeau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Stéphanie Bui
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
| | - Michael Fayon
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Philippe Lehours
- BaRITOn, INSERM, University Bordeaux, UMR1053, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Cécile Bébéar
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| | - Macha Nikolski
- Bordeaux Bioinformatics Center, University Bordeaux, F-33000 Bordeaux, France.
- Laboratoire Bordelais de Recherche en Informatique, CNRS, University Bordeaux, UMR 5800, F-33400 Talence, France.
| | - Thierry Lamireau
- CRCM Pédiatrique, CHU Bordeaux, CIC 1401, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, University Bordeaux, U1045, F-33000 Bordeaux, France.
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
| | - Thierry Schaeverbeke
- Fédération Hospitalo-Universitaire FHU, ACRONIM, F-33000 Bordeaux, France.
- Service de Rhumatologie, CHU Bordeaux, F-33000 Bordeaux, France.
- INRA-Bordeaux Aquitaine Centre, University Bordeaux, USC EA 3671, Infections Humaines à Mycoplasmes et à Chlamydiae, CHU Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|