1
|
Siegel SV, Trimarsanto H, Amato R, Murie K, Taylor AR, Sutanto E, Kleinecke M, Whitton G, Watson JA, Imwong M, Assefa A, Rahim AG, Nguyen HC, Tran TH, Green JA, Koh GCKW, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for recurrence classification and spatio-temporal surveillance of Plasmodium vivax malaria parasites. Nat Commun 2024; 15:6757. [PMID: 39117628 PMCID: PMC11310204 DOI: 10.1038/s41467-024-51015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Aimee R Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan, 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | | | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Afghan International Islamic University, Kabul, Afghanistan
| | - Hoang Chau Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tinh Hien Tran
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | - Gavin C K W Koh
- Department of Infectious Diseases, Northwick Park Hospital, Harrow, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK.
| |
Collapse
|
2
|
Woolley SD, Grigg MJ, Marquart L, Gower JSE, Piera K, Nair AS, Amante FM, Rajahram GS, William T, Frazer DM, Chalon S, McCarthy JS, Anstey NM, Barber BE. Longitudinal changes in iron homeostasis in human experimental and clinical malaria. EBioMedicine 2024; 105:105189. [PMID: 38851058 PMCID: PMC11200279 DOI: 10.1016/j.ebiom.2024.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. METHODS We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. FINDINGS In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated. INTERPRETATION Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency. FUNDING National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).
Collapse
Affiliation(s)
- Stephen D Woolley
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia; Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Louise Marquart
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Public Health, University of Queensland, Brisbane, Australia
| | - Jeremy S E Gower
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Arya Sheela Nair
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona M Amante
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia; Department of Medicine, Queen Elizabeth II Hospital, Kota Kinabalu, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia; Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - David M Frazer
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S McCarthy
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Victorian Infectious Diseases Institute, Peter Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia; Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia; Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia; Infectious Diseases Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| |
Collapse
|
3
|
Mare AK, Mohammed H, Sime H, Hailgiorgis H, Gubae K, Gidey B, Haile M, Assefa G, Bekele W, Auburn S, Price R, Parr JB, Juliano JJ, Tasew G, Abay SM, Assefa A. Chloroquine has shown high therapeutic efficacy against uncomplicated Plasmodium vivax malaria in southern Ethiopia: seven decades after its introduction. Malar J 2024; 23:183. [PMID: 38858696 PMCID: PMC11165762 DOI: 10.1186/s12936-024-05009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.
Collapse
Affiliation(s)
- Anteneh Kassahun Mare
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Heven Sime
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Henok Hailgiorgis
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kale Gubae
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bekuretsion Gidey
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Worku Bekele
- World Health Organization, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Rick Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Jonathan B Parr
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Jonathan J Juliano
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Geremew Tasew
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| | - Ashenafi Assefa
- Malaria and Other Parasitic Diseases Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
4
|
Woolley SD, Grigg MJ, Marquart L, Gower J, Piera K, Nair AS, Amante FM, Rajahram GS, William T, Frazer DM, Chalon S, McCarthy JS, Anstey NM, Barber BE. Longitudinal changes in iron homeostasis in human experimental and clinical malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.19.23300265. [PMID: 38196596 PMCID: PMC10775340 DOI: 10.1101/2023.12.19.23300265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background The interaction between iron deficiency and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. Methods We retrieved samples and associated data from 55 participants enrolled in malaria VIS, and 171 malaria patients and 30 healthy controls enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. Results In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline iron status (ferritin) was associated with post-treatment increases in liver transaminase levels. In Malaysian malaria patients, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. Hepcidin normalised by day 28; however, ferritin and sTfR both remained elevated 4 weeks following admission. Conclusion Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency.
Collapse
Affiliation(s)
- Stephen D Woolley
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Louise Marquart
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Jeremy Gower
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Arya Sheela Nair
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona M Amante
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Department of Medicine, Queen Elizabeth II Hospital, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Department of Medicine, Queen Elizabeth II Hospital, Kota Kinabalu, Malaysia
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - David M Frazer
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S McCarthy
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Victorian Infectious Diseases Institute, Peter Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Infectious Diseases Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
5
|
Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, Barber BE, Anstey NM, Price RN, Grigg MJ, Marfurt J, Auburn S. No Association between the Plasmodium vivax crt-o MS334 or In9 pvcrt Polymorphisms and Chloroquine Failure in a Pre-Elimination Clinical Cohort from Malaysia with a Large Clonal Expansion. Antimicrob Agents Chemother 2023; 67:e0161022. [PMID: 37314336 PMCID: PMC10353443 DOI: 10.1128/aac.01610-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
Collapse
Affiliation(s)
- Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Roberto R. Moraes Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Kamil A. Braima
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- College of Medicine and Public Health, Flinders University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Siegel SV, Amato R, Trimarsanto H, Sutanto E, Kleinecke M, Murie K, Whitton G, Taylor AR, Watson JA, Imwong M, Assefa A, Rahim AG, Chau NH, Hien TT, Green JA, Koh G, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for spatio-temporal surveillance of Plasmodium vivax malaria parasites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23287179. [PMID: 36993192 PMCID: PMC10055443 DOI: 10.1101/2023.03.13.23287179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.
Collapse
Affiliation(s)
- Sasha V. Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Eijkman Institute for Molecular Biology, National Research and Innovation Agency, Jakarta 10430, Indonesia
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Aimee R. Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - James A. Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Afghanistan
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | | | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Nicholas Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N. Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LJ, UK
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
T. Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, Rajahram GS, Barber BE, Anstey NM, Haghiri A, Rajasekhar M, Simpson JA. Quantification of parasite clearance in Plasmodium knowlesi infections. Malar J 2023; 22:54. [PMID: 36782162 PMCID: PMC9926767 DOI: 10.1186/s12936-023-04483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials. METHODS Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles. RESULTS The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method. CONCLUSION For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.
Collapse
Affiliation(s)
- Jeyamalar T. Thurai Rathnam
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Matthew J. Grigg
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Saber Dini
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Sitti Saimah Sakam
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Daniel J. Cooper
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.5335.00000000121885934Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Giri S. Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.415759.b0000 0001 0690 5255Clinical Research Centre, Queen Elizabeth II Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E. Barber
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ali Haghiri
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Megha Rajasekhar
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julie A. Simpson
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Woolley SD, Marquart L, Woodford J, Chalon S, Moehrle JJ, McCarthy JS, Barber BE. Haematological response in experimental human Plasmodium falciparum and Plasmodium vivax malaria. Malar J 2021; 20:470. [PMID: 34930260 PMCID: PMC8685492 DOI: 10.1186/s12936-021-04003-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Malaria-associated anaemia, arising from symptomatic, asymptomatic and submicroscopic infections, is a significant cause of morbidity worldwide. Induced blood stage malaria volunteer infection studies (IBSM-VIS) provide a unique opportunity to evaluate the haematological response to early Plasmodium falciparum and Plasmodium vivax infection. Methods This study was an analysis of the haemoglobin, red cell counts, and parasitaemia data from 315 participants enrolled in IBSM-VIS between 2012 and 2019, including 269 participants inoculated with the 3D7 strain of P. falciparum (Pf3D7), 15 with an artemisinin-resistant P. falciparum strain (PfK13) and 46 with P. vivax. Factors associated with the fractional fall in haemoglobin (Hb-FF) were evaluated, and the malaria-attributable erythrocyte loss after accounting for phlebotomy-related losses was estimated. The relative contribution of parasitized erythrocytes to the malaria-attributable erythrocyte loss was also estimated. Results The median peak parasitaemia prior to treatment was 10,277 parasites/ml (IQR 3566–27,815), 71,427 parasites/ml [IQR 33,236–180,213], and 34,840 parasites/ml (IQR 13,302–77,064) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. The median Hb-FF was 10.3% (IQR 7.8–13.3), 14.8% (IQR 11.8–15.9) and 11.7% (IQR 8.9–14.5) in those inoculated with Pf3D7, PfK13 and P. vivax, respectively, with the haemoglobin nadir occurring a median 12 (IQR 5–21), 15 (IQR 7–22), and 8 (IQR 7–15) days following inoculation. In participants inoculated with P. falciparum, recrudescence was associated with a greater Hb-FF, while in those with P. vivax, the Hb-FF was associated with a higher pre-treatment parasitaemia and later day of anti-malarial treatment. After accounting for phlebotomy-related blood losses, the estimated Hb-FF was 4.1% (IQR 3.1–5.3), 7.2% (IQR 5.8–7.8), and 4.9% (IQR 3.7–6.1) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Parasitized erythrocytes were estimated to account for 0.015% (IQR 0.006–0.06), 0.128% (IQR 0.068–0.616) and 0.022% (IQR 0.008–0.082) of the malaria-attributable erythrocyte loss in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Conclusion Early experimental P. falciparum and P. vivax infection resulted in a small but significant fall in haemoglobin despite parasitaemia only just at the level of microscopic detection. Loss of parasitized erythrocytes accounted for < 0.2% of the total malaria-attributable haemoglobin loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04003-7.
Collapse
|
9
|
Woon SA, Manning L, Moore BR. Antimalarials for children with Plasmodium vivax infection: Current status, challenges, and research priorities. Parasitol Int 2021; 87:102512. [PMID: 34785369 DOI: 10.1016/j.parint.2021.102512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.
Collapse
Affiliation(s)
- Sze-Ann Woon
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Barber BE, Grigg MJ, Cooper DJ, van Schalkwyk DA, William T, Rajahram GS, Anstey NM. Clinical management of Plasmodium knowlesi malaria. ADVANCES IN PARASITOLOGY 2021; 113:45-76. [PMID: 34620385 DOI: 10.1016/bs.apar.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The zoonotic parasite Plasmodium knowlesi has emerged as an important cause of human malaria in parts of Southeast Asia. The parasite is indistinguishable by microscopy from the more benign P. malariae, but can result in high parasitaemias with multiorgan failure, and deaths have been reported. Recognition of severe knowlesi malaria, and prompt initiation of effective therapy is therefore essential to prevent adverse outcomes. Here we review all studies reporting treatment of uncomplicated and severe knowlesi malaria. We report that although chloroquine is effective for the treatment of uncomplicated knowlesi malaria, artemisinin combination treatment is associated with faster parasite clearance times and lower rates of anaemia during follow-up, and should be considered the treatment of choice, particularly given the risk of administering chloroquine to drug-resistant P. vivax or P. falciparum misdiagnosed as P. knowlesi malaria in co-endemic areas. For severe knowlesi malaria, intravenous artesunate has been shown to be highly effective and associated with reduced case-fatality rates, and should be commenced without delay. Regular paracetamol may also be considered for patients with severe knowlesi malaria or for those with acute kidney injury, to attenuate the renal damage resulting from haemolysis-induced lipid peroxidation.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Daniel J Cooper
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Medicine, University of Cambridge School of Medicine, Cambridge, United Kingdom
| | | | - Timothy William
- Gleneagles Medical Centre, Kota Kinabalu, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia
| | - Giri S Rajahram
- Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia; Queen Elizabeth Hospital 2, Kota Kinabalu, Malaysia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
11
|
Koepfli C, Nguitragool W, de Almeida ACG, Kuehn A, Waltmann A, Kattenberg E, Ome-Kaius M, Rarau P, Obadia T, Kazura J, Monteiro W, Darcy AW, Wini L, Bassat Q, Felger I, Sattabongkot J, Robinson LJ, Lacerda M, Mueller I. Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLoS Negl Trop Dis 2021; 15:e0009672. [PMID: 34449764 PMCID: PMC8428688 DOI: 10.1371/journal.pntd.0009672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 09/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Understanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission. Methodology/Principal findings Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44–94% for P. falciparum and from 23–72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37–100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398). Conclusions/Significance Interventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling. Plasmodium vivax and Plasmodium falciparum cause the vast majority of all human malaria cases. Across all transmission settings, a large proportion of infections of the two species remain asymptomatic. These infections are not diagnosed and treated by control programs focusing on clinical cases. They can carry gametocytes, the sexual stage of the parasite that establishes infections in mosquitos, thus asymptomatic infections contribute to transmission. In order to determine who is likely to contribute to transmission, gametocyte densities were measured by sensitive molecular methods in afebrile individuals in four countries. The proportion of infections with gametocytes varied greatly among surveys, and was higher in regions that had experienced low transmission for extended periods of time. In moderate-high transmission settings, gametocyte densities were particularly high in children below six years, highlighting the importance that interventions to reduce transmission include this age group. The majority of gametocyte carriers was positive by light microscopy. The comprehensive data on gametocyte carriage presented here lays the foundation for the development of more effective screen and treat activities to reduce malaria transmission.
Collapse
Affiliation(s)
- Cristian Koepfli
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- University of Notre Dame, Eck Institute for Global Health, Department of Biological Sciences, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anne Cristine Gomes de Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrea Kuehn
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Andreea Waltmann
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Eline Kattenberg
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Ome-Kaius
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Patricia Rarau
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Thomas Obadia
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - James Kazura
- Centre for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrew W. Darcy
- National Health Training and Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Lyndes Wini
- Vector Borne Diseases Program, Ministry of Health, Honiara, Solomon Islands
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Leanne J. Robinson
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
13
|
Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med 2021; 18:e1003560. [PMID: 33891580 PMCID: PMC8064506 DOI: 10.1371/journal.pmed.1003560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Abstract
Cindy S Chu and co-authors review options for diagnosis, safe and radical cure, and relapse prevention of Plasmodium Vivax.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail:
| | - Nicholas J. White
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malar J 2021; 20:161. [PMID: 33743731 PMCID: PMC7981980 DOI: 10.1186/s12936-021-03700-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Relapses of Plasmodium vivax malaria are prevented by 8-aminoquinolines. If hypnozoites survive, then the subsequent blood stage infections in early relapses (< 2 months) are suppressed by the slowly eliminated anti-malarial drugs used to treat the blood stage infection (chloroquine, artemisinin combination treatments), but they are not usually eliminated. The 8-aminoquinolines have significant blood stage activity which contributes to therapeutic responses. The latent interval from primary infection to early relapse depends on the number of activatable hypnozoites, the dose of anti-malarial, its pharmacokinetic properties, the level of resistance (minimum inhibitory concentration) and immunity. The dose-response relationship for radical curative efficacy of primaquine and tafenoquine is steep over the total dose range from 1.5 to 5 mg base/kg which may explain the poor efficacy of tafenoquine at the currently recommended dose.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, Anstey NM, William T, Grigg MJ, Lalloo DG, Barber BE, McCarthy JS. Liver Function Test Abnormalities in Experimental and Clinical Plasmodium vivax Infection. Am J Trop Med Hyg 2020; 103:1910-1917. [PMID: 32815508 PMCID: PMC7646782 DOI: 10.4269/ajtmh.20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5–8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26–14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91–27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laurence J Britton
- School of Medicine, The University of Queensland, Brisbane, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Timothy William
- Gleneagles Hospital, Kota Kinabalu, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | |
Collapse
|
17
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Plasmodium vivax in the Era of the Shrinking P. falciparum Map. Trends Parasitol 2020; 36:560-570. [PMID: 32407682 PMCID: PMC7297627 DOI: 10.1016/j.pt.2020.03.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is an important cause of malaria, associated with a significant public health burden. Whilst enhanced malaria-control activities have successfully reduced the incidence of Plasmodium falciparum malaria in many areas, there has been a consistent increase in the proportion of malaria due to P. vivax in regions where both parasites coexist. This article reviews the epidemiology and biology of P. vivax, how the parasite differs from P. falciparum, and the key features that render it more difficult to control and eliminate. Since transmission of the parasite is driven largely by relapses from dormant liver stages, its timely elimination will require widespread access to safe and effective radical cure.
Collapse
|
19
|
Cheong FW, Dzul S, Fong MY, Lau YL, Ponnampalavanar S. Plasmodium vivax drug resistance markers: Genetic polymorphisms and mutation patterns in isolates from Malaysia. Acta Trop 2020; 206:105454. [PMID: 32205132 DOI: 10.1016/j.actatropica.2020.105454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
Transmission of Plasmodium vivax still persist in Malaysia despite the government's aim to eliminate malaria in 2020. High treatment failure rate of chloroquine monotherapy was reported recently. Hence, parasite drug susceptibility should be kept under close monitoring. Mutation analysis of the drug resistance markers is useful for reconnaissance of anti-malarial drug resistance. Hitherto, information on P. vivax drug resistance marker in Malaysia are limited. This study aims to evaluate the mutations in four P. vivax drug resistance markers pvcrt-o (putative), pvmdr1 (putative), pvdhfr and pvdhps in 44 isolates from Malaysia. Finding indicates that 27.3%, 100%, 47.7%, and 27.3% of the isolates were carrying mutant allele in pvcrt-o, pvmdr1, pvdhfr and pvdhps genes, respectively. Most of the mutant isolates had multiple point mutations rather than single point mutation in pvmdr1 (41/44) and pvdhfr (19/21). One novel point mutation V111I was detected in pvdhfr. Allelic combination analysis shows significant strong association between mutations in pvcrt-o and pvmdr1 (X2 = 9.521, P < 0.05). In the present study, 65.9% of the patients are non-Malaysians, with few of them arrived in Malaysia 1-2 weeks before the onset of clinical manifestations, or had previous history of malaria infection. Besides, few Malaysian patients had travel history to vivax-endemic countries, suggesting that these patients might have acquired the infections during their travel. All these possible imported cases could have placed Malaysia in a risk to have local transmission or outbreak of malaria. Six isolates were found to have mutations in all four drug resistance markers, suggesting that the multiple-drugs resistant P. vivax strains are circulating in Malaysia.
Collapse
Affiliation(s)
- Fei-Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Shairah Dzul
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Division of Management Services, Ministry of International Trade and Industry, 50480 Kuala Lumpur, Malaysia.
| | - Mun-Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sasheela Ponnampalavanar
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, Fowkes FJI, Grigg MJ, Beeson JG, Anstey NM, Boyle MJ. Induction and Kinetics of Complement-Fixing Antibodies Against Plasmodium vivax Merozoite Surface Protein 3α and Relationship With Immunoglobulin G Subclasses and Immunoglobulin M. J Infect Dis 2020; 220:1950-1961. [PMID: 31419296 DOI: 10.1093/infdis/jiz407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate. METHODS Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay. RESULTS The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28. CONCLUSION Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.
Collapse
Affiliation(s)
- Damian A Oyong
- Menzies School of Health Research, Darwin, Australia.,Charles Darwin University, Darwin, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Melbourne, Australia.,Burnet Institute, Melbourne, Australia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia.,Gleneagles Medical Centre, Kota Kinabalu, Malaysia
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, Australia.,Infectious Diseases Society Kota Kinabalu, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Michelle J Boyle
- Menzies School of Health Research, Darwin, Australia.,Burnet Institute, Melbourne, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
21
|
Barber BE, Grigg MJ, Piera K, Amante FH, William T, Boyle MJ, Minigo G, Dondorp AM, McCarthy JS, Anstey NM. Antiphosphatidylserine Immunoglobulin M and Immunoglobulin G Antibodies Are Higher in Vivax Than Falciparum Malaria, and Associated With Early Anemia in Both Species. J Infect Dis 2020; 220:1435-1443. [PMID: 31250022 DOI: 10.1093/infdis/jiz334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anemia is a major complication of vivax malaria. Antiphosphatidylserine (PS) antibodies generated during falciparum malaria mediate phagocytosis of uninfected red blood cells that expose PS and have been linked to late malarial anemia. However, their role in anemia from non-falciparum Plasmodium species is not known, nor their role in early anemia from falciparum malaria. METHODS We measured PS immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in Malaysian patients with vivax, falciparum, knowlesi, and malariae malaria, and in healthy controls, and correlated antibody titres with hemoglobin. PS antibodies were also measured in volunteers experimentally infected with Plasmodium vivax and Plasmodium falciparum. RESULTS PS IgM and IgG antibodies were elevated in patients with vivax, falciparum, knowlesi, and malariae malaria (P < .0001 for all comparisons with controls) and were highest in vivax malaria. In vivax and falciparum malaria, PS IgM and IgG on admission correlated inversely with admission and nadir hemoglobin, controlling for parasitemia and fever duration. PS IgM and IgG were also increased in volunteers infected with blood-stage P. vivax and P. falciparum, and were higher in P. vivax infection. CONCLUSIONS PS antibodies are higher in vivax than falciparum malaria, correlate inversely with hemoglobin, and may contribute to the early loss of uninfected red blood cells found in malarial anemia from both species.
Collapse
Affiliation(s)
- Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Timothy William
- Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
22
|
Khoury DS, Zaloumis SG, Grigg MJ, Haque A, Davenport MP. Malaria Parasite Clearance: What Are We Really Measuring? Trends Parasitol 2020; 36:413-426. [PMID: 32298629 DOI: 10.1016/j.pt.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Antimalarial drugs are vital for treating malaria and controlling transmission. Measuring drug efficacy in the field requires large clinical trials and thus we have identified proxy measures of drug efficacy such as the parasite clearance curve. This is often assumed to measure the rate of drug activity against parasites and is used to predict optimal treatment regimens required to completely clear a blood-stage infection. We discuss evidence that the clearance curve is not measuring the rate of drug killing. This has major implications for how we assess optimal treatment regimens, as well as how we prioritise new drugs in the drug development pipeline.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
23
|
Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, Zhu SJ, Rumaseb A, Marfurt J, Noviyanti R, Grigg MJ, Barber B, William T, Goncalves SM, Drury E, Sriprawat K, Anstey NM, Nosten F, Petros B, Aseffa A, McVean G, Kwiatkowski DP, Price RN. Genomic Analysis of Plasmodium vivax in Southern Ethiopia Reveals Selective Pressures in Multiple Parasite Mechanisms. J Infect Dis 2019; 220:1738-1749. [PMID: 30668735 PMCID: PMC6804337 DOI: 10.1093/infdis/jiz016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Sha Joe Zhu
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Jesselton Medical Centre, Sabah, Malaysia
| | | | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
24
|
Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, Alemu SG, Añez A, Anstey NM, Aseffa A, Assefa A, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, D'Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Grigg MJ, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Taylor WRJ, Thwaites G, Tran BQ, Hien TT, Vieira JLF, Wangchuk S, Watson J, William T, Woodrow CJ, Nosten F, Guerin PJ, White NJ, Price RN. The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Med 2019; 17:151. [PMID: 31366382 PMCID: PMC6670141 DOI: 10.1186/s12916-019-1386-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. METHODS A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. RESULTS In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent parasitaemia had a mean haemoglobin concentration - 0.72 g/dL [- 0.90, - 0.54] lower than patients without recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in haemoglobin > 5 g/dL. CONCLUSIONS Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. TRIAL REGISTRATION This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia.
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Douglas
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Sisay G Alemu
- Addis Ababa University, Addis Ababa, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Arletta Añez
- Departamento de Salud Pública, Universidad de Barcelona, Barcelona, Spain.,Organización Panamericana de Salud, Oficina de País Bolivia, La Paz, Bolivia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | | | - Prabin Dahal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Vice-presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter J de Vries
- Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands
| | - Annette Erhart
- Medical Research Council Unit The Gambia at LSTMH, Fajara, The Gambia
| | - Margarete S M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá - SVS/AP, Macapá, Amapá, Brazil.,Universidade Federal do Amapá - UNIFAP, Macapá, Amapá, Brazil
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, USA.,Global Health Group, University of California San Francisco, San Francisco, USA
| | - Piet A Kager
- Centre for Infection and Immunity Amsterdam (CINEMA), Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, the Netherlands
| | - Tsige Ketema
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Biology, Jimma University, Jimma, Ethiopia
| | - Wasif A Khan
- International Centre for Diarrheal Diseases and Research, Dhaka, Bangladesh
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kartini Lidia
- The Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Rondônia, Brazil.,Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Giao T Phan
- Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, Amsterdam, the Netherlands.,Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Aung P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, India.,Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Carol H Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Department of Genome Sciences, University of Washington, Seattle, USA
| | - André M Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Walter R J Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guy Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Binh Q Tran
- Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Pará, Brazil
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - James Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. .,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Verzier LH, Coyle R, Singh S, Sanderson T, Rayner JC. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl Trop Dis 2019; 13:e0007470. [PMID: 31158222 PMCID: PMC6564043 DOI: 10.1371/journal.pntd.0007470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/13/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms.
Collapse
Affiliation(s)
- Lisa H. Verzier
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Rachael Coyle
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Shivani Singh
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Theo Sanderson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Julian C. Rayner
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
26
|
Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, Menon J, Marfurt J, Price RN, Auburn S, Barber BE, Yeo TW, Anstey NM. Plasmodium falciparum artemisinin resistance monitoring in Sabah, Malaysia: in vivo therapeutic efficacy and kelch13 molecular marker surveillance. Malar J 2018; 17:463. [PMID: 30526613 PMCID: PMC6287347 DOI: 10.1186/s12936-018-2593-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia. METHODS A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count < 100,000/µL admitted to 3 adjacent district hospitals in Sabah, East Malaysia. On day 3 and 4 all patients were administered split dose mefloquine (total dose 25 mg/kg) and followed for 28 days. Twenty-one kelch13 polymorphisms associated with P. falciparum artemisinin resistance were also evaluated in P. falciparum isolates collected from patients presenting to health facilities predominantly within the tertiary referral area of western Sabah between 2012 and 2016. RESULTS In total, 49 patients were enrolled and treated with oral artesunate. 90% (44/49) of patients had cleared their parasitaemia by 48 h and 100% (49/49) within 72 h. The geometric mean parasite count at presentation was 9463/µL (95% CI 6757-13,254), with a median time to 50% parasite clearance of 4.3 h (IQR 2.0-8.4). There were 3/45 (7%) patients with a parasite clearance slope half-life of ≥ 5 h. All 278 P. falciparum isolates evaluated were wild-type for kelch13 markers. CONCLUSION There is no suspected or confirmed evidence of endemic artemisinin-resistant P. falciparum in this pre-elimination setting in Sabah, Malaysia. Current guidelines recommending first-line treatment with ACT remain appropriate for uncomplicated malaria in Sabah, Malaysia. Ongoing surveillance is needed southeast of the Greater Mekong sub-region.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
- Sabah Department of Health, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Jenarun Jelip
- Vector Disease Sector, Disease Control Division, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ammar Aziz
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Jayaram Menon
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
- Sabah Department of Health, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
27
|
Kho S, Barber BE, Johar E, Andries B, Poespoprodjo JR, Kenangalem E, Piera KA, Ehmann A, Price RN, William T, Woodberry T, Foote S, Minigo G, Yeo TW, Grigg MJ, Anstey NM, McMorran BJ. Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood 2018; 132:1332-1344. [PMID: 30026183 PMCID: PMC6161646 DOI: 10.1182/blood-2018-05-849307] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we characterized platelet-erythrocyte interactions by microscopy and flow cytometry in patients with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, or Plasmodium knowlesi Blood samples from 376 participants were collected from malaria-endemic areas of Papua, Indonesia, and Sabah, Malaysia. Platelets were observed binding directly with and killing intraerythrocytic parasites of each of the Plasmodium species studied, particularly mature stages, and was greatest in P vivax patients. Platelets preferentially bound to the infected more than to the uninfected erythrocytes in the bloodstream. Analysis of intraerythrocytic parasites indicated the frequent occurrence of platelet-associated parasite killing, characterized by the intraerythrocytic accumulation of platelet factor-4 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling of parasite nuclei (PF4+TUNEL+ parasites). These PF4+TUNEL+ parasites were not associated with measures of systemic platelet activation. Importantly, patient platelet counts, infected erythrocyte-platelet complexes, and platelet-associated parasite killing correlated inversely with patient parasite loads. These relationships, taken together with the frequency of platelet-associated parasite killing observed among the different patients and Plasmodium species, suggest that platelets may control the growth of between 5% and 60% of circulating parasites. Platelet-erythrocyte complexes made up a major proportion of the total platelet pool in patients with malaria and may therefore contribute considerably to malarial thrombocytopenia. Parasite killing was demonstrated to be platelet factor-4-mediated in P knowlesi culture. Collectively, our results indicate that platelets directly contribute to innate control of Plasmodium infection in human malaria.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Edison Johar
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Benediktus Andries
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Jeanne R Poespoprodjo
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
- Department of Paediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Anna Ehmann
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia; and
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Malaysia
| | - Tonia Woodberry
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Simon Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
28
|
Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, Añez A, Anstey NM, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, Chu CS, D'Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Gonzalez-Ceron L, Grigg MJ, Heidari A, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Nosten F, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Sutanto I, Taylor WRJ, Thwaites G, Tran BQ, Tran HT, Valecha N, Vieira JLF, Wangchuk S, William T, Woodrow CJ, Zuluaga-Idarraga L, Guerin PJ, White NJ, Price RN. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. THE LANCET. INFECTIOUS DISEASES 2018; 18:1025-1034. [PMID: 30033231 PMCID: PMC6105624 DOI: 10.1016/s1473-3099(18)30348-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings. METHODS A systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310. FINDINGS Of 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8-35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69-0·97; p=0·021) and in children younger than 5 years (0·59, 0·41-0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1-7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05-0·17; p<0·0001). INTERPRETATION Chloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax. FUNDING Wellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Clinical module, Darwin, NT, Australia; Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Sisay G Alemu
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Arletta Añez
- Departamento de Salud Pública, Universidad de Barcelona, Barcelona, Spain; Organización Panamericana de Salud, Oficina de país Bolivia, La Paz, Bolivia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Ghulam R Awab
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | - Cindy S Chu
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Umberto D'Alessandro
- Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium; Medical Research Council Unit, Fajara, The Gambia
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Vice-Presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter J de Vries
- Department of Internal Medicine, Tergooi Hospital, Hilversum, Netherlands
| | - Annette Erhart
- Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium; Medical Research Council Unit, Fajara, The Gambia; Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Margarete S M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá -SVS/AP, Macapá, Amapá, Brazil; Federal University of Amapá, Macapá, Amapá, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Aliehsan Heidari
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Piet A Kager
- Centre for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Tsige Ketema
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia; Department of Biology, Jimma University, Jimma, Ethiopia
| | - Wasif A Khan
- International Centre for Diarrheal Diseases and Research, Dhaka, Bangladesh
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Kartini Lidia
- Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Giao T Phan
- Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, Amsterdam, Netherlands; Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Aung P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India; Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Carol H Sibley
- WorldWide Antimalarial Resistance Network, Oxford, UK; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - André M Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil; Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Binh Q Tran
- Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Hien T Tran
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Infectious Diseases Unit, Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Division of Clinical Sciences, St George's, University of London, London, UK
| | | | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Clinical module, Darwin, NT, Australia; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Reversal of Chloroquine Resistance of Plasmodium vivax in Aotus Monkeys. Antimicrob Agents Chemother 2018; 62:AAC.00582-18. [PMID: 29941642 DOI: 10.1128/aac.00582-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
Chloroquine-resistant (CQR) vivax malaria has emerged as a threat to the malaria elimination agenda. The objective of this study was to assess if a combination of chloroquine (CQ) and prochlorperazine was able to reverse CQ resistance of the Plasmodium vivax AMRU-1 strain from Papua New Guinea in infected Aotus monkeys. For this purpose, in two independent experimental drug efficacy trials, a total of 18 Aotus monkeys infected with blood obtained from donor animals were randomly assigned to treatment and control groups and orally administered CQ at 10 mg/kg or prochlorperazine at 20 mg/kg, alone or in combination, for five consecutive days. Reversal of CQR was achieved in animals that received the drug combination, whereas neither drug alone produced cures. This same drug combination reverses CQR in P. falciparum and could be an alternative for treatment in humans with chloroquine-resistant P. vivax infections.
Collapse
|
30
|
Morão LG, Polaquini CR, Kopacz M, Torrezan GS, Ayusso GM, Dilarri G, Cavalca LB, Zielińska A, Scheffers DJ, Regasini LO, Ferreira H. A simplified curcumin targets the membrane of Bacillus subtilis. Microbiologyopen 2018; 8:e00683. [PMID: 30051597 PMCID: PMC6460283 DOI: 10.1002/mbo3.683] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti‐inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram‐positive bacterium Bacillus subtilis. The anti‐B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP‐dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the β‐diketone moiety, showed antibacterial action against gram‐positive and gram‐negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra‐cellular localization. Finally, we show here experimental evidence for the requirement of the β‐diketone group of curcumin for its interaction with FtsZ.
Collapse
Affiliation(s)
- Luana G Morão
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - Carlos R Polaquini
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Malgorzata Kopacz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Guilherme S Torrezan
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Gabriela M Ayusso
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Guilherme Dilarri
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - Lúcia B Cavalca
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - Aleksandra Zielińska
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Luis O Regasini
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| |
Collapse
|
31
|
Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, Piera K, Wilkes CS, Patel K, Chandna A, Drakeley CJ, Yeo TW, Anstey NM. Age-Related Clinical Spectrum of Plasmodium knowlesi Malaria and Predictors of Severity. Clin Infect Dis 2018; 67:350-359. [PMID: 29873683 PMCID: PMC6051457 DOI: 10.1093/cid/ciy065] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking. Methods Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia. Results Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults). Conclusions Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Jayaram Menon
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Emma Schimann
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Christopher S Wilkes
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kaajal Patel
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Arjun Chandna
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | | | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| |
Collapse
|
32
|
Silva SR, Almeida ACG, da Silva GAV, Ramasawmy R, Lopes SCP, Siqueira AM, Costa GL, Sousa TN, Vieira JLF, Lacerda MVG, Monteiro WM, de Melo GC. Chloroquine resistance is associated to multi-copy pvcrt-o gene in Plasmodium vivax malaria in the Brazilian Amazon. Malar J 2018; 17:267. [PMID: 30012145 PMCID: PMC6048775 DOI: 10.1186/s12936-018-2411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background The resistance of Plasmodium vivax to chloroquine has become an obstacle to control strategies based on the use of anti-malarials. The current study investigated the association between P. vivax CQ-resistance in vivo with copy number variation and mutations in the promoter region in pvcrt-o and pvmdr1 genes. Methods The study included patients with P. vivax that received supervised treatment with chloroquine and primaquine. Recurrences were actively recorded during this period. Results Among the 60 patients with P. vivax, 25 were CQ-resistant and 35 CQ-susceptible. A frequency of 7.1% of multi-copy pvcrt-o was observed in CQ-susceptible samples and 7.7% in CQ-resistant at D0 (P > 0.05) and 33.3% in CQ-resistant at DR (P < 0.05). For pvmdr1, 10.7% of the CQ-susceptible samples presented multiple copies compared to 11.1% in CQ-resistant at D0 and 0.0% in CQ-resistant at DR (P > 0.05). A deletion of 19 bp was found in 11/23 (47.6%) of the patients with CQ-susceptible P. vivax and 3/10 (23.1%) of the samples with in CQRPv at D0. At day DR, 55.5% of the samples with CQRPv had the 19 bp deletion. For the pvmdr-1 gene, was no variation in the analysed gene compared to the P. vivax reference Sal-1. Conclusions This was the first study with 42-day clinical follow-up to evaluate the variation of the number of copies and polymorphisms in the promoter region of the pvcrt-o and pvmdr1 genes in relation to treatment outcomes. Significantly higher frequency of multi-copy pvcrt-o was found in CQRPv samples at DR compared to CQ-susceptible, indicating parasite selection of this genotype after CQ treatment and its association with CQ-resistance in vivo. Electronic supplementary material The online version of this article (10.1186/s12936-018-2411-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siuhelem Rocha Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Anne Cristine Gomes Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | | | - Rajendranath Ramasawmy
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Nacional de Infectologia, Evandro Chagas, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Gabriel Luíz Costa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Taís Nóbrega Sousa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | | | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.
| |
Collapse
|
33
|
Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, Barber BE, William T, Handayuni I, Marfurt J, Trimarsanto H, Noviyanti R, Sriprawat K, Nosten F, Campino S, Clark TG, Anstey NM, Kwiatkowski DP, Price RN. Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics. Nat Commun 2018; 9:2585. [PMID: 29968722 PMCID: PMC6030216 DOI: 10.1038/s41467-018-04965-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination.
Collapse
Affiliation(s)
- Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK
| | - Ernest D. Benavente
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Olivo Miotto
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK ,0000 0004 1937 0490grid.10223.32Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400 Thailand
| | - Richard D. Pearson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Roberto Amato
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Matthew J. Grigg
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Bridget E. Barber
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia ,0000 0004 1772 8727grid.415560.3Clinical Research Centre, Queen Elizabeth Hospital, 88300 Kota Kinabalu Sabah, Malaysia ,Jesselton Medical Centre, 88300 Kota Kinabalu Sabah, Malaysia
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Jutta Marfurt
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Rintis Noviyanti
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia
| | - Kanlaya Sriprawat
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand
| | - Francois Nosten
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| | - Susana Campino
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Taane G. Clark
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK ,0000 0004 0425 469Xgrid.8991.9Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Nicholas M. Anstey
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Dominic P. Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| |
Collapse
|
34
|
Cubides JR, Camargo-Ayala PA, Niño CH, Garzón-Ospina D, Ortega-Ortegón A, Ospina-Cantillo E, Orduz-Durán MF, Patarroyo ME, Patarroyo MA. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region. Malar J 2018; 17:130. [PMID: 29580244 PMCID: PMC5870912 DOI: 10.1186/s12936-018-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. Methods Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. Conclusion pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage.
Collapse
Affiliation(s)
- Juan Ricardo Cubides
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Paola Andrea Camargo-Ayala
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Carlos Hernando Niño
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia
| | - Anggie Ortega-Ortegón
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Estefany Ospina-Cantillo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - María Fernanda Orduz-Durán
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Avenida Carrera 30 # 45, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
35
|
Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, Wilkes CS, Patel K, Chandna A, Price RN, Yeo TW, Anstey NM. Artemether-Lumefantrine Versus Chloroquine for the Treatment of Uncomplicated Plasmodium knowlesi Malaria: An Open-Label Randomized Controlled Trial CAN KNOW. Clin Infect Dis 2018; 66:229-236. [PMID: 29020373 PMCID: PMC5790171 DOI: 10.1093/cid/cix779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023] Open
Abstract
Background Plasmodium knowlesi is reported increasingly across Southeast Asia and is the most common cause of malaria in Malaysia. No randomized trials have assessed the comparative efficacy of artemether-lumefantrine (AL) for knowlesi malaria. Methods A randomized controlled trial was conducted in 3 district hospitals in Sabah, Malaysia to compare the efficacy of AL against chloroquine (CQ) for uncomplicated knowlesi malaria. Participants were included if they weighed >10 kg, had a parasitemia count <20000/μL, and had a negative rapid diagnostic test result for Plasmodium falciparum histidine-rich protein 2. Diagnosis was confirmed by means of polymerase chain reaction. Patients were block randomized to AL (total target dose, 12 mg/kg for artemether and 60 mg/kg for lumefantrine) or CQ (25 mg/kg). The primary outcome was parasite clearance at 24 hours in a modified intention-to-treat analysis. Results From November 2014 to January 2016, a total of 123 patients (including 18 children) were enrolled. At 24 hours after treatment 76% of patients administered AL (95% confidence interval [CI], 63%-86%; 44 of 58) were aparasitemic, compared with 60% administered CQ (47%-72%; 39 of 65; risk ratio, 1.3 [95% CI, 1.0-1.6]; P = .06). Overall parasite clearance was shorter after AL than after CQ (median, 18 vs 24 hours, respectively; P = .02), with all patients aparasitemic by 48 hours. By day 42 there were no treatment failures. The risk of anemia during follow-up was similar between arms. Patients treated with AL would require lower bed occupancy than those treated with CQ (2414 vs 2800 days per 1000 patients; incidence rate ratio, 0.86 [95% CI, .82-.91]; P < .001). There were no serious adverse events. Conclusions AL is highly efficacious for treating uncomplicated knowlesi malaria; its excellent tolerability and rapid therapeutic response allow earlier hospital discharge, and support its use as a first-line artemisinin-combination treatment policy for all Plasmodium species in Malaysia. Clinical trials registration NCT02001012.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu,Correspondence: M. J. Grigg, Global and Tropical Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin 0811, Northern Territory, Australia ()
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia,Jesselton Medical Centre, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu
| | - Giri S Rajahram
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia,Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Jayaram Menon
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia,Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Emma Schimann
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu
| | - Christopher S Wilkes
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu
| | - Kaajal Patel
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu
| | - Arjun Chandna
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu,Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
36
|
Mat Ariffin N, Islahudin F, Kumolosasi E, Makmor-Bakry M. A clinical tool to predict Plasmodium vivax recurrence in Malaysia. BMC Infect Dis 2017; 17:759. [PMID: 29216842 PMCID: PMC5721364 DOI: 10.1186/s12879-017-2868-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Background Recurrence rates of Plasmodium vivax infections differ across various geographic regions. Interestingly, South-East Asia and the Asia-Pacific region are documented to exhibit the most frequent recurrence incidences. Identifying patients at a higher risk for recurrences gives valuable information in strengthening the efforts to control P. vivax infections. The aim of the study was to develop a tool to identify P. vivax- infected patients that are at a higher risk of recurrence in Malaysia. Methods Patient data was obtained retrospectively through the Ministry of Health, Malaysia, from 2011 to 2016. Patients with incomplete data were excluded. A total of 2044 clinical P. vivax malaria cases treated with primaquine were included. Data collected were patient, disease, and treatment characteristics. Two-thirds of the cases (n = 1362) were used to develop a clinical risk score, while the remaining third (n = 682) was used for validation. Results Using multivariate analysis, age (p = 0.03), gametocyte sexual count (p = 0.04), indigenous transmission (p = 0.04), type of treatment (p = 0.12), and incomplete primaquine treatment (p = 0.14) were found to be predictors of recurrence after controlling for other confounding factors; these predictors were then used in developing the final model. The beta-coefficient values were used to develop a clinical scoring tool to predict possible recurrence. The total scores ranged between 0 and 8. A higher score indicated a higher risk for recurrence (odds ratio [OR]: 1.971; 95% confidence interval [CI]: 1.562–2.487; p ≤ 0.001). The area under the receiver operating characteristic (ROC) curve of the developed (n = 1362) and validated model (n = 682) was of good accuracy (ROC: 0.728, 95% CI: 0.670–0.785, p value < 0.001, and ROC: 0.766, 95% CI: 0.700–0.833, p-value < 0.001, respectively). In both the developed and validated models, area under the ROC curves showed no significant difference in predicting recurrence based on the constructed scoring mechanism (p = 0.399; Z-value: −0.8441; standard error: 0.045). Conclusions The developed model to predict recurrence was found to be of good accuracy and could be a useful tool in targeting patients at a higher risk for recurrence for closer monitoring during follow-up, after treatment with primaquine.
Collapse
Affiliation(s)
- Norliza Mat Ariffin
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Farida Islahudin
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
| | - Endang Kumolosasi
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Mohd Makmor-Bakry
- Quality Use of Medicine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Chaorattanakawee S, Lon C, Chann S, Thay KH, Kong N, You Y, Sundrakes S, Thamnurak C, Chattrakarn S, Praditpol C, Yingyuen K, Wojnarski M, Huy R, Spring MD, Walsh DS, Patel JC, Lin J, Juliano JJ, Lanteri CA, Saunders DL. Measuring ex vivo drug susceptibility in Plasmodium vivax isolates from Cambodia. Malar J 2017; 16:392. [PMID: 28964258 PMCID: PMC5622433 DOI: 10.1186/s12936-017-2034-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
Background While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013–2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. Results Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013–4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. Conclusion The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2034-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand. .,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Soklyda Chann
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kheang Heng Thay
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Yom You
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Siratchana Sundrakes
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kritsanai Yingyuen
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Michele D Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Douglas S Walsh
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Jaymin C Patel
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica Lin
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand.,US Army Medical Materiel Development Activity, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
38
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
39
|
Commons R, Thriemer K, Humphreys G, Suay I, Sibley C, Guerin P, Price R. The Vivax Surveyor: Online mapping database for Plasmodium vivax clinical trials. Int J Parasitol Drugs Drug Resist 2017; 7:181-190. [PMID: 28384505 PMCID: PMC5382033 DOI: 10.1016/j.ijpddr.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recurrent P. vivax infections are associated with significant morbidity and mortality. Although radical cure can reduce recurrent infection, it is confounded by antimalarial resistance and the lack of safe and effective hypnozoitocidal treatment. This study documents the available literature of published clinical trials of P. vivax, providing an up to date, online, open access tool to view and download available information. METHODS A systematic review was conducted according to PRISMA guidelines to identify prospective P. vivax therapeutic clinical trials with at least 28 days follow-up published between 1st January 1960 and 12th October 2016. Treatment arms and evidence of chloroquine resistance were mapped to trial sites. RESULTS Since 1960, a total of 1152 antimalarial clinical trials with a minimum 28 days follow-up have been published, of which 230 (20.0%) enrolled patients with P. vivax and were included. Trials were conducted in 38 countries: 168 (73.0%) in the Asia-Pacific, 13 (5.7%) in Africa and 43 (18.7%) in the Americas. The proportion of antimalarial trials assessing P. vivax rose from 10.7% (12/112) in 1991-1995, to 24.9% (56/225) in 2011-2015. Overall, 188 (81.7%) P. vivax trials included a chloroquine treatment arm, either alone or in combination with primaquine, and 107 (46.5%) trials included a chloroquine treatment arm with early primaquine to assess radical cure. There has been a recent increase in treatment arms with artemisinin derivatives. Of the 131 sites in which chloroquine resistance could be quantified, resistance was present in 59 (45.0%) sites in 15 endemic countries. CONCLUSIONS Over the last 20 years there has been a substantial increase in clinical research on the treatment of P. vivax, which has generated a greater awareness of the global extent of chloroquine resistance. The WWARN open access, online interactive map provides up to date information of areas where drug resistant P. vivax is emerging.
Collapse
Affiliation(s)
- R.J. Commons
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia,WorldWide Antimalarial Resistance Network, UK,Corresponding author. Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT 0811, Australia.Global and Tropical Health DivisionMenzies School of Health ResearchCharles Darwin UniversityPO Box 41096CasuarinaNT0811Australia
| | - K. Thriemer
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - G. Humphreys
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - I. Suay
- WorldWide Antimalarial Resistance Network, UK
| | - C.H. Sibley
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK,Department of Genome Sciences, University of Washington, Seattle, USA
| | - P.J. Guerin
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - R.N. Price
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia,WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, Anstey NM, Grigg MJ. Detection of Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax using loop-mediated isothermal amplification (LAMP) in a co-endemic area in Malaysia. Malar J 2017; 16:29. [PMID: 28086789 PMCID: PMC5237251 DOI: 10.1186/s12936-016-1676-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 01/12/2023] Open
Abstract
Background Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection. Methods Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs. Results The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9–100), P. falciparum (95% CI 83.2–100), and P. vivax (95% CI 29.2–100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL. Conclusions The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.
Collapse
Affiliation(s)
- Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ammar Aziz
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.,Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - David Bell
- Global Good Fund/Intellectual Ventures Laboratory, Bellevue, WA, USA
| | | | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia. .,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
41
|
Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM. The Treatment of Plasmodium knowlesi Malaria. Trends Parasitol 2016; 33:242-253. [PMID: 27707609 DOI: 10.1016/j.pt.2016.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions.
Collapse
Affiliation(s)
- Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia; Queen Elizabeth Hospital Clinical Research Centre, Kota Kinabalu 88586, Sabah, Malaysia; Jesselton Medical Centre, Kota Kinabalu 88300, Sabah, Malaysia
| | - Tsin W Yeo
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore; Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 308433 Singapore
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia.
| |
Collapse
|