1
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Conway JM, Chan C. Assessing the impact of autologous virus neutralizing antibodies on viral rebound time in postnatally SHIV-infected ART-treated infant rhesus macaques. Epidemics 2024; 48:100780. [PMID: 38964130 PMCID: PMC11518701 DOI: 10.1016/j.epidem.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early initiation is not always possible in postnatal pediatric HIV infections. The timing of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear and has never been modeled in infants. To investigate this question we used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. To gain insight into early after analytic treatment interruption (ATI), we constructed mathematical models to investigate the effect of time of ART initiation in delaying viral rebound when treatment is interrupted, focusing on the relative contributions of latent reservoir size and autologous virus neutralizing antibody responses. We developed a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound for RMs rebounding up to 60 days post-ATI. We find that the latent reservoir size is an important determinant in explaining time to viral rebound in infant macaques by affecting the growth rate of the virus. The presence of neutralizing antibodies can also delay rebound, but we find this effect for high potency antibody responses only. Finally, we discuss the therapeutic implications of our findings.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Margolis DM. Advancing Toward a Human Immunodeficiency Virus Cure: Initial Progress on a Difficult Path. Infect Dis Clin North Am 2024; 38:487-497. [PMID: 38969530 PMCID: PMC11410351 DOI: 10.1016/j.idc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Therapies to eradicate human immunodeficiency virus (HIV) infection, sparing lifelong antiviral therapy, are a still-distant goal. But significant advances have been made to reverse HIV latency while antiretroviral therapy (ART) is maintained to allow targeting of the persistent viral reservoir, to test interventions that could clear cells emerging from latent infection, and to improve HIV cure research assays and infrastructure. Steady progress gives hope that future therapies to clear HIV infection may relieve individuals and society of the burden of HIV.
Collapse
Affiliation(s)
- David M Margolis
- Medicine, Microbiology & Immunology, Epidemiology; UNC HIV Cure Center; University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, 120 Mason Farm Road, CB 7042, Chapel Hill, NC 27599-7042, USA.
| |
Collapse
|
4
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Duncan MC, Omondi FH, Kinloch NN, Lapointe HR, Speckmaier S, Moran-Garcia N, Lawson T, DeMarco ML, Simons J, Holmes DT, Lowe CF, Bacani N, Sereda P, Barrios R, Harris M, Romney MG, Montaner JS, Brumme CJ, Brockman MA, Brumme ZL. Effects of COVID-19 mRNA vaccination on HIV viremia and reservoir size. AIDS 2024; 38:1120-1130. [PMID: 38224350 PMCID: PMC11139238 DOI: 10.1097/qad.0000000000003841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The immunogenic nature of coronavirus disease 2019 (COVID-19) mRNA vaccines led to some initial concern that these could stimulate the HIV reservoir. We analyzed changes in plasma HIV loads (pVL) and reservoir size following COVID-19 mRNA vaccination in 62 people with HIV (PWH) receiving antiretroviral therapy (ART), and analyzed province-wide trends in pVL before and after the mass vaccination campaign. DESIGN Longitudinal observational cohort and province-wide analysis. METHODS Sixty-two participants were sampled prevaccination, and one month after their first and second COVID-19 immunizations. Vaccine-induced anti-SARS-CoV-2-Spike antibodies in serum were measured using the Roche Elecsys Anti-S assay. HIV reservoirs were quantified using the intact proviral DNA assay; pVL were measured using the cobas 6800 (lower limit of quantification: 20 copies/ml). The province-wide analysis included all 290 401 pVL performed in British Columbia, Canada between 2012 and 2022. RESULTS Prevaccination, the median intact reservoir size was 77 [interquartile range (IQR): 20-204] HIV copies/million CD4 + T-cells, compared to 74 (IQR: 27-212) and 65 (IQR: 22-174) postfirst and -second dose, respectively (all comparisons P > 0.07). Prevaccination, 82% of participants had pVL <20 copies/ml (max: 110 copies/ml), compared to 79% postfirst dose (max: 183 copies/ml) and 85% postsecond dose (max: 79 copies/ml) ( P > 0.4). There was no evidence that the magnitude of the vaccine-elicited anti-SARS-CoV-2-Spike immune response influenced pVL nor changes in reservoir size ( P > 0.6). We found no evidence linking the COVID-19 mass vaccination campaign to population-level increases in detectable pVL frequency among all PWH in the province, nor among those who maintained pVL suppression on ART. CONCLUSION We found no evidence that COVID-19 mRNA vaccines induced changes in HIV reservoir size nor plasma viremia.
Collapse
Affiliation(s)
- Maggie C. Duncan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - F. Harrison Omondi
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Natalie N. Kinloch
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Tanya Lawson
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F. Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nic Bacani
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Paul Sereda
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Rolando Barrios
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G. Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Healthcare, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Julio S.G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Mark A. Brockman
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
7
|
De La Torre Tarazona E, Passaes C, Moreno S, Sáez-Cirión A, Alcamí J. High concentrations of Maraviroc do not alter immunological and metabolic parameters of CD4 T cells. Sci Rep 2024; 14:13980. [PMID: 38886484 PMCID: PMC11183235 DOI: 10.1038/s41598-024-64902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Maraviroc (MVC) is an antiretroviral drug capable of binding to CCR5 receptors and block HIV entry into target cells. Moreover, MVC can activate NF-kB pathway and induce viral transcription in HIV-infected cells, being proposed as a latency reversal agent (LRA) in HIV cure strategies. However, the evaluation of immunological and metabolic parameters induced by MVC concentrations capable of inducing HIV transcription have not been explored in depth. We cultured isolated CD4 T cells in the absence or presence of MVC, and evaluated the frequency of CD4 T cell subpopulations and activation markers levels by flow cytometry, and the oxidative and glycolytic metabolic rates of CD4 T cells using a Seahorse Analyzer. Our results indicate that a high concentration of MVC did not increase the levels of activation markers, as well as glycolytic or oxidative metabolic rates in CD4 T cells. Furthermore, MVC did not induce significant changes in the frequency and activation levels of memory cell subpopulations. Our data support a safety profile of MVC as a promising LRA candidate since it does not induce alterations of the immunological and metabolic parameters that could affect the functionality of these immune cells.
Collapse
Affiliation(s)
- Erick De La Torre Tarazona
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University Hospital Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Caroline Passaes
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Viral Reservoirs and Immune Control Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Santiago Moreno
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University Hospital Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Alcalá University, Madrid, Spain
| | - Asier Sáez-Cirión
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Viral Reservoirs and Immune Control Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - José Alcamí
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
8
|
Beliakova-Bethell N. Targeting noncoding RNAs to reactivate or eliminate latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:47-55. [PMID: 38169367 PMCID: PMC10872953 DOI: 10.1097/coh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Expression of noncoding RNAs (ncRNAs) is more tissue and cell type-specific than expression of protein-coding genes. Understanding the mechanisms of action of ncRNAs and their roles in HIV replication and latency may inform targets for the latent HIV reservoir reactivation or elimination with high specificity to CD4 + T cells latently infected with HIV. RECENT FINDINGS While the number of studies in the field of ncRNAs and HIV is limited, evidence points to complex interactions between different ncRNAs, protein-coding RNAs, and proteins. Latency-reversing agents modulate the expression of ncRNAs, with some effects being inhibitory for HIV reactivation. An important limitation of basic research on the ncRNA mechanisms of action is the reliance on cell lines. Because of cell type specificity, it is uncertain whether the ncRNAs function similarly in primary cells. SUMMARY Comprehensive functional screens to uncover all ncRNAs that regulate HIV expression and the detailed exploration of their mechanisms of action in relevant cell types are needed to identify promising targets for HIV reservoir clearance. Classes of ncRNAs as a whole rather than individual ncRNAs might represent an attractive target for reservoir elimination. Compound screens for latency reversal should factor in the complexity of their effects on ncRNAs.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- Department of Medicine, University of California at San Diego, CA, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
| |
Collapse
|
9
|
Cossarini F, Aberg JA, Chen BK, Mehandru S. Viral Persistence in the Gut-Associated Lymphoid Tissue and Barriers to HIV Cure. AIDS Res Hum Retroviruses 2023; 40:54-65. [PMID: 37450338 PMCID: PMC10790554 DOI: 10.1089/aid.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School at Mount Sinai, New York, New York, USA
- Division of Gastroenterology, Department of Medicine, Icahn School at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Zhang X, Qazi AA, Deshmukh S, Lobato Ventura R, Mukim A, Beliakova-Bethell N. Single-cell RNA sequencing reveals common and unique gene expression profiles in primary CD4+ T cells latently infected with HIV under different conditions. Front Cell Infect Microbiol 2023; 13:1286168. [PMID: 38156317 PMCID: PMC10754520 DOI: 10.3389/fcimb.2023.1286168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.
Collapse
Affiliation(s)
- Xinlian Zhang
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, United States
| | - Andrew A. Qazi
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Savitha Deshmukh
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Roni Lobato Ventura
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Amey Mukim
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Nadejda Beliakova-Bethell
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
11
|
Okpaise D, Sluis-Cremer N, Rappocciolo G, Rinaldo CR. Cholesterol Metabolism in Antigen-Presenting Cells and HIV-1 Trans-Infection of CD4 + T Cells. Viruses 2023; 15:2347. [PMID: 38140588 PMCID: PMC10747884 DOI: 10.3390/v15122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) provides an effective method for managing HIV-1 infection and preventing the onset of AIDS; however, it is ineffective against the reservoir of latent HIV-1 that persists predominantly in resting CD4+ T cells. Understanding the mechanisms that facilitate the persistence of the latent reservoir is key to developing an effective cure for HIV-1. Of particular importance in the establishment and maintenance of the latent viral reservoir is the intercellular transfer of HIV-1 from professional antigen-presenting cells (APCs-monocytes/macrophages, myeloid dendritic cells, and B lymphocytes) to CD4+ T cells, termed trans-infection. Whereas virus-to-cell HIV-1 cis infection is sensitive to ART, trans-infection is impervious to antiviral therapy. APCs from HIV-1-positive non-progressors (NPs) who control their HIV-1 infection in the absence of ART do not trans-infect CD4+ T cells. In this review, we focus on this unique property of NPs that we propose is driven by a genetically inherited, altered cholesterol metabolism in their APCs. We focus on cellular cholesterol homeostasis and the role of cholesterol metabolism in HIV-1 trans-infection, and notably, the link between cholesterol efflux and HIV-1 trans-infection in NPs.
Collapse
Affiliation(s)
| | | | | | - Charles R. Rinaldo
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (D.O.); (N.S.-C.); (G.R.)
| |
Collapse
|
12
|
Arandjelovic P, Kim Y, Cooney JP, Preston SP, Doerflinger M, McMahon JH, Garner SE, Zerbato JM, Roche M, Tumpach C, Ong J, Sheerin D, Smyth GK, Anderson JL, Allison CC, Lewin SR, Pellegrini M. Venetoclax, alone and in combination with the BH3 mimetic S63845, depletes HIV-1 latently infected cells and delays rebound in humanized mice. Cell Rep Med 2023; 4:101178. [PMID: 37652018 PMCID: PMC10518630 DOI: 10.1016/j.xcrm.2023.101178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4+ T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance. Venetoclax, a pro-apoptotic inhibitor of Bcl-2, depletes total and intact HIV-1 DNA in CD4+ T cells from PLWH ex vivo. This venetoclax-sensitive population is enriched for cells with transcriptionally higher levels of pro-apoptotic BH3-only proteins. Furthermore, venetoclax delays viral rebound in a mouse model of persistent HIV-1 infection, and the combination of venetoclax with the Mcl-1 inhibitor S63845 achieves a longer delay in rebound compared with either intervention alone. Thus, selective inhibition of pro-survival proteins can induce death of HIV-1-infected cells that persist on ART, extending time to viral rebound.
Collapse
Affiliation(s)
- Philip Arandjelovic
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James P Cooney
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon P Preston
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Sarah E Garner
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Emerging Infections Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jesslyn Ong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dylan Sheerin
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Jenny L Anderson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Cody C Allison
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Division of Infectious Disease and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Conway JM, Chan C. Assessing the impact of autologous neutralizing antibodies on viral rebound in postnatally SHIV-infected ART-treated infant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550159. [PMID: 37502921 PMCID: PMC10370170 DOI: 10.1101/2023.07.22.550159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early ART initiation is not always possible in postnatal pediatric HIV infections, which account for the majority of pediatric HIV cases worldwide. The timing of onset of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear. To gain insight into the dynamics, we utilized mathematical models to investigate the effect of time of ART initiation via latent reservoir size and autologous virus neutralizing antibody responses in delaying viral rebound when treatment is interrupted. We used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model that mimics breast milk HIV transmission in human infants. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We develop a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound and control of post-rebound viral loads. We find that the latent reservoir size is an important determinant in explaining time to viral rebound by affecting the growth rate of the virus. The presence of neutralizing antibodies also can delay rebound, but we find this effect for high potency antibody responses only.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
15
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
16
|
Huang Y, Dhummakupt A, Khetan P, Nilles T, Zhou W, Mudvari P, Szewczyk J, Chen YH, Boritz E, Ji H, Agwu A, Persaud D. Immune activation and exhaustion marker expression on T-cell subsets in ART-treated adolescents and young adults with perinatal HIV-1 infection as correlates of viral persistence. Front Immunol 2023; 14:1007626. [PMID: 37033916 PMCID: PMC10076634 DOI: 10.3389/fimmu.2023.1007626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
HIV-1 infection in memory CD4+ T cells forms a latent reservoir that is a barrier to cure. Identification of immune biomarkers that correlate with HIV-1 reservoir size may aid with evaluating efficacy of HIV-1 eradication strategies, towards ART-free remission and cure. In adults living with non-perinatal HIV-1, the immune exhaustion marker PD-1 on central memory CD4+ T cells (Tcm) correlates with measures of HIV-1 reservoir size. Immune correlates of HIV-1 are less defined in adolescents and young adults with perinatal HIV-1. With multi-parameter flow cytometry, we examined immune activation (CD69, CD25, HLA-DR), and exhaustion (PD-1, TIGIT, TIM-3 and LAG-3) markers on CD4+ T cell subsets (naïve (Tn), central memory (Tcm), and the combination (Ttem) of transitional (Ttm) and effector memory (Tem) cells, in 10 adolescents and young adults living with perinatal HIV-1 (median age 15.9 years; median duration of virologic suppression 7.0 years), in whom HIV-1 reservoir size was measured with the Intact Proviral HIV-1 DNA Assay (IPDA) and an enhanced Tat/Rev limiting dilution assay (TILDA). RNA-seq was also performed on the unstimulated CD4+ T cells. The median total HIV-1 DNA concentration in memory CD4+ T cells was 211.90 copies per million CD4+ T cells. In the 7 participants with subtype B HIV-1 infection, the median intact proviral DNA load was 7.96 copies per million CD4+ T cells. Levels of HLA-DR and TIGIT on the Ttem were correlated with total HIV-1 DNA (r=0.76, p=0.015) and (r=0.72, p=0.023), respectively, but not with intact proviral load or induced reservoir size. HIV-1 DNA load was also positively correlated with transcriptional clusters associated with HLA-DR expression by RNA-seq. In contrast, PD-1 expression on Tcm was inversely correlated with total HIV-1 DNA (r=-0.67, p=0.039). Reservoir size by IPDA and TILDA were correlated (r=0.81, p=0.036). Thus, in this cohort of youths with long-standing treated perinatal infection, HLA-DR and TIGIT on Ttem were the key correlates of HIV-1 infected cell frequencies by total HIV-1 DNA, and not PD-1. Total HIV-1 DNA was negatively correlated with PD-1 expressing Tcm. These differences in longstanding perinatal HIV-1 infection compared with adult infection requires further study in larger cohorts.
Collapse
Affiliation(s)
- Yuyang Huang
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Adit Dhummakupt
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Priya Khetan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Tricia Nilles
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Weiqiang Zhou
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Joseph Szewczyk
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ya Hui Chen
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eli Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Hongkai Ji
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Allison Agwu
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deborah Persaud
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Deborah Persaud,
| |
Collapse
|
17
|
Khetan P, Liu Y, Dhummakupt A, Persaud D. Advances in Pediatric HIV-1 Cure Therapies and Reservoir Assays. Viruses 2022; 14:v14122608. [PMID: 36560612 PMCID: PMC9787749 DOI: 10.3390/v14122608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Significant advances in the field of HIV-1 therapeutics to achieve antiretroviral treatment (ART)-free remission and cure for persons living with HIV-1 are being made with the advent of broadly neutralizing antibodies and very early ART in perinatal infection. The need for HIV-1 remission and cure arises due to the inability of ART to eradicate the major reservoir for HIV-1 in resting memory CD4+ T cells (the latent reservoir), and the strict adherence to lifelong treatment. To measure the efficacy of these cure interventions on reservoir size and to dissect reservoir dynamics, assays that are sensitive and specific to intact proviruses are critical. In this review, we provided a broad overview of some of the key interventions underway to purge the reservoir in adults living with HIV-1 and ones under study in pediatric populations to reduce and control the latent reservoir, primarily focusing on very early treatment in combination with broadly neutralizing antibodies. We also summarized assays currently in use to measure HIV-1 reservoirs and their feasibility and considerations for studies in children.
Collapse
Affiliation(s)
- Priya Khetan
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yufeng Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-443-287-3735
| |
Collapse
|
18
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
19
|
Soto PC, Terry VH, Lewinski MK, Deshmukh S, Beliakova-Bethell N, Spina CA. HIV-1 latency is established preferentially in minimally activated and non-dividing cells during productive infection of primary CD4 T cells. PLoS One 2022; 17:e0271674. [PMID: 35895672 PMCID: PMC9328514 DOI: 10.1371/journal.pone.0271674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Latently infected CD4 T cells form a stable reservoir of HIV that leads to life-long viral persistence; the mechanisms involved in establishment of this latency are not well understood. Three scenarios have been proposed: 1) an activated, proliferating cell becomes infected and reverts back to a resting state; 2) an activated cell becomes infected during its return to resting; or 3) infection is established directly in a resting cell. The aim of this study was, therefore, to investigate the relationship between T cell activation and proliferation and the establishment of HIV latency. Isolated primary CD4 cells were infected at different time points before or after TCR-induced stimulation. Cell proliferation within acutely infected cultures was tracked using CFSE viable dye over 14 days; and cell subsets that underwent varying degrees of proliferation were isolated at end of culture by flow cytometric sorting. Recovered cell subpopulations were analyzed for the amount of integrated HIV DNA, and the ability to produce virus, upon a second round of cell stimulation. We show that cell cultures exposed to virus, prior to stimulus addition, contained the highest levels of integrated and replication-competent provirus after returning to quiescence; whereas, cells infected during the height of cell proliferation retained the least. Cells that did not divide or exhibited limited division, following virus exposure and stimulation contained greater amounts of integrated and inducible HIV than did cells that had divided many times. Based on these results, co-culture experiments were conducted to demonstrate that latent infection could be established directly in non-dividing cells via cell-to-cell transmission from autologous productively infected cells. Together, the findings from our studies implicate the likely importance of direct infection of sub-optimally activated T cells in establishment of latently infected reservoirs in vivo, especially in CD4 lymphocytes that surround productive viral foci within immune tissue microenvironments.
Collapse
Affiliation(s)
- Paula C. Soto
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Valeri H. Terry
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Mary K. Lewinski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Savitha Deshmukh
- Veterans Medical Research Foundation, San Diego, California, United States of America
| | - Nadejda Beliakova-Bethell
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Celsa A. Spina
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
Kim EH, Manganaro L, Schotsaert M, Brown BD, Mulder LC, Simon V. Development of an HIV reporter virus that identifies latently infected CD4 + T cells. CELL REPORTS METHODS 2022; 2:100238. [PMID: 35784650 PMCID: PMC9243624 DOI: 10.1016/j.crmeth.2022.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 04/23/2023]
Abstract
There is no cure for HIV infection, as the virus establishes a latent reservoir, which escapes highly active antiretroviral treatments. One major obstacle is the difficulty identifying cells that harbor latent proviruses. We devised a single-round viral vector that carries a series of versatile reporter molecules that are expressed in an LTR-dependent or LTR-independent manner and make it possible to accurately distinguish productive from latent infection. Using primary human CD4+ T cells, we show that transcriptionally silent proviruses are found in more than 50% of infected cells. The latently infected cells harbor proviruses but lack evidence for multiple spliced transcripts. LTR-silent integrations occurred to variable degrees in all CD4+ T subsets examined, with CD4+ TEM and CD4+ TREG displaying the highest frequency of latent infections. This viral vector permits the interrogation of HIV latency at single-cell resolution, revealing mechanisms of latency establishment and allowing the characterization of effective latency-reversing agents.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lara Manganaro
- INGM, Istituto Nazionale di Genetica Molecolare, ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D. Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lubbertus C.F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine at Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
22
|
Pharmacological Targeting of Sphingosine Kinases Impedes HIV-1 Infection of CD4 T Cells through SAMHD1 Modulation. J Virol 2022; 96:e0009622. [PMID: 35412343 PMCID: PMC9093127 DOI: 10.1128/jvi.00096-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid modulator of a myriad of cellular processes, and therapeutic targeting of S1P signaling is utilized clinically to treat multiple sclerosis. We have previously shown that functional antagonism of S1P receptors reduces cell-free, cell-to-cell, and latent HIV-1 infection in primary CD4 T cells. In this work, we examined whether targeting sphingosine kinase 1 or 2 (SPHK1/2) to inhibit S1P production would prevent infection using multiple HIV-1 primary isolates and infectious molecular clones. SPHK inhibition reduced HIV transmission between primary CD4 T cells in both cell-to-cell transmission and pretreatment coculture models. Mechanistically, pharmacological inhibition of SPHK reduced susceptibility to infection primarily by downregulating phosphorylated SAMHD1 (pSAMHD1), enhancing the activity of this innate HIV-1 restriction factor. Furthermore, genetic disruption of either SPHK1 or SPHK2 by CRISPR/Cas9 reduced phosphorylation of SAMHD1, demonstrating the role of these kinases in modulation of SAMHD1 activity. The effect of SPHK inhibition on limiting HIV-1 infection in CD4 T cells was observed irrespective of the biological sex or age of the donor, with neither variable significantly influencing the effectiveness of SPHK inhibition. Our results demonstrate that targeting SPHK inhibits transmission of HIV-1 via modulation of SAMHD1 phosphorylation to decrease permissiveness to infection in CD4 T cells and suggests that therapeutic targeting of this pathway early in infection enables development of strategies to prevent establishment of infection and hinder cell-to-cell transmission of HIV-1. IMPORTANCE HIV-1 infection, once established, requires lifelong treatment due to the ability of the virus to maintain latent infection in its host and become reactivated during an interruption in antiretroviral treatment (ART). Although preventing transmission and acquisition of HIV is an important goal, no ART thus far have exploited harnessing a component of the host immune system to combat transmission of the virus. We have previously shown that inhibition of sphingosine-1-phosphate (S1P) receptors, a component of S1P signaling, reduces HIV-1 infection in human CD4 T cells. We therefore investigated inhibition of sphingosine kinases, another element of this signaling system, in this work. We found that inhibition of sphingosine kinases 1 and 2 (SPHK1/2) could reduce HIV-1 transmission, both among CD4 T cells and between macrophages and CD4 T cells. Our research therefore suggests that therapeutic targeting of SPHK or S1P receptors may aid in the development of strategies to prevent establishment and transmission of HIV-1 infection among immune cells.
Collapse
|
23
|
Heterogeneity of Latency Establishment in the Different Human CD4
+
T Cell Subsets Stimulated with IL-15. J Virol 2022; 96:e0037922. [PMID: 35499323 PMCID: PMC9131862 DOI: 10.1128/jvi.00379-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
HIV integrates into the host genome, creating a viral reservoir of latently infected cells that persists despite effective antiretroviral treatment. CD4-positive (CD4+) T cells are the main contributors to the HIV reservoir. CD4+ T cells are a heterogeneous population, and the mechanisms of latency establishment in the different subsets, as well as their contribution to the reservoir, are still unclear. In this study, we analyzed HIV latency establishment in different CD4+ T cell subsets stimulated with interleukin 15 (IL-15), a cytokine that increases both susceptibility to infection and reactivation from latency. Using a dual-reporter virus that allows discrimination between latent and productive infection at the single-cell level, we found that IL-15-treated primary human CD4+ T naive and CD4+ T stem cell memory (TSCM) cells are less susceptible to HIV infection than CD4+ central memory (TCM), effector memory (TEM), and transitional memory (TTM) cells but are also more likely to harbor transcriptionally silent provirus. The propensity of these subsets to harbor latent provirus compared to the more differentiated memory subsets was independent of differential expression of pTEFb components. Microscopy analysis of NF-κB suggested that CD4+ T naive cells express smaller amounts of nuclear NF-κB than the other subsets, partially explaining the inefficient long terminal repeat (LTR)-driven transcription. On the other hand, CD4+ TSCM cells display similar levels of nuclear NF-κB to CD4+ TCM, CD4+ TEM, and CD4+ TTM cells, indicating the availability of transcription initiation and elongation factors is not solely responsible for the inefficient HIV gene expression in the CD4+ TSCM subset. IMPORTANCE The formation of a latent reservoir is the main barrier to HIV cure. Here, we investigated how HIV latency is established in different CD4+ T cell subsets in the presence of IL-15, a cytokine that has been shown to efficiently induce latency reversal. We observed that, even in the presence of IL-15, the less differentiated subsets display lower levels of productive HIV infection than the more differentiated subsets. These differences were not related to different expression of pTEFb, and modest differences in NF-κB were observed for CD4+ T naive cells only, implying the involvement of other mechanisms. Understanding the molecular basis of latency establishment in different CD4+ T cell subsets might be important for tailoring specific strategies to reactivate HIV transcription in all the CD4+ T subsets that compose the latent reservoir.
Collapse
|
24
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
25
|
Altered Response Pattern following AZD5582 Treatment of SIV-Infected, ART-Suppressed Rhesus Macaque Infants. J Virol 2022; 96:e0169921. [PMID: 35293766 PMCID: PMC9006931 DOI: 10.1128/jvi.01699-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.
Collapse
|
26
|
Lentiviral Nef Proteins Differentially Govern the Establishment of Viral Latency. J Virol 2022; 96:e0220621. [PMID: 35266804 DOI: 10.1128/jvi.02206-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the clinical importance of latent human immunodeficiency virus type 1 (HIV-1) infection, our understanding of the biomolecular processes involved in HIV-1 latency control is still limited. This study was designed to address whether interactions between viral proteins, specifically HIV Nef, and the host cell could affect latency establishment. The study was driven by three reported observations. First, early reports suggested that human immunodeficiency virus type 2 (HIV-2) infection in patients produces a lower viral RNA/DNA ratio than HIV-1 infection, potentially indicating an increased propensity of HIV-2 to produce latent infection. Second, Nef, an early viral gene product, has been shown to alter the activation state of infected cells in a lentiviral lineage-dependent manner. Third, it has been demonstrated that the ability of HIV-1 to establish latent infection is a function of the activation state of the host cell at the time of infection. Based on these observations, we reasoned that HIV-2 Nef may have the ability to promote latency establishment. We demonstrate that HIV-1 latency establishment in T cell lines and primary T cells is indeed differentially modulated by Nef proteins. In the context of an HIV-1 backbone, HIV-1 Nef promoted active HIV-1 infection, while HIV-2 Nef strongly promoted latency establishment. Given that Nef represents the only difference in these HIV-1 vectors and is known to interact with numerous cellular factors, these data add support to the idea that latency establishment is a host cell-virus interaction phenomenon, but they also suggest that the HIV-1 lineage may have evolved mechanisms to counteract host cell suppression. IMPORTANCE Therapeutic attempts to eliminate the latent HIV-1 reservoir have failed, at least in part due to our incomplete biomolecular understanding of how latent HIV-1 infection is established and maintained. We here address the fundamental question of whether all lentiviruses actually possess a similar capacity to establish latent infections or whether there are differences between the lentiviral lineages driving differential latency establishment that could be exploited to develop improved latency reversal agents. Research investigating the viral RNA/DNA ratio in HIV-1 and HIV-2 patients could suggest that HIV-2 indeed has a much higher propensity to establish latent infections, a trait that we found, at least in part, to be attributable to the HIV-2 Nef protein. Reported Nef-mediated effects on host cell activation thus also affect latency establishment, and HIV-1 vectors that carry different lentiviral nef genes should become key tools to develop a better understanding of the biomolecular basis of HIV-1 latency establishment.
Collapse
|
27
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
28
|
Pinzone MR, Weissman S, Pasternak AO, Zurakowski R, Migueles S, O'Doherty U. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight 2021; 6:e150794. [PMID: 34228640 PMCID: PMC8409977 DOI: 10.1172/jci.insight.150794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, naive cells have been considered inconsequential to HIV persistence. Here, we compared the contributions of naive and memory cells to the reservoirs of individuals with a spectrum of reservoir sizes and variable immunological control. We performed proviral sequencing of approximately 6000 proviruses from cellular subsets of 5 elite controllers (ECs) off antiretroviral therapy (ART) and 5 chronic progressors (CPs) on ART. The levels of naive infection were barely detectable in ECs and approximately 300-fold lower compared with those in CPs. Moreover, the ratio of infected naive to memory cells was significantly lower in ECs. Overall, the naive infection level increased as reservoir size increased, such that naive cells were a major contributor to the intact reservoir of CPs, whose reservoirs were generally very diverse. In contrast, the reservoirs of ECs were dominated by proviral clones. Critically, the fraction of proviral clones increased with cell differentiation, with naive infection predicting reservoir diversity. Longitudinal sequencing revealed that the reservoir of ECs was less dynamic compared with that of CPs. Naive cells play a critical role in HIV persistence. Their infection level predicts reservoir size and diversity. Moreover, the diminishing diversity of the reservoir as cellular subsets mature suggests that naive T cells repopulate the memory compartment and that direct infection of naive T cells occurs in vivo.
Collapse
Affiliation(s)
- Marilia R Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam, Netherlands
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Stephen Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
The active human immunodeficiency virus reservoir during antiretroviral therapy: emerging players in viral persistence. Curr Opin HIV AIDS 2021; 16:193-199. [PMID: 33973900 DOI: 10.1097/coh.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To discuss the role of CD4+ T cells with active Human immunodeficiency virus (HIV), meaning infected cells with transcriptional and/or translational viral activity during antiretroviral therapy (ART), focusing on new technologies for its detection, potential cell markers for its characterization, and evidences on the contribution of the active HIV reservoir to long-term viral persistence. RECENT FINDINGS HIV-infected cells expressing viral ribonucleic acid are systematically detected in subjects on long-term ART. In recent years, powerful new tools have provided significant insights into the nature, quantification, and identification of cells with active HIV, including the identification of new cell markers, and the presence of viral activity in specific cell populations located in different cellular and anatomical compartments. Moreover, studies on viral sequence integrity have identified cell clones with intact viral genomes and active viral transcription that could potentially persist for years. Together, new investigations support the notion that the active reservoir could represent a relevant fraction of long-term infected cells, and therefore, the study of its cell sources and mechanisms of maintenance could represent a significant advance in our understanding of viral persistence and the development of new curative strategies. SUMMARY The presence of HIV-infected cells with viral expression during ART has been traditionally overlooked for years. Based on recent investigations, this active viral reservoir could play an important role in HIV persistence.
Collapse
|
30
|
Pino M, Pereira Ribeiro S, Pagliuzza A, Ghneim K, Khan A, Ryan E, Harper JL, King CT, Welbourn S, Micci L, Aldrete S, Delman KA, Stuart T, Lowe M, Brenchley JM, Derdeyn CA, Easley K, Sekaly RP, Chomont N, Paiardini M, Marconi VC. Increased homeostatic cytokines and stability of HIV-infected memory CD4 T-cells identify individuals with suboptimal CD4 T-cell recovery on-ART. PLoS Pathog 2021; 17:e1009825. [PMID: 34449812 PMCID: PMC8397407 DOI: 10.1371/journal.ppat.1009825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/μL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/μL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Khader Ghneim
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Anum Khan
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Emily Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Colin T. King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sol Aldrete
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Keith A. Delman
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Theron Stuart
- Emory Vaccine Center, Emory University, Hope Clinic, Decatur, Georgia, United States of America
| | - Michael Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| |
Collapse
|
31
|
Provirus reactivation is impaired in HIV-1 infected individuals on treatment with dasatinib and antiretroviral therapy. Biochem Pharmacol 2021; 192:114666. [PMID: 34186065 DOI: 10.1016/j.bcp.2021.114666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
The latent viral reservoir formed by HIV-1, mainly in CD4 + T cells, is responsible for the failure of antiretroviral therapy (ART) to achieve a complete elimination of the virus in infected individuals. We previously determined that CD4 + T cells from individuals with chronic myeloid leukemia (CML) on treatment with dasatinib are resistant to HIV-1 infection ex vivo. The main mechanism for this antiviral effect is the preservation of SAMHD1 activity. In this study, we aimed to evaluate the impact of dasatinib on the viral reservoir of HIV-infected individuals with CML who were on simultaneous treatment with ART and dasatinib. Due to the low estimated incidence of HIV-1 infection and CML (1:65,000), three male individuals were recruited in Spain and Germany. These individuals had been on treatment with standard ART and dasatinib for median 1.3 years (IQR 1.3-5.3 years). Reservoir size and composition in PBMCs from these individuals was analyzed in comparison with HIV-infected individuals on triple ART regimen and undetectable viremia. The frequency of latently infected cells was reduced more than 5-fold in these individuals. The reactivation of proviruses from these cells was reduced more than 4-fold and, upon activation, SAMHD1 phosphorylation was reduced 40-fold. Plasma levels of the homeostatic cytokine IL-7 and CD4 effector subpopulations TEM and TEMRA in peripheral blood were also reduced. Therefore, treatment of HIV-infected individuals with dasatinib as adjuvant of ART could disturb the reservoir reactivation and reseeding, which might have a beneficial impact to reduce its size.
Collapse
|
32
|
Zhao S, Tsibris A. Leveraging Novel Integrated Single-Cell Analyses to Define HIV-1 Latency Reversal. Viruses 2021; 13:1197. [PMID: 34206546 PMCID: PMC8310207 DOI: 10.3390/v13071197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
While suppressive antiretroviral therapy can effectively limit HIV-1 replication and evolution, it leaves behind a residual pool of integrated viral genomes that persist in a state of reversible nonproductive infection, referred to as the HIV-1 reservoir. HIV-1 infection models were established to investigate HIV-1 latency and its reversal; recent work began to probe the dynamics of HIV-1 latency reversal at single-cell resolution. Signals that establish HIV-1 latency and govern its reactivation are complex and may not be completely resolved at the cellular and regulatory levels by the aggregated measurements of bulk cellular-sequencing methods. High-throughput single-cell technologies that characterize and quantify changes to the epigenome, transcriptome, and proteome continue to rapidly evolve. Combinations of single-cell techniques, in conjunction with novel computational approaches to analyze these data, were developed and provide an opportunity to improve the resolution of the heterogeneity that may exist in HIV-1 reactivation. In this review, we summarize the published single-cell HIV-1 transcriptomic work and explore how cutting-edge advances in single-cell techniques and integrative data-analysis tools may be leveraged to define the mechanisms that control the reversal of HIV-1 latency.
Collapse
Affiliation(s)
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA;
| |
Collapse
|
33
|
Katusiime MG, Van Zyl GU, Cotton MF, Kearney MF. HIV-1 Persistence in Children during Suppressive ART. Viruses 2021; 13:v13061134. [PMID: 34204740 PMCID: PMC8231535 DOI: 10.3390/v13061134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| | - Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service Tygerberg, Cape Town 8000, South Africa;
| | - Mark F. Cotton
- Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Center for Research with Ubuntu, Stellenbosch University, Cape Town 7505, South Africa;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
34
|
Epigenetic Mechanisms of HIV-1 Persistence. Vaccines (Basel) 2021; 9:vaccines9050514. [PMID: 34067608 PMCID: PMC8156729 DOI: 10.3390/vaccines9050514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.
Collapse
|
35
|
Abstract
HIV-1 integrates its genome into the DNA of host cells. Consequently, HIV-1 genomes are copied with the host cell DNA during cellular division. Little is known about the emergence and persistence of human immunodeficiency virus (HIV)-infected T-cell clones in perinatally infected children. We analyzed peripheral blood mononuclear cells (PBMCs) for clonal expansion in 11 children who initiated antiretroviral therapy (ART) between 1.8 and 17.4 months of age and with viremia suppressed for 6 to 9 years. We obtained 8,662 HIV type 1 (HIV-1) integration sites from pre-ART samples and 1,861 sites from on-ART samples. Expanded clones of infected cells were detected pre-ART in 10/11 children. In 8 children, infected cell clones detected pre-ART persisted for 6 to 9 years on ART. A comparison of integration sites in the samples obtained on ART with healthy donor PBMCs infected ex vivo showed selection for cells with proviruses integrated in BACH2 and STAT5B. Our analyses indicate that, despite marked differences in T-cell composition and dynamics between children and adults, HIV-infected cell clones are established early in children, persist for up to 9 years on ART, and can be driven by proviral integration in proto-oncogenes.
Collapse
|
36
|
B Lymphocytes, but Not Dendritic Cells, Efficiently HIV-1 Trans Infect Naive CD4 + T Cells: Implications for the Viral Reservoir. mBio 2021; 12:mBio.02998-20. [PMID: 33688006 PMCID: PMC8092276 DOI: 10.1128/mbio.02998-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insight into the establishment and maintenance of HIV-1 infection in resting CD4+ T cell subsets is critical for the development of therapeutics targeting the HIV-1 reservoir. Although the frequency of HIV-1 infection, as quantified by the frequency of HIV-1 DNA, is lower in CD4+ naive T cells (TN) than in the memory T cell subsets, recent studies have shown that TN harbor a large pool of replication-competent virus. Interestingly, however, TN are highly resistant to direct (cis) HIV-1 infection in vitro, in particular to R5-tropic HIV-1, as TN do not express CCR5. In this study, we investigated whether TN could be efficiently HIV-1 trans infected by professional antigen-presenting B lymphocytes and myeloid dendritic cells (DC) in the absence of global T cell activation. We found that B cells, but not DC, have a unique ability to efficiently trans infect TNin vitro In contrast, both B cells and DC mediated HIV-1 trans infection of memory and activated CD4+ T cells. Moreover, we found that TN isolated from HIV-1-infected nonprogressors (NP) harbor significantly disproportionately lower levels of HIV-1 DNA than TN isolated from progressors. This is consistent with our previous finding that antigen-presenting cells (APC) derived from NP do not efficiently trans infect CD4+ T cells due to alterations in APC cholesterol metabolism and cell membrane lipid raft organization. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression.IMPORTANCE The latent human immunodeficiency virus type 1 (HIV-1) reservoir in persons on antiretroviral therapy (ART) represents a major barrier to a cure. Although most studies have focused on the HIV-1 reservoir in the memory T cell subset, replication-competent HIV-1 has been isolated from TN, and CCR5-tropic HIV-1 has been recovered from CCR5neg TN from ART-suppressed HIV-1-infected individuals. In this study, we showed that CCR5neg TN are efficiently trans infected with R5-tropic HIV-1 by B lymphocytes, but not by myeloid dendritic cells. Furthermore, we found that TN isolated from NP harbor no or significantly fewer copies of HIV-1 DNA than those from ART-suppressed progressors. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression. Understanding the establishment and maintenance of the HIV-1 latent reservoir is fundamental for the design of effective treatments for viral eradication.
Collapse
|
37
|
Adams P, Fievez V, Schober R, Amand M, Iserentant G, Rutsaert S, Dessilly G, Vanham G, Hedin F, Cosma A, Moutschen M, Vandekerckhove L, Seguin-Devaux C. CD32 +CD4 + memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice. iScience 2021; 24:101881. [PMID: 33364576 PMCID: PMC7753142 DOI: 10.1016/j.isci.2020.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Collapse
Affiliation(s)
- Philipp Adams
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Virginie Fievez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Mathieu Amand
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
| | - Guido Vanham
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Fanny Hedin
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Antonio Cosma
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège 4000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| |
Collapse
|
38
|
Bacchus-Souffan C, Fitch M, Symons J, Abdel-Mohsen M, Reeves DB, Hoh R, Stone M, Hiatt J, Kim P, Chopra A, Ahn H, York VA, Cameron DL, Hecht FM, Martin JN, Yukl SA, Mallal S, Cameron PU, Deeks SG, Schiffer JT, Lewin SR, Hellerstein MK, McCune JM, Hunt PW. Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART. PLoS Pathog 2021; 17:e1009214. [PMID: 33465157 PMCID: PMC7846027 DOI: 10.1371/journal.ppat.1009214] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates.
Collapse
Affiliation(s)
- Charline Bacchus-Souffan
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jori Symons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute and Department of Laboratory Medicine at the University of California, San Francisco, California, United States of America
| | - Joseph Hiatt
- Medical Scientist Training Program & Biomedical Sciences Graduate Program, University of California, San Francisco, California, United States of America
| | - Peggy Kim
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Haelee Ahn
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Vanessa A. York
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Daniel L. Cameron
- Division of Bioinformatics, Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederick M. Hecht
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Steven A. Yukl
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
- Infectious Diseases Section, Medical Service, San Francisco Veterans Affairs Medical Center, California, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul U. Cameron
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph M. McCune
- Global Health Innovative Technology Solutions/HIV Frontiers, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, Siliciano RF, Schoof N, Horner A, Mavigner M, Liang S, Vanderford T, Sass J, Chan C, Berendam SJ, Bar KJ, Shaw GM, Silvestri G, Fouda GG, Permar SR, Chahroudi A. Simian-Human Immunodeficiency Virus SHIV.C.CH505 Persistence in ART-Suppressed Infant Macaques Is Characterized by Elevated SHIV RNA in the Gut and a High Abundance of Intact SHIV DNA in Naive CD4 + T Cells. J Virol 2020; 95:e01669-20. [PMID: 33087463 PMCID: PMC7944446 DOI: 10.1128/jvi.01669-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.
Collapse
Affiliation(s)
| | - Katherine M Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gloria Mensah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ferzan Uddin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Liang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Julian Sass
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Stella J Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
41
|
French AJ, Natesampillai S, Krogman A, Correia C, Peterson KL, Alto A, Chandrasekar AP, Misra A, Li Y, Kaufmann SH, Badley AD, Cummins NW. Reactivating latent HIV with PKC agonists induces resistance to apoptosis and is associated with phosphorylation and activation of BCL2. PLoS Pathog 2020; 16:e1008906. [PMID: 33075109 PMCID: PMC7595626 DOI: 10.1371/journal.ppat.1008906] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/29/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eradication of HIV-1 by the "kick and kill" strategy requires reactivation of latent virus to cause death of infected cells by either HIV-induced or immune-mediated apoptosis. To date this strategy has been unsuccessful, possibly due to insufficient cell death in reactivated cells to effectively reduce HIV-1 reservoir size. As a possible cause for this cell death resistance, we examined whether leading latency reversal agents (LRAs) affected apoptosis sensitivity of CD4 T cells. Multiple LRAs of different classes inhibited apoptosis in CD4 T cells. Protein kinase C (PKC) agonists bryostatin-1 and prostratin induced phosphorylation and enhanced neutralizing capability of the anti-apoptotic protein BCL2 in a PKC-dependent manner, leading to resistance to apoptosis induced by both intrinsic and extrinsic death stimuli. Furthermore, HIV-1 producing CD4 T cells expressed more BCL2 than uninfected cells, both in vivo and after ex vivo reactivation. Therefore, activation of BCL2 likely contributes to HIV-1 persistence after latency reversal with PKC agonists. The effects of LRAs on apoptosis sensitivity should be considered in designing HIV cure strategies predicated upon the "kick and kill" paradigm.
Collapse
Affiliation(s)
- Andrea J. French
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ashton Krogman
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin L. Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aswath P. Chandrasekar
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
42
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
44
|
Olwenyi OA, Acharya A, Routhu NK, Pierzchalski K, Jones JW, Kane MA, Sidell N, Mohan M, Byrareddy SN. Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells. Cells 2020; 9:E2076. [PMID: 32932813 PMCID: PMC7565696 DOI: 10.3390/cells9092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Institute, San Antonio, TX 78227, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
45
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
46
|
Resop RS, Fromentin R, Newman D, Rigsby H, Dubrovsky L, Bukrinsky M, Chomont N, Bosque A. Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathog 2020; 16:e1008679. [PMID: 32790802 PMCID: PMC7425850 DOI: 10.1371/journal.ppat.1008679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Antiretroviral drugs that target various stages of the Human Immunodeficiency Virus (HIV) life cycle have been effective in curbing the AIDS epidemic. However, drug resistance, off-target effects of antiretroviral therapy (ART), and varying efficacy in prevention underscore the need to develop novel and alternative therapeutics. In this study, we investigated whether targeting the signaling molecule Sphingosine-1-phosphate (S1P) would inhibit HIV-1 infection and generation of the latent reservoir in primary CD4 T cells. We show that FTY720 (Fingolimod), an FDA-approved functional antagonist of S1P receptors, blocks cell-free and cell-to-cell transmission of HIV and consequently reduces detectable latent virus. Mechanistically, FTY720 impacts the HIV-1 life cycle at two levels. Firstly, FTY720 reduces the surface density of CD4, thereby inhibiting viral binding and fusion. Secondly, FTY720 decreases the phosphorylation of the innate HIV restriction factor SAMHD1 which is associated with reduced levels of total and integrated HIV, while reducing the expression of Cyclin D3. In conclusion, targeting the S1P pathway with FTY720 could be a novel strategy to inhibit HIV replication and reduce the seeding of the latent reservoir.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Daniel Newman
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Hawley Rigsby
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
47
|
Gartner MJ, Gorry PR, Tumpach C, Zhou J, Dantanarayana A, Chang JJ, Angelovich TA, Ellenberg P, Laumaea AE, Nonyane M, Moore PL, Lewin SR, Churchill MJ, Flynn JK, Roche M. Longitudinal analysis of subtype C envelope tropism for memory CD4 + T cell subsets over the first 3 years of untreated HIV-1 infection. Retrovirology 2020; 17:24. [PMID: 32762760 PMCID: PMC7409430 DOI: 10.1186/s12977-020-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. Results A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. Conclusions CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - J Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Paula Ellenberg
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Annemarie E Laumaea
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia. .,School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Antar AA, Jenike KM, Jang S, Rigau DN, Reeves DB, Hoh R, Krone MR, Keruly JC, Moore RD, Schiffer JT, Nonyane BA, Hecht FM, Deeks SG, Siliciano JD, Ho YC, Siliciano RF. Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest 2020; 130:3543-3559. [PMID: 32191639 PMCID: PMC7324206 DOI: 10.1172/jci135953] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proliferation of CD4+ T cells harboring HIV-1 proviruses is a major contributor to viral persistence in people on antiretroviral therapy (ART). To determine whether differential rates of clonal proliferation or HIV-1-specific cytotoxic T lymphocyte (CTL) pressure shape the provirus landscape, we performed an intact proviral DNA assay (IPDA) and obtained 661 near-full-length provirus sequences from 8 individuals with suppressed viral loads on ART at time points 7 years apart. We observed slow decay of intact proviruses but no changes in the proportions of various types of defective proviruses. The proportion of intact proviruses in expanded clones was similar to that of defective proviruses in clones. Intact proviruses observed in clones did not have more escaped CTL epitopes than intact proviruses observed as singlets. Concordantly, total proviruses at later time points or observed in clones were not enriched in escaped or unrecognized epitopes. Three individuals with natural control of HIV-1 infection (controllers) on ART, included because controllers have strong HIV-1-specific CTL responses, had a smaller proportion of intact proviruses but a distribution of defective provirus types and escaped or unrecognized epitopes similar to that of the other individuals. This work suggests that CTL selection does not significantly check clonal proliferation of infected cells or greatly alter the provirus landscape in people on ART.
Collapse
Affiliation(s)
- Annukka A.R. Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katharine M. Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sunyoung Jang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danielle N. Rigau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Melissa R. Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Jeanne C. Keruly
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bareng A.S. Nonyane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Venanzi Rullo E, Cannon L, Pinzone MR, Ceccarelli M, Nunnari G, O'Doherty U. Genetic Evidence That Naive T Cells Can Contribute Significantly to the Human Immunodeficiency Virus Intact Reservoir: Time to Re-evaluate Their Role. Clin Infect Dis 2020; 69:2236-2237. [PMID: 31063189 DOI: 10.1093/cid/ciz378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Italy
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
50
|
Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV, Gay CL, Goonetilleke N, Joseph SB, Swanstrom R, Turner AMW, Wahl A. Curing HIV: Seeking to Target and Clear Persistent Infection. Cell 2020; 181:189-206. [PMID: 32220311 PMCID: PMC7896558 DOI: 10.1016/j.cell.2020.03.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC 27599, USA.
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah B Joseph
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronald Swanstrom
- Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|