1
|
Hachimi A, El-Mansoury B, Merzouki M. Incidence, pathophysiology, risk factors, histopathology, and outcomes of COVID-19-induced acute kidney injury: a narrative review. Microb Pathog 2025:107360. [PMID: 39894232 DOI: 10.1016/j.micpath.2025.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to a significant burden on global healthcare systems. COVID-19-induced acute kidney injury (AKI) is among one of the complications, that has emerged as a critical and frequent condition in COVID-19 patients . This AKI among COVID-19 patients is associated with poor outcomes, and high mortality rates, especially in those with severe AKI or requiring renal replacement therapy. COVID-19-induced AKI represents a significant complication with complex pathophysiology and multifactorial risk factors. Indeed, several pathophysiological mechanisms, including direct viral invasion of renal cells, systemic inflammation, endothelial and thrombotic abnormalities as well as nephrotoxic drugs and rhabdomyolysis are believed to underlie this condition. Moreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include acute tubular necrosis, glomerular injury, and the presence of viral particles within renal tissue and urine. Identified risk factors for developing AKI vary among studies, depending on regions, underlying conditions, and the severity of the diseaseMoreover, histopathological and immunohistopathological findings commonly observed in postmortem studies include show acute tubular necrosis, glomerular injury, and viral particles within renal tissue and urine. While, identified risk factors for developing AKI vary among studies, according to regions, underlying conditions, and the gravity of the disease. This narrative review aims to synthesize current knowledge on the incidence, pathophysiology, risk factors, histopathology, and outcomes of AKI induced by COVID-19.
Collapse
Affiliation(s)
- Abdelhamid Hachimi
- Medical ICU, Mohammed VI(th) University Hospital of Marrakech, Marrakech, Morocco; Morpho-Science Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Life Sciences Department, Bioengineering laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Bilal El-Mansoury
- Nutritional Physiopathologies, Neuroscience and Toxicology Team, Laboratory of Anthropogenic, Biotechnology and Health, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Merzouki
- Life Sciences Department, Bioengineering laboratory, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| |
Collapse
|
2
|
Mahalingasivam V, Faucon AL, Sjölander A, Bosi A, González-Ortiz A, Lando S, Fu EL, Nitsch D, Bruchfeld A, Evans M, Wing K, Mansfield KE, Tomlinson L, Carrero JJ. Kidney Function Decline After COVID-19 Infection. JAMA Netw Open 2024; 7:e2450014. [PMID: 39724377 DOI: 10.1001/jamanetworkopen.2024.50014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Importance COVID-19 infection has been associated with acute kidney injury. However, its possible association with long-term kidney function is not well understood. Objective To investigate whether kidney function decline accelerated after COVID-19 compared with after other respiratory tract infections. Design, Setting, and Participants This cohort study used linked data from the Stockholm Creatinine Measurements (SCREAM) Project between February 1, 2018, and January 1, 2022, in Stockholm, Sweden. All hospitalized and nonhospitalized adults in the database with at least 1 estimated glomerular filtration rate (eGFR) measurement in the 2 years prior to a COVID-19 positive test result or pneumonia diagnosis were selected. Statistical analyses were conducted between June 2023 and October 2024. Exposure COVID-19 and pneumonia (including influenza). Main Outcomes and Measures Mean annual change in eGFR after COVID-19 and after pneumonia was calculated with a linear regression model. Results The COVID-19 cohort comprised 134 565 individuals (74 819 females [55.6%]; median [IQR] age, 51 [37-64] years). The pneumonia cohort consisted of 35 987 individuals (19 359 females [53.8%]; median [IQR] age, 71 [56-81] years). The median (IQR) baseline eGFR was 94 (79-107) mL/min/1.73m2 for the COVID-19 cohort and 79 (61-92) mL/min/1.73m2 for the pneumonia cohort. After adjustment for covariates, both infections demonstrated accelerated annual eGFR decline, with greater magnitude of decline after COVID-19 (3.4% [95% CI, 3.2%-3.5%] after COVID-19; 2.3% [95% CI, 2.1%-2.5%] after pneumonia). This decline was more severe among individuals hospitalized for COVID-19 (5.4%; 95% CI, 5.2%-5.6%) but remained similar among those hospitalized for pneumonia. Conclusions and Relevance This cohort study found an association between COVID-19 and accelerated decline in kidney function, particularly after hospitalization, compared with pneumonia. People who were hospitalized for COVID-19 should receive closer monitoring of kidney function to ensure early diagnosis and optimized management of chronic kidney disease to effectively prevent complications and further decline.
Collapse
Affiliation(s)
- Viyaasan Mahalingasivam
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Nephrology and Transplantation, Barts Health National Health Service Trust, London, United Kingdom
| | - Anne-Laure Faucon
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Epidemiology, Institut National de la Santé et de la Recherche Médicale U1018, Paris-Saclay University, Villejuif, France
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Bosi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ailema González-Ortiz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Translational Research Center, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Stefania Lando
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Edouard L Fu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorothea Nitsch
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Kidney Association, Bristol, United Kingdom
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Science, Linköping University, Linköping, Sweden
- Unit of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Evans
- Unit of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Unit of Renal Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kevin Wing
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Public Health, School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn E Mansfield
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laurie Tomlinson
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Juan-Jesús Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Beurton A, Kooistra EJ, De Jong A, Schiffl H, Jourdain M, Garcia B, Vimpère D, Jaber S, Pickkers P, Papazian L. Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review. Curr Obes Rep 2024; 13:545-563. [PMID: 38573465 DOI: 10.1007/s13679-024-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has infected nearly 800 million people and caused almost seven million deaths. Obesity was quickly identified as a risk factor for severe COVID-19, ICU admission, acute respiratory distress syndrome, organ support including mechanical ventilation and prolonged length of stay. The relationship among obesity; COVID-19; and respiratory, thrombotic, and renal complications upon admission to the ICU is unclear. RECENT FINDINGS The predominant effect of a hyperinflammatory status or a cytokine storm has been suggested in patients with obesity, but more recent studies have challenged this hypothesis. Numerous studies have also shown increased mortality among critically ill patients with obesity and COVID-19, casting doubt on the obesity paradox, with survival advantages with overweight and mild obesity being reported in other ICU syndromes. Finally, it is now clear that the increase in the global prevalence of overweight and obesity is a major public health issue that must be accompanied by a transformation of our ICUs, both in terms of equipment and human resources. Research must also focus more on these patients to improve their care. In this review, we focused on the central role of obesity in critically ill patients during this pandemic, highlighting its specificities during their stay in the ICU, identifying the lessons we have learned, and identifying areas for future research as well as the future challenges for ICU activity.
Collapse
Affiliation(s)
- Alexandra Beurton
- Department of Intensive Care, Hôpital Tenon, APHP, Paris, France.
- UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France.
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Audrey De Jong
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Helmut Schiffl
- Division of Nephrology, Department of Internal Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Mercedes Jourdain
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Bruno Garcia
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Damien Vimpère
- Anesthesia and Critical Care Department, Hôpital Necker, APHP, Paris, France
| | - Samir Jaber
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Laurent Papazian
- Intensive Care Unit, Centre Hospitalier de Bastia, Bastia, Corsica, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Li Y, Gong Y, Xu G. New insights into kidney disease after COVID-19 infection and vaccination: histopathological and clinical findings. QJM 2024; 117:317-337. [PMID: 37402613 DOI: 10.1093/qjmed/hcad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
In addition to its pulmonary effects, coronavirus disease 2019 (COVID-19) has also been found to cause acute kidney injury (AKI), which has been linked to high mortality rates. In this review, we collected data from 20 clinical studies on post-COVID-19-related AKI and 97 cases of AKI associated with COVID-19 vaccination. Acute tubular injury was by far the most common finding in the kidneys of patients with COVID-19-related AKI. Among patients hospitalized for COVID-19, 34.0% developed AKI, of which 59.0%, 19.1% and 21.9% were Stages 1, 2 and 3, respectively. Though kidney disease and other adverse effects after COVID-19 vaccination overall appear rare, case reports have accumulated suggesting that COVID-19 vaccination may be associated with a risk of subsequent kidney disease. Among the patients with post-vaccination AKI, the most common pathologic findings include crescentic glomerulonephritis (29.9%), acute tubular injury (23.7%), IgA nephropathy (18.6%), antineutrophil cytoplasmic autoantibody-associated vasculitis (17.5%), minimal change disease (17.5%) and thrombotic microangiopathy (10.3%). It is important to note that crescentic glomerulonephritis appears to be more prevalent in patients who have newly diagnosed renal involvement. The proportions of patients with AKI Stages 1, 2 and 3 after COVID-19 vaccination in case reports were 30.9%, 22.7% and 46.4%, respectively. In general, clinical cases of new-onset and recurrent nephropathy with AKI after COVID-19 vaccination have a positive prognosis. In this article, we also explore the underlying pathophysiological mechanisms of AKI associated with COVID-19 infection and its vaccination by describing key renal morphological and clinical features and prognostic findings.
Collapse
Affiliation(s)
- Yebei Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| | - Yan Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| |
Collapse
|
5
|
Bernal C, How-Volkman C, Spencer M, El-Shamy A, Mohieldin AM. The Role of Extracellular Vesicles in SARS-CoV-2-Induced Acute Kidney Injury: An Overview. Life (Basel) 2024; 14:163. [PMID: 38398672 PMCID: PMC10890680 DOI: 10.3390/life14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions worldwide since its outbreak in the winter of 2019. While extensive research has primarily focused on the deleterious respiratory effects of SARS-CoV-2 in recent years, its pan-tropism has become evident. Among the vital organs susceptible to SARS-CoV-2 infection is the kidney. Post SARS-CoV-2 infection, patients have developed coronavirus disease 19 (COVID-19), with reported incidences of COVID-19 patients developing acute kidney injury (AKI). Given COVID-19's multisystemic manifestation, our review focuses on the impact of SARS-CoV-2 infection within the renal system with an emphasis on the current hypotheses regarding the role of extracellular vesicles (EVs) in SARS-CoV-2 pathogenesis. Emerging studies have shown that SARS-CoV-2 can directly infect the kidney, whereas EVs are involved in the spreading of SARS-CoV-2 particles to other neighboring cells. Once the viral particles are within the kidney system, many proinflammatory signaling pathways are shown to be activated, resulting in AKI. Hence, clinical investigation of urinary proinflammatory components and total urinary extracellular vesicles (uEVs) with viral particles have been used to assess the severity of AKI in patients with COVID-19. Remarkedly, new emerging studies have shown the potential of mesenchymal stem cell-derived EVs (MSC-EVs) and ACE2-containing EVs as a hopeful therapeutic tool to inhibit SARS-CoV-2 RNA replication and block viral entry, respectively. Overall, understanding EVs' physiological role is crucial and hopefully will rejuvenate our therapeutic approach towards COVID-19 patients with AKI.
Collapse
Affiliation(s)
- Carter Bernal
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Christiane How-Volkman
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Madison Spencer
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Ashraf M. Mohieldin
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
6
|
Kim SG, Han CH, Yu SB, Lee H, Kwon S, Kim Y, Lee J, Kim DK, Oh YK, Lim CS, Kim YS, Kim BG, Lee JP. Trajectory of AKI and hospital mortality among patients with COVID-19. Ren Fail 2023; 45:2177086. [PMID: 36876658 PMCID: PMC10013401 DOI: 10.1080/0886022x.2023.2177086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) in COVID-19 patients is associated with poor prognosis. Characterization of AKI by timing and trajectory and early prediction of AKI progression is required for better preventive management and the prediction of patient outcomes. METHODS A total of 858 patients who were hospitalized due to coronavirus disease 2019 (COVID-19) were retrospectively enrolled from December 2020 to August 2021. The occurrence of AKI was evaluated throughout hospitalization. The hazard ratios (HRs) of mortality outcomes according to the trajectory of AKI were measured using Cox regression models after adjustment for multiple variables. RESULTS Among 858 patients, 226 (26.3%) presented AKI at admission, and 44 (5.1%) developed AKI during hospitalization. Patients with AKI at admission or hospital-acquired AKI had a higher risk of mortality than those without AKI, with HRs of 9.87 (2.81-34.67) and 13.74 (3.57-52.84), respectively. Of 226 patients with AKI at admission, 104 (46.0%) recovered within 48 hr, 83 (36.7%) had AKI beyond 48 hr and recovered in 7 days, and 39 (17.3%) showed no recovery from AKI on Day 7. Delayed recovery and persistent AKI were significantly associated with an increased risk of mortality, with HRs of 4.39 (1.06-18.24) and 24.33 (7.10-83.36), respectively. CONCLUSIONS The onset and progression of AKI was significantly associated with in-hospital mortality in patients with COVID-19. A thorough observation of the recovery trajectory of early AKI after infection is necessary.
Collapse
Affiliation(s)
- Seong Geun Kim
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chung Hee Han
- Department of Obstetrics and Gynecology, Bagaehospital, Pyeongtaek, Gyunggi-Do, Republic of Korea
| | - Sung Bong Yu
- Department of Surgery, Bagaehospital, Pyeongtaek, Gyunggi-Do, Republic of Korea
| | - Hyeseung Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soie Kwon
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yerim Kim
- Department of Internal Medicine-Nephrology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung Gun Kim
- Department of Orthopedic Surgery, Bagaehospital, Pyeongtaek, Gyunggi-Do, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine-Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Carriazo S, Abasheva D, Duarte D, Ortiz A, Sanchez-Niño MD. SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies. Int J Mol Sci 2023; 24:16078. [PMID: 38003268 PMCID: PMC10671056 DOI: 10.3390/ijms242216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections.
Collapse
Affiliation(s)
- Sol Carriazo
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
- RICORS2040, 28049 Madrid, Spain;
| | - Daria Abasheva
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Deborah Duarte
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Shan J, Dang MH, Javaid MM, Kanaan Z, Ierino F. Delayed acute tubular necrosis following COVID-19. Intern Med J 2023; 53:1509-1510. [PMID: 37599227 DOI: 10.1111/imj.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/31/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Jocelyn Shan
- Nephrology Department, St Vincent's Hospital, Melbourne, Victoria, Australia
- Woodlands Health, Singapore
| | - Minh H Dang
- Nephrology Department, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Muhammad M Javaid
- Woodlands Health, Singapore
- Deakin University, Melbourne, Victoria, Australia
| | - Zakariya Kanaan
- Nephrology Department, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Francesco Ierino
- Nephrology Department, St Vincent's Hospital, Melbourne, Victoria, Australia
- Melbourne University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Noor F, Ashfaq UA, Bakar A, ul Haq W, Allemailem KS, Alharbi BF, Al-Megrin WAI, Tahir ul Qamar M. Discovering common pathogenic processes between COVID-19 and HFRS by integrating RNA-seq differential expression analysis with machine learning. Front Microbiol 2023; 14:1175844. [PMID: 37234545 PMCID: PMC10208410 DOI: 10.3389/fmicb.2023.1175844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic virus spillover in human hosts including outbreaks of Hantavirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) imposes a serious impact on the quality of life of patients. Recent studies provide a shred of evidence that patients with Hantavirus-caused hemorrhagic fever with renal syndrome (HFRS) are at risk of contracting SARS-CoV-2. Both RNA viruses shared a higher degree of clinical features similarity including dry cough, high fever, shortness of breath, and certain reported cases with multiple organ failure. However, there is currently no validated treatment option to tackle this global concern. This study is attributed to the identification of common genes and perturbed pathways by combining differential expression analysis with bioinformatics and machine learning approaches. Initially, the transcriptomic data of hantavirus-infected peripheral blood mononuclear cells (PBMCs) and SARS-CoV-2 infected PBMCs were analyzed through differential gene expression analysis for identification of common differentially expressed genes (DEGs). The functional annotation by enrichment analysis of common genes demonstrated immune and inflammatory response biological processes enriched by DEGs. The protein-protein interaction (PPI) network of DEGs was then constructed and six genes named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and CDKN1A were identified as the commonly dysregulated hub genes among HFRS and COVID-19. Later, the classification performance of these hub genes were evaluated using Random Forest (RF), Poisson Linear Discriminant Analysis (PLDA), Voom-based Nearest Shrunken Centroids (voomNSC), and Support Vector Machine (SVM) classifiers which demonstrated accuracy >70%, suggesting the biomarker potential of the hub genes. To our knowledge, this is the first study that unveiled biological processes and pathways commonly dysregulated in HFRS and COVID-19, which could be in the next future used for the design of personalized treatment to prevent the linked attacks of COVID-19 and HFRS.
Collapse
Affiliation(s)
- Fatima Noor
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Waqar ul Haq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Cuarental L, Ribagorda M, Ceballos MI, Pintor-Chocano A, Carriazo SM, Dopazo A, Vazquez E, Suarez-Alvarez B, Cannata-Ortiz P, Sanz AB, Ortiz A, Sanchez-Niño MD. The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury. Kidney Int 2023; 103:686-701. [PMID: 36565807 DOI: 10.1016/j.kint.2022.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.
Collapse
Affiliation(s)
- Leticia Cuarental
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Sol M Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Farmacología, Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
11
|
Lumlertgul N, Baker E, Pearson E, Dalrymple KV, Pan J, Jheeta A, Weerapolchai K, Wang Y, Leach R, Barrett NA, Ostermann M. Changing epidemiology of acute kidney injury in critically ill patients with COVID-19: a prospective cohort. Ann Intensive Care 2022; 12:118. [PMID: 36575315 PMCID: PMC9794481 DOI: 10.1186/s13613-022-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in critically ill patients with coronavirus disease-19 (COVID-19). We aimed to explore the changes in AKI epidemiology between the first and the second COVID wave in the United Kingdom (UK). METHODS This was an observational study of critically ill adult patients with COVID-19 in an expanded tertiary care intensive care unit (ICU) in London, UK. Baseline characteristics, organ support, COVID-19 treatments, and patient and kidney outcomes up to 90 days after discharge from hospital were compared. RESULTS A total of 772 patients were included in the final analysis (68% male, mean age 56 ± 13.6). Compared with wave 1, patients in wave 2 were older, had higher body mass index and clinical frailty score, but lower baseline serum creatinine and C-reactive protein (CRP). The proportion of patients receiving invasive mechanical ventilation (MV) on ICU admission was lower in wave 2 (61% vs 80%; p < 0.001). AKI incidence within 14 days of ICU admission was 76% in wave 1 and 51% in wave 2 (p < 0.001); in wave 1, 32% received KRT compared with 13% in wave 2 (p < 0.001). Patients in wave 2 had significantly lower daily cumulative fluid balance (FB) than in wave 1. Fewer patients were dialysis dependent at 90 days in wave 2 (1% vs. 4%; p < 0.001). CONCLUSIONS In critically ill adult patients admitted to ICU with COVID-19, the risk of AKI and receipt of KRT significantly declined in the second wave. The trend was associated with less MV, lower PEEP and lower cumulative FB. TRIAL REGISTRATION NCT04445259.
Collapse
Affiliation(s)
- Nuttha Lumlertgul
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK ,grid.411628.80000 0000 9758 8584Division of Nephrology and Excellence Centre for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Centre of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eleanor Baker
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Emma Pearson
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Kathryn V. Dalrymple
- grid.13097.3c0000 0001 2322 6764Department of Population Health Sciences, King’s College London, London, UK
| | - Jacqueline Pan
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Anup Jheeta
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Kittisak Weerapolchai
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK ,grid.420545.20000 0004 0489 3985Department of Urology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Yanzhong Wang
- grid.13097.3c0000 0001 2322 6764Department of Population Health Sciences, King’s College London, London, UK
| | - Richard Leach
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Nicholas A. Barrett
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Marlies Ostermann
- grid.425213.3Department of Critical Care, King’s College, Guy’s & St Thomas’ Hospital, NHS Foundation Trust, 249 Westminster Bridge Road, London, SE1 7EH UK
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW While it is now widely established acute kidney injury (AKI) is a common and important complication of coronavirus disease (COVID-19) disease, there is marked variability in its reported incidence and outcomes. This narrative review provides a mid-2022 summary of the latest epidemiological evidence on AKI in COVID-19. RECENT FINDINGS Large observational studies and meta-analyses report an AKI incidence of 28-34% in all inpatients and 46-77% in intensive care unit (ICU). The incidence of more severe AKI requiring renal replacement therapy (RRT) in ICU appears to have declined over time, in data from England and Wales RRT use declined from 26% at the start of the pandemic to 14% in 2022. The majority of survivors apparently recover their kidney function by hospital discharge; however, these individuals appear to remain at increased risk of future AKI, estimated glomerular filtration rate (eGFR) decline and chronic kidney disease. Importantly even in the absence of overt AKI a significant proportion of survivors of COVID-19 hospitalisation had reduced eGFR on follow-up. SUMMARY This review summarises the epidemiology, risk factors, outcomes and treatment of COVID-19-associated AKI across the global pandemic. In particular the long-term impact of COVID-19 disease on kidney health is uncertain and requires further characterisation.
Collapse
|
13
|
Rostami Z, Mastrangelo G, Einollahi B, Nemati E, Shafiee S, Ebrahimi M, Javanbakht M, Saadat SH, Amini M, Einollahi Z, Beyram B, Cegolon L. A Prospective Study on Risk Factors for Acute Kidney Injury and All-Cause Mortality in Hospitalized COVID-19 Patients From Tehran (Iran). Front Immunol 2022; 13:874426. [PMID: 35928822 PMCID: PMC9345117 DOI: 10.3389/fimmu.2022.874426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023] Open
Abstract
Background Several reports suggested that acute kidney injury (AKI) is a relatively common occurrence in hospitalized COVID-19 patients, but its prevalence is inconsistently reported across different populations. Moreover, it is unknown whether AKI results from a direct infection of the kidney by SARS-CoV-2 or it is a consequence of the physiologic disturbances and therapies used to treat COVID-19. We aimed to estimate the prevalence of AKI since it varies by geographical settings, time periods, and populations studied and to investigate whether clinical information and laboratory findings collected at hospital admission might influence AKI incidence (and mortality) in a particular point in time during hospitalization for COVID-19. Methods Herein we conducted a prospective longitudinal study investigating the prevalence of AKI and associated factors in 997 COVID-19 patients admitted to the Baqiyatallah general hospital of Tehran (Iran), collecting both clinical information and several dates (of: birth; hospital admission; AKI onset; ICU admission; hospital discharge; death). In order to examine how the clinical factors influenced AKI incidence and all-cause mortality during hospitalization, survival analysis using the Cox proportional-hazard models was adopted. Two separate multiple Cox regression models were fitted for each outcome (AKI and death). Results In this group of hospitalized COVID-19 patients, the prevalence of AKI was 28.5% and the mortality rate was 19.3%. AKI incidence was significantly enhanced by diabetes, hyperkalemia, higher levels of WBC count, and blood urea nitrogen (BUN). COVID-19 patients more likely to die over the course of their hospitalization were those presenting a joint association between ICU admission with either severe COVID-19 or even mild/moderate COVID-19, hypokalemia, and higher levels of BUN, WBC, and LDH measured at hospital admission. Diabetes and comorbidities did not increase the mortality risk among these hospitalized COVID-19 patients. Conclusions Since the majority of patients developed AKI after ICU referral and 40% of them were admitted to ICU within 2 days since hospital admission, these patients may have been already in critical clinical conditions at admission, despite being affected by a mild/moderate form of COVID-19, suggesting the need of early monitoring of these patients for the onset of eventual systemic complications.
Collapse
Affiliation(s)
- Zohreh Rostami
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Padua, Italy
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eghlim Nemati
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- School of Medicine, Shahid Beshest University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrahimi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Luca Cegolon, ;; Mohammad Javanbakht,
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Manouchehr Amini
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Einollahi
- Scholl of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Beyram
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Public Health Department, University Health Agency Giuliano-Isontina (ASUGI), Trieste, Italy
- *Correspondence: Luca Cegolon, ;; Mohammad Javanbakht,
| |
Collapse
|
14
|
Theofilis P, Vordoni A, Kalaitzidis RG. COVID-19 and Kidney Disease: A Clinical Perspective. Curr Vasc Pharmacol 2022; 20:321-325. [PMID: 35570566 DOI: 10.2174/1570161120666220513103007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome Coronavirus- 2 (SARS-CoV-2), has caused a global pandemic with high morbidity and mortality. The presence of several comorbidities has been associated with a worse prognosis, with chronic kidney disease being a critical risk factor. Regarding COVID-19 complications, other than classical pneumonia and thromboembolism, acute kidney injury (AKI) is highly prevalent and represents a poor prognostic indicator linked to increased disease severity and mortality. Its pathophysiology is multifactorial, revolving around inflammation, endothelial dysfunction, and activation of coagulation, while the direct viral insult of the kidney remains a matter of controversy. Indirectly, COVID-19 AKI may stem from sepsis, volume depletion, and administration of nephrotoxic agents, among others. Several markers have been proposed for the early detection of COVID-19 AKI, including blood and urinary inflammatory and kidney injury biomarkers, while urinary SARS-CoV-2 load may also be an early prognostic sign. Concerning renal replacement therapy (RRT), general principles apply to COVID-19 AKI, but sudden RRT surges may mandate adjustments in resources. Following an episode of COVID-19 AKI, there is a gradual recovery of kidney function, with pre-existing renal impairment and high serum creatinine at discharge being associated with kidney disease progression and long-term dialysis dependence. Finally, kidney transplant recipients represent a special patient category with increased susceptibility to COVID- 19 and subsequent high risk of severe disease progression. Rates of mortality, AKI, and graft rejection are significantly elevated in the presence of COVID-19, highlighting the need for prevention and careful management of the disease in this subgroup.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Department of Nephrology, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Piraeus, Nikaia 18454, Greece
| |
Collapse
|
15
|
He W, Liu X, Hu B, Li D, Chen L, Li Y, Tu Y, Xiong S, Wang G, Deng J, Fu B. Mechanisms of SARS-CoV-2 Infection-Induced Kidney Injury: A Literature Review. Front Cell Infect Microbiol 2022; 12:838213. [PMID: 35774397 PMCID: PMC9237415 DOI: 10.3389/fcimb.2022.838213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory coronavirus 2 (SARS-CoV-2) has become a life-threatening pandemic. Clinical evidence suggests that kidney involvement is common and might lead to mild proteinuria and even advanced acute kidney injury (AKI). Moreover, AKI caused by coronavirus disease 2019 (COVID-19) has been reported in several countries and regions, resulting in high patient mortality. COVID-19-induced kidney injury is affected by several factors including direct kidney injury mediated by the combination of virus and angiotensin-converting enzyme 2, immune response dysregulation, cytokine storm driven by SARS-CoV-2 infection, organ interactions, hypercoagulable state, and endothelial dysfunction. In this review, we summarized the mechanism of AKI caused by SARS-CoV-2 infection through literature search and analysis.
Collapse
Affiliation(s)
- Weihang He
- Reproductive Medicine Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongshui Li
- Reproductive Medicine Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jun Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
16
|
Ethnic disparities in hospitalisation and hospital-outcomes during the second wave of COVID-19 infection in east London. Sci Rep 2022; 12:3721. [PMID: 35260620 PMCID: PMC8904852 DOI: 10.1038/s41598-022-07532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
It is unclear if changes in public behaviours, developments in COVID-19 treatments, improved patient care, and directed policy initiatives have altered outcomes for minority ethnic groups in the second pandemic wave. This was a prospective analysis of patients aged ≥ 16 years having an emergency admission with SARS-CoV-2 infection between 01/09/2020 and 17/02/2021 to acute NHS hospitals in east London. Multivariable survival analysis was used to assess associations between ethnicity and mortality accounting for predefined risk factors. Age-standardised rates of hospital admission relative to the local population were compared between ethnic groups. Of 5533 patients, the ethnic distribution was White (n = 1805, 32.6%), Asian/Asian British (n = 1983, 35.8%), Black/Black British (n = 634, 11.4%), Mixed/Other (n = 433, 7.8%), and unknown (n = 678, 12.2%). Excluding 678 patients with missing data, 4855 were included in multivariable analysis. Relative to the White population, Asian and Black populations experienced 4.1 times (3.77-4.39) and 2.1 times (1.88-2.33) higher rates of age-standardised hospital admission. After adjustment for various patient risk factors including age, sex, and socioeconomic deprivation, Asian patients were at significantly higher risk of death within 30 days (HR 1.47 [1.24-1.73]). No association with increased risk of death in hospitalised patients was observed for Black or Mixed/Other ethnicity. Asian and Black ethnic groups continue to experience poor outcomes following COVID-19. Despite higher-than-expected rates of hospital admission, Black and Asian patients also experienced similar or greater risk of death in hospital since the start of the pandemic, implying a higher overall risk of COVID-19 associated death in these communities.
Collapse
|
17
|
Sullivan MK, Lees JS, Drake TM, Docherty AB, Oates G, Hardwick HE, Russell CD, Merson L, Dunning J, Nguyen-Van-Tam JS, Openshaw P, Harrison EM, Baillie JK, Semple MG, Ho A, Mark PB. Acute kidney injury in patients hospitalized with COVID-19 from the ISARIC WHO CCP-UK Study: a prospective, multicentre cohort study. Nephrol Dial Transplant 2022; 37:271-284. [PMID: 34661677 PMCID: PMC8788218 DOI: 10.1093/ndt/gfab303] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.
Collapse
Affiliation(s)
- Michael K Sullivan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer S Lees
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Thomas M Drake
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Georgia Oates
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hayley E Hardwick
- HPRU in Infection and Emerging Diseases, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Clark D Russell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Laura Merson
- ISARIC Global Support Centre, University of Oxford, Oxford, UK
| | - Jake Dunning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Peter Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ewen M Harrison
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Malcolm G Semple
- HPRU in Infection and Emerging Diseases, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Wang C, Yu C, Novakovic VA, Xie R, Shi J. Circulating Microparticles in the Pathogenesis and Early Anticoagulation of Thrombosis in COVID-19 With Kidney Injury. Front Cell Dev Biol 2022; 9:784505. [PMID: 35118071 PMCID: PMC8804312 DOI: 10.3389/fcell.2021.784505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As more is learned about the pathophysiological mechanisms of COVID-19, systemic thrombosis has been recognized as being associated with more severe clinical manifestations, mortality and sequelae. As many as 40% of patients admitted to the hospital due to COVID-19 have acute kidney injury, with coagulation abnormalities the main cause of impaired function. However, the mechanism of renal thrombosis and the process leading to kidney injury are unclear. Microparticles (MPs) are membrane bubbles released in response to activation, injury or apoptosis of cells. The phosphatidylserine (PS) exposed on the surface of MPs provides binding sites for endogenous and exogenous FXase complexes and prothrombin complexes, thus providing a platform for the coagulation cascade reaction and facilitating clot formation. In the context of COVID-19 infection, viral attack leads immune cells to release cytokines that damage circulating blood cells and vascular endothelial cells, resulting in increased MPs levels. Therefore, MPs can be used as a risk factor to predict renal microthrombosis and kidney injury. In this paper, we have summarized the latest data on the pathophysiological mechanism and treatment of renal thrombosis caused by MPs in COVID-19, revealing that the coagulation abnormality caused by MP and PS storms is a universal progression that aggravates the mortality and sequelae of COVID-19 and potentially other pandemic diseases. This paper also describes the risk factors affecting renal thrombosis in COVID-19 from the perspective of the Virchow’s triad: blood hypercoagulability, vascular endothelial injury, and decreased blood flow velocity. In summary, given the serious consequences of thrombosis, current guidelines and clinical studies suggest that early prophylactic anticoagulant therapy reduces mortality and improves clinical outcomes. Early anticoagulation, through inhibition of PS-mediated coagulopathy, allows maintenance of unobstructed blood circulation and oxygen delivery thereby facilitating the removal of inflammatory factors, viruses, MPs, and dead or damaged cells, and expediting patient rehabilitation.
Collapse
Affiliation(s)
- Chengyue Wang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Geriatric, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Rujuan Xie
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| |
Collapse
|
19
|
Lumlertgul N, Pirondini L, Cooney E, Kok W, Gregson J, Camporota L, Lane K, Leach R, Ostermann M. Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Ann Intensive Care 2021; 11:123. [PMID: 34357478 PMCID: PMC8343342 DOI: 10.1186/s13613-021-00914-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are limited data on acute kidney injury (AKI) progression and long-term outcomes in critically ill patients with coronavirus disease-19 (COVID-19). We aimed to describe the prevalence and risk factors for development of AKI, its subsequent clinical course and AKI progression, as well as renal recovery or dialysis dependence and survival in this group of patients. METHODS This was a retrospective observational study in an expanded tertiary care intensive care unit in London, United Kingdom. Critically ill patients admitted to ICU between 1st March 2020 and 31st July 2020 with confirmed SARS-COV2 infection were included. Analysis of baseline characteristics, organ support, COVID-19 associated therapies and their association with mortality and outcomes at 90 days was performed. RESULTS Of 313 patients (70% male, mean age 54.5 ± 13.9 years), 240 (76.7%) developed AKI within 14 days after ICU admission: 63 (20.1%) stage 1, 41 (13.1%) stage 2, 136 (43.5%) stage 3. 113 (36.1%) patients presented with AKI on ICU admission. Progression to AKI stage 2/3 occurred in 36%. Risk factors for AKI progression were mechanical ventilation [HR (hazard ratio) 4.11; 95% confidence interval (CI) 1.61-10.49] and positive fluid balance [HR 1.21 (95% CI 1.11-1.31)], while steroid therapy was associated with a reduction in AKI progression (HR 0.73 [95% CI 0.55-0.97]). Kidney replacement therapy (KRT) was initiated in 31.9%. AKI patients had a higher 90-day mortality than non-AKI patients (34% vs. 14%; p < 0.001). Dialysis dependence was 5% at hospital discharge and 4% at 90 days. Renal recovery was identified in 81.6% of survivors at discharge and in 90.9% at 90 days. At 3 months, 16% of all AKI survivors had chronic kidney disease (CKD); among those without renal recovery, the CKD incidence was 44%. CONCLUSIONS During the first COVID-19 wave, AKI was highly prevalent among severely ill COVID-19 patients with a third progressing to severe AKI requiring KRT. The risk of developing CKD was high. This study identifies factors modifying AKI progression, including a potentially protective effect of steroid therapy. Recognition of risk factors and monitoring of renal function post-discharge might help guide future practice and follow-up management strategies. Trial registration NCT04445259.
Collapse
Affiliation(s)
- Nuttha Lumlertgul
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
- Division of Nephrology and Excellence Centre for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Critical Care Nephrology Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Leah Pirondini
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Enya Cooney
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Waisun Kok
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - John Gregson
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Luigi Camporota
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Katie Lane
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Richard Leach
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| | - Marlies Ostermann
- Department of Critical Care, Guy’s & St Thomas’ Hospital NHS Foundation Hospital, 249 Westminster Bridge Road, London, SE1 7EH UK
| |
Collapse
|