1
|
Yin Z, Zhang J, Zhao M, Liu J, Xu Y, Peng S, Pan W, Wei C, Zheng Z, Liu S, Qin JJ, Wan J, Wang M. EDIL3/Del-1 prevents aortic dissection through enhancing internalization and degradation of apoptotic vascular smooth muscle cells. Autophagy 2024; 20:2405-2425. [PMID: 38873925 DOI: 10.1080/15548627.2024.2367191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in β-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/β3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: β-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-β-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
2
|
Tang Y, Jiao Y, An X, Tu Q, Jiang Q. Neutrophil extracellular traps and cardiovascular disease: Associations and potential therapeutic approaches. Biomed Pharmacother 2024; 180:117476. [PMID: 39357329 DOI: 10.1016/j.biopha.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a significant global health concern, ranking among the top five causes of disability-adjusted life-years (DALY) in 190 countries and territories. Neutrophils, key players in the innate immune system, combat infections by releasing neutrophil extracellular traps (NETs) composed of DNA, histones, elastase, myeloperoxidase, and antimicrobial peptides. This paper explores the relationship between NETs and cardiovascular diseases, focusing on conditions such as heart failure, pulmonary hypertension, atrial fibrillation, and ischemia-reperfusion injury. Particularly, it delves into the impact of NETs on atrial fibrillation and pulmonary hypertension, as well as the role of myeloperoxidase (MPO) and neutrophil elastase (NE) in these diseases. Furthermore, the potential of targeting NETs for the treatment of cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Yiyue Tang
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaohua An
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxian Tu
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| | - Qianfeng Jiang
- GuizhouAerospaceHospital,(Affiliated AerospaceHospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Zhao X, Wang Q, Wang W, Lu S. Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J 2024; 38:e70126. [PMID: 39446097 DOI: 10.1096/fj.202401523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Obesity, recognized as a risk factor for nonunion, detrimentally impacts bone health, with significant physical and economic repercussions for affected individuals. Nevertheless, the precise pathomechanisms by which obesity impairs fracture healing remain insufficiently understood. Multiple studies have identified neutrophil granulocytes as key players in the systemic immune response, being the predominant immune cells in early fracture hematomas. This study identified a previously unreported critical period for neutrophil infiltration into the callus. In vivo experiments demonstrated that diet-induced obesity (DIO) mice showed earlier neutrophil infiltration, along with increased formation of neutrophil extracellular traps (NETs), compared to control mice during the endochondral phase of fracture repair. Furthermore, Padi4 knockout was found to reduce NET formation and mitigate the fracture healing delays caused by high-fat diets. Mechanistically, in vitro analyses revealed that NETs, by activating NLRP3 inflammasomes, inhibited the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and concurrently promoted M1-like macrophage polarization. These findings establish a connection between NET formation during the endochondral phase and delayed fracture healing, suggesting that targeting NETs could serve as a promising therapeutic approach for addressing obesity-induced delays in fracture recovery.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qijun Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
4
|
Mang G, Chen J, Sun P, Ma R, Du J, Wang X, Cui J, Yang M, Tong Z, Yan X, Wang D, Xie H, Chen Y, Yang Q, Kong Y, Jin J, Wu J, Zhang M, Yu B. Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps. Eur Heart J 2024; 45:3853-3867. [PMID: 39165142 DOI: 10.1093/eurheartj/ehae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/14/2023] [Accepted: 07/28/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND AND AIMS Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression. METHODS NET levels were examined in patients with HF and mouse models of transverse aortic constriction (TAC) HF. PAD4 knockout mice and NET inhibitors (GSK-484, DNase I, NEi) were used to evaluate the role of NETs in HF. RNA sequencing was used to investigate the downstream mechanisms. Recombinant human ADAMTS13 (rhADAMTS13), ADAMTS13, and SLC44A2 knockouts were used to identify novel upstream factors of NETs. RESULTS Elevated NET levels were observed in patients with HF and TAC mouse models of HF. PAD4 knockout and NET inhibitors improved the cardiac function. Mechanistically, NETs induced mitochondrial dysfunction in cardiomyocytes, inhibiting mitochondrial biogenesis via the NE-TLR4-mediated suppression of PGC-1α. Furthermore, VWF/ADAMTS13 regulated NET formation via SLC44A2. Additionally, sacubitril/valsartan amplifies the cardioprotective effects of the VWF-SLC44A2-NET axis blockade. CONCLUSIONS This study established the role of a novel VWF-SLC44A2-NET axis in regulating mitochondrial homeostasis and function, leading to cardiac apoptosis and contributing to HF pathogenesis. Targeting this axis may offer a potential therapeutic approach for HF treatment.
Collapse
Affiliation(s)
- Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100013, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jianfeng Chen
- Experimental Animal Centre, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ping Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Ruishuang Ma
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingwen Du
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiaoqi Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jingxuan Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Mian Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Huiqi Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yujia Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St., Beijing 100053, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), No. 246 Xuefu Road, Nangang District, Harbin 150086, Heilongjiang Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
5
|
Zhang K, Jia R, Zhang Q, Xiang S, Wang N, Xu L. Metabolic dysregulation-triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett 2024; 598:2450-2462. [PMID: 39155145 DOI: 10.1002/1873-3468.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024]
Abstract
Acute liver failure (ALF) is an acute liver disease with a high mortality rate in clinical practice, characterized histologically by extensive hepatocellular necrosis and massive neutrophil infiltration. However, the role of these abnormally infiltrating neutrophils during ALF development is unclear. Here, in an ALF mouse model, metabolites were identified that promote the formation of neutrophil extracellular traps (NETs) in the liver, subsequently influencing macrophage differentiation and disease progression. ALF occurs with abnormalities in hepatic and intestinal metabolites. Abnormal metabolites (LTD4 and glutathione) can directly, or indirectly via reactive oxygen species, promote NET formation of infiltrating neutrophils, which subsequently regulate macrophages in a pro-inflammatory M1-like state, inducing an amplification of the destructive effects of inflammation. Together, this study provides new insights into the role of NETs in the pathogenesis of ALF.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shihao Xiang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
6
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Yu J, Wang X, Zhou Y, Hu J, Gu L, Zhou H, Yue C, Zhou P, Li Y, Zhao Q, Zhang C, Hu Y, Zeng F, Zhao F, Li G, Feng Y, He M, Huang S, Wu W, Huang N, Cui K, Li J. EDIL3 alleviates Mannan-induced psoriatic arthritis by slowing the intracellular glycolysis process in mononuclear-derived dendritic cells. Inflammation 2024:10.1007/s10753-024-02134-y. [PMID: 39289212 DOI: 10.1007/s10753-024-02134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Psoriatic arthritis (PsA) is an immune-mediated, chronic inflammatory joint disease that commonly occurs as a complication of psoriasis. EGF-like repeats and discoidal I-like domain 3 (EDIL3) is a secreted protein with multiple structural domains and associated with various physiological functions. In this study, we employed a mannan-induced psoriatic arthritis model to investigate the impact of EDIL3 on PsA pathogenesis. Notably, a downregulation of EDIL3 expression was observed in the PsA model, which correlated with increased disease severity. EDIL3 knockout mice exhibited a more severe phenotype of PsA, which was ameliorated upon re-infusion of recombinant EDIL3 protein. The mitigation effect of EDIL3 on PsA depends on its regulation of the activation of monocyte-derived DCs (MoDCs) and T-help 17 cells (Th17). After inhibiting the function of MoDCs and Th17 cells with neutralizing antibodies, the beneficial effects of EDIL3 on PsA were lost. By inducing adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and suppressing protein kinase B (AKT) phosphorylation, EDIL3 attenuates intracellular glycolysis in MoDCs stimulated by glucose, thereby impeding their maturation and differentiation. Moreover, it diminishes the differentiation of Th17 cells and decelerates the progression of PsA. In conclusion, our findings elucidate the role and mechanism of EDIL3 in the development of PsA, providing a new target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jiadong Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linna Gu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Yue
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pei Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qixiang Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Chen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yawen Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanlian Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fulei Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guolin Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingxiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishi Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nongyu Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Jiong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Perry AS, Amancherla K, Huang X, Lance ML, Farber-Eger E, Gajjar P, Amrute J, Stolze L, Zhao S, Sheng Q, Joynes CM, Peng Z, Tanaka T, Drakos SG, Lavine KJ, Selzman C, Visker JR, Shankar TS, Ferrucci L, Das S, Wilcox J, Patel RB, Kalhan R, Shah SJ, Walker KA, Wells Q, Tucker N, Nayor M, Shah RV, Khan SS. Clinical-transcriptional prioritization of the circulating proteome in human heart failure. Cell Rep Med 2024; 5:101704. [PMID: 39226894 PMCID: PMC11524958 DOI: 10.1016/j.xcrm.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Given expanding studies in epidemiology and disease-oriented human studies offering hundreds of associations between the human "ome" and disease, prioritizing molecules relevant to disease mechanisms among this growing breadth is important. Here, we link the circulating proteome to human heart failure (HF) propensity (via echocardiographic phenotyping and clinical outcomes) across the lifespan, demonstrating key pathways of fibrosis, inflammation, metabolism, and hypertrophy. We observe a broad array of genes encoding proteins linked to HF phenotypes and outcomes in clinical populations dynamically expressed at a transcriptional level in human myocardium during HF and cardiac recovery (several in a cell-specific fashion). Many identified targets do not have wide precedent in large-scale genomic discovery or human studies, highlighting the complementary roles for proteomic and tissue transcriptomic discovery to focus epidemiological targets to those relevant in human myocardium for further interrogation.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kaushik Amancherla
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoning Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Junedh Amrute
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Kory J Lavine
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Selzman
- Department of Cardiac Surgery, University of Utah School of Medicine, Division of Cardiothoracic Surgery, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Joseph R Visker
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Thirupura S Shankar
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Saumya Das
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Wilcox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi B Patel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Quinn Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Brockman ML, Scruggs TA, Wang L, Kabboul G, Calvert JW, Levit RD. The Cardioprotective Role of Neutrophil-Specific STING in Myocardial Ischemia/Reperfusion Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611551. [PMID: 39314411 PMCID: PMC11418936 DOI: 10.1101/2024.09.06.611551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Neutrophils are the most rapid and abundant immune cells to infiltrate the myocardium following myocardial ischemia/reperfusion injury (MI/R). Neutrophil heterogeneity has not been well characterized in MI/R, and studies have shown conflicting results regarding the impact of neutrophil depletion on cardiac injury. We thus aim to study the impact of neutrophils with enriched type I interferon signature and the role of STING (stimulator of interferon genes) signaling in neutrophils on cardiac reperfusion injury. Methods We utilized single-cell RNA sequencing to study neutrophil heterogeneity in response to MI/R. We generated a neutrophil-specific STING knockout mouse to assess the role of neutrophil STING in a model of MI/R. We examined cardiac function following injury via echocardiography and assessed the immune cell trajectory following injury utilizing flow cytometry. Results We identified a population of neutrophils with enriched type I interferon signaling and response to type I interferon following MI/R. We found that genetic deletion of neutrophil-specific STING led to worsened cardiac function following MI/R. Further investigation of the immune response by flow cytometry revealed decreased neutrophil infiltration into the myocardium and a shift in macrophage polarization. Conclusions Our findings suggest that neutrophil-specific STING is cardioprotective in MI/R, partly due to its effects on downstream immune cells. These results demonstrate that early alterations or therapeutic interventions can influence key events in the resolution of inflammation following MI/R.
Collapse
Affiliation(s)
- Maegan L. Brockman
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Triniti A. Scruggs
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lanfang Wang
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriella Kabboul
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - John W. Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca D. Levit
- Department of Medicine; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Ilikci-Sagkan R, Fatma Akin D, Liman R, Muddassir Ali M. In silico analysis of DEL-1 and inflammation-related genes in lung squamous cell carcinoma. Immunobiology 2024; 229:152838. [PMID: 39089131 DOI: 10.1016/j.imbio.2024.152838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
AIM Twenty to thirty percent of non-small cell lung cancers (NSCLC) are caused by lung squamous cell carcinoma (LUSC), especially in smokers and there has been limited study previously evaluating the situation in terms of the genome and gene expression profile, which demonstrates the relationship among DEL-1, leucocyte recruitment, and pro-inflammatory cytokines in LUSC. MATERIAL AND METHODS In the current study, the m-RNA expression patterns and mutation profiles of our target genes, such as, pro-inflammatory cytokines, chemoattractant molecules, and DEL-1 genes, in 511 LUSC patients. To find the harmful mutations, the PolyPhen-2 and SNAP programs were employed. Not only gene expression was detected, but also survival analysis and correlation between DEL-1 and other target genes' expression levels were explored too. RESULTS Target genes such as, DEL-1, TNF, IL-18, IL-1, CXCL8, CXCL13, and IL-6 were found to have a total genetic anomaly carrying rate of 16.4%. Seven mutations were found, and two of those mutations have a pathogenic aspect. Deep deletion and gene amplification of the genetic anomalies were also observed. According to gene expression analysis results in the LUSC patient group; DEL-1 and IL-6 levels were significantly lower than those of the control group, whereas the CXCL13 level was found to be higher. CONCLUSION Findings of the current study revealed that, there is a significant role of DEL-1 in LUSC pathogenesis. Since present study is an in silico-centered study, this approach can give more insight on experimental studies. These events may support that one of the cancer improvement mechanisms depending on DEL-1 gene at the molecular level.
Collapse
Affiliation(s)
- Rahsan Ilikci-Sagkan
- Uşak University, School of Medicine, Department of Medical Biology, Uşak, Türkiye.
| | - Dilara Fatma Akin
- Nigde Omer Halisdemir University, School of Medicine, Department of Medical Biology, Niğde, Türkiye
| | - Recep Liman
- Uşak University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetic, Uşak, Türkiye
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
11
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
12
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Khanal S, Liu Y, Bamidele AO, Wixom AQ, Washington AM, Jalan-Sakrikar N, Cooper SA, Vuckovic I, Zhang S, Zhong J, Johnson KL, Charlesworth MC, Kim I, Yeon Y, Yoon S, Noh YK, Meroueh C, Timbilla AA, Yaqoob U, Gao J, Kim Y, Lucien F, Huebert RC, Hay N, Simons M, Shah VH, Kostallari E. Glycolysis in hepatic stellate cells coordinates fibrogenic extracellular vesicle release spatially to amplify liver fibrosis. SCIENCE ADVANCES 2024; 10:eadn5228. [PMID: 38941469 PMCID: PMC11212729 DOI: 10.1126/sciadv.adn5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander M. Washington
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Metabolomics Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Iljung Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Yubin Yeon
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Sangwoong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Chady Meroueh
- Department of Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Abdul Aziz Timbilla
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Biochemistry, Faculty of Medicine, Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael Simons
- Cardiovascular Research Center, Yale University, New Haven, CI 06510, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Du YN, Zhao JW. GDF15: Immunomodulatory Role in Hepatocellular Carcinoma Pathogenesis and Therapeutic Implications. J Hepatocell Carcinoma 2024; 11:1171-1183. [PMID: 38911292 PMCID: PMC11193986 DOI: 10.2147/jhc.s471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Yi-Ning Du
- Department of Medical Sciences, Li Ka-shing School of Medicine, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery, Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
15
|
An C, Shao F, Long C, Zhang Y, Nie W, Zeng R, Dou Z, Zhao Y, Lin Y, Zhang S, Zhang L, Ren C, Zhang Y, Zhou G, Wang H, Liu J. Local delivery of stem cell spheroids with protein/polyphenol self-assembling armor to improve myocardial infarction treatment via immunoprotection and immunoregulation. Biomaterials 2024; 307:122526. [PMID: 38513434 DOI: 10.1016/j.biomaterials.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Stem cell therapies have shown great potential for treating myocardial infarction (MI) but are limited by low cell survival and compromised functionality due to the harsh microenvironment at the disease site. Here, we presented a Mesenchymal stem cell (MSC) spheroid-based strategy for MI treatment by introducing a protein/polyphenol self-assembling armor coating on the surface of cell spheroids, which showed significantly enhanced therapeutic efficacy by actively manipulating the hostile pathological MI microenvironment and enabling versatile functionality, including protecting the donor cells from host immune clearance, remodeling the ROS microenvironment and stimulating MSC's pro-healing paracrine secretion. The underlying mechanism was elucidated, wherein the armor protected to prolong MSCs residence at MI site, and triggered paracrine stimulation of MSCs towards immunoregulation and angiogenesis through inducing hypoxia to provoke glycolysis in stem cells. Furthermore, local delivery of coated MSC spheroids in MI rat significantly alleviated local inflammation and subsequent fibrosis via mediation macrophage polarization towards pro-healing M2 phenotype and improved cardiac function. In general, this study provided critical insight into the enhanced therapeutic efficacy of stem cell spheroids coated with a multifunctional armor. It potentially opens up a new avenue for designing immunomodulatory treatment for MI via stem cell therapy empowered by functional biomaterials.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Wen Nie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, PR China
| | - Rui Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuanyuan Lin
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Faculty of Medicine, Dalian University of Technology, Dalian, 116023, PR China; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, 116044, PR China
| | - Yang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
16
|
Wu X, Yang Y. Neutrophil extracellular traps (NETs) and fibrotic diseases. Int Immunopharmacol 2024; 133:112085. [PMID: 38626550 DOI: 10.1016/j.intimp.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Fibrosis, a common cause and serious outcome of organ failure that can affect any organ, is responsible for up to 45% of all deaths in various clinical settings. Both preclinical models and clinical trials investigating various organ systems have shown that fibrosis is a highly dynamic process. Although many studies have sought to gain understanding of the mechanism of fibrosis progression, their findings have been mixed. In recent years, increasing evidence indicates that neutrophil extracellular traps (NETs) are involved in many inflammatory and autoimmune disorders and participate in the regulation of fibrotic processes in various organs and systems. In this review, we summarize the current understanding of the role of NETs in fibrosis development and progression and their possibility as therapeutic targets.
Collapse
Affiliation(s)
- Xiaojiao Wu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Zhao M, Zheng Z, Peng S, Xu Y, Zhang J, Liu J, Pan W, Yin Z, Xu S, Wei C, Wang M, Wan J, Qin J. Epidermal Growth Factor-Like Repeats and Discoidin I-Like Domains 3 Deficiency Attenuates Dilated Cardiomyopathy by Inhibiting Ubiquitin Specific Peptidase 10 Dependent Smad4 Deubiquitination. J Am Heart Assoc 2024; 13:e031283. [PMID: 38456416 PMCID: PMC11010021 DOI: 10.1161/jaha.123.031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/20/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1β (interleukin 1β) and TGF-β (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| |
Collapse
|
18
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
19
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
20
|
Liu B, Deng Y, Duan Z, Chu C, Wang X, Yang C, Li J, Ding W. Neutrophil extracellular traps promote intestinal barrier dysfunction by regulating macrophage polarization during trauma/hemorrhagic shock via the TGF-β signaling pathway. Cell Signal 2024; 113:110941. [PMID: 37890686 DOI: 10.1016/j.cellsig.2023.110941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/01/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The mechanism by which neutrophil extracellular traps (NETs) may cause intestinal barrier dysfunction in response to trauma/hemorrhagic shock (T/HS) remains unclear. In this study, the roles and mechanisms of NETs in macrophage polarization were examined to determine whether this process plays a role in tissue damage associated with T/HS. Rat models of T/HS and macrophage polarization were developed and the levels of NETs formation in the intestinal tissue of T/HS rats were assessed. NET formation was inhibited in models of T/HS to examine the effect on intestinal inflammation and barrier injury. The proportions of pro-inflammatory and anti-inflammatory macrophages in the damaged intestinal tissues were measured. Finally, high-throughput sequencing was performed to investigate the underlying mechanisms involved in this process. The study revealed that the level of NETs formation was increased and that inhibition of NETs formation alleviated the intestinal inflammation and barrier injury. Moreover, the number of pro-inflammatory macrophages increased and the number of anti-inflammatory macrophages decreased. RNA sequencing analysis indicated that NETs formation decreased the expression of transforming growth factor-beta receptor 2 (TGFBR2), bioinformatic analyses revealed that TGFBR2 was significantly enriched in the transforming growth factor-beta (TGF-β) signaling pathway. Verification experiments showed that NETs impeded macrophage differentiation into the anti-inflammatory/M2 phenotype and inhibited TGFBR2 and TGF-β expression in macrophages. However, treatment with DNase I and overexpression of TGFBR2, and inhibition of TGF-β promoted and prevented this process, respectively. NETs may regulate the macrophage polarization process by promoting intestinal barrier dysfunction in T/HS rats through the TGFBR2-mediated TGF-β signaling pathway.
Collapse
Affiliation(s)
- Baochen Liu
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yunxuan Deng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zehua Duan
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chengnan Chu
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xingyu Wang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Yang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Weiwei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
22
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
24
|
Zhao M, Zheng Z, Yin Z, Zhang J, Peng S, Liu J, Pan W, Wei C, Xu Y, Qin JJ, Wan J, Wang M. DEL-1 deficiency aggravates pressure overload-induced heart failure by promoting neutrophil infiltration and neutrophil extracellular traps formation. Biochem Pharmacol 2023; 218:115912. [PMID: 37956894 DOI: 10.1016/j.bcp.2023.115912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Recent studies have shown that neutrophils play an important role in the development and progression of heart failure. Developmental endothelial locus-1 (DEL-1) is an anti-inflammatory glycoprotein that has been found to have protective effects in various cardiovascular diseases. However, the role of DEL-1 in chronic heart failure is not well understood. In a mouse model of pressure overload-induced non-ischemic cardiac failure, we found that neutrophil infiltration in the heart increased and DEL-1 levels decreased in the early stages of heart failure. DEL-1 deficiency worsened pressure overload-induced cardiac dysfunction and remodeling in mice. Mechanistically, DEL-1 deficiency promotes neutrophil infiltration and the formation of neutrophil extracellular traps (NETs) through the regulation of P38 signaling. In vitro experiments showed that DEL-1 can inhibit P38 signaling and NETs formation in mouse neutrophils in a MAC-1-dependent manner. Depleting neutrophils, inhibiting NETs formation, and inhibiting P38 signaling all reduced the exacerbation of heart failure caused by DEL-1 deletion. Overall, our findings suggest that DEL-1 deficiency worsens pressure overload-induced heart failure by promoting neutrophil infiltration and NETs formation.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| |
Collapse
|
25
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
26
|
Shen C, Fang R, Wang J, Wu N, Wang S, Shu T, Dai J, Feng M, Chen X. Visfatin aggravates transverse aortic constriction-induced cardiac remodelling by enhancing macrophage-mediated oxidative stress in mice. J Cell Mol Med 2023; 27:2562-2571. [PMID: 37584247 PMCID: PMC10468652 DOI: 10.1111/jcmm.17854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Previous studies have reported that visfatin can regulate macrophage polarisation, which has been demonstrated to participate in cardiac remodelling. The aims of this study were to investigate whether visfatin participates in transverse aortic constriction (TAC)-induced cardiac remodelling by regulating macrophage polarisation. First, TAC surgery and angiotensin II (Ang II) infusion were used to establish a mouse cardiac remodelling model, visfatin expression was measured, and the results showed that TAC surgery or Ang II infusion increased visfatin expression in the serum and heart in mice, and phenylephrine or hydrogen peroxide promoted the release of visfatin from macrophages in vitro. All these effects were dose-dependently reduced by superoxide dismutase. Second, visfatin was administered to TAC mice to observe the effects of visfatin on cardiac remodelling. We found that visfatin increased the cross-sectional area of cardiomyocytes, aggravated cardiac fibrosis, exacerbated cardiac dysfunction, further regulated macrophage polarisation and aggravated oxidative stress in TAC mice. Finally, macrophages were depleted in TAC mice to investigate whether macrophages mediate the regulatory effect of visfatin on cardiac remodelling, and the results showed that the aggravating effects of visfatin on oxidative stress and cardiac remodelling were abrogated. Our study suggests that visfatin enhances cardiac remodelling by promoting macrophage polarisation and enhancing oxidative stress. Visfatin may be a potential target for the prevention and treatment of clinical cardiac remodelling.
Collapse
Affiliation(s)
- Caijie Shen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Renyuan Fang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jian Wang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Nan Wu
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shuangsuang Wang
- Department of CardiologyWenling First People's Hospital, The Affiliated Wenling Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tian Shu
- Zhejiang University School of MedicineHangzhouChina
| | - Jiating Dai
- Health Science Center, Ningbo UniversityNingboChina
| | - Mingjun Feng
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Xiaomin Chen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
27
|
Su H, Karin M. Collagen architecture and signaling orchestrate cancer development. Trends Cancer 2023; 9:764-773. [PMID: 37400314 DOI: 10.1016/j.trecan.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The tumor microenvironment (TME) controls tumor progression and maintenance. Accordingly, tumor-centric cancer treatment must adjust to being more holistic and TME-centric. Collagens are the most abundant TME proteins, and their dynamic remodeling profoundly affects both TME architecture and tumor development. Recent evidence shows that in addition to being structural elements, collagens are an important source of nutrients and decisive growth controlling and immunoregulatory signals. This review focuses on macropinocytosis-dependent collagen support of cancer cell metabolism and the role of collagen fiber remodeling and trimer heterogeneity in control of tumor bioenergetics, growth, progression, and response to therapy. If properly translated, these basic advances may alter the future of cancer treatment.
Collapse
Affiliation(s)
- Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
29
|
He L, Liu R, Yue H, Zhang X, Pan X, Sun Y, Shi J, Zhu G, Qin C, Guo Y. Interaction between neutrophil extracellular traps and cardiomyocytes contributes to atrial fibrillation progression. Signal Transduct Target Ther 2023; 8:279. [PMID: 37491321 PMCID: PMC10368710 DOI: 10.1038/s41392-023-01497-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 07/27/2023] Open
Abstract
Atrial fibrillation (AF) is a frequent arrhythmia associated with cardiovascular morbidity and mortality. Neutrophil extracellular traps (NETs) are DNA fragments with cytoplasm proteins released from neutrophils, which are involved in various cardiovascular diseases. To elucidate the role of NETs in AF, we investigated the effect of NETs on AF progression and the secretion of NETs in AF. Results showed that: NETs induced the autophagic apoptosis of cardiomyocytes, and NETs also led to mitochondrial injury by promoting mitochondrial depolarization and ROS production. Ongoing tachy-pacing led to the structural loss of cardiomyocytes and provided potent stimuli to induce NETs secretion from neutrophils. In the meanwhile, increased Ang II in AF facilitated NETs formation through the upregulation of AKT phosphorylation, while it could not directly initiate NETosis as the autophagy was not induced. In vivo, DNase I was administrated to abrogate NETs formation, and AF-related fibrosis was ameliorated as expected. Correspondingly, the duration of the induced AF was reduced. Our study addresses the formation mechanism of NETs in AF and demonstrates the lethal effects of NETs on cardiomyocytes through the induction of mitochondrial injury and autophagic cell death, which comprehensively describes the positive feedback comprised of NETs and stimuli secreted by cardiomyocytes that sustains the progression of AF and AF related fibrosis.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxin Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yutao Sun
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Shi
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine and Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Banerjee D, Tian R, Cai S. The Role of Innate Immune Cells in Cardiac Injury and Repair: A Metabolic Perspective. Curr Cardiol Rep 2023; 25:631-640. [PMID: 37249739 PMCID: PMC10227821 DOI: 10.1007/s11886-023-01897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE OF REVIEW Recent technological advances have identified distinct subpopulations and roles of the cardiac innate immune cells, specifically macrophages and neutrophils. Studies on distinct metabolic pathways of macrophage and neutrophil in cardiac injury are expanding. Here, we elaborate on the roles of cardiac macrophages and neutrophils in concomitance with their metabolism in normal and diseased hearts. RECENT FINDINGS Single-cell techniques combined with fate mapping have identified the clusters of innate immune cell subpopulations present in the resting and diseased hearts. We are beginning to know about the presence of cardiac resident macrophages and their functions. Resident macrophages perform cardiac homeostatic roles, whereas infiltrating neutrophils and macrophages contribute to tissue damage during cardiac injury with eventual role in repair. Prior studies show that metabolic pathways regulate the phenotypes of the macrophages and neutrophils during cardiac injury. Profiling the metabolism of the innate immune cells, especially of resident macrophages during chronic and acute cardiac diseases, can further the understanding of cardiac immunometabolism.
Collapse
Affiliation(s)
- Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA, 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA, 98109, USA
| | - Shanshan Cai
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA, 98109, USA.
| |
Collapse
|
31
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Li J, Chen Q, Zhang R, Liu Z, Cheng Y. The phagocytic role of macrophage following myocardial infarction. Heart Fail Rev 2023:10.1007/s10741-023-10314-5. [PMID: 37160618 DOI: 10.1007/s10741-023-10314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Myocardial infarction (MI) is one of the cardiovascular diseases with high morbidity and mortality. MI causes large amounts of apoptotic and necrotic cells that need to be efficiently and instantly engulfed by macrophage to avoid second necrosis. Phagocytic macrophages can dampen or resolve inflammation to protect infarcted heart. Phagocytosis of macrophages is modulated by various factors including proteins, receptors, lncRNA and cytokines. A better understanding of mechanisms in phagocytosis will be beneficial to regulate macrophage phagocytosis capability towards a desired direction in cardioprotection after MI. In this review, we describe the phagocytosis effect of macrophages and summarize the latest reported signals regulating phagocytosis after MI, which will provide a new thinking about phagocytosis-dependent cardiac protection after MI.
Collapse
Affiliation(s)
- Jiahua Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China
| | - Qi Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
33
|
Xie L, Chen J, Wang Y, Jin C, Xie Y, Ma H, Xiang M. Emerging roles of macrophages in heart failure and associated treatment approaches. Ther Adv Chronic Dis 2023; 14:20406223231168755. [PMID: 37152348 PMCID: PMC10155014 DOI: 10.1177/20406223231168755] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Heart failure is typically caused by different cardiovascular conditions and has a poor prognosis. Despite the advances in treatment in recent decades, heart failure has remained a major cause of morbidity and mortality worldwide. As revealed by in vivo and in vitro experiments, inflammation plays a crucial role in adverse cardiac remodeling, ultimately leading to heart failure. Macrophages are central to the innate immune system, and they are the most indispensable cell type for all cardiac injuries and remodeling stages. The immediate microenvironment regulates their polarization and secretion. In this review, we summarize the phenotypic heterogeneity and governing roles of macrophages in the infarcted, inflamed, and aging heart and assess their significance as potential therapeutic targets in heart failure. We also highlight the current missing links and major challenges in the field that remain to be addressed before macrophages can be exploited for therapeutic applications.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjiang Jin
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| |
Collapse
|
34
|
Alghanem B, Mansour FA, Shaibah H, Almuhalhil K, Almourfi F, Alamri HS, Alajmi H, Rashid M, Alroqi F, Jalouli M, Harrath AH, Boudjellal M, Barhoumi T. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses. Heliyon 2023; 9:e15224. [PMID: 37064481 PMCID: PMC10082967 DOI: 10.1016/j.heliyon.2023.e15224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Treatment of severe cases of coronavirus disease 2019 (COVID-19) is extremely important to minimize death and end-organ damage. Here we performed a proteomic analysis of plasma samples from mild, moderate and severe COVID-19 patients. Analysis revealed differentially expressed proteins and different therapeutic potential targets related to innate immune responses such as fetuin-A, tetranectin (TN) and paraoxonase-1 (PON1). Furthermore, protein changes in plasma showed dysregulation of complement and coagulation cascades in COVID-19 patients compared to healthy controls. In conclusion, our proteomics data suggested fetuin-A and TN as potential targets that might be used for diagnosis as well as signatures for a better understanding of the pathogenesis of COVID-19 disease.
Collapse
Affiliation(s)
- Bandar Alghanem
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Khawlah Almuhalhil
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Feras Almourfi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hala Alajmi
- Saudi Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Mamoon Rashid
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Sciences, Riyadh, 11451, Saudi Arabia
| | - Mohammad Boudjellal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Yan M, Gu Y, Sun H, Ge Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol 2023; 14:1135086. [PMID: 36993957 PMCID: PMC10040667 DOI: 10.3389/fimmu.2023.1135086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Tumor immunity is a growing field of research that involves immune cells within the tumor microenvironment. Neutrophil extracellular traps (NETs) are neutrophil-derived extracellular web-like chromatin structures that are composed of histones and granule proteins. Initially discovered as the predominant host defense against pathogens, NETs have attracted increasing attention due to they have also been tightly associated with tumor. Excessive NET formation has been linked to increased tumor growth, metastasis, and drug resistance. Moreover, through direct and/or indirect effects on immune cells, an abnormal increase in NETs benefits immune exclusion and inhibits T-cell mediated antitumor immune responses. In this review, we summarize the recent but rapid progress in understanding the pivotal roles of NETs in tumor and anti-tumor immunity, highlighting the most relevant challenges in the field. We believe that NETs may be a promising therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Meina Yan, ;
| | - Yifeng Gu
- Department of Laboratory Medicine, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Hongxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qinghong Ge
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res 2023; 11:24. [PMID: 36859358 PMCID: PMC9977644 DOI: 10.1186/s40364-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
In addition to the anti-infection response, neutrophils are linked to tumor progression through the secretion of inflammation components and neutrophil extracellular traps (NETs) formation. NET is a web-like structure constituted by a chromatin scaffold coated with specific nuclear and cytoplasmic proteins, such as histone and granule peptides. Increasing evidence has demonstrated that NETs are favorable factors to promote tumor growth, invasion, migration, and immunosuppression. However, the cell-cell interaction between NETs and other cells (tumor cells and immune cells) is complicated and poorly studied. This work is the first review to focus on the intercellular communication mediated by NETs in cancer. We summarized the complex cell-cell interaction between NETs and other cells in the tumor microenvironment. We also address the significance of NETs as both prognostic/predictive biomarkers and molecular targets for cancer therapy. Moreover, we presented a comprehensive landscape of cancer immunity, improving the therapeutic efficacy for advanced cancer in the future.
Collapse
Affiliation(s)
- Bingqing Shang
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Honglei Cui
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Ruiyang Xie
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Jie Wu
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Hongzhe Shi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Xingang Bi
- grid.506261.60000 0001 0706 7839Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021 PR China
| | - Lin Feng
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR, China.
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, PR, China.
| |
Collapse
|
37
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
38
|
Zhao M, Zheng Z, Li C, Wan J, Wang M. Developmental endothelial locus-1 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Front Immunol 2022; 13:1053175. [PMID: 36518760 PMCID: PMC9742254 DOI: 10.3389/fimmu.2022.1053175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMDs) are a leading cause of death worldwide and impose a major socioeconomic burden on individuals and healthcare systems, underscoring the urgent need to develop new drug therapies. Developmental endothelial locus-1 (DEL-1) is a secreted multifunctional domain protein that can bind to integrins and play an important role in the occurrence and development of various diseases. Recently, DEL-1 has attracted increased interest for its pharmacological role in the treatment and/or management of CVMDs. In this review, we present the current knowledge on the predictive and therapeutic role of DEL-1 in a variety of CVMDs, such as atherosclerosis, hypertension, cardiac remodeling, ischemic heart disease, obesity, and insulin resistance. Collectively, DEL-1 is a promising biomarker and therapeutic target for CVMDs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Menglong Wang, ; Jun Wan,
| |
Collapse
|
39
|
Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol 2022; 63:102191. [PMID: 35276496 PMCID: PMC8995387 DOI: 10.1016/j.coph.2022.102191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Immune cell mobilization and their accumulation in the extravascular space is a key consequence of tissue injury. Maladaptive trafficking and immune activation following reperfusion of ischemic tissue can exacerbate tissue repair. After ischemic injury such as myocardial infarction (MI), PMNs are the first cells to arrive at the sites of insult and their response is critical for the sequential progression of ischemia from inflammation to resolution and finally to tissue repair. However, PMN-induced inflammation can also be detrimental to cardiac function and ultimately lead to heart failure. In this review, we highlight the role of PMNs during key cellular and molecular events of ischemic heart failure. We address new research on PMN metabolism, and how this orchestrates diverse functions such as PMN chemotaxis, degranulation, and phagocytosis. Particular focus is given to PMN metabolism regulation by mitochondrial function and mTOR kinase activity.
Collapse
Affiliation(s)
- Enzo B Piccolo
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St, Chicago, IL, 60611, USA.
| |
Collapse
|
40
|
Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci 2021; 11:193. [PMID: 34758877 PMCID: PMC8579641 DOI: 10.1186/s13578-021-00708-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
As the predominant host defense against pathogens, neutrophil extracellular traps (NETs) have attracted increasing attention due to their vital roles in infectious inflammation in the past few years. Interestingly, NETs also play important roles in noninfectious conditions, such as rheumatism and cancer. The process of NETs formation can be regulated and the form of cell death accompanied by the formation of NETs is regarded as "NETosis". A large amount of evidence has confirmed that many stimuli can facilitate the release of NETs from neutrophils. Furthermore, it has been illustrated that NETs promote tumor growth and progression via many molecular pathways. Meanwhile, NETs also can promote metastasis in many kinds of cancers based on multiple studies. In addition, some researchs have found that NETs can promote coagulation and cancer-associated thrombosis. In the present review, it will highlight how NETosis, which is stimulated by various stimuli and signaling pathways, affects cancer biological behaviors via NETs. Given their crucial roles in cancer, NETs will become possible therapeutic targets for inhibiting proliferation, metastasis and thrombosis in cancer patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Qianling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
41
|
He L, Liu R, Yue H, Zhu G, Fu L, Chen H, Guo Y, Qin C. NETs promote pathogenic cardiac fibrosis and participate in ventricular aneurysm formation after ischemia injury through the facilitation of perivascular fibrosis. Biochem Biophys Res Commun 2021; 583:154-161. [PMID: 34735877 DOI: 10.1016/j.bbrc.2021.10.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis has been widely investigated in acute phase of myocardial infarction (MI). However, the mechanism of sustained fibrosis after MI hasn't been elucidated, which eventually gives rise to ventricular aneurysm (VA) formation chronic while lethal. Neutrophil as vital cell facilitating the fibrotic repair after acute MI may not project its effect to chronic phase unless neutrophil extracellular traps (NETs) were secreted and accumulating. The aim of this study was to investigate whether NETs contribute to the sustained fibrosis and VA formation after MI. We identified NETs in ventricular aneurysm of patients. Accordingly, NETs increased in peripheral blood of VA patients. Moreover, in rat VA NETs were also identified. Stimulated by NETs, the migration of fibroblast was enhanced and the differentiation of cardiac myofibroblast was initiated. Smad, MAPK and RhoA signaling pathways were activated by NETs incubation. And additional deposition with DNase I to disrupt NETs and abrogated NETs induced fibrosis both in vivo and vitro. These results collectively demonstrate a novel profibrotic role for NETs in chronic cardiac fibrosis and VA formation.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Li Fu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|