1
|
Bolha L, Hočevar A, Jurčić V. Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation. Autoimmun Rev 2024; 24:103739. [PMID: 39732382 DOI: 10.1016/j.autrev.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA. Since current understanding of miRNA involvement in GCA remains largely based on extrapolation of previously determined miRNA functions in vitro or in loss- or gain-of-function studies, an overall insight into the role of miRNA alteration in GCA pathophysiology remains limited. In this narrative review, we summarize the current knowledge on aberrantly expressed miRNAs in GCA and thoroughly discuss the impact of their altered regulatory role in the context of GCA setting. Furthermore, we address challenges and future perspectives in utilization of miRNA-based diagnostic and prognostic biomarkers of GCA in clinical settings.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Attenuates Intracerebral-Hemorrhage-Induced Brain Damage by Inhibiting MMP-9/MMP-2 Expression. Biomedicines 2024; 12:1373. [PMID: 38927580 PMCID: PMC11201846 DOI: 10.3390/biomedicines12061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) remains a devastating disease with high mortality, and there is a lack of effective strategies to improve functional outcomes. The primary injury of ICH is mechanical damage to brain tissue caused by the hematoma. Secondary injury, resulting from inflammation, red cell lysis, and thrombin production, presents a potential target for therapeutic intervention. Inflammation, crucial in secondary brain injury, involves both cellular and molecular components. MicroRNAs (miRNAs) are vital regulators of cell growth, differentiation, and apoptosis. Their deregulation may lead to diseases, and modulating miRNA expression has shown therapeutic potential, especially in cancer. Recent studies have implicated miRNAs in the pathogenesis of stroke, affecting endothelial dysfunction, neurovascular integrity, edema, apoptosis, inflammation, and extracellular matrix remodeling. Preclinical and human studies support the use of miRNA-directed gene modulation as a therapeutic strategy for ICH. Our study focused on the effects of miR-195 in ICH models. Neurological tests, including the corner turn and grip tests, indicated that miR-195 treatment led to improvements in motor function impairments caused by ICH. Furthermore, miR-195-5p significantly reduced brain edema in the ipsilateral hemisphere and restored blood-brain barrier (BBB) integrity, as shown by reduced Evans blue dye extravasation. These results suggest miR-195-5p's potential in attenuating ICH-induced apoptosis, possibly related to its influence on MMP-9 and MMP-2 expression, enzymes associated with secondary brain injury. The anti-apoptotic effects of miR-195-5p, demonstrated through TUNEL assays, further underscore its therapeutic promise in addressing the secondary brain injury and apoptosis associated with ICH. In conclusion, miR-195-5p demonstrates a significant neuroprotective effect against ICH-induced neural damage, brain edema, and BBB disruption, primarily through the downregulation of MMP-9 and MMP-2. Our findings indicate that miR-195-5p holds therapeutic potential in managing cerebral cell death following ICH.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| |
Collapse
|
3
|
García-Peña LM, Abel ED, Pereira RO. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024; 73:151-161. [PMID: 38241507 PMCID: PMC10796300 DOI: 10.2337/dbi23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 01/21/2024]
Abstract
Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Witarto BS, Visuddho V, Aldian FM, Atmaja MSS, Ariyanto MV, Witarto AP, Wungu CDK, Susilo H, Alsagaff MY, Rohman MS. Blood-based circulating microRNAs as diagnostic biomarkers for subclinical carotid atherosclerosis: A systematic review and meta-analysis with bioinformatics analysis. Diabetes Metab Syndr 2023; 17:102860. [PMID: 37742360 DOI: 10.1016/j.dsx.2023.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Atherosclerosis in carotid arteries can remain clinically undetected in its early development until an acute cerebrovascular event such as stroke emerges. Recently, microRNAs (miRNAs) circulating in blood have emerged as potential diagnostic biomarkers, but their performance in detecting subclinical carotid atherosclerosis has yet to be systematically researched. AIM To investigate the diagnostic performance of circulating miRNAs in detecting subclinical carotid atherosclerosis. METHODS We systematically searched five electronic databases from inception to July 23, 2022. Subclinical carotid atherosclerosis was defined using carotid intima-media thickness (CIMT). Diagnostic accuracy parameters and correlation coefficients were pooled. A gene network visualisation and enrichment bioinformatics analysis were additionally conducted to search for potential target genes and pathway regulations of the miRNAs. RESULTS Fifteen studies (15 unique miRNAs) comprising 2542 subjects were identified. Circulating miRNAs had a pooled sensitivity of 85% (95% CI 80%-89%), specificity of 84% (95% CI 78%-88%), positive likelihood ratio of 5.19 (95% CI 3.97-6.80), negative likelihood ratio of 0.18 (95% CI 0.13-0.23), diagnostic odds ratio of 29.48 (95% CI 21.15-41.11), and area under the summary receiver operating characteristic curve of 0.91 (95% CI 0.88-0.93), with a strong correlation to CIMT (pooled coefficient 0.701; 95% CI 0.664-0.731). Bioinformatics analysis revealed a major role of the miRNAs, as shown by their relation with CCND1, KCTD15, SPARC, WWTR1, VEGFA genes, and multiple pathways involved in the pathogenesis of carotid atherosclerosis. CONCLUSION Circulating miRNAs had excellent accuracy in detecting subclinical carotid atherosclerosis, suggesting their utilisation as novel diagnostic tools.
Collapse
Affiliation(s)
| | - Visuddho Visuddho
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fan Maitri Aldian
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
6
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Xie X, Shirasu T, Li J, Guo LW, Kent KC. miR579-3p is an inhibitory modulator of neointimal hyperplasia and transcription factors c-MYB and KLF4. Cell Death Discov 2023; 9:73. [PMID: 36813774 PMCID: PMC9946956 DOI: 10.1038/s41420-023-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Neointimal hyperplasia (IH) is a common vascular pathology that typically manifests in in-stent restenosis and bypass vein graft failure. Smooth muscle cell (SMC) phenotypic switching is central to IH, both regulated by some microRNAs, yet the role of miR579-3p, a scarcely studied microRNA, is not known. Unbiased bioinformatic analysis suggested that miR579-3p was repressed in human primary SMCs treated with different pro-IH cytokines. Moreover, miR579-3p was software-predicted to target both c-MYB and KLF4 - two master transcription factors known to promote SMC phenotypic switching. Interestingly, treating injured rat carotid arteries via local infusion of miR579-3p-expressing lentivirus reduced IH 14 days after injury. In cultured human SMCs, transfection with miR579-3p inhibited SMC phenotypic switching, as indicated by decreased proliferation/migration and increased SMC contractile proteins. miR579-3p transfection downregulated c-MYB and KLF4, and luciferase assays indicated miR579-3p's targeting of the 3'UTRs of the c-MYB and KLF4 mRNAs. In vivo, immunohistochemistry showed that treatment of injured rat arteries with the miR579-3p lentivirus reduced c-MYB and KLF4 and increased SMC contractile proteins. Thus, this study identifies miR579-3p as a previously unrecognized small-RNA inhibitor of IH and SMC phenotypic switch involving its targeting of c-MYB and KLF4. Further studies on miR579-3p may provide an opportunity for translation to develop IH-mitigating new therapeutics.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Takuro Shirasu
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Jing Li
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA. .,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| | - K. Craig Kent
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
9
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Zhang D, Cao Y, Liu D, Zhang J, Guo Y. The Etiology and Molecular Mechanism Underlying Smooth Muscle Phenotype Switching in Intimal Hyperplasia of Vein Graft and the Regulatory Role of microRNAs. Front Cardiovasc Med 2022; 9:935054. [PMID: 35966541 PMCID: PMC9365958 DOI: 10.3389/fcvm.2022.935054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.
Collapse
Affiliation(s)
- Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiran Cao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yingqiang Guo,
| |
Collapse
|
12
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
13
|
Wang T, Tang X, Zhang Y, Wang X, Shi H, Yin R, Pan C. Delivery of miR-654-5p via SonoVue Microbubble Ultrasound Inhibits Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells and Arterial Thrombosis and Stenosis through Targeting TCF21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4757081. [PMID: 35910838 PMCID: PMC9325610 DOI: 10.1155/2022/4757081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important cause of vascular stenosis. The study explored the mechanism of inhibition of vascular stenosis through the molecular mechanism of smooth muscle cell phenotype transformation. Methods Coronary heart disease-related genes were screened by bioinformatics, and the target genes of miR-654-5p were predicted by dual-luciferase method and immunofluorescence method. miR-654-5p mimic stimulation and transfection of TCF21 and MTAP into cells. SonoVue microbubble sonication was used to deliver miR-654-5p into cells. Cell proliferation, migration, and invasion were detected by CCK-8, wound scratch, and Transwell. HE and IHC staining were performed to study the effect of miR-654-5p delivery via SonoVue microbubble ultrasound on vessel stenosis in a model of arterial injury. Gene expression was determined by qRT-PCR and WB. Results TCF21 and MTAP were predicted as the target genes of miR-654-5p. Cytokines induced smooth muscle cell proliferation, migration, and invasion and promoted miR-654-5p downregulation; noticeably, downregulated miR-654-5p was positively associated with the cell proliferation and migration. Overexpression of TCF21 promoted proliferation, invasion, and migration, and mimic reversed such effects. miR-654-5p overexpression delivered by SonoVue microbubble ultrasound inhibited proliferation, migration, and invasion of cells. Moreover, in arterial injury model, we found that SonoVue microbubble ultrasound transmitted miR-654-5p into the arterial wall to inhibit arterial thrombosis and stenosis, while TCF21 was inhibited. Conclusion Ultrasound delivery of miR-654-5p via SonoVue microbubbles was able to inhibit arterial thrombosis and stenosis by targeting TCF21.
Collapse
Affiliation(s)
- Tao Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqiang Tang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Yong Zhang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqin Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Haifeng Shi
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Ruohan Yin
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Changjie Pan
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
14
|
Rozhkov AN, Shchekochikhin DY, Ashikhmin YI, Mitina YO, Evgrafova VV, Zhelankin AV, Gognieva DG, Akselrod AS, Kopylov PY. The Profile of Circulating Blood microRNAs in Outpatients with Vulnerable and Stable Atherosclerotic Plaques: Associations with Cardiovascular Risks. Noncoding RNA 2022; 8:ncrna8040047. [PMID: 35893230 PMCID: PMC9326687 DOI: 10.3390/ncrna8040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs reflect many biological processes in the human body, including athero-sclerosis. In a cardiology outpatient department cohort (N = 83), we aimed to compare the levels of circulating microRNAs in groups with vulnerable plaques (N = 22), stable plaques (N = 23) and plaque-free (N = 17) depending on coronary computed tomography angiography and to evaluate associations of microRNA levels with calculated cardiovascular risks (CVR), based on the SCORE2 (+OP), ACC/AHA, ATP-III and MESA scales. Coronary computed tomography was performed on a 640-slice computed tomography scanner. Relative plasma levels of microRNA were assessed via a real-time polymerase chain reaction. We found significant differences in miR-143-3p levels (p = 0.0046 in plaque-free vs. vulnerable plaque groups) and miR-181b-5p (p = 0.0179 in stable vs. vulnerable plaques groups). Analysis of microRNA associations with CVR did not show significant differences for SCORE2 (+OP) and ATPIII scales. MiR-126-5p and miR-150-5p levels were significantly higher (p < 0.05) in patients with ACC/AHA risk >10% and miR-145-5p had linear relationships with ACC/AHA score (adjusted p = 0.0164). The relative plasma level of miR-195 was higher (p < 0.05) in patients with MESA risk > 7.5% and higher (p < 0.05) in patients with zero coronary calcium index (p = 0.036). A linear relationship with coronary calcium was observed for miR-126-3p (adjusted p = 0.0484). A positive correlation with high coronary calcium levels (> 100 Agatson units) was found for miR-181-5p (p = 0.036). Analyzing the biological pathways of these microRNAs, we suggest that miR-143-3p and miR-181-5p can be potential markers of the atherosclerosis process. Other miRNAs (miR-126-3p, 126-5p, 145-5p, 150-5p, 195-5p) can be considered as potential cardiovascular risk modifiers, but it is necessary to validate our results in a large prospective trial.
Collapse
Affiliation(s)
- Andrey N. Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Correspondence: ; Tel.: +7-915-085-32-95
| | - Dmitry Yu. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Yaroslav I. Ashikhmin
- International Medical Cluster, 40 Bolshoy Boulevard Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Yulia O. Mitina
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Veronika V. Evgrafova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Andrey V. Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Daria G. Gognieva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| | - Philippe Yu. Kopylov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.G.G.); (P.Y.K.)
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.Y.S.); (V.V.E.); (A.S.A.)
| |
Collapse
|
15
|
Fan M, Huang Y, Li K, Yang X, Bai J, Si Q, Peng Z, Jia C, Zhang Q, Tao D. ox-LDL regulates proliferation and apoptosis in VSMCs by controlling the miR-183-5p/FOXO1. Genes Genomics 2022; 44:671-681. [PMID: 35353339 DOI: 10.1007/s13258-022-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND microRNA-mRNA axes that are involved in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs) proliferation/apoptosis imbalance need to be further investigated. OBJECTIVE To investigate the functional role of miR-183-5p/FOXO1 in VSMCs and its interaction with ox-LDL. METHODS RNA sequencing was used to detect transcriptome changes of VSMCs treated with ox-LDL. miR-183-5p and FOXO1 expression levels in VSMCs after ox-LDL treatment were assessed using qRT-PCR and western blotting. The regulatory effect of miR-183-5p on FOXO1 has been tried to prove using a dual-luciferase reporter assay. The functions of miR-183-5p, and FOXO1 were analyzed by CCK-8 assay and flow cytometry assay. The tissue samples or serum samples of high fat-feeding mice and carotid atherosclerosis patients were collected, and the levels of miR-183-5p/FOXO1 were analyzed. RESULTS RNA sequencing data showed 81 miRNAs including miR-183-5p was significantly changed after ox-LDL treatment in VSMCs. FOXO1, a miR-183-5p's potential target, was also down-regulated in ox-LDL treated cells. qRT-PCR and western blot found that expression of FOXO1 mRNA and protein significantly reduced in VSMCs treated with ox-LDL, accompanied by overexpression of miR-183-5p. miR-183-5p inhibited FOXO1 mRNA by binding to its 3' UTR. Interference miR-183-5p/FOXO1 could change proliferation/apoptosis imbalance in VSMCs under ox-LDL stimulation. Higher levels of miR-183-5p but reduced FOXO1 can be found in the thoracic aorta tissues of high fat-feeding mice. In serum samples from individuals with carotid atherosclerosis, Higher levels of miR-183-5p were observed. the miR-183-5p level was positively related to the level of serum ox-LDL in patients. CONCLUSIONS Aberrant expression of miR-183-5p/FOXO1 pathway mediated ox-LDL-induced proliferation/apoptosis imbalance in VSMCs. The miR-183-5p/FOXO1 axis can potentially be utilized as the target in the treatment of patients with atherosclerosis.
Collapse
Affiliation(s)
- Mingqiang Fan
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China
| | - Yinglong Huang
- Department of Chinese Medicine Management, Affiliated Hospital of Gansu Medical College, 744000, Pingliang, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Xiangxiang Yang
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China
| | - Jing Bai
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China
| | - Qiaoke Si
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China
| | - Zhengfei Peng
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China
| | - Chunwen Jia
- Department of Cardiology, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| | - Qiangnu Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, (Shenzhen People's Hospital), Jinan University, 518020, Shenzhen, Guangdong, China
| | - Ding Tao
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Kongtong Avenue (East Section), 744000, Pingliang, Gansu Province, China.
| |
Collapse
|
16
|
Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines 2022; 10:biomedicines10030718. [PMID: 35327520 PMCID: PMC8945808 DOI: 10.3390/biomedicines10030718] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case-control retrospective study, nested in a cohort, involved all pregnancies diagnosed with SGA (n = 37) or FGR (n = 82) without PE and 80 appropriate-for-gestational age (AGA) pregnancies selected with regard to equality of sample storage time. Gene expression of 29 cardiovascular disease-associated microRNAs was assessed using real-time RT-PCR. Upregulation of miR-16-5p, miR-20a-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, and miR-195-5p was observed in SGA or FGR pregnancies at 10.0% false positive rate (FPR). Upregulation of miR-1-3p, miR-20b-5p, miR-126-3p, miR-130b-3p, and miR-499a-5p was observed in SGA pregnancies only at 10.0% FPR. Upregulation of miR-145-5p, miR-342-3p, and miR-574-3p was detected in FGR pregnancies at 10.0% FPR. The combination of four microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) was able to identify 75.68% SGA pregnancies at 10.0% FPR in early stages of gestation. The detection rate of SGA pregnancies without PE increased 4.67-fold (75.68% vs. 16.22%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. The combination of seven microRNA biomarkers (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) was able to identify 42.68% FGR pregnancies at 10.0% FPR in early stages of gestation. The detection rate of FGR pregnancies without PE increased 1.52-fold (42.68% vs. 28.05%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. Cardiovascular disease-associated microRNAs represent promising early biomarkers with very suitable predictive potential for SGA or FGR without PE to be implemented into the routine screening programs.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296-511-336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic;
| |
Collapse
|
17
|
Ma X, Liu H, Zhu J, Zhang C, Peng Y, Mao Z, Jing Y, Chen F. miR-185-5p Regulates Inflammation and Phagocytosis through CDC42/JNK Pathway in Macrophages. Genes (Basel) 2022; 13:genes13030468. [PMID: 35328023 PMCID: PMC8955717 DOI: 10.3390/genes13030468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
Macrophage activation is an essential component of systemic chronic inflammation and chronic inflammatory diseases. Emerging evidence implicates miR-185-5p in chronic inflammation diseases. However, the regulatory role of miR-185-5p in macrophage pro-inflammatory activation has not been studied previously. Here, we identified that miR-185-5p was one of the top genes and effectively downregulated in two macrophage miRNA expression datasets from GEO. Under LPS stress, miR-185-5p overexpression reduced pro-inflammatory cytokine expression, suppressed phagocytosis in RAW264.7 macrophage. miR-185-5p inhibitors augmented pro-inflammatory effects of LPS in macrophage. Mechanically, miR-185-5p sponged and negatively regulated the protein expression of CDC42. Ablation of CDC42 with selective CDC42 inhibitor CASIN reversed the pro-inflammatory effect of miR-185-5p inhibitors through inhibiting MAPK/JNK pathways. Collectively, these data demonstrate that miR-185-5p exhibited anti-inflammatory functions in LPS-induced RAW264.7 macrophages at least partially through CDC42/JNK pathways. Our findings yield insights into the understanding of miR-185-5p-regulated network in macrophages inflammation, which is beneficial for exploring miRNA-protein interaction in atherosclerotic inflammation.
Collapse
|
18
|
Li H, Zhuang W, Xiong T, Park WS, Zhang S, Zha Y, Yao J, Wang F, Yang Y, Chen Y, Cai L, Ling L, Yu D, Liang J. Nrf2 deficiency attenuates atherosclerosis by reducing LOX-1-mediated proliferation and migration of vascular smooth muscle cells. Atherosclerosis 2022; 347:1-16. [DOI: 10.1016/j.atherosclerosis.2022.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
|
19
|
Li J, Chen Z, Wang X, Song H. LncRNA UCA1, miR-26a, and miR-195 in coronary heart disease patients: Correlation with stenosis degree, cholesterol levels, inflammatory cytokines, and cell adhesion molecules. J Clin Lab Anal 2021; 36:e24070. [PMID: 34850451 PMCID: PMC8761467 DOI: 10.1002/jcla.24070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background Long noncoding RNA urothelial cancer‐associated 1 (lnc‐UCA1) targets microRNA‐26a (miR‐26a) and microRNA‐195 (miR‐195) to participate in coronary heart disease (CHD) progression via regulation of vascular smooth muscle cell and microvascular endothelial cell viability and mobility. Therefore, this study set out to further explore the relationship between lnc‐UCA1 and miR‐26a and miR‐195, along with their roles in the management of patients with CHD. Methods One hundred and thirty‐six CHD patients and 70 age‐/gender‐matched controls were recruited in this case‐control study. Their peripheral blood mononuclear cell samples were collected for lnc‐UCA1, miR‐26a, and miR‐195 measurement. Furthermore, serum samples from CHD patients were obtained for inflammatory cytokines and cell adhesion molecules measurement. The Gensini score was used to evaluate the stenosis severity in CHD patients. Results Lnc‐UCA1 expression tend to be increased, while miR‐26a and miR‐195 expressions were reduced in patients with CHD compared to that of controls (all p < 0.001). In CHD patients, lnc‐UCA1 was negatively correlated with miR‐26a (p < 0.001) and miR‐195 (p = 0.014). Besides, lnc‐UCA1 was positively correlated with Gensini score (p < 0.001), total cholesterol (p = 0.019), low‐density lipoprotein cholesterol (p = 0.002), and C‐reactive protein (p < 0.001), while miR‐26a (p < 0.001) and miR‐195 (p = 0.002) were negatively correlated with Gensini score. What's more, lnc‐UCA1 was positively correlated with tumor necrosis factor (TNF)‐α (p = 0.004), interleukin (IL)‐1β (p = 0.041), vascular cell adhesion molecule‐1 (VCAM‐1) (p = 0.010), and intercellular adhesion molecule‐1 (ICAM‐1) (p < 0.001). While miR‐26a was negatively correlated with some of the individual inflammatory cytokines and cell adhesion molecules. Conclusion Lnc‐UCA1, miR‐26a, and miR‐195 may serve as potential biomarkers for CHD management.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhisong Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Wang
- Department of Cardiology, Hospital Affiliated of Jiangnan University, Wuxi, China
| | - Haoming Song
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Zhao K, Wu T, Yang C, Pan H, Xu T, Zhang J, Guo X, Tu J, Zhang D, Kong X, Zhou B, Sun W. Low-intensity pulsed ultrasound prevents angiotensin II-induced aortic smooth muscle cell phenotypic switch via hampering miR-17-5p and enhancing PPAR-γ. Eur J Pharmacol 2021; 911:174509. [PMID: 34547245 DOI: 10.1016/j.ejphar.2021.174509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Vascular events can trigger a pathological phenotypic switch in vascular smooth muscle cells (VSMCs), decreasing and disrupting the plasticity and diversity of vascular networks. The development of novel therapeutic approaches is necessary to prevent these changes. We aimed to investigate the effects and associated mechanisms of low-intensity pulsed ultrasound (LIPUS) irradiation on the angiotensin II (AngII)-induced phenotypic switch in VSMCs. In vivo, AngII was infused subcutaneously for 4 weeks to stimulate vascular remodeling in mice, and LIPUS irradiation was applied for 20 min every 2 days for 4 weeks. In vitro, cultured rat aortic VSMCs (RAVSMCs) were pretreated once with LIPUS irradiation for 20 min before 48-h AngII stimulation. Our results showed that LIPUS irradiation prevents AngII-induced vascular remodeling of the whole wall artery without discriminating between adventitia and media in vivo and RAVSMC phenotypic switching in vitro. LIPUS irradiation downregulated miR-17-5p expression and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. The PPAR-γ activator rosiglitazone could mimic the favorable effects of LIPUS irradiation on AngII-treated RAVSMCs. In contrast, GW9662 could impede the LIPUS-mediated downregulation of RAVSMC proliferation and inflammation under AngII stimulation conditions in vivo and in vitro. Also, the miR-17-5p agomir has the same effects as GW9662 in vitro. Besides, the inhibitory effects of GW9662 against the anti-remodeling effects of LIPUS irradiation in AngII-induced RAVSMCs could be blocked by pretreatment with the miR-17-5p antagomir. Overall, LIPUS irradiation prevents AngII-induced RAVSMCs phenotypic switching through hampering miR-17-5p and enhancing PPAR-γ, suggesting a new approach for the treatment of vascular disorders.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Angiotensin II/pharmacology
- Male
- Rats
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/radiation effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/radiation effects
- Phenotype
- Ultrasonic Waves
- Aorta/drug effects
- Aorta/metabolism
- Aorta/cytology
- Vascular Remodeling/drug effects
- Vascular Remodeling/radiation effects
- Cells, Cultured
- Mice
- Rats, Sprague-Dawley
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Haotian Pan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Bin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Department of Genetics, Pediatrics and Medicine Cardiology, Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
21
|
Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, Ting KN, Hamid A, Abdul Kadir A, Pung YF. Intracellular and exosomal microRNAome profiling of human vascular smooth muscle cells during replicative senescence. Am J Physiol Heart Circ Physiol 2021; 321:H770-H783. [PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Diem Duong Ngoc Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Yan Pan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Kang Nee Ting
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Aini Hamid
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| |
Collapse
|
22
|
Circ_0010283/miR-377-3p/Cyclin D1 Axis Is Associated With Proliferation, Apoptosis, Migration, and Inflammation of Oxidized Low-density Lipoprotein-Stimulated Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2021; 78:437-447. [PMID: 34516453 DOI: 10.1097/fjc.0000000000001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Circular RNAs have been reported as vital regulators and promising therapeutic targets in multiple human diseases, including atherosclerosis (AS). However, the functional roles of circ_0010283 in AS remain unclear. The real-time quantitative polymerase chain reaction was used to determine the expression levels of circ_0010283, microRNA (miR)-377-3p, and cyclin D1 (CCND1) in serum samples. The vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the in vitro cell model of AS. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide and clonal colony-forming assays were performed to assess cell proliferation. The apoptosis was determined by flow cytometry assay. The migration of VSMCs was examined by wound healing and transwell assays. Western blot analysis was used to quantify protein expression. The association among circ_0010283, miR-377-3p, and CCND1 was confirmed by dual-luciferase reporter assay. We found that the serum level of circ_0010283 was upregulated in patients with AS and treatment with ox-LDL also increased the expression of circ_0010283 in VSMCs. Treatment with ox-LDL also increased proliferation, migration, and inflammation while inhibited apoptosis in VSMCs, which was overturned by silencing of circ_0010283. Moreover, miR-377-3p was a target of circ_0010283, and downregulation of miR-377-3p counteracted circ_0010283 silencing-induced effects on ox-LDL-stimulated VSMCs. The overexpression of miR-377-3p inhibited proliferation, migration, and inflammation while induced apoptosis of VSMCs by targeting CCND1. CCND1 was a target of miR-377-3p, and circ_0010283 acted as the miR-377-3p sponge to increase CCND1 expression. Circ_0010283 regulated proliferation, apoptosis, migration, and inflammation of ox-LDL-stimulated VSMCs through modulating miR-377-3p and CCND1.
Collapse
|
23
|
Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9935671. [PMID: 34368362 PMCID: PMC8337102 DOI: 10.1155/2021/9935671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Endovascular repair including percutaneous transluminal angioplasty (PTA) and stent implantation has become the standard approach for the treatment of peripheral arterial disease; however, restenosis is still the main limited complication for the long-term success of the endovascular repair. Endothelial denudation and regeneration, inflammatory response, and neointimal hyperplasia are major pathological processes occurring during in-stent restenosis (ISR). MicroRNAs exhibit great potential in regulating several vascular biological events in different cell types and have been identified as novel therapeutic targets as well as biomarkers for ISR prevention. This review summarized recent experimental and clinical studies on the role of miRNAs in ISR modification, with the aim of unraveling the underlying mechanism and potential therapeutic strategy of ISR.
Collapse
|
24
|
Choi JM, Baek SE, Kim JO, Jeon EY, Jang EJ, Kim CD. 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via a BLTR1 signaling axis. Sci Rep 2021; 11:11100. [PMID: 34045591 PMCID: PMC8160259 DOI: 10.1038/s41598-021-90636-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays an important role in initiating vascular inflammation; however, its cellular source in the injured vasculatures is unclear. Given the importance of high mobility group box 1 (HMGB1) in tissue injury, we investigated the role of vascular smooth muscle cells (VSMCs) in MCP-1 production in response to HMGB1. In primary cultured rat aortic VSMCs stimulated with HMGB1, the expression of MCP-1 and 5-lipoxygenase (LO) was increased. The increased MCP-1 expression in HMGB1 (30 ng/ml)-stimulated cells was significantly attenuated in 5-LO-deficient cells as well as in cells treated with zileuton, a 5-LO inhibitor. Likewise, MCP-1 expression and production were also increased in cells stimulated with exogenous leukotriene B4 (LTB4), but not exogenous LTC4. LTB4-induced MCP-1 expression was attenuated in cells treated with U75302, a LTB4 receptor 1 (BLTR1) inhibitor as well as in BLTR1-deficient cells, but not in 5-LO-deficient cells. Moreover, HMGB1-induced MCP-1 expression was attenuated in BLTR1-deficient cells or by treatment with a BLTR1 inhibitor, but not other leukotriene receptor inhibitors. In contrast to MCP-1 expression in response to LTB4, the increased MCP-1 production in HMGB1-stimulated VSMC was markedly attenuated in 5-LO-deficient cells, indicating a pivotal role of LTB4-BLTR1 signaling in MCP-1 expression in VSMCs. Taken together, 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via BLTR1 signaling, suggesting the LTB4-BLTR1 signaling axis as a potential therapeutic target for vascular inflammation in the injured vasculatures.
Collapse
Affiliation(s)
- Jong Min Choi
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Ji On Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Eun Yeong Jeon
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
- Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
25
|
Mei D, Liu Q. A New Algorithm for Analysis of MiRNA Expression Profiles—SVM-RFE-FKNN. J Imaging Sci Technol 2021. [DOI: 10.2352/j.imagingsci.technol.2021.65.3.030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Wang AP, Yang F, Tian Y, Su JH, Gu Q, Chen W, Gong SX, Ma XF, Qin XP, Jiang ZS. Pulmonary Artery Smooth Muscle Cell Senescence Promotes the Proliferation of PASMCs by Paracrine IL-6 in Hypoxia-Induced Pulmonary Hypertension. Front Physiol 2021; 12:656139. [PMID: 33897463 PMCID: PMC8058366 DOI: 10.3389/fphys.2021.656139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.
Collapse
Affiliation(s)
- Ai-Ping Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.,Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China.,Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Yang
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qing Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Physiology, Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xu-Ping Qin
- Laboratory of Vascular Biology, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
27
|
Jing R, Pan W, Long T, Li Z, Li C. LINC00472 regulates vascular smooth muscle cell migration and proliferation via regulating miR-149-3p. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12960-12967. [PMID: 33095897 DOI: 10.1007/s11356-020-10761-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
LncRNAs are one group of gene modulators functioning via several mechanisms in pathological and physiological conditions. We noted that LINC00472 expression level is elevated in atherosclerotic coronary tissues compared with normal coronary artery samples. LINC00472 is also upregulated in vascular smooth muscle cells (VSMCs) induced by TNF-α and PDGF-BB. Ectopic expression of LINC00472 induced VSMC migration and proliferation. The predicted binding sequence between miR-149-3p and LINC00472 was analyzed by LncBase Predicted. Overexpression of miR-149-3p decreases the luciferase activity of wild-type reporter plasmid, but not the mutant one. Ectopic expression of LINC00472 suppresses the expression of miR-149-3p in VSMCs. Furthermore, we demonstrated that miR-149-3p expression is decreased in atherosclerotic coronary tissues. MiR-149-3p was downregulated in VSMCs induced by TNF-α and PDGF-BB. Overexpression of LINC00472 induces VSMC migration and proliferation via regulating miR-149-3p. These data suggested that LINC00472 acts a critical role in the migration and proliferation of VSMCs partly via modulating miR-149-3p.
Collapse
Affiliation(s)
- Ran Jing
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Wei Pan
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Tianyi Long
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Zhenyu Li
- Geriatric Department of Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China
| | - Chuanchang Li
- Geriatric Department of Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, China.
| |
Collapse
|
28
|
Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can J Physiol Pharmacol 2021; 99:827-838. [PMID: 33529092 DOI: 10.1139/cjpp-2020-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
Collapse
Affiliation(s)
- Duong Ngoc Diem Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH P.O. Box 95, USA
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, 43000 Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| |
Collapse
|
29
|
Bolha L, Pižem J, Frank-Bertoncelj M, Hočevar A, Tomšič M, Jurčić V. Identification of microRNAs and their target gene networks implicated in arterial wall remodelling in giant cell arteritis. Rheumatology (Oxford) 2021; 59:3540-3552. [PMID: 32594153 DOI: 10.1093/rheumatology/keaa204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To identify dysregulated microRNAs (miRNAs) and their gene targets in temporal arteries from GCA patients, and determine their association with GCA pathogenesis and related arterial wall remodelling. METHODS We included 93 formalin-fixed, paraffin-embedded temporal artery biopsies (TABs) from treatment-naïve patients: 54 positive and 17 negative TABs from clinically proven GCA patients, and 22 negative TABs from non-GCA patients. miRNA expression analysis was performed with miRCURY LNA miRNome Human PCR Panels and quantitative real-time PCR. miRNA target gene prediction and pathway enrichment analysis was performed using the miRDB and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases, respectively. RESULTS Dysregulation of 356 miRNAs was determined in TAB-positive GCA arteries, among which 78 were significantly under-expressed and 22 significantly overexpressed above 2-fold, when compared with non-GCA controls. Specifically, TAB-positive GCA arteries were characterized by a significant overexpression of 'pro-synthetic' (miR-21-3p/-21-5p/-146a-5p/-146b-5p/-424-5p) and under-expression of 'pro-contractile' (miR-23b-3p/-125a-5p/-143-3p/-143-5p/-145-3p/-145-5p/-195-5p/-365a-3p) vascular smooth muscle cell phenotype-associated regulatory miRNAs. These miRNAs targeted gene pathways involved in the arterial remodelling and regulation of the immune system, and their expression correlated with the extent of intimal hyperplasia in TABs from GCA patients. Notably, the expression of miR-21-3p/-21-5p/-146a-5p/-146b-5p/-365a-3p differentiated between TAB-negative GCA arteries and non-GCA temporal arteries, revealing these miRNAs as potential biomarkers of GCA. CONCLUSION Identification of dysregulated miRNAs involved in the regulation of the vascular smooth muscle cell phenotype and intimal hyperplasia in GCA arterial lesions, and detection of their expression profiles, enables a novel insight into the complexity of GCA pathogenesis and implies their potential utilization as diagnostic and prognostic biomarkers of GCA.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Choe N, Kwon DH, Ryu J, Shin S, Cho HJ, Joung H, Eom GH, Ahn Y, Park WJ, Nam KI, Kim YK, Kook H. miR-27a-3p Targets ATF3 to Reduce Calcium Deposition in Vascular Smooth Muscle Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:627-639. [PMID: 33230462 PMCID: PMC7578555 DOI: 10.1016/j.omtn.2020.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023]
Abstract
Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of microRNA-27a-3p (miR-27a-3p) causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis. Inorganic phosphate significantly reduced the expression of miR-27a-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-27a-3p mimic reduced calcium deposition, whereas miR-27a-3p inhibitor increased it. The Atf3 mRNA level was upregulated in a cellular vascular calcification model, and miR-27a-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Juhee Ryu
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hye Jung Cho
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hosouk Joung
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
31
|
Feng Z, Zhu Y, Zhang J, Yang W, Chen Z, Li B. Hsa-circ_0010283 Regulates Oxidized Low-Density Lipoprotein-Induced Proliferation and Migration of Vascular Smooth Muscle Cells by Targeting the miR-133a-3p/Pregnancy-Associated Plasma Protein A Axis. Circ J 2020; 84:2259-2269. [PMID: 33162460 DOI: 10.1253/circj.cj-20-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the development of atherosclerosis. This study aimed to investigate the role of circular RNA-0010283 (circ_0010283) in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs and the associated action mechanism. METHODS AND RESULTS The expression of circ_0010283 was investigated using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was detected by using flow cytometry assay. A transwell assay was performed to observe migration and invasion, and a scratch assay was implemented to test migration. The expression of proliferation, apoptosis and migration/invasion-related proteins was measured by using a western blot. The targeted relationship was predicted by using a bioinformatics tool (Starbase) and verified by using a dual-luciferase reporter assay, a RNA immunoprecipitation (RIP) assay and a RNA pull-down assay. circ_0010283 was highly expressed in serum samples from atherosclerosis patients and ox-LDL-treated human VSMCs (HVSMCs). circ_0010283 knockdown suppressed ox-LDL-induced proliferation, migration and invasion in HVSMCs. MicroRNA-133a-3p (miR-133a-3p) was confirmed as a target of circ_0010283, and miR-133a-3p deficiency reversed the effects of circ_0010283 knockdown. Moreover, pregnancy-associated plasma protein A (PAPPA) was targeted by miR-133a-3p, and PAPPA overexpression reversed the effects of miR-133a-3p restoration. Interestingly, circ_0010283 could regulate PAPPA expression by mediating miR-133a-3p. CONCLUSIONS circ_0010283 participated in ox-LDL-induced dysfunctions of HVSMCs by modulating the miR-133a-3p/PAPPA pathway, suggesting that circ_0010283 might be associated with atherosclerosis pathogenesis.
Collapse
Affiliation(s)
- Zibo Feng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Youpeng Zhu
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jing Zhang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Wenbo Yang
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhimin Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Binghui Li
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
32
|
Pan YK, Li CF, Gao Y, Wang YC, Sun XQ. Effect of miR-27b-5p on apoptosis of human vascular endothelial cells induced by simulated microgravity. Apoptosis 2020; 25:73-91. [PMID: 31768842 PMCID: PMC6965346 DOI: 10.1007/s10495-019-01580-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Weightlessness-induced cardiovascular dysfunction can lead to physiological and pathological consequences. It has been shown that spaceflight or simulated microgravity can alter expression profiles of some microRNAs (miRNAs). Here, we attempt to identify the role of miRNAs in human umbilical vein endothelial cells (HUVECs) apoptosis under simulated microgravity. RNA-sequencing and quantitative real-time PCR (qRT-PCR) assays were used to identify differentially expressed miRNAs in HUVECs under simulated microgravity. Then we obtained the target genes of these miRNAs through target analysis software. Moreover, GO and KEGG enrichment analysis were performed. The effects of these miRNAs on HUVECs apoptosis were evaluated by flow cytometry, Western blot and Hoechst staining. Furthermore, we obtained the target gene of miR-27b-5p by luciferase assay, qRT-PCR and Western blot. Finally, we investigated the relationship between this target gene and miR-27b-5p in HUVECs apoptosis under normal gravity or simulated microgravity. We found 29 differentially expressed miRNAs in HUVECs under simulated microgravity. Of them, the expressions of 3 miRNAs were validated by qRT-PCR. We demonstrated that miR-27b-5p affected HUVECs apoptosis by inhibiting zinc fingers and homeoboxes 1 (ZHX1). Our results reported here demonstrate for the first time that simulated microgravity can alter the expression of some miRNAs in HUVECs and miR-27b-5p may protect HUVECs from apoptosis under simulated microgravity by targeting ZHX1.
Collapse
Affiliation(s)
- Yi-Kai Pan
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Cheng-Fei Li
- Key Lab of Aerospace Medicine, Chinese Ministry of Education, Xi'an, 710032, Shaanxi, China
| | - Yuan Gao
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yong-Chun Wang
- Key Lab of Aerospace Medicine, Chinese Ministry of Education, Xi'an, 710032, Shaanxi, China.
| | - Xi-Qing Sun
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
33
|
Chen C, Chao Y, Lin H, Chen C, Chen C, Yang J, Chan JYH, Juo SH. miR-195 reduces age-related blood-brain barrier leakage caused by thrombospondin-1-mediated selective autophagy. Aging Cell 2020; 19:e13236. [PMID: 33029941 PMCID: PMC7681043 DOI: 10.1111/acel.13236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 12/30/2022] Open
Abstract
Blood–brain barrier (BBB) disruption contributes to neurodegenerative diseases. Loss of tight junction (TJ) proteins in cerebral endothelial cells (ECs) is a leading cause of BBB breakdown. We recently reported that miR‐195 provides vasoprotection, which urges us to explore the role of miR‐195 in BBB integrity. Here, we found cerebral miR‐195 levels decreased with age, and BBB leakage was significantly increased in miR‐195 knockout mice. Furthermore, exosomes from miR‐195‐enriched astrocytes increased endothelial TJ proteins and improved BBB integrity. To decipher how miR‐195 promoted BBB integrity, we first demonstrated that TJ proteins were metabolized via autophagic–lysosomal pathway and the autophagic adaptor p62 was necessary to promote TJ protein degradation in cerebral ECs. Next, proteomic analysis of exosomes revealed miR‐195‐suppressed thrombospondin‐1 (TSP1) as a major contributor to BBB disruption. Moreover, TSP1 was demonstrated to activate selective autophagy of TJ proteins by increasing the formation of claudin‐5‐p62 and ZO1‐p62 complexes in cerebral ECs while TSP1 impaired general autophagy. Delivering TSP1 antibody into the circulation showed dose‐dependent reduction of BBB leakage by 20%–40% in 25‐month‐old mice. Intravenous or intracerebroventricular injection of miR‐195 rescued TSP1‐induced BBB leakage. Dementia patients with BBB damage had higher levels of serum TSP1 compared to those without BBB damage (p = 0.0015), while the normal subjects had the lowest TSP1 (p < 0.0001). Taken together, the study implies that TSP1‐regulated selective autophagy facilitates the degradation of TJ proteins and weakens BBB integrity. An adequate level of miR‐195 can suppress the autophagy–lysosome pathway via a reduction of TSP1, which may be important for maintaining BBB function.
Collapse
Affiliation(s)
- Chien‐Yuan Chen
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Yung‐Mei Chao
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Hsiu‐Fen Lin
- Department of NeurologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of NeurologyCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Chao‐Jung Chen
- Proteomics Core LaboratoryDepartment of Medical Research, China Medical University HospitalTaichungTaiwan
- Graduate Institute of Integrated MedicineChina Medical UniversityTaichungTaiwan
| | - Cheng‐Sheng Chen
- Department of PsychiatryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of PsychiatryCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Jenq‐Lin Yang
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in BiomedicineChang Gung Memorial HospitalKaohsiungTaiwan
| | - Suh‐Hang H. Juo
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichungTaiwan
- Drug Development CenterChina Medical UniversityTaichungTaiwan
| |
Collapse
|
34
|
Mi S, Wang P, Lin L. miR-188-3p Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Targeting Fibroblast Growth Factor 1 (FGF1). Med Sci Monit 2020; 26:e924394. [PMID: 33020467 PMCID: PMC7547530 DOI: 10.12659/msm.924394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background As one of the crucial causes leading to cardiovascular disease, atherosclerosis (AS) develops in association with the dysfunction of vascular smooth muscle cells (VSMCs). However, the associated mechanism of the proliferation and migration in VSMCs requires further elucidation. Material/Methods Human VSMCs and ApoE-knockout (ApoE−/−) mice were used to establish AS cell and animal models, respectively. Expression levels of miR-188-3p and fibroblast growth factor 1 (FGF1) mRNA were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was used to assess FGF1 protein expression. The proliferation, migration, and apoptosis of the cells were determined using MTT, BrdU, and Transwell assays, as well as flow cytometry analysis. The interaction between miR-188-3p and FGF1 was validated using dual-luciferase reporter gene assay, qRT-PCR, and Western blot analysis. Results MiR-188-3p was found to be significantly decreased in the serum of AS patients and ApoE−/− mice as well as VSMCs of ApoE−/− mice and human VSMCs treated with oxidized low-density lipoprotein. MiR-188-3p repressed the proliferation and migration of VSMCs but promoted apoptosis of VSMCs. The binding site between miR-188-3p and 3′ untranslated region (3′-UTR) of FGF1 was identified, and FGF1 was verified as a target gene of miR-188-3p. Restoration of FGF1 reversed the effects of miR-188-3p on VSMCs. Conclusions MiR-188-3p suppresses the proliferation and migration of VSMCs and induces their apoptosis through targeting FGF1.
Collapse
Affiliation(s)
- Shaohua Mi
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| | - Pengfei Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Laishan Branch, Yantai, Shandong, China (mainland)
| | - Lejun Lin
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| |
Collapse
|
35
|
Choe N, Shin S, Joung H, Ryu J, Kim Y, Ahn Y, Kook H, Kwon D. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells. J Cell Mol Med 2020; 24:10542-10550. [PMID: 32783377 PMCID: PMC7521311 DOI: 10.1111/jcmm.15670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR-134-5p potentiates inorganic phosphate (Pi)-induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5). Using miRNA microarray analysis of Pi-treated rat VSMCs, we first selected miR-134-5p for further evaluation. Quantitative RT-PCR confirmed that miR-134-5p was increased in Pi-treated A10 cells, a rat VSMC line. Transfection of miR-134-5p mimic potentiated the Pi-induced increase in calcium contents. miR-134-5p increased the amounts of bone runt-related transcription factor 2 (RUNX2) protein and bone morphogenic protein 2 (BMP2) mRNA in the presence of Pi but decreased the expression of osteoprotegerin (OPG). Bioinformatic analysis showed that the HDAC5 3'untranslated region (3'UTR) was one of the targets of miR-134-5p. The luciferase construct containing the 3'UTR of HDAC5 was down-regulated by miR-134-5p mimic in a dose-dependent manner in VSMCs. Overexpression of HDAC5 mitigated the calcium deposition induced by miR-134-5p. Our results suggest that a Pi-induced increase of miR-134-5p may cause vascular calcification through repression of HDAC5.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Sera Shin
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Hosouk Joung
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Juhee Ryu
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Young‐Kook Kim
- Department of BiochemistryChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Youngkeun Ahn
- Department of CardiologyChonnam National University HospitalGwangjuRepublic of Korea
| | - Hyun Kook
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Duk‐Hwa Kwon
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| |
Collapse
|
36
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Cai XY, Shao L, Zhu HM, Zhan YL, Wang YX, Tu WL, Hong L, Wang S. WITHDRAWN: Circ_0001946 facilitates the proliferation and represses apoptosis of ox-LDL-stimulated Vascular Smooth Muscle Cells via regulating miR-641/CCND1 pathway. Gene 2020:144953. [PMID: 32683082 DOI: 10.1016/j.gene.2020.144953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Xin-Yong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Hong-Min Zhu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Yu-Liang Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Yun-Xia Wang
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Wei-Ling Tu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Shu Wang
- Department of Gerontology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang 330006, JiangXi, China.
| |
Collapse
|
38
|
Identification of Novel microRNA Profiles Dysregulated in Plasma and Tissue of Abdominal Aortic Aneurysm Patients. Int J Mol Sci 2020; 21:ijms21134600. [PMID: 32605321 PMCID: PMC7370113 DOI: 10.3390/ijms21134600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small RNAs that regulate different biological processes. Our objective was to identify miRNAs dysregulated in plasma and tissue of patients with abdominal aortic aneurysm (AAA) and explore new potential targets involved in AAA. Fifty-seven subjects were recruited for a plasma study (30 AAA patients, 16 healthy volunteers and 11 patients with atherosclerosis). The expression level of 179 miRNAs was screened in plasma from a subset of samples, and dysregulated miRNAs were validated in the entire study population. Dysregulated miRNAs were also quantified in aortic tissue of 21 AAA patients and 8 organ donors. Applying a gene set enrichment analysis, an interaction map of dysregulated miRNAs and their targets was built, and selected targets were quantified in tissue samples. miR-27b-3p and miR-221-3p were overexpressed in plasma of AAA patients compared with healthy controls, 1.6 times and 1.9 times, respectively. In AAA tissue, six miRNAs (miR-1, miR-27b-3p, miR-29b-3p, miR-133a-3p, miR-133b, and miR-195-5p) were underexpressed from 1.6 to 4.8 times and four miRNAs (miR-146a-5p, miR-21-5p, miR-144-3p, and miR-103a-3p) were overexpressed from 1.3 to 7.2 times. Thrombospondin-2, a target of miR-195-5p, was increased in AAA tissue and negatively correlated with the expression of miR-195-5p, suggesting their involvement in a common regulatory mechanism.
Collapse
|
39
|
Henning RJ. Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. J Cardiovasc Transl Res 2020; 14:195-212. [PMID: 32588374 DOI: 10.1007/s12265-020-10040-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Cardiac exosomes mediate cell-to-cell communication, stimulate or inhibit the activities of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. The exosomes that are released in the heart from cardiomyocytes, vascular cells, fibroblasts, and resident stem cells are hypoimmunogenic, are physiologically more stable than cardiac cells, can circulate in the body, and are able to cross the blood-brain barrier. Exosomes utilize three mechanisms for cellular communication: (1) internalization by cells, (2) direct fusion to the cell membrane, and (3) receptor-ligand interactions. Cardiac exosomes transmit proteins, mRNA, and microRNAs to other cells during both physiological and pathological process. Cardiac-specific exosome miRNAs can regulate the expression of sarcomeric genes, ion channel genes, autophagy, anti-apoptotic and anti-fibrotic activity, and angiogenesis. This review discusses the role of exosomes and microRNAs in normal myocardium, myocardial injury and infarction, atherosclerosis, and the importance of circulating microRNAs as biomarkers of cardiac disease. Graphical Abstract.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL, 33612-3805, USA.
| |
Collapse
|
40
|
Wang Y, Zhang CX, Ge SL, Gong WH. CTBP1‑AS2 inhibits proliferation and induces autophagy in ox‑LDL‑stimulated vascular smooth muscle cells by regulating miR‑195‑5p/ATG14. Int J Mol Med 2020; 46:839-848. [PMID: 32626936 DOI: 10.3892/ijmm.2020.4624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/13/2020] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is a chronic progressive disease caused by injury and functional changes in vascular smooth muscle cells (VSMCs). Long non‑coding RNAs (lncRNAs) are pivotal regulators in AS development. The present study aimed to explore the roles and molecular mechanisms of lncRNA CTBP1‑AS2 in AS progression. A dual‑luciferase reporter assay confirmed that miR‑195‑5p is a downstream target miRNA of lncRNA CTBP1‑AS2 and miR‑195‑5p was increased in AS. The expression levels of miR‑195‑5p and CTBP1‑AS2 in the serums of patients with AS and human aorta vascular smooth muscle cells was increased or decreased, respectively, following treatment with oxidized low‑density lipoprotein (ox‑LDL). Functional experiments showed that the overexpression of lncRNA CTBP1‑AS2 inhibited the proliferation of HA‑VSMCs and promoted their autophagy following ox‑LDL treatment. This effect could be reversed by treatment with ROC‑325, the inhibitor of autophagy, or miR‑195‑5p mimics. Autophagy related 14 (ATG14) was identified to be a target of miR‑195‑5p, and lncRNA CTBP1‑AS2 promoted ATG14 expression by serving as a competing endogenous RNA of miR‑195‑5p. The present study revealed that lncRNA CTBP1‑AS2 may serve a role in AS by inhibiting the proliferation and promoting the autophagy of VSMCs through ATG14 modulation via miR‑195‑5p. These data may provide a novel therapeutic target for AS.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Cheng-Xin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sheng-Lin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wen-Hui Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
41
|
Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, Yu L, Wang Z, Yu B, Tian J. Differential Expression and Bioinformatics Analysis of CircRNA in PDGF-BB-Induced Vascular Smooth Muscle Cells. Front Genet 2020; 11:530. [PMID: 32547599 PMCID: PMC7272660 DOI: 10.3389/fgene.2020.00530] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is mediated by various factors and plays an important pathological foundation for cardiovascular and cerebrovascular diseases. Abnormal vascular smooth muscle cells (VSMCs) proliferation and migration have an essential role in atherosclerotic lesion formation. Circular RNAs (circRNA) have been widely detected in different species and are closely related to various diseases. However, the expression profiles and molecular regulatory mechanisms of circRNAs in VSMCs are still unknown. We used high-throughput RNA-seq as well as bioinformatics tools to systematically analyze circRNA expression profiles in samples from different VSMC phenotypes. Polymerase chain reaction (PCR), Sanger sequencing, and qRT-PCR were performed for circRNA validation. A total of 22191 circRNAs corresponding to 6273 genes (host genes) in the platelet-derived growth factor (PDGF-BB) treated group, the blank control group or both groups, were detected, and 112 differentially expressed circRNAs were identified between the PDGF-BB treated and control groups, of which 59 were upregulated, and 53 were downregulated. We selected 9 circRNAs for evaluation of specific head-to-tail splicing, and 10 differentially expressed circRNAs between the two groups for qRT-PCR validation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses enrichment analyses revealed that the parental genes of the circRNAs mainly participated in cardiac myofibril assembly and positive regulation of DNA-templated transcription, indicating that they might be involved in cardiovascular diseases. Finally, we constructed a circRNA-miRNA network based on the dysregulated circRNAs and VSMC-related microRNAs. Our study is the first to show the differential expression of circRNAs in PDGF-BB-induced VSMCs and may provide new ideas and targets for the prevention and therapy of vascular diseases.
Collapse
Affiliation(s)
- Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yahong Fu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Li
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Ying Xu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Basic Medical College of Mudanjiang Medical College, Mudanjiang, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqi Zheng
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Yu
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuozhong Wang
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Maguire EM, Xiao Q. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J 2020; 287:5260-5283. [DOI: 10.1111/febs.15357] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Eithne Margaret Maguire
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology William Harvey Research Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation School of Basic Medical Sciences Guangzhou Medical University China
| |
Collapse
|
43
|
Evaluation of Vascular Endothelial Function in Young and Middle-Aged Women with Respect to a History of Pregnancy, Pregnancy-Related Complications, Classical Cardiovascular Risk Factors, and Epigenetics. Int J Mol Sci 2020; 21:ijms21020430. [PMID: 31936594 PMCID: PMC7013677 DOI: 10.3390/ijms21020430] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to examine the effect of previous pregnancies and classical cardiovascular risk factors on vascular endothelial function in a group of 264 young and middle-aged women 3 to 11 years postpartum. We examined microvascular functions by peripheral arterial tonometry and EndoPAT 2000 device with respect to a history of gestational hypertension, preeclampsia, fetal growth restriction, the severity of the disease with regard to the degree of clinical signs and delivery date. Besides, we compared Reactive Hyperemia Index (RHI) values and the prevalence of vascular endothelial dysfunction among the groups of women with normal and abnormal values of BMI, waist circumference, systolic and diastolic blood pressures, heart rate, total serum cholesterol levels, serum high-density lipoprotein cholesterol levels, serum low-density lipoprotein cholesterol levels, serum triglycerides levels, serum lipoprotein A levels, serum C-reactive protein levels, serum uric acid levels, and plasma homocysteine levels. Furthermore, we determined the effect of total number of pregnancies and total parity per woman, infertility and blood pressure treatment, presence of trombophilic gene mutations, current smoking of cigarettes, and current hormonal contraceptive use on the vascular endothelial function. We also examined the association between the vascular endothelial function and postpartum whole peripheral blood expression of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p). A proportion of overweight women (17.94% and 20.59%) and women with central obesity (18.64% and 21.19%) had significantly lower RHI values at 10.0% false positive rate (FPR) both before and after adjustment of the data for the age of patients. At 10.0% FPR, a proportion of women with vascular endothelial dysfunction (RHI ≤ 1.67) was identified to have up-regulated expression profile of miR-1-3p (11.76%), miR-23a-3p (17.65%), and miR-499a-5p (18.82%) in whole peripheral blood. RHI values also negatively correlated with expression of miR-1-3p, miR-23a-3p, and miR-499a-5p in whole peripheral blood. Otherwise, no significant impact of other studied factors on vascular endothelial function was found. We suppose that screening of these particular microRNAs associated with vascular endothelial dysfunction may help to stratify a highly risky group of young and middle-aged women that would benefit from early implementation of primary prevention strategies. Nevertheless, it is obvious, that vascular endothelial dysfunction is just one out of multiple cardiovascular risk factors which has only a partial impact on abnormal expression of cardiovascular and cerebrovascular disease associated microRNAs in whole peripheral blood of young and middle-aged women.
Collapse
|
44
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
45
|
Li Z, Wu J, Zhang X, Ou C, Zhong X, Chen Y, Lu L, Liu H, Li Y, Liu X, Wu B, Wang Y, Yang P, Yan J, Chen M. CDC42 promotes vascular calcification in chronic kidney disease. J Pathol 2019; 249:461-471. [PMID: 31397884 DOI: 10.1002/path.5334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
Vascular calcification is prevalent in patients with chronic kidney disease (CKD) and a major risk factor of cardiovascular disease. Vascular calcification is now recognised as a biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Cell division cycle 42 (CDC42), a Rac1 family member GTPase, is essential for cartilage development during endochondral bone formation. However, whether CDC42 affects osteogenic differentiation of VSMCs and vascular calcification remains unknown. In the present study, we observed a significant increase in the expression of CDC42 both in rat VSMCs and in calcified arteries during vascular calcification. Alizarin red staining and calcium content assay revealed that adenovirus-mediated CDC42 overexpression led to an apparent VSMC calcification in the presence of calcifying medium, accompanied with up-regulation of bone-related molecules including RUNX2 and BMP2. By contrast, inhibition of CDC42 by ML141 significantly blocked calcification of VSMCs in vitro and aortic rings ex vivo. Moreover, ML141 markedly attenuated vascular calcification in rats with CKD. Furthermore, pharmacological inhibition of AKT signal was shown to block CDC42-induced VSMC calcification. These findings demonstrate for the first time that CDC42 contributes to vascular calcification through a mechanism involving AKT signalling; this uncovered a new function of CDC42 in regulating vascular calcification. This may provide a potential therapeutic target for the treatment of vascular calcification in the context of CKD. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ji Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xinglong Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanting Chen
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Hailin Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yuxi Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
46
|
Goossens EAC, de Vries MR, Simons KH, Putter H, Quax PHA, Nossent AY. miRMap: Profiling 14q32 microRNA Expression and DNA Methylation Throughout the Human Vasculature. Front Cardiovasc Med 2019; 6:113. [PMID: 31440517 PMCID: PMC6694280 DOI: 10.3389/fcvm.2019.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Aims: MicroRNAs are regulators of (patho)physiological functions with tissue-specific expression patterns. However, little is known about inter-vascular differences in microRNA expression between blood vessel types or vascular beds. Differences in microRNA expression could influence cardiovascular pathophysiology at specific sites in the vasculature. Therefore, we aimed to map expression profiles of vasoactive 14q32 microRNAs throughout the human vasculature, as well as expression of vasoactive target genes of the 14q32 microRNAs. Furthermore, we aimed to map the DNA methylation status of the 14q32 locus, which has been linked to cardiovascular disease. Methods and Results: We collected 109 samples from different blood vessels, dissected during general surgery. Expression of a representative set of 17 14q32 microRNAs was measured in each sample. All 17 microRNAs showed a unique expression pattern throughout the vasculature. 14q32 microRNA expression was highest in lower limb vessels and lowest in head and neck vessels. All 17 microRNAs were expressed more abundantly in arteries than in veins. Throughout the human vasculature, we observed trends toward an inverse correlation between expression levels of the 14q32 microRNAs and their vasoactive target genes. DNA methylation of the 3 Differentially Methylated Regions (DMRs) along the 14q32 locus did not associate with primary or mature microRNA expression. However, hyper-methylation in venous coronary artery bypass grafts compared to arterial bypass grafts was observed in the Intergenic-DMR and MEG3-DMR. In patients with end-stage peripheral arterial disease we found differential DNA methylation throughout all DMRs in their lower limb veins. These findings were confirmed in a mouse model for vein-graft disease in which we found regulated 14q32 DNA methylation during the active phase of vascular remodeling. In ischemic tissues of a murine hind limb ischemia model we observed an increase in DNA methylation associated with increased ischemia over time. Conclusions: We show that 14q32 microRNAs are abundantly expressed in the human vasculature and that expression differs significantly between different blood vessels. 14q32 DNA methylation also varies throughout the vasculature and is associated with vascular health, independently of microRNA levels. These findings could have important implications for future research and for future site-specific targeting of epigenetics-based therapeutics.
Collapse
Affiliation(s)
- Eveline A C Goossens
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int J Cardiol 2019; 291:158-167. [PMID: 31151766 DOI: 10.1016/j.ijcard.2019.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND METHODS Gestational hypertension (GH), preeclampsia (PE) and fetal growth restriction (FGR) may predispose to later onset of cardiovascular/cerebrovascular diseases. We examined if pregnancy complications induce postpartum alterations in gene expression of cardiovascular/cerebrovascular disease associated microRNAs. 29 microRNAs were tested in peripheral blood of women, compared between groups with a history of GH, PE, FGR and controls, and correlated with the severity of the disease regarding clinical signs, delivery date, and Doppler parameters. RESULTS GH was associated with the up-regulation of miR-20a-5p, miR-143-3p, miR-146a-5p, miR-181a-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p. The up-regulation of miR-17-5p, miR-20b-5p, miR-29a-3p, and miR-126-3p was a mutual phenomenon of GH and severe PE. GH and early PE were associated with up-regulation of miR-1-3p and miR-17-5p. GH and late PE showed up-regulation of miR-17-5p, miR-20b-5p, and miR-29a-3p. Severe PE induced up-regulation of miR-133a-3p and down-regulation of miR-130b-3p. MiR-133a-3p up-regulation was also observed in early PE. PE and/or FGR with abnormal Doppler parameters demonstrated up-regulation of miR-100-5p, miR-125b-5p, miR-133a-3p, and miR-145-5p. The combination screening was superior over using individual microRNAs for patients with GH, PE regardless of the severity of the disease, severe PE and early PE. A cardiovascular risk at patients with late PE, PE and/or FGR with abnormal Doppler parameters was identified more accurately using the single microRNA only. CONCLUSION Epigenetic changes characteristic for cardiovascular/cerebrovascular diseases are present in women with a prior exposure to pregnancy complications. Screening of microRNAs may be used to identify patients at a higher risk of later development of cardiovascular/cerebrovascular diseases.
Collapse
|
48
|
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the abdominal aortic vessel wall and is among the most challenging cardiovascular diseases as without urgent surgical intervention, ruptured AAA has a mortality rate of >80%. Most patients present acutely after aneurysm rupture or dissection from a previously asymptomatic condition and are managed by either surgery or endovascular repair. Patients usually are old and have other concurrent diseases and conditions, such as diabetes mellitus, obesity, and hypercholesterolemia making surgical intervention more difficult. Collectively, these issues have driven the search for alternative methods of diagnosing, monitoring, and treating AAA using therapeutics and less invasive approaches. Noncoding RNAs-short noncoding RNAs (microRNAs) and long-noncoding RNAs-are emerging as new fundamental regulators of gene expression. Researchers and clinicians are aiming at targeting these microRNAs and long noncoding RNAs and exploit their potential as clinical biomarkers and new therapeutic targets for AAAs. While the role of miRNAs in AAA is established, studies on long-noncoding RNAs are only beginning to emerge, suggesting their important yet unexplored role in vascular physiology and disease. Here, we review the role of noncoding RNAs and their target genes focusing on their role in AAA. We also discuss the animal models used for mechanistic understanding of AAA. Furthermore, we discuss the potential role of microRNAs and long noncoding RNAs as clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Reinier A. Boon
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- Department of Physiology, Amsterdam Cardiovascular
Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The
Netherlands
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm,
Sweden
- Department of Vascular and Endovascular Surgery, Technical
University Munich, Munich, Germany
- German Center for Cardiovascular Research DZHK, Munich,
Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Division of Cardiology, Emory University, Atlanta, GA,
USA
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
49
|
Cao BJ, Zhu L, Wang XW, Zou RJ, Lu ZQ. MicroRNA-365 promotes the contractile phenotype of venous smooth muscle cells and inhibits neointimal formation in rat vein grafts. IUBMB Life 2019; 71:908-916. [PMID: 30746857 DOI: 10.1002/iub.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022]
Abstract
The high rate of autologous vein graft failure caused by neointimal hyperplasia remains an unresolved issue in the field of cardiovascular surgery; therefore, it is important to explore new methods for protecting against neointimal hyperplasia. MicroRNA-365 has been reported to inhibit the proliferation of vascular smooth muscle cells (SMCs). This study aimed to test whether adenovirus-mediated miR-365 was able to attenuate neointimal formation in rat vein grafts. We found that miR-365 expression was substantially reduced in vein grafts following engraftment. In vitro, overexpression of miR-365 promoted smooth muscle-specific gene expression and inhibited venous SMC proliferation and migration. Consistent with this, overexpression of miR-365 in a rat vein graft model significantly reduced grafting-induced neointimal formation and effectively improved the hemodynamics of the vein grafts. Mechanistically, we identified that cyclin D1 as a potential downstream target of miR-365 in vein grafts. Specially, to increase the efficiency of miR-365 gene transfection, a 30% poloxamer F-127 gel containing 0.25% trypsin was mixed with adenovirus and spread around the vein grafts to increase the adenovirus contact time and penetration. We showed that adenovirus-mediated miR-365 attenuated venous SMC proliferation and migration in vitro and effectively inhibited neointimal formation in rat vein grafts. Restoring expression of miR-365 is a potential therapeutic approach for the treatment of vein graft failure. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Bo-Jun Cao
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lei Zhu
- Department of Oncological Surgery, Anqing Hospital of Anhui Medical University, Anhui, 246000, China
| | - Xiao-Wen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rong-Jiang Zou
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zhi-Qian Lu
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
50
|
Widlansky ME, Jensen DM, Wang J, Liu Y, Geurts AM, Kriegel AJ, Liu P, Ying R, Zhang G, Casati M, Chu C, Malik M, Branum A, Tanner MJ, Tyagi S, Usa K, Liang M. miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. EMBO Mol Med 2019; 10:emmm.201708046. [PMID: 29374012 PMCID: PMC5840545 DOI: 10.15252/emmm.201708046] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the role of microRNAs (miRNA) in endothelial dysfunction in the setting of cardiometabolic disorders represented by type 2 diabetes mellitus (T2DM). miR‐29 was dysregulated in resistance arterioles obtained by biopsy in T2DM patients. Intraluminal delivery of miR‐29a‐3p or miR‐29b‐3p mimics restored normal endothelium‐dependent vasodilation (EDVD) in T2DM arterioles that otherwise exhibited impaired EDVD. Intraluminal delivery of anti‐miR‐29b‐3p in arterioles from non‐DM human subjects or rats or targeted mutation of Mir29b‐1/a gene in rats led to impaired EDVD and exacerbation of hypertension in the rats. miR‐29b‐3p mimic increased, while anti‐miR‐29b‐3p or Mir29b‐1/a gene mutation decreased, nitric oxide levels in arterioles. The mutation of Mir29b‐1/a gene led to preferential differential expression of genes related to nitric oxide including Lypla1. Lypla1 was a direct target of miR‐29 and could abrogate the effect of miR‐29 in promoting nitric oxide production. Treatment with Lypla1 siRNA improved EDVD in arterioles obtained from T2DM patients or Mir29b‐1/a mutant rats or treated with anti‐miR‐29b‐3p. These findings indicate miR‐29 is required for normal endothelial function in humans and animal models and has therapeutic potential for cardiometabolic disorders.
Collapse
Affiliation(s)
- Michael E Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Jensen
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jingli Wang
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison J Kriegel
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rong Ying
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guangyuan Zhang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marc Casati
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chen Chu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mobin Malik
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Branum
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Tanner
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristie Usa
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|