1
|
Lin Z, Zhao M, Zhang X, Piao J, Zheng X, Shu S, Zhao L, Zhang M, Shi GP, Lei Y, Cui R, Yue X, Cheng XW. CD8 + T-cell deficiency protects mice from abdominal aortic aneurysm formation in response to calcium chloride 2. J Hypertens 2024; 42:1966-1975. [PMID: 39146540 PMCID: PMC11451972 DOI: 10.1097/hjh.0000000000003823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is an aneurysm-like dilated and highly fatal cardiovascular disease. CD8 + T cells have been shown to be critical for vascular pathological processes, but the contribution of these lymphocytes to vascular diseases remains elusive. METHODS AND RESULTS Eight-week-old male wildtype (CD8 +/+ ) and Cd8a knockout (CD8 -/- ) mice were used in a calcium chloride 2 (CaCl 2 )-induced experimental AAA model. At 6 weeks after surgery, CD8 + T-cell deletion prevented the formation of AAA, accompanied by reductions of the levels of inflammatory (interferon-γ [IFN-γ], interleukin-1β, monocyte chemoattractant protein-1, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, NOD-like receptor protein 3, caspase-1), oxidative stress [NADPH oxidase and gp91 phox ], and proteolysis (cathepsin S, cathepsin K, matrix metalloproteinase-2 [MMP-2] and MMP-9) proteins and/or genes in plasma and/or AAA tissues. Immunoreactivities of MMP-2 and MMP-9 were observed in macrophages. An injection of IFN-γ and adoptive transfer of CD8 + T cells of IFN-γ +/+ mice diminished CD8 -/- -mediated vasculoprotective actions in the AAA mice. In vitro, IFN-γ enhanced MMP-2 and MMP-9 gelatinolytic activities in macrophage and/or vascular smooth muscle cells. CONCLUSION The vasculoprotective effects of CD8 + T-cell deletion in a mouse CaCl 2 -induced AAA model were likely attributable to, at least in part, the attenuation of IFN-γ-dependent inflammation action, oxidative stress production, and proteolysis, suggesting a novel therapeutic target for AAA formation by regulating CD8 + T-cell-derived IFN-γ secretion.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Mantong Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xintong Zheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Shangzhi Shu
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, Jilin PR, China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Rihua Cui
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xueling Yue
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| |
Collapse
|
2
|
Gedney JR, Mattia V, Figueroa M, Barksdale C, Fannin E, Silverman J, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Biomechanical dysregulation of SGK-1 dependent aortic pathologic markers in hypertension. Front Cardiovasc Med 2024; 11:1359734. [PMID: 38903966 PMCID: PMC11187291 DOI: 10.3389/fcvm.2024.1359734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In hypertension (HTN), biomechanical stress may drive matrix remodeling through dysfunctional VSMC activity. Prior evidence has indicated VSMC tension-induced signaling through the serum and glucocorticoid inducible kinase-1 (SGK-1) can impact cytokine abundance. Here, we hypothesize that SGK-1 impacts production of additional aortic pathologic markers (APMs) representing VSMC dysfunction in HTN. Methods Aortic VSMC expression of APMs was quantified by QPCR in cyclic biaxial stretch (Stretch) +/- AngiotensinII (AngII). APMs were selected to represent VSMC dedifferentiated transcriptional activity, specifically Interleukin-6 (IL-6), Cathepsin S (CtsS), Cystatin C (CysC), Osteoprotegerin (OPG), and Tenascin C (TNC). To further assess the effect of tension alone, abdominal aortic rings from C57Bl/6 WT mice were held in a myograph at experimentally derived optimal tension (OT) or OT + 30% +/-AngII. Dependence on SGK-1 was assessed by treating with EMD638683 (SGK-1 inhibitor) and APMs were measured by QPCR. Then, WT and smooth muscle cell specific SGK-1 heterozygous knockout (SMC-SGK-1KO+/-) mice had AngII-induced HTN. Systolic blood pressure and mechanical stress parameters were assessed on Day 0 and Day 21. Plasma was analyzed by ELISA to quantify APMs. Statistical analysis was performed by ANOVA. Results In cultured aortic VSMCs, expression of all APMs was increased in response to biomechanical stimuli (Stretch +/-AngII,). Integrating the matrix contribution to signal transduction in the aortic rings led to IL-6 and CysC demonstrating SGK-1 dependence in response to elevated tension and interactive effect with concurrent AngII stimulation. CtsS and TNC, on the other hand, primarily responded to AngII, and OPG expression was unaffected in aortic ring experimentation. Both mouse strains had >30% increase in blood pressure with AngII infusion, reduced aortic distensibility and increased PPV, indicating increased aortic stiffness. In WT + AngII mice, IL-6, CtsS, CysC, and TNC plasma levels were significantly elevated, but these APMs were unaffected by HTN in the SMC-SGK-1KO+/- +AngII mice, suggesting SGK-1 plays a major role in VSMC biomechanical signaling to promote dysfunctional production of selected APMs. Conclusion In HTN, changes in the plasma levels of markers associated with aortic matrix homeostasis can reflect remodeling driven by mechanobiologic signaling in dysfunctional VSMCs, potentially through the activity of SGK-1. Further defining these pathways may identify therapeutic targets to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- J. Ryan Gedney
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Barksdale
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ethan Fannin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jonah Silverman
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Maheshwari S, Patel BM. Unravelling the role of cathepsins in cardiovascular diseases. Mol Biol Rep 2024; 51:579. [PMID: 38668953 DOI: 10.1007/s11033-024-09518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Bhoomika M Patel
- School of Medico-Legal Studies, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, India.
| |
Collapse
|
4
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Jia Y, Li D, Yu J, Jiang W, Liu Y, Li F, Zeng R, Wan Z, Liao X. Angiogenesis in Aortic Aneurysm and Dissection: A Literature Review. Rev Cardiovasc Med 2023; 24:223. [PMID: 39076698 PMCID: PMC11266809 DOI: 10.31083/j.rcm2408223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysm and aortic dissection (AA/AD) are critical aortic diseases with a hidden onset and sudden rupture, usually resulting in an inevitable death. Several pro- and anti-angiogenic factors that induce new capillary formation in the existing blood vessels regulate angiogenesis. In addition, aortic disease mainly manifests as the proliferation and migration of endothelial cells of the adventitia vasa vasorum. An increasing number of studies have shown that angiogenesis is a characteristic change that may promote AA/AD occurrence, progression, and rupture. Furthermore, neocapillaries are leaky and highly susceptible to injury by cytotoxic agents, which promote extracellular matrix remodeling, facilitate inflammatory cell infiltration, and release coagulation factors and proteases within the wall. Mechanistically, inflammation, hypoxia, and angiogenic factor signaling play important roles in angiogenesis in AA/AD under the complex interaction of multiple cell types, such as smooth muscle cells, fibroblasts, macrophages, mast cells, and neutrophils. Therefore, based on current evidence, this review aims to discuss the manifestation, pathological role, and underlying mechanisms of angiogenesis involved in AA/AD, providing insights into the prevention and treatment of AA/AD.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Fanghui Li
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
6
|
The cathepsin-S/protease-activated receptor-(PAR)-2 axis drives chronic allograft vasculopathy and is a molecular target for therapeutic intervention. Transpl Immunol 2023; 77:101782. [PMID: 36608832 DOI: 10.1016/j.trim.2022.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cathepsin S (CatS) and proteinase-activated receptor (PAR)-2 are involved in the remodelling of vascular walls and neointima formation as well as in alloantigen presentation and T-cell priming. Therefore, we hypothesized that CatS/PAR-2 inhibition/deficiency would attenuate chronic allograft vasculopathy. METHODS Heterotopic aortic murine transplantation was performed from C57BL/6J donors to C57BL/6J recipients (syngeneic control group), Balb/c to C57BL/6J without treatment (allogenic control group), Balb/c to C57BL/6J with twice daily oral CatS inhibitor (allogenic treatment group) and Balb/c to Par2-/- C57BL/6J (allogenic knockout group). The recipients were sacrificed on day 28 and the grafts were harvested for histological analysis and RT-qPCR. RESULTS After 28 days, mice of the allogenic control group exhibited significant neointima formation and massive CD8 T-cell infiltration into the neointima while the syngeneic control group showed negligible allograft vasculopathy. The mRNA expression level of CatS in allografts was 5-fold of those in syngeneic grafts. Neointima formation and therefore intima/media-ratio were significantly decreased in the treatment and knockout group in comparison to the allogenic control group. Mice in treatment group also displayed significantly fewer CD8 T cells in the neointima compared with allogeneic controls. Additionally, treatment with the CatS inhibitor and PAR2-deficiency decreased mRNA-levels of interleukins and cytokines. CONCLUSION In conclusion, our data indicate that inhibiting CatS and PAR-2 deficiency led to a marked reduction of neointima formation and associated inflammation in a murine heterotopic model for allograft vasculopathy.
Collapse
|
7
|
Cathepsins in the extracellular space: Focusing on non-lysosomal proteolytic functions with clinical implications. Cell Signal 2023; 103:110531. [PMID: 36417977 DOI: 10.1016/j.cellsig.2022.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Cathepsins can be found in the extracellular space, cytoplasm, and nucleus. It was initially suspected that the primary physiological function of the cathepsins was to break down intracellular protein, and that they also had a role in pathological processes including inflammation and apoptosis. However, the many actions of cathepsins outside the cell and their complicated biological impacts have garnered much interest. Cathepsins play significant roles in a number of illnesses by regulating parenchymal cell proliferation, cell migration, viral invasion, inflammation, and immunological responses through extracellular matrix remodeling, signaling disruption, leukocyte recruitment, and cell adhesion. In this review, we outline the physiological roles of cathepsins in the extracellular space, the crucial pathological functions performed by cathepsins in illnesses, and the recent breakthroughs in the detection and therapy of specific inhibitors and fluorescent probes in associated dysfunction.
Collapse
|
8
|
Yang YY, Jiao XL, Yu HH, Li LY, Li J, Zhang XP, Qin YW. Angiopoietin-like protein 8 deficiency attenuates thoracic aortic aneurysm/dissection development in β-aminopropionitrile monofumarate-induced model mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166619. [PMID: 36494038 DOI: 10.1016/j.bbadis.2022.166619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a life-threatening cardiovascular disorder. Endoplasmic reticulum stress (ERS) and vascular smooth muscle cell (VSMC) apoptosis are involved in TAAD progression. The Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway is associated with VSMC apoptosis. Serum Angiopoietin-Like Protein 8 (ANGPTL8) levels are associated with aortic diameter and rupture rate of TAAD. However, a direct role of ANGPTL8 in TAAD has not been determined. β-Aminopropionitrile monofumarate (BAPN) was used to induce TAAD in C57BL/6 mice. ANGPTL8 knockout mice were used to detect the effects of ANGPTL8 on TAAD development. ANGPTL8knockdown in vitro was used to analyze the role of ANGPTL8 in VSMCs and ERS. In addition, over-expression of ANGPTL8 in VSMCs and a PERK inhibitor were used to assess the effect of ANGPTL8 on the PERK pathway. ANGPTL8 levels were increased in the aortic wall and VSMCs of BAPN-induced TAAD mice. Compared with BAPN-treated wild-type mice, ANGPTL8 knockout significantly reduced the rupture rate of TAAD to 0 %. In addition, the protein levels of proinflammatory cytokines and matrix metalloproteinase 9 (MMP9) and ERS proteins were decreased in the aorta wall. Angptl8 shRNA decreased MMP9 and ERS protein levels in VSMCs in vitro. Overexpression of ANGPTL8 significantly increased the levels of ERS proteins and MMPs, while a PERK inhibitor significantly decreased the effects of ANGPTL8 in VSMCs. ANGPTL8 contributed to TAAD development by inducing ERS activation and degradation of extracellular matrix in the aorta wall. Inhibition of ANGPTL8 may therefore represent a new strategy for TAAD therapy.
Collapse
Affiliation(s)
- Yun-Yun Yang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Lu Jiao
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hua-Hui Yu
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Lin-Yi Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Juan Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Ping Zhang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan-Wen Qin
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
9
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
11
|
Huttunen R, Sainio A, Hjelt A, Haapanen-Saaristo AM, Määttä J, Rummukainen P, Paatero I, Järveläinen H. Distinctive effects of SGLT2 inhibitors on angiogenesis in zebrafish embryos. Biomed Pharmacother 2022; 156:113882. [DOI: 10.1016/j.biopha.2022.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
|
12
|
Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W, Gawron K. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms231911078. [PMID: 36232377 PMCID: PMC9569530 DOI: 10.3390/ijms231911078] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most dangerous cardiovascular diseases, occurring mainly in men over the age of 55 years. As it is asymptomatic, patients are diagnosed very late, usually when they suffer pain in the abdominal cavity. The late detection of AAA contributes to the high mortality rate. Many environmental, genetic, and molecular factors contribute to the development and subsequent rupture of AAA. Inflammation, apoptosis of smooth muscle cells, and degradation of the extracellular matrix in the AAA wall are believed to be the major molecular processes underlying AAA formation. Until now, no pharmacological treatment has been implemented to prevent the formation of AAA or to cure the disease. Therefore, it is important that patients are diagnosed at a very early stage of the disease. Biomarkers contribute to the assessment of the concentration level, which will help to determine the level and rate of AAA development. The potential biomarkers today include homocysteine, cathepsins, osteopontin, and osteoprotegerin. In this review, we describe the major aspects of molecular processes that take place in the aortic wall during AAA formation. In addition, biomarkers, the monitoring of which will contribute to the prompt diagnosis of AAA patients over the age of 55 years, are described.
Collapse
Affiliation(s)
- Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8388
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Wacław Kuczmik
- Department of General, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Ziolowa 45/47 Street, 40-635 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| |
Collapse
|
13
|
Lei L, Zhou Y, Wang T, Zheng Z, Chen L, Pan Y. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells. Int Immunopharmacol 2022; 112:109177. [PMID: 36049351 DOI: 10.1016/j.intimp.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal vascular disease in absence of effective pharmaceutical therapy. Adenosine monophosphate-activated protein kinase α (AMPKα) plays a critical role in various cardiovascular diseases. Whether AMPKα is involved in the pathogenesis of aortic dissection remains unknown. We aimed to determine whether activation of AMPKα prevents the formation of AD. METHODS AND RESULTS Reduced expression of phosphorylated AMPKα (Thr172) and exacerbated phenotypic switching were observed in human aortic tissues from aortic dissection patients compared with those in tissues from controls. In vivo, the formation of aortic dissection in ApoE-/- mice was successfully induced by continuous infusion of angiotensin II (AngII) for two weeks, characterized by the activation of vascular inflammation, infiltration of macrophages and phenotypic switching of vascular smooth muscle cells (VSMCs). rAAV2-mediated overexpression of constitutively active AMPKα (CA-AMPKα) enhanced the expression of phosphorylated AMPKα (Thr172) and attenuated AngII-induced occurrence of aortic dissection by suppressing the infiltration of macrophages, activation of vascular inflammation and phenotypic switching of VSMCs. The pathogenesis above was conversely exacerbated by rAAV2-mediated overexpression of dominant negative AMPKα2 (DN-AMPKα). In vitro, we demonstrated that the administration of an AMPK agonist (AICAR) or transfection of CA-AMPKα induced the activation of AMPKα and then ameliorated AngII-induced phenotypic switching in the VSMCs and inflammation in the bone marrow-derived macrophages (BMDMs). This could be reversed by the addition of AMPK inhibitor compound C or transfection of DN-AMPKα. CONCLUSION Impaired activation of AMPKα may increase the susceptibility to aortic dissection. Our findings verified the protective effects of AMPKα on the formation of aortic dissection and may provide evidence for clinical prevention or treatment.
Collapse
Affiliation(s)
- Lei Lei
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanrong Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiemao Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Zheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youmin Pan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
15
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
17
|
Li B, Song X, Guo W, Hou Y, Hu H, Ge W, Fan T, Han Z, Li Z, Yang P, Gao R, Zhao H, Wang J. Single-Cell Transcriptome Profiles Reveal Fibrocytes as Potential Targets of Cell Therapies for Abdominal Aortic Aneurysm. Front Cardiovasc Med 2021; 8:753711. [PMID: 34901214 PMCID: PMC8652037 DOI: 10.3389/fcvm.2021.753711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is potentially life-threatening in aging population due to the risk of aortic rupture and a lack of optimal treatment. The roles of different vascular and immune cells in AAA formation and pathogenesis remain to be future characterized. Single-cell RNA sequencing was performed on an angiotensin (Ang) II-induced mouse model of AAA. Macrophages, B cells, T cells, fibroblasts, smooth muscle cells and endothelial cells were identified through bioinformatic analyses. The discovery of multiple subtypes of macrophages, such as the re-polarization of Trem2+Acp5+ osteoclast-like and M2-like macrophages toward the M1 type macrophages, indicates the heterogenous nature of macrophages during AAA development. More interestingly, we defined CD45+COL1+ fibrocytes, which was further validated by flow cytometry and immunostaining in mouse and human AAA tissues. We then reconstituted these fibrocytes into mice with Ang II-induced AAA and found the recruitment of these fibrocytes in mouse AAA. More importantly, the fibrocyte treatment exhibited a protective effect against AAA development, perhaps through modulating extracellular matrix production and thus enhancing aortic stability. Our study reveals the heterogeneity of macrophages and the involvement of a novel cell type, fibrocyte, in AAA. Fibrocyte may represent a potential cell therapy target for AAA.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yangfeng Hou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huiyuan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,First Clinical College, Xi'an Jiaotong University, ShaanXi, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhifa Han
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Wang S, Yuan Q, Zhao W, Zhou W. Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm. PeerJ 2021; 9:e12232. [PMID: 34820156 PMCID: PMC8603816 DOI: 10.7717/peerj.12232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complex vascular disease involving expansion of the abdominal aorta. Extracellular matrix (ECM) degradation is crucial to AAA pathogenesis, however, the specific molecular mechanism remains unclear. This study aimed to investigate differentially expressed circular RNAs (DEcircRNAs) involved in ECM degradation of AAA. Methods Transcriptome sequencing was used to analyze the DEcircRNAs between the AAA tissues and normal tissues. The expression of circRNAs in tissues and cells was validated using quantitative reverse transcription PCR (RT-qPCR). Overexpression of circRNAs in vascular smooth muscle cells (VSMCs) treated with angiotensin II (Ang II) was employed to explore its effect on ECM degradation of AAA. Bioinformatic technology, luciferase reporter gene assay, RT-qPCR, and rescue experiment were employed to evaluate the regulatory mechanism of circRNA. Results We identified 65 DEcircRNAs in AAA tissues compared with normal abdominal aortic tissues, including 30 up-regulated and 35 down-regulated circRNAs, which were mainly involved in inflammation and ECM-related functions and pathways. Moreover, circRBM33 was significantly increased in AAA tissues and Ang II-induced VSMCs compared with control samples. Overexpression of circRBM33 increased the expression of ECM-related molecule matrix metalloproteinase-2 and reduced the tissue inhibitor of matrix metalloproteinases-1 expression. Mechanistically, miR-4268 targeted binding to circRBM33 and inhibited the luciferase activity of circRBM33. Overexpression of circRBM33 induced the expression of EPH receptor B2 (EPHB2), and this effect was countered by miR-4268 mimics. Conclusions Overall, our data suggest that circRBM33 might be involved in AAA progression by regulating ECM degradation via the miR-4268/EPHB2 axis.
Collapse
Affiliation(s)
- Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Yuan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Herrero-Cervera A, Espinós-Estévez C, Martín-Vañó S, Taberner-Cortés A, Aguilar-Ballester M, Vinué Á, Piqueras L, Martínez-Hervás S, González-Navarro H. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14). Biomedicines 2021; 9:biomedicines9111518. [PMID: 34829747 PMCID: PMC8615201 DOI: 10.3390/biomedicines9111518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), is a complex disorder characterized by vascular vessel wall remodeling. LIGHT (TNFSF14) is a proinflammatory cytokine associated with vascular disease. In the present study, the impact of genetic inactivation of Light was investigated in dissecting AAA induced by angiotensin II (AngII) in the Apolipoprotein E-deficient (Apoe−/−) mice. Studies in aortic human (ah) vascular smooth muscle cells (VSMC) to study potential translation to human pathology were also performed. AngII-treated Apoe−/−Light−/− mice displayed increased abdominal aorta maximum diameter and AAA severity compared with Apoe−/− mice. Notably, reduced smooth muscle α-actin+ area and Acta2 and Col1a1 gene expression were observed in AAA from Apoe−/−Light−/− mice, suggesting a loss of VSMC contractile phenotype compared with controls. Decreased Opn and augmented Sox9 expression, which are associated with detrimental and non-contractile osteochondrogenic VSMC phenotypes, were also seen in AngII-treated Apoe−/−Light−/− mouse AAA. Consistent with a role of LIGHT preserving VSMC contractile characteristics, LIGHT-treatment of ahVSMCs diminished the expression of SOX9 and of the pluripotency marker CKIT. These effects were partly mediated through lymphotoxin β receptor (LTβR) as the silencing of its gene ablated LIGHT effects on ahVSMCs. These studies suggest a protective role of LIGHT through mechanisms that prevent VSMC trans-differentiation in an LTβR-dependent manner.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | | | - Susana Martín-Vañó
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Alida Taberner-Cortés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - María Aguilar-Ballester
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Laura Piqueras
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergio Martínez-Hervás
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Endocrinology and Nutrition Service, Clinic Hospital of Valencia, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-386-44-03; Fax: +34-96-398-78-60
| |
Collapse
|
20
|
Wei M, Wang X, Song Y, Zhu D, Qi D, Jiao S, Xie G, Liu Y, Yu B, Du J, Wang Y, Qu A. Inhibition of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation Reduces Angiotensin II-Induced Abdominal Aortic Aneurysm Rupture in Mice. Front Cardiovasc Med 2021; 8:676612. [PMID: 34395553 PMCID: PMC8360833 DOI: 10.3389/fcvm.2021.676612] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: Neutrophil infiltration plays an important role in the initiation and development of abdominal aortic aneurysm (AAA). Recent studies suggested that neutrophils could release neutrophil extracellular traps (NETs), leading to tissue injury in cardiovascular diseases. However, the role of NETs in AAA is elusive. This study aimed to investigate the role and underlying mechanism of NETs in AAA development. Methods and Results: An angiotensin II (Ang II) infusion-induced AAA model was established to investigate the role of NETs during AAA development. Immunofluorescence staining showed that citrullinated histone 3 (citH3), myeloperoxidase (MPO), and neutrophil elastase (NE) (NET marker) expressions were significantly increased in Ang II-infused ApoE−/− mice. The circulating double-stranded DNA (dsDNA) level was also elevated, indicating the increased NET formation during AAA. PAD4 inhibitor YW3-56 inhibited Ang II-induced NET formation. Disruption of NET formation by YW3-56 markedly reduced Ang II-induced AAA rupture, as revealed by decreased aortic diameter, vascular smooth muscle cell (VSMC) apoptosis, and elastin degradation. Apoptosis of VSMC was evaluated by TUNEL staining and Annexin V-FITC/PI staining through flow cytometry. Western blot and inhibition experiments revealed that NETs induced VSMC apoptosis via p38/JNK pathway, indicating that PAD4-dependent NET formation played an important role in AAA. Conclusions: This study suggests that PAD4-dependent NET formation is critical for AAA rupture, which provides a novel potential therapeutic strategy for AAA disease.
Collapse
Affiliation(s)
- Ming Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Di Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Chen YW, Tang HJ, Tsai YS, Lee NY, Hung YP, Huang CF, Lee CC, Li CW, Li MC, Syue LS, Su SL, Hsu SH, Ko WC, Chen PL. Risk of non-typhoidal Salmonella vascular infections is increased with degree of atherosclerosis and inflammation: A multicenter study in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:474-481. [PMID: 34301492 DOI: 10.1016/j.jmii.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Atherosclerosis and vascular inflammatory response have been considered as risk factors for non-typhoidal Salmonella (NTS) vascular infection. The study aims to assess the risk of vascular infection by measuring atherosclerosis severity, NTS vascular infection (NTSVI) score, and serum levels of inflammatory markers in people with NTS bacteremia. METHODS A prospective observational study was conducted in two medical centers and two regional hospitals. Adults aged ≥50 years with NTS bacteremia who underwent computed tomography (CT) scan for revealing vascular infections were enrolled. The degree of atherosclerosis was scaled by a calcium score determined by a CT scan. Serum concentrations of inflammatory biomarkers were determined in the patients enrolled in a medical center. RESULTS Fourteen (20.3%) of 69 patients with NTS bacteremia had vascular infections. Calcium scores over the thoracic (12,540 vs. 3,261, P = 0.0005) and abdominal (9755 vs. 3,461, P = 0.0006) aorta of those with vascular infections were higher than those without vascular infection. All vascular infections were present in the high-risk group (NTSVI score ≥1), yielding a sensitivity of 100% and specificity of 30.9%. Among 17 low-risk patients (NTSVI score <1), none had vascular infections, resulting in a negative predictive value of 100%. Higher plasma concentrations of IL-1β were detected in the cases of vascular infection than those in the control group (23.6 vs. 1.06 pg/mL, P = 0.001). CONCLUSION Atherosclerosis of the aorta which is associated with a positive NTSVI score can predict the occurrence of vascular infections and serum IL-1β could be a biomarker for vascular infection in patients with NTS bacteremia.
Collapse
Affiliation(s)
- Ying-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Shan Tsai
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Graduate Institute of Clinical Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Fang Huang
- Department of Internal Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shu-Hao Hsu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Cui J, Xu G, Bian F. H 2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome. Int J Cardiol 2021; 338:215-225. [PMID: 34157359 DOI: 10.1016/j.ijcard.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular remodeling and inflammation are involved in aortic aneurysm (AA) and aortic dissection (AD). TGF-β1 signaling is involved in tissue fibrosis, extracellular matrix remodeling and inflammation, which are linked with AA and AD. The inhibition of NLRP3 inflammasome suppresses AA and AD. Hydrogen sulfide (H2S) exerts anti-vascular remodeling and anti-inflammatory properties, but little is known about its action on AA and AD progression. METHODS The effect of H2S on AA and AD formation was investigated in Sprague-Dawley (SD) rat fed a normal diet supplemented with 0.25% β-aminopropionitrile (BAPN). HE staining, Masson's trichrome staining, Picrosirius red staining and EVG staining were to evaluate vascular remodeling in the aortic wall. Western blotting and IHC were to detect the expression of TGF-β1 and matrix metalloproteinases (MMPs) and NLRP3 inflammasome-associated proteins. The interaction between TGF-β1 signaling and NLRP3 inflammasome was explored in Human aortic vascular smooth muscle cells (HA-VSMCs). RESULTS H2S alleviated AA and AD progression. Specifically, it improved irregular tissue arrangement and vascular fibrosis, increased the expression of elastin fibers, decreased collagen deposition and the expression of TGF-β1 and matrix metalloproteinases (MMP-2/9). In addition, H2S inhibited the expression of proteins involved in NLRP3 inflammasome. Furthermore, H2S down-regulated TGF-β1 signaling and then ameliorated vascular fibrosis by preventing NLRP3 inflammasome activation. Finally, H2S inhibited NLRP3 inflammasome activation and decreased the level of IL-1β by disrupting TGF-β1 signaling. CONCLUSIONS These data support a crosstalk between TGF-β1 signaling and NLRP3 inflammasome. H2S inhibits AA and AD progression via blocking the crosstalk.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China
| | - Gao Xu
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Special Preparation of Vitiligo Xiangyang Key Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China.
| |
Collapse
|
23
|
Lin B, Xie W, Zeng C, Wu X, Chen A, Li H, Jiang R, Li P. Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating Ctss in mice. Aging (Albany NY) 2021; 13:15638-15658. [PMID: 34077394 PMCID: PMC8221304 DOI: 10.18632/aging.103842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Dendritic cell-derived exosomes have been proven to be efficient adjuvant options for anti-tumor vaccines in cancer immunotherapy. However, their potency in atherosclerosis remains unclear. Here we summarize the association of microRNA-203-3p (miR-203-3p) with dendritic cell-derived exosomes and atherosclerosis. Firstly, dendritic cell-derived exosomes and bone marrow-derived macrophages were isolated, after which expression of miR-203-3p and cathepsin S was determined. After the establishment of atherosclerosis mouse models, gain- and loss-of-function experiments were conducted for the analysis of effects of miR-203-3p and cathepsin S on foam-cell formation, lipid accumulation, collagen deposition and serum total cholesterol. The results found high expression of cathepsin S in atherosclerosis mice and downregulation of miR-203-3p in the serum of atherosclerosis patients and ox-LDL-simulated bone marrow-derived macrophages. Cathepsin S was the target gene of miR-203-3p. miR-203-3p transporting from exosomes to bone marrow-derived macrophages resulted in inhibition of cathepsin S expression and atherosclerosis-related phenotypes in bone marrow-derived macrophages, thus alleviating atherosclerosis in mice, and this process was found to involve the p38/MAPK signaling pathway. These findings provided evidence that the transfer of miR-203-3p by dendritic cell-derived exosomes targeted cathepsin S in bone marrow-derived macrophages to attenuate atherosclerosis progression in mice, serving as a promising clinical target for atherosclerosis.
Collapse
Affiliation(s)
- Beiyou Lin
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| | - Wenchao Xie
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| | - Chunmei Zeng
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| | - Xiaodan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, P.R. China
| | - Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, P.R. China
| | - Hao Li
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| | - Rina Jiang
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| | - Ping Li
- Department of Cardiology, Yulin First People’s Hospital and The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, P.R. China
| |
Collapse
|
24
|
Muniappan L, Okuyama M, Javidan A, Thiagarajan D, Jiang W, Moorleghen JJ, Yang L, Balakrishnan A, Howatt DA, Uchida HA, Saido TC, Subramanian V. Inducible Depletion of Calpain-2 Mitigates Abdominal Aortic Aneurysm in Mice. Arterioscler Thromb Vasc Biol 2021; 41:1694-1709. [PMID: 33761765 PMCID: PMC8062307 DOI: 10.1161/atvbaha.120.315546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Rupture/chemically induced
- Aortic Rupture/enzymology
- Aortic Rupture/genetics
- Aortic Rupture/prevention & control
- Calpain/deficiency
- Calpain/genetics
- Calpain/metabolism
- Cells, Cultured
- Cytoskeleton/enzymology
- Cytoskeleton/pathology
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Rats
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Michihiro Okuyama
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Devi Thiagarajan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceuticals Sciences, Okayama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm. Biosci Rep 2021; 41:227680. [PMID: 33501488 PMCID: PMC7960886 DOI: 10.1042/bsr20201810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been ascertained as vital modulators in abdominal aortic aneurysm (AAA) development. In this research, the function and molecular mechanisms of the lncRNA X-inactive specific transcript (XIST) in the evolution of vascular smooth muscle cells (VSMCs) were assessed. Results showed that XIST expression was increased but miR-1264 expression level was reduced in the serum of AAA patients. XIST depletion impeded human aorta VSMCs (HA-VSMCs’) ability to proliferate and stimulate apoptosis, while repressing miR-1264 expression through an unmediated interaction. Additionally, the influence of XIST knockdown on apoptosis and proliferation could be rescued by an miR-1264 inhibitor. Subsequent molecular investigations indicated that WNT5A was miR-1264’s target, and XIST functioned as a competing endogenous RNA (ceRNA) of miR-1264 to raise WNT5A expression. Further, an miR-1264 inhibitor stimulated the proliferation and suppressed the apoptosis of HA-VSMCs through the activation of WNT/β-catenin signaling. Taken together, XIST impeded the apoptosis and stimulated the proliferation of HA-VSMCs via the WNT/β-catenin signaling pathway through miR-1264, demonstrating XIST’s underlying role in AAA.
Collapse
|
26
|
Adams L, Brangsch J, Hamm B, Makowski MR, Keller S. Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights. Int J Mol Sci 2021; 22:ijms22052685. [PMID: 33799971 PMCID: PMC7962044 DOI: 10.3390/ijms22052685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.
Collapse
Affiliation(s)
- Lisa Adams
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-627-376
| | - Julia Brangsch
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Bernd Hamm
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Marcus R. Makowski
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sarah Keller
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| |
Collapse
|
27
|
Jing Y, Shi J, Lu B, Zhang W, Yang Y, Wen J, Hu R, Yang Z, Wang X. Association of Circulating Cathepsin S and Cardiovascular Disease Among Patients With Type 2 Diabetes: A Cross-Sectional Community-Based Study. Front Endocrinol (Lausanne) 2021; 12:615913. [PMID: 33746900 PMCID: PMC7973458 DOI: 10.3389/fendo.2021.615913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cathepsin S, as an adipokine, was reported to play a critical role in various disease, including atherosclerosis and diabetes. The present study aims to elucidate the relationship between circulating cathepsin S and cardiovascular disease (CVD) in patients with type 2 diabetes. METHODS A total of 339 type 2 diabetes individuals were enrolled in this cross-sectional community-based study. Basic information, medical and laboratory data were collected. Serum cathepsin S levels were assessed by ELISA. RESULTS Compared to the CVD (-) group, levels of serum cathepsin S were significantly higher in the CVD (+) group, with the median 23.68 ng/ml (18.54-28.02) and 26.81 ng/ml (21.19-37.69) respectively (P < 0.001). Moreover, patients with acute coronary syndrome (ACS) had substantially higher levels of serum cathepsin S than those with stable angina pectoris (SAP), with the median 34.65 ng/ml (24.33-42.83) and 25.52 ng/ml (20.53-31.47) respectively (P < 0.01). The spearman correlation analysis showed that circulating cathepsin S was correlated with several cardiovascular risk factors. The univariate and multivariate logistic regression analysis revealed that circulating cathepsin S was an independent risk factor for CVD (all P < 0.001) after adjustment for potential confounders. Restricted cubic spline analysis showed circulating cathepsin S had a linearity association with CVD. In addition, receiver operating characteristic (ROC) curve analysis demonstrated that the area under curve (AUC) values of cathepsin S was 0.80 (95% CI: 0.75-0.84, P < 0.001), with the optimal cutoff value of cathepsin 26.28 ng/ml. CONCLUSION Circulating cathepsin S was significantly higher in the CVD (+) group than that in the CVD (-) one among type 2 diabetes. The increased serum cathepsin S levels were associated with increased risks of CVD, even after adjusting for potential confounders. Thus, cathepsin S might be a potential diagnostic biomarker for CVD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Lu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Zhen Yang, ; Xuanchun Wang,
| | - Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhen Yang, ; Xuanchun Wang,
| |
Collapse
|
28
|
Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars) 2020; 15:457-463. [PMID: 33336003 PMCID: PMC7712403 DOI: 10.1515/med-2020-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Osteoprotegerin (OPG) appears to be a very promising marker both in the diagnosis of abdominal aortic aneurysms (AAAs) and as a potential target in its treatment. This article presents an overview of the current literature that discusses the role of OPG in the pathogenesis of atherosclerosis and its potential value as a prognostic factor in AAA. Pharmacological modulation of OPG expression has been considered. In conclusion, it seems that further research designed to assess the relationship between OPG and AAA is needed as this may contribute to improved AAA monitoring and more effective treatment of patients with AAA.
Collapse
Affiliation(s)
- Maciej Migacz
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Agata Janoska-Gawrońska
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Michał Holecki
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Jerzy Chudek
- Department and Clinic of Internal Medicine and Cancer Chemotherapy, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
29
|
Yodsanit N, Wang B, Zhao Y, Guo LW, Kent KC, Gong S. Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials 2020; 265:120406. [PMID: 32979792 DOI: 10.1016/j.biomaterials.2020.120406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta that plagues millions. Its rupture incurs high mortality rates (~80-90%), pressing an urgent need for therapeutic methods to prevent this deadly outcome. Judiciously designed nanoparticles (NPs) have displayed a unique potential to fulfill this need. Aneurysms feature excessive inflammation and extracellular matrix (ECM) degradation. As such, typically inflammatory cells and exposed ECM proteins have been targeted with NPs for therapeutic, diagnostic, or theranostic purposes in experimental models. NPs have been used not only for encapsulation and delivery of drugs and biomolecules in preclinical tests, but also for enhanced imaging to monitor aneurysm progression in patients. Moreover, they can be readily modified with various molecules to improve lesion targeting, detectability, biocompatibility, and circulation time. This review updates on the progress, limitations, and prospects of NP applications in the context of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yi Zhao
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Shaoqin Gong
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
30
|
Chang Z, Zhao G, Zhao Y, Lu H, Xiong W, Liang W, Sun J, Wang H, Zhu T, Rom O, Guo Y, Fan Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Arterioscler Thromb Vasc Biol 2020; 40:2494-2507. [PMID: 32787523 DOI: 10.1161/atvbaha.120.314955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.
Collapse
Affiliation(s)
- Ziyi Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Metabolism and Endocrinology (Z.C.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenhao Xiong
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jinjian Sun
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor.,Department of Cardiovascular Medicine (J.S.), The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Tianqing Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Yanbo Fan
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Bo Yang
- Department of Cardiac Surgery (B.Y.), University of Michigan Medical Center, Ann Arbor
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor (J.D.L.)
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center (Z.C., G.Z., Y.Z., H.L., W.X., W.L., J.S., H.W., T.Z., O.R., Y.G., Y.F., L.C., M.T.G.-B., Y.E.C., J.Z.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
31
|
Ni H, Xu S, Chen H, Dai Q. Nicotine Modulates CTSS (Cathepsin S) Synthesis and Secretion Through Regulating the Autophagy-Lysosomal Machinery in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:2054-2069. [PMID: 32640907 DOI: 10.1161/atvbaha.120.314053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Increased CTSS (cathepsin S) has been reported to play a critical role in atherosclerosis progression. Both CTSS synthesis and secretion are essential for exerting its functions. However, the underlying mechanisms contributing to CTSS synthesis and secretion in atherosclerosis remain unclear. Approach and Results: In this study, we showed that nicotine activated autophagy and upregulated CTSS expression in vascular smooth muscle cells and in atherosclerotic plaques. Western blotting and immunofluorescent staining showed that nicotine inhibited the mTORC1 (mammalian target of rapamycin complex 1) activity, promoted the nuclear translocation of TFEB (transcription factor EB), and upregulated the expression of CTSS. Chromatin immunoprecipitation-qualificative polymerase chain reaction, electrophoretic mobility shift assay, and luciferase reporter assay further demonstrated that TFEB directly bound to the CTSS promoter. mTORC1 inhibition by nicotine or rapamycin promoted lysosomal exocytosis and CTSS secretion. Live cell assays and IP-MS (immunoprecipitation-mass spectrometry) identified that the interactions involving Rab10 (Rab10, member RAS oncogene family) and mTORC1 control CTSS secretion. Nicotine promoted vascular smooth muscle cell migration by upregulating CTSS, and CTSS inhibition suppressed nicotine-induced atherosclerosis in vivo. CONCLUSIONS We concluded that nicotine mediates CTSS synthesis and secretion through regulating the autophagy-lysosomal machinery, which offers a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huaner Ni
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shuang Xu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hangwei Chen
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qiuyan Dai
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
32
|
Lei Y, Ehle B, Kumar SV, Müller S, Moll S, Malone AF, Humphreys BD, Andrassy J, Anders HJ. Cathepsin S and Protease-Activated Receptor-2 Drive Alloimmunity and Immune Regulation in Kidney Allograft Rejection. Front Cell Dev Biol 2020; 8:398. [PMID: 32582696 PMCID: PMC7290053 DOI: 10.3389/fcell.2020.00398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
Alloantigen presentation is an essential process in acute allorejection. In this context, we speculated on a pathogenic role of cathepsin S (Cat-S), a cysteine protease known to promote antigenic peptide loading into MHC class II and to activate protease-activated receptor (PAR)-2 on intrarenal microvascular endothelial and tubular epithelial cells. Single-cell RNA sequencing and immunostaining of human kidney allografts confirmed Cat-S expression in intrarenal mononuclear phagocytes. In vitro, Cat-S inhibition suppressed CD4 + T cell lymphocyte activation in a mixed lymphocyte assay. In vivo, we employed a mouse model of kidney transplantation that showed preemptive Cat-S inhibition significantly protected allografts from tubulitis and intimal arteritis. To determine the contribution of PAR-2 activation, first, Balb/c donor kidneys were transplanted into Balb/c recipient mice without signs of rejection at day 10. In contrast, kidneys from C57BL/6J donor mice revealed severe intimal arteritis, tubulitis, interstitial inflammation, and glomerulitis. Kidneys from Par2-deficient C57BL/6J mice revealed partial protection from tubulitis and lower intrarenal expression levels for Fasl, Tnfa, Ccl5, and Ccr5. Together, we conclude that Cat-S and PAR-2 contribute to immune dysregulation and kidney allograft rejection, possibly involving Cat-S-mediated activation of PAR-2 on recipient parenchymal cells in the allograft.
Collapse
Affiliation(s)
- Yutian Lei
- Division of Nephrology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Ehle
- Division for General, Visceral, Transplant, Vascular and Thoracic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Santhosh V Kumar
- Division of Nephrology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Müller
- Department of Pathology, University of Munich, Munich, Germany
| | - Solange Moll
- Institute of Clinical Pathology, University Hospital Geneva, Geneva, Switzerland
| | - Andrew F Malone
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, United States.,Department of Developmental Biology, Washington University in Saint Louis School of Medicine, St. Louis, MO, United States
| | - Joachim Andrassy
- Division for General, Visceral, Transplant, Vascular and Thoracic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
33
|
Endoplasmic reticulum stress and mitochondrial biogenesis are potential therapeutic targets for abdominal aortic aneurysm. Clin Sci (Lond) 2020; 133:2023-2028. [PMID: 31654572 DOI: 10.1042/cs20190648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are crucial organelles for cell homeostasis and alterations of these organelles have been implicated in cardiovascular disease. However, their roles in abdominal aortic aneurysm (AAA) pathogenesis remain largely unknown. In a recent issue of Clinical Science, Navas-Madronal et al. ((2019), 133(13), 1421-1438) reported that enhanced ER stress and dysregulation of mitochondrial biogenesis are associated with AAA pathogenesis in humans. The authors also proposed that disruption in oxysterols network such as an elevated concentration of 7-ketocholestyerol in plasma is a causative factor for AAA progression. Their findings highlight new insights into the underlying mechanism of AAA progression through ER stress and dysregulation of mitochondrial biogenesis. Here, we will discuss the background, significance of the study, and future directions.
Collapse
|
34
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
35
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Shuai T, Kan Y, Si Y, Fu W. High-risk factors related to the occurrence and development of abdominal aortic aneurysm. J Interv Med 2020; 3:80-82. [PMID: 34805912 PMCID: PMC8562180 DOI: 10.1016/j.jimed.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common and potentially dangerous vascular disease with many risk factors related to its occurrence and development. This review collects the results from recent studies of different comorbidities including hypertension, diabetes, and hyperlipidemia and summarizes their connections with AAA development and its underlying mechanisms. We believe that hypertension, diabetes, and hyperlipidemia can affect AAA occurrence and development, but more studies are needed to further explore the mechanisms.
Collapse
|
37
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Lai CH, Chang JY, Wang KC, Lee FT, Wu HL, Cheng TL. Pharmacological Inhibition of Cathepsin S Suppresses Abdominal Aortic Aneurysm in Mice. Eur J Vasc Endovasc Surg 2020; 59:990-999. [PMID: 32033870 DOI: 10.1016/j.ejvs.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Evidence suggests that cathepsin S (CTSS), a potent mammalian elastase, participates in abdominal aortic aneurysm (AAA) formation. This study examines the hypothesis that pharmacological inhibition of CTSS with an α-ketoamide based compound 6r might suppress AAA in mice. METHODS Experimental study of the CaCl2 induced AAA model in B6 mice and angiotensin II (AngII) infused AAA model in ApoE-/- mice. The effects of intraperitoneal administration of 6r (25 mg/kg) and vehicle every three days since one day after AAA induction were evaluated at 28 days using CaCl2 induced (n = 12 per group) and AngII infused (n = 8 per group) models. Additionally, the effects of post-treatment with 6r and vehicle from seven days or 14 days after AAA induction were evaluated at 28 days using the CaCl2 induced model (n = 6 per group). Aortic samples were harvested for histological and biochemical analyses, including cathepsin levels, Verhoeff Van Gieson staining, TUNEL assay, and immunostaining for macrophages. RESULTS In the CaCl2 induced model, treatment with 6r suppressed aortic dilatation observed in vehicle treated controls (median: 0.58 vs. 0.92 mm; p < .001), along with reduced CTSS and cathepsin K (CTSK) levels (both p < .001), preserved elastin integrity (p < .001), fewer medial apoptotic cells (p = .012) and less macrophage infiltration (p = .041). In the AngII infused model, the aortic diameter was smaller in 6r treated mice than in vehicle treated controls (median: 0.95 vs. 1.84 mm; p = .047). The levels of CTSS (p < .001) and CTSK (p = .033) and the numbers of elastin breaks (p < .001), medial apoptotic cells (p < .001) and infiltrating macrophages (p = .030) were attenuated under 6r treatment. Finally, post-treatment with 6r from seven days (p = .046) or 14 days (p = .012) after AAA induction limited CaCl2 induced AAA. CONCLUSION Pharmacological inhibition of CTSS by 6r suppresses AAA formation in mice. Also, post-treatment with 6r retards mouse AAA progression. These findings provide proof of concept validation for CTSS as a potential therapeutic target in AAA.
Collapse
Affiliation(s)
- Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Kuan-Chieh Wang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Fang-Tzu Lee
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Centre, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Characterization of cathepsin S exosites that govern its elastolytic activity. Biochem J 2020; 477:227-242. [DOI: 10.1042/bcj20190847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.
Collapse
|
40
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
41
|
Jana S, Hu M, Shen M, Kassiri Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp Mol Med 2019; 51:1-15. [PMID: 31857579 PMCID: PMC6923362 DOI: 10.1038/s12276-019-0286-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aortic aneurysm is an asymptomatic disease with dire outcomes if undiagnosed. Aortic aneurysm rupture is a significant cause of death worldwide. To date, surgical repair or endovascular repair (EVAR) is the only effective treatment for aortic aneurysm, as no pharmacological treatment has been found effective. Aortic aneurysm, a focal dilation of the aorta, can be formed in the thoracic (TAA) or the abdominal (AAA) region; however, our understanding as to what determines the site of aneurysm formation remains quite limited. The extracellular matrix (ECM) is the noncellular component of the aortic wall, that in addition to providing structural support, regulates bioavailability of an array of growth factors and cytokines, thereby influencing cell function and behavior that ultimately determine physiological or pathological remodeling of the aortic wall. Here, we provide an overview of the ECM proteins that have been reported to be involved in aortic aneurysm formation in humans or animal models, and the experimental models for TAA and AAA and the link to ECM manipulations. We also provide a comparative analysis, where data available, between TAA and AAA, and how aberrant ECM proteolysis versus disrupted synthesis may determine the site of aneurysm formation. A review of aneurysm formation, swelling in blood vessel, in the aorta, examines distinctions between two forms of the condition and the role of proteins in the extracellular matrix which surrounds cells of the arterial wall. Rupture of aneurysms in the aorta, the body’s main artery, is a major cause of death. Researchers led by Zamaneh Kassiri at the University of Alberta, Edmonton, Canada, emphasize that aneurysms in the thoracic and abdominal regions of the aorta are distinct conditions with crucial differences in their causes. Disrupted production and assembly of the extracellular matrix and its proteins may underlie thoracic aneurysm formation. Factors triggering the degradation of extracellular matrix proteins may be more significant in abdominal aneurysms. Understanding the differing molecular mechanisms involved could help address the current lack of effective drug treatments for these dangerous conditions.
Collapse
Affiliation(s)
- Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
42
|
Ahmad S, Bhagwati S, Kumar S, Banerjee D, Siddiqi MI. Molecular modeling assisted identification and biological evaluation of potent cathepsin S inhibitors. J Mol Graph Model 2019; 96:107512. [PMID: 31881466 DOI: 10.1016/j.jmgm.2019.107512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Cathepsin S (CatS) is one of the cysteinyl cathepsins widely studied for its clinical significance and found to be a promising therapeutic target for several diseases; to name a few is arthritis, allergic inflammation, cancer, diabetes, obesity, and cystic fibrosis. Elevated CatS level is a contributing factor for related disorders, and therefore among different strategies to regulate the activity of CatS, one is to design a quality inhibitor. Earlier, we have demonstrated a highly selective CatS inhibitor, RO5444101 interacts primarily with the S2 pocket of the protein which is structurally unique in contrast to other variants of cathepsin. However, the molecular properties of RO5444101 can question its efficacy at the clinical level. In the present study, we have implemented a series of molecular modeling methods to screen the Maybridge library considering the pharmacophoric features of RO5444101 and other relevant inhibitors of CatS. Based on the priority list, eight hits were subjected to biological evaluation. Subsequently, KM07987 was found to be most potent, with the IC50 of <5 μM. Molecular dynamics simulations also relate to our experimental findings and propose the importance of CatS's S2 pocket, which primarily interacts with the inhibitors. Based on the S2 pocket interactions, structural modifications of the promising hits can further be translated into novel scaffolds for improved inhibition of CatS.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudha Bhagwati
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushil Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
43
|
Xu W, Yu C, Piao L, Inoue A, Wang H, Meng X, Li X, Cui L, Umegaki H, Shi GP, Murohara T, Kuzuya M, Cheng XW. Cathepsin S-Mediated Negative Regulation of Wnt5a/SC35 Activation Contributes to Ischemia-Induced Neovascularization in Aged Mice. Circ J 2019; 83:2537-2546. [PMID: 31645525 DOI: 10.1253/circj.cj-19-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
BACKGROUND Given that cathepsin S (CatS) gained attention due to its enzymatic and non-enzymatic functions in signaling, the role of CatS in ischemia-induced angiogenesis of aged mice was explored. METHODS AND RESULTS To study the role of CatS in the decline in aging-related vascular regeneration capacity, a hindlimb ischemia model was applied to aged wild-type (CatS+/+) and CatS-deficient (CatS-/-) mice. CatS-/-mice exhibited impaired blood flow recovery and capillary formation and increased levels of p-insulin receptor substrate-1, Wnt5a, and SC35 proteins and decreased levels of phospho-endothelial nitric oxide synthase (p-eNOS), p-mTOR, p-Akt, p-ERK1/2, p-glycogen synthase kinase-3α/β, and galatin-3 proteins, as well as decreased macrophage infiltration and matrix metalloproteinase-2/-9 activities in the ischemic muscles. In vitro, CatS knockdown altered the levels of these targeted essential molecules for angiogenesis. Together, the results suggested that CatS-/-leads to defective endothelial cell functions and that CatS-/-is associated with decreased circulating endothelial progenitor cell (EPC)-like CD31+/c-Kit+cells. This notion was reinforced by the study finding that pharmacological CatS inhibition led to a declined angiogenic capacity accompanied by increased Wnt5a and SC35 levels and decreased eNOS/Akt-ERK1/2 signaling in response to ischemia. CONCLUSIONS These findings demonstrated that the impairment of ischemia-induced neovascularization in aged CatS-/-mice is due, at least in part, to the attenuation of endothelial cell/EPC functions and/or mobilization associated with Wnt5a/SC35 activation in advanced age.
Collapse
Affiliation(s)
- Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xiangkun Meng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Xiang Li
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Lan Cui
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Hiroyuki Umegaki
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| |
Collapse
|
44
|
He X, Wang S, Li M, Zhong L, Zheng H, Sun Y, Lai Y, Chen X, Wei G, Si X, Han Y, Huang S, Li X, Liao W, Liao Y, Bin J. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Am J Cancer Res 2019; 9:5558-5576. [PMID: 31534503 PMCID: PMC6735383 DOI: 10.7150/thno.34463] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Long noncoding RNAs (lncRNAs) may serve as specific targets for the treatment of abdominal aortic aneurysms (AAAs). LncRNA GAS5, functionally associated with smooth muscle cell (SMC) apoptosis and proliferation, is likely involved in AAA formation, but the exact role of GAS5 in AAA is unknown. We thus explored the contribution of GAS5 to SMC-regulated AAA formation and its underlying mechanisms. Methods: Human specimens were used to verify the diverse expression of GAS5 in normal and AAA tissues. The angiotensin II (Ang II)-induced AAA model in ApoE-/- mice and the CaCl2-induced AAA model in wild-type C57BL/6 mice were used. RNA pull-down and luciferase reporter gene assays were performed in human aortic SMCs to detect the interaction between GAS5 and its downstream targets of protein or microRNA (miR). Results: GAS5 expression was significantly upregulated in human AAA specimens and two murine AAA models compared to human normal aortas and murine sham-operated controls. GAS5 overexpression induced SMC apoptosis and repressed its proliferation, thereby promoting AAA formation in two murine AAA models. Y-box-binding protein 1 (YBX1) was identified as a direct target of GAS5 while it also formed a positive feedback loop with GAS5 to regulate the downstream target p21. Furthermore, GAS5 acted as a miR-21 sponge to release phosphatase and tensin homolog from repression, which blocked the activation and phosphorylation of Akt to inhibit proliferation and promote apoptosis in SMCs. Conclusion: The LncRNA GAS5 contributes to SMC survival during AAA formation. Thus, GAS5 might serve as a novel target against AAA.
Collapse
|
45
|
Yao F, Yao Z, Zhong T, Zhang J, Wang T, Zhang B, He Q, Ding L, Yang B. Imatinib prevents elastase-induced abdominal aortic aneurysm progression by regulating macrophage-derived MMP9. Eur J Pharmacol 2019; 860:172559. [PMID: 31325435 DOI: 10.1016/j.ejphar.2019.172559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023]
Abstract
Abdominal aortic aneurysm (AAA) is characterized with progressive weakening and considerable dilation of the aortic wall. Despite the high risk of mortality in the elderly population, there are still no clinical pharmacological therapies to alleviate AAA progression. Macrophage-derived MMP9 acts as a key factor in extracellular matrix degradation and is crucial for aortic aneurysm development and aortic rupture. Here, we demonstrated that the transcription level of MMP9 was suppressed with a concentration-dependent manner in macrophages after Imatinib treatment, which was accompanied by the down-regulation of MMP9 protein expression and reduced MMP9 secretion in vitro. Imatinib administration (50 mg/kg/d, i.g.) was carried out one week after the establishment of elastase-induced AAA in rats, stabilizing aneurysm progression and improving survival rate via decreasing the aortic diameter and preventing elastin degradation. Expression and activity of MMP9 in the artery tissues were significantly suppressed after Imatinib treatment via in situ assessment like immunohistochemistry and zymography, although macrophage infiltration was not affected. Furthermore, we found that Imatinib inhibited MMP9 transcription through reduction of STAT3 phosphorylation and translocation from nucleus to cytoplasm. These observations indicated that Imatinib prevents aneurysm progression by inhibiting STAT3-mediated MMP9 expression and activation, suggesting a new application of Imatinib on AAA clinical therapy.
Collapse
Affiliation(s)
- Fengqi Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhangting Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tiecheng Zhong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jieqiong Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tingting Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Bo Zhang
- Translational Medicine Research Center, Nanjing Medical University, Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, PR China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
46
|
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C, Nakamura K, Hu L, Sasaki T, Wu H, Unno K, Umegaki H, Murohara T, Shi GP, Kuzuya M, Cheng XW. Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice. J Am Heart Assoc 2019; 8:e011994. [PMID: 31296090 PMCID: PMC6662117 DOI: 10.1161/jaha.119.011994] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/β). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.
Collapse
Affiliation(s)
- Hailong Wang
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiangkun Meng
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Limei Piao
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Wenhu Xu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Chenglin Yu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kae Nakamura
- 4 Department of Obstetrics and Gynecology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Lina Hu
- 5 Department of Public Health Guilin Medical College Guangxi China
| | - Takeshi Sasaki
- 6 Department of Anatomy and Neuroscience Hamamatsu University School of Medicine Hamamatsu Japan
| | - Hongxian Wu
- 7 Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Kazumasa Unno
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hiroyuki Umegaki
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- 9 Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Masafumi Kuzuya
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xian Wu Cheng
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
47
|
Plasma Cathepsin S is Associated with High-density Lipoprotein Cholesterol and Bilirubin in Patients with Abdominal Aortic Aneurysms. J Med Biochem 2019; 38:268-275. [PMID: 31156336 PMCID: PMC6534947 DOI: 10.2478/jomb-2018-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
Background Cathepsin S (CTSS) is a cysteine protease involved in atherogenesis. We compared the plasma CTSS as well as other biomarkers of atherosclerosis in patients with abdominal aortic aneurysms (AAA) and aortoiliac occlusive disease (AOD), aiming to identify the underlying pathogenic mechanisms of the disease development. Also, we hypothesised that the level of plasma CTSS simultaneously increases with a decrease of plasma high-density lipoprotein cholesterol (HDL-C) values. Methods 33 patients with AAA and 34 patients with AOD were included in this study. Results There was no difference in the level of plasma CTSS between the two analysed groups (p=0.833). In the patients with AAA, the plasma CTSS was correlated with HDL-C (r = -0.377, p = 0.034) and total bilirubin (r =0.500, p = 0.003) while, unexpectedly, it was not correlated with cystatin C (Cys C) (r =0.083, p = 0.652). In the patients with AOD, the plasma CTSS correlated with triglycerides (r = 0.597, p< 0.001), only. When the patients were divided according to HDL-C (with HDL-C ≤0.90 and HDL-C >0.90 mmol/L), the plasma CTSS values differed among these groups (31.27 vs.25.61 μg/L, respectively, p<0.001). Conclusions These results provide the first evidence that CTSS negatively correlated with HDL-C and bilirubin in patients with AAA. It is possible that differences in the association of the CTSS and other markers of atherosclerosis can determine whether atherosclerotic aorta will develop dilatation or stenosis.
Collapse
|
48
|
Yuwen L, Ciqiu Y, Yi S, Ruilei L, Yuanhui L, Bo L, Songqi L, Weiming L, Jie L. A Pilot Study of Protein Microarray for Simultaneous Analysis of 274 Cytokines Between Abdominal Aortic Aneurysm and Normal Aorta. Angiology 2019; 70:830-837. [PMID: 31018647 DOI: 10.1177/0003319719844678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cytokines play an important role in the pathogenesis of abdominal aortic aneurysm (AAA). We evaluated the cytokine expression profile of large AAA walls using a 274-cytokine protein array. We hypothesized that AAAs are characterized by an inflammatory, chemotactic cytokine profile. We investigated the cytokine expression profile of 12 patients with AAA and 6 nonaneurysmal controls using an antibody-based protein array. The array generated antibodies against homogenized human aortic tissues to validate the cytokines differentially expressed in AAAs and normal aortas. Data were quantified using fluorescent signal intensities and statistically analyzed by the t test. Fifty-nine cytokines were differentially expressed between the AAA and control samples. Of the 35 selected cytokines that had relative expression >1000, 29 were significantly higher and 6 were lower in AAA samples than in controls. They respectively belonged to CC chemokines, CXC chemokines, pro-inflammatory cytokines, growth factors, proteolytic proteins and inhibitors, and cell adhesion cytokines. Our results show that distinct cytokines are involved in AAAs and suggest that the pathways involving these cytokines may be associated with the pathogenesis and development of AAAs. These findings, if confirmed by larger studies, may suggest treatment targets.
Collapse
Affiliation(s)
- Li Yuwen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yang Ciqiu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Shi Yi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liu Ruilei
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lai Yuanhui
- Division of Vascular Surgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lin Bo
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Songqi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lv Weiming
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Jie
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
49
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|