1
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
2
|
Cooreman MP, Vonghia L, Francque SM. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res Clin Pract 2024; 212:111688. [PMID: 38697298 DOI: 10.1016/j.diabres.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), mainly related to nutrition and lack of physical activity, are both very common conditions, share several disease pathways and clinical manifestations, and increasingly co-occur with disease progression. Insulin resistance is an upstream node in the biology of both conditions and triggers liver parenchymal injury, inflammation and fibrosis. Peroxisome proliferator-activated receptor (PPAR) nuclear transcription factors are master regulators of energy homeostasis - insulin signaling in liver, adipose and skeletal muscle tissue - and affect immune and fibrogenesis pathways. Among distinct yet overlapping effects, PPARα regulates lipid metabolism and energy expenditure, PPARβ/δ has anti-inflammatory effects and increases glucose uptake by skeletal muscle, while PPARγ improves insulin sensitivity and exerts direct antifibrotic effects on hepatic stellate cells. Together PPARs thus represent pharmacological targets across the entire biology of MASH. Single PPAR agonists are approved for hypertriglyceridemia (PPARα) and T2D (PPARγ), but these, as well as dual PPAR agonists, have shown mixed results as anti-MASH treatments in clinical trials. Agonists of all three PPAR isoforms have the potential to improve the full disease spectrum from insulin resistance to fibrosis, and correspondingly to improve cardiometabolic and hepatic health, as has been shown (phase II data) with the pan-PPAR agonist lanifibranor.
Collapse
Affiliation(s)
- Michael P Cooreman
- Research and Development, Inventiva, Daix, France; Research and Development, Inventiva, New York, NY, USA.
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
3
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2024:S2090-1232(24)00120-6. [PMID: 38555000 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
6
|
Panthiya L, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin mitigates angiotensin II-induced proliferation, migration, and inflammation in vascular smooth muscle cells. EXCLI JOURNAL 2023; 22:466-481. [PMID: 37534221 PMCID: PMC10391613 DOI: 10.17179/excli2023-6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Luckika Panthiya
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Guixé‐Muntet S, Biquard L, Szabo G, Dufour J, Tacke F, Francque S, Rautou P, Gracia‐Sancho J. Review article: vascular effects of PPARs in the context of NASH. Aliment Pharmacol Ther 2022; 56:209-223. [PMID: 35661191 PMCID: PMC9328268 DOI: 10.1111/apt.17046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 05/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to regulate glucose and fatty acid metabolism, inflammation, endothelial function and fibrosis. PPAR isoforms have been extensively studied in metabolic diseases, including type 2 diabetes and cardiovascular diseases. Recent data extend the key role of PPARs to liver diseases coursing with vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). AIM This review summarises and discusses the pathobiological role of PPARs in cardiovascular diseases with a special focus on their impact and therapeutic potential in NAFLD and NASH. RESULTS AND CONCLUSIONS PPARs may be attractive for the treatment of NASH due to their liver-specific effects but also because of their efficacy in improving cardiovascular outcomes, which may later impact liver disease. Assessment of cardiovascular disease in the context of NASH trials is, therefore, of the utmost importance, both from a safety and efficacy perspective.
Collapse
Affiliation(s)
- Sergi Guixé‐Muntet
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain
| | - Louise Biquard
- Université de Paris, Inserm, CNRSCentre de recherche sur l'InflammationUMR1149ParisFrance
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean‐François Dufour
- Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin Berlin, Campus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | - Sven Francque
- Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium,Translational Sciences in Inflammation and ImmunologyInflaMed Centre of Excellence, Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of AntwerpAntwerpBelgium
| | - Pierre‐Emmanuel Rautou
- Université de Paris, AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGESTCentre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVER, Centre de recherche sur l'inflammationParisFrance
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain,Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| |
Collapse
|
8
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding of how peroxisome proliferator activated receptor γ (PPARγ) exerts its cardioprotective effect in the vasculature through its activation of novel PPARγ target genes in endothelium and vascular smooth muscle. RECENT FINDINGS In vascular endothelial cells, PPARγ plays a protective role by increasing nitric oxide bioavailability and preventing oxidative stress. RBP7 is a PPARγ target gene enriched in vascular endothelial cells, which is likely to form a positive feedback loop with PPARγ. In vascular smooth muscle cells, PPARγ antagonizes the renin-angiotensin system, maintains vascular integrity, suppresses vasoconstriction, and promotes vasodilation through distinct pathways. Rho-related BTB domain containing protein 1 (RhoBTB1) is a novel PPARγ gene target in vascular smooth muscle cells that mediates the protective effect of PPARγ by serving as a substrate adaptor between the Cullin-3 RING ubiquitin ligase and phosphodiesterase 5, thus restraining its activity through ubiquitination and proteasomal degradation. SUMMARY In the vasculature, PPARγ exerts its cardioprotective effect through its transcriptional activity in endothelium and vascular smooth muscle. From the understanding of PPARγ's transcription targets in those pathways, novel hypertension therapy target(s) will emerge.
Collapse
|
10
|
Xiang R, Chen J, Li S, Yan H, Meng Y, Cai J, Cui Q, Yang Y, Xu M, Geng B, Yang J. VSMC-Specific Deletion of FAM3A Attenuated Ang II-Promoted Hypertension and Cardiovascular Hypertrophy. Circ Res 2020; 126:1746-1759. [PMID: 32279581 DOI: 10.1161/circresaha.119.315558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Dysregulated purinergic signaling transduction plays important roles in the pathogenesis of cardiovascular diseases. However, the role and mechanism of vascular smooth muscle cell (VSMC)-released ATP in the regulation of blood pressure, and the pathogenesis of hypertension remain unknown. FAM3A (family with sequence similarity 3 member A) is a new mitochondrial protein that enhances ATP production and release. High expression of FAM3A in VSMC suggests it may play a role in regulating vascular constriction and blood pressure. OBJECTIVE To determine the role and mechanism of FAM3A-ATP signaling pathway in VSMCs in the regulation of blood pressure and the pathogenesis of hypertension. METHODS AND RESULTS In the media layer of hypertensive rat and mouse arteries, and the internal mammary artery of hypertensive patients, FAM3A expression was increased. VSMC-specific deletion of FAM3A reduced vessel contractility and blood pressure levels in mice. Moreover, deletion of FAM3A in VSMC attenuated Ang II (angiotensin II)-induced vascular constriction and remodeling, hypertension, and cardiac hypertrophy in mice. In cultured VSMCs, Ang II activated HSF1 (heat shock factor 1) to stimulate FAM3A expression, activating ATP-P2 receptor pathway to promote the change of VSMCs from contractile phenotype to proliferative phenotype. In the VSMC layer of spontaneously hypertensive rat arteries, Ang II-induced hypertensive mouse arteries and the internal mammary artery of hypertensive patients, HSF1 expression was increased. Treatment with HSF1 inhibitor reduced artery contractility and ameliorated hypertension of spontaneously hypertensive rats. CONCLUSIONS FAM3A is an important regulator of vascular constriction and blood pressure. Overactivation of HSF1-FAM3A-ATP signaling cascade in VSMCs plays important roles in Ang II-induced hypertension and cardiovascular diseases. Inhibitors of HSF1 could be potentially used to treat hypertension.
Collapse
Affiliation(s)
- Rui Xiang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Ji Chen
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Shuangyue Li
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Han Yan
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yuhong Meng
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Qinghua Cui
- Department of Biomedical Informatics (Q.C.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| | - Yan Yang
- Department of Surgery, Fuwai Hospital, CAMS&PUMC (Y.Y.)
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.X.)
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, CAMS&PUMC. State Key Laboratory of Cardiovascular Disease (S.L., J. Cai, B.G.)
| | - Jichun Yang
- From the Department of Physiology and Pathophysiology (R.X., J. Chen, H.Y., Y.M., J.Y.), School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center Beijing, China
| |
Collapse
|
11
|
Tseng V, Sutliff RL, Hart CM. Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:874-897. [PMID: 30582337 PMCID: PMC6751396 DOI: 10.1089/ars.2018.7695] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
Collapse
Affiliation(s)
- Victor Tseng
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
12
|
Jurrissen TJ, Grunewald ZI, Woodford ML, Winn NC, Ball JR, Smith TN, Wheeler AA, Rawlings AL, Staveley-O'Carroll KF, Ji Y, Fay WP, Paradis P, Schiffrin EL, Vieira-Potter VJ, Fadel PJ, Martinez-Lemus LA, Padilla J. Overproduction of endothelin-1 impairs glucose tolerance but does not promote visceral adipose tissue inflammation or limit metabolic adaptations to exercise. Am J Physiol Endocrinol Metab 2019; 317:E548-E558. [PMID: 31310581 PMCID: PMC6766607 DOI: 10.1152/ajpendo.00178.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.
Collapse
Affiliation(s)
- Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Thomas N Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | | | | | - Yan Ji
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
14
|
Xu L, Liu JT, Li K, Wang SY, Xu S. Genistein inhibits Ang II-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 2018; 216:140-146. [PMID: 30452971 DOI: 10.1016/j.lfs.2018.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
AIMS C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 are involved in the inflammation of atherosclerosis lesions. Genistein (Gen) has been demonstrated to exert beneficial effect on the cardiovascular system. However, it remains unclear whether Gen produces anti-inflammatory effect in vascular smooth muscle cells (VSMCs). Therefore, we investigated the effects of Gen on CRP and MMP-9 expressions induced by angiotensin (Ang) II in VSMCs and the related molecular mechanism. MAIN METHODS Rat VSMCs were cultured, and Ang II was used as a stimulant for CRP and MMP-9 expressions. CRP level was measured by ELISA. The mRNA and protein expressions of related indexes were identified by reverse transcription-polymerase chain reaction and western blot, respectively. KEY FINDINGS Gen inhibited Ang II-stimulated CRP and MMP-9 mRNA and protein expressions in concentration- and time-dependent manners. Additionally, Gen ameliorated Ang II-induced p-ERK1/2, p-p38 and NF-κB expressions, antagonized Ang II-downregulated peroxisome proliferation-activated receptor (PPAR) γ and estrogen receptor (ER) β expressions. After treating the VSMCs with GW9662 or ICI182780 in Gen treated groups, inhibitory effect of Gen on CRP and MMP-9 expressions were antagonized in Ang II-stimulated VSMCs. The treatment of VSMCs with ICI182780 abolished downregulations of p-p38/p-ERK1/2, and antagonized upregulation of PPARγ by Gen in Ang II-stimulated VSMCs. Moreover, the inhibitory effect of Gen on Ang II-stimulated NF-κB expression was abolished after preincubation of VSMCs with GW9662 in Gen treated groups. SIGNIFICANCE Gen exerts anti-inflammatory property via the ER-p38/ERK1/2-PPARγ-NF-κB-CRP/MMP-9 signal pathway in Ang II-stimulated VSMCs.
Collapse
Affiliation(s)
- Li Xu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, People's Republic of China; Hospital Management Institute of Xi'an Medical University, Xi'an 710077, People's Republic of China
| | - Jun-Tian Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China.
| | - Kai Li
- Department of Cardiology, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Sheng-Yu Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, People's Republic of China
| | - Shouzhu Xu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| |
Collapse
|
15
|
Shen ZX, Yang QZ, Li C, Du LJ, Sun XN, Liu Y, Sun JY, Gu HH, Sun YM, Wang J, Duan SZ. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018; 274:199-205. [PMID: 29800789 DOI: 10.1016/j.atherosclerosis.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Agonists of peroxisome proliferator-activated receptor gamma (Pparγ) have been demonstrated to reduce the risk of myocardial infarction (MI) in clinical trials and animal experiments. However, the cellular and molecular mechanisms are not completely understood. We aimed to reveal the functions of myeloid Pparγ in MI and explore the potential mechanisms in this study. METHODS Myeloid Pparγ knockout (MPGKO) mice (n = 12) and control mice (n = 8) underwent coronary artery ligation to induce MI. Another cohort of MPGKO mice and control mice underwent coronary artery ligation and were then treated with IgG or neutralizing antibodies against interleukin (IL)-1β. Infarct size was determined by TTC staining and cardiac function was measured using echocardiography. Conditioned media from GW9662- or vehicle-treated macrophages were used to treat H9C2 cardiomyocyte cell line. Gene expression was analyzed using quantitative PCR. Reactive oxygen species were measured using flow cytometry. RESULTS Myeloid Pparγ deficiency significantly increased myocardial infarct size. Cardiac hypertrophy was also exacerbated in MPGKO mice, with upregulation of β-myosin heavy chain (Mhc) and brain natriuretic peptide (Bnp) and downregulation of α-Mhc in the non-infarcted zone. Conditioned media from GW9662-treated macrophages increased expression of β-Mhc and Bnp in H9C2 cells. Echocardiographic measurements showed that MPGKO mice had worsen cardiac dysfunction after MI. Myeloid Pparγ deficiency increased gene expression of NADPH oxidase subunits (Nox2 and Nox4) in the non-infarcted zone after MI. Conditioned media from GW9662-treated macrophages increased reactive oxygen species in H9C2 cells. Expression of inflammatory genes such as IL-1β and IL-6 was upregulated in the non-infarcted zone of MPGKO mice after MI. With the injection of neutralizing antibodies against IL-1β, control mice and MPGKO mice had comparable cardiac function and expression of inflammatory genes after MI. CONCLUSIONS Myeloid Pparγ deficiency exacerbates MI, likely through increased oxidative stress and cardiac inflammation.
Collapse
Affiliation(s)
- Zhu-Xia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qing-Zhen Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue-Nan Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Hui-Hui Gu
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yu-Min Sun
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
16
|
Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J Hypertens 2018; 35:1390-1401. [PMID: 28234672 DOI: 10.1097/hjh.0000000000001324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Peroxisome proliferator-activated receptor γ (PPARγ) agonists reduce blood pressure and vascular injury in hypertensive rodents. Pparγ inactivation in vascular smooth muscle cells (VSMC) enhances vascular injury. Transgenic mice overexpressing endothelin (ET)-1 selectively in the endothelium (eET-1) exhibit endothelial dysfunction, increased oxidative stress and inflammation. We hypothesized that inactivation of the Pparγ gene in VSMC (smPparγ-/-) would exaggerate ET-1-induced vascular injury. METHODS AND RESULTS eET-1, smPparγ-/- and eET-1/smPparγ-/- mice were treated with tamoxifen for 5 days and studied 4 weeks later. SBP was higher in eET-1 and unaffected by smPparγ inactivation. Mesenteric artery vasodilatory responses to acetylcholine were impaired only in smPparγ-/-. N(omega)-Nitro-L-arginine methyl ester abrogated relaxation responses, and the Ednra/Ednrb mRNA ratio was decreased in eET-1/smPparγ-/-, which could indicate that nitric oxide production was enhanced by ET-1 stimulation of endothelin type B receptors. Mesenteric artery media/lumen was greater only in eET-1/smPparγ-/-. Mesenteric artery reactive oxygen species increased in smPparγ and were further enhanced in eET-1/smPparγ-/-. Perivascular fat monocyte/macrophage infiltration was higher in eET-1 and smPparγ and increased further in eET-1/smPparγ-/-. Spleen CD11b+ cells were increased in smPparγ-/- and further enhanced in eET-1/smPparγ-/-, whereas Ly-6C(hi) monocytes increased in eET-1 and smPparγ-/- but not in eET-1/smPparγ-/-. Spleen T regulatory lymphocytes increased in smPparγ and decreased in eET-1, and decreased further in eET-1/smPparγ-/-. CONCLUSION VSMC Pparγ inactivation exaggerates ET-1-induced vascular injury, supporting a protective role for PPARγ in hypertension through modulation of pro-oxidant and proinflammatory pathways. Paradoxically, ET-1 overexpression preserved endothelial function in smPparγ-/- mice, presumably by enhancing nitric oxide through stimulation of endothelin type B receptors.
Collapse
|
17
|
Abstract
An inducible tissue-specific knockout (KO) technique has been used to study the role of genes in the adult heart. This KO technique circumvents the developmental effect that could otherwise be observed in a tissue-specific KO. The peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor that when activated has been shown to improve vascular remodeling and endothelial function in hypertensive rodents. Here we describe an inducible tissue specific KO protocol used to study the role of PPARγ in smooth muscle cells (SMC) in angiotensin (Ang) II-induced hypertension in adult mice. Inducible VSMC Pparγ KO mice are generated by crossing mice expressing a fusion protein of Cre recombinase with the modified estrogen receptor ligand binding domain (CreERT2) under the control of the smooth muscle myosin heavy chain (smmhc, myh11) with mice having loxP sites flanking exon 2 of the Pparγ gene (Pparγ Flox/Flox ). The SMC Pparγ KO is induced by treating smMHC-CreERT2/Pparγ Flox/Flox mice with the estrogen receptor antagonist tamoxifen causing recombination of the two loxP site by CreERT2. SMC KO is confirmed by determining mRNA Pparγ levels in aortic media. Presence of the loxP sites is determined by sequencing genomic DNA. Tissue specific expression is assayed using smMHC-CreERT2/reporter crossed mice.
Collapse
|
18
|
Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu JY, Xie JF, Liu AR, Yang Y, Qiu HB. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther 2017; 8:164. [PMID: 28697804 PMCID: PMC5506621 DOI: 10.1186/s13287-017-0617-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Methods Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Results Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. Conclusions These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hong-Li He
- Department of Critical Care Medicine, Affiliated Hospital of University of Electronic Science and Technology of China & Sichuan Provincial People's Hospital, Chengdu, 610072, People's Republic of China
| | - Shu-Ling Hu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ji-Bin Han
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Li-Li Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ai-Ran Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
19
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
20
|
Li HY, Yang M, Li Z, Meng Z. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int J Mol Med 2017; 39:1307-1316. [PMID: 28339005 DOI: 10.3892/ijmm.2017.2924] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 03/08/2017] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (AngII)-induced production of inflammatory factors and proliferation in vascular smooth muscle cells (VSMCs) play an important role in the progression of atherosclerotic plaques. Growing evidence has demonstrated that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) effectively attenuates AngII-induced inflammation and intercellular reactive oxygen species (iROS) production. Curcumin (Cur) inhibits inflammatory responses by enhancing PPAR-γ activity and reducing oxidative stress in various tissues. The aim of the present study was to ascertain whether Cur inhibits AngII-induced inflammation and proliferation, and its underlying molecular mechanism, in VSMCs. Enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to measure the protein and mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Nitric oxide (NO) production was measured by Griess reaction. Western blot analysis and a DNA-binding assay were used to measure PPAR-γ activity. iROS production was measured using the DCFH-DA method. In rat VSMCs, Cur attenuated AngII‑induced expression of IL-6 and TNF-α mRNA and protein in a concentration-dependent manner, inhibited NO production by suppressing inducible NO synthase (iNOS) activity, and suppressed proliferation of VSMCs. This was accompanied by increased PPAR-γ expression and activation in Cur-pretreated VSMCs. GW9662, a PPAR-γ antagonist, reversed the anti-inflammatory effect of Cur. Moreover, Cur attenuated AngII-induced oxidative stress by downregulating the expression of p47phox, which is a key subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, Cur inhibited the expression of IL-6 and TNF-α, decreased the production of NO, and suppressed the proliferation of VSMCs, by elevating PPAR-γ activity and suppressing oxidative stress, leading to attenuated AngII-induced inflammatory responses in VSMCs.
Collapse
Affiliation(s)
- Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mei Yang
- Department of General Medicine, Renji Hospital of Shanghai Jiaotong University, Shanghai 200000, P.R. China
| | - Ze Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Ganss R. Maternal Metabolism and Vascular Adaptation in Pregnancy: The PPAR Link. Trends Endocrinol Metab 2017; 28:73-84. [PMID: 27789100 DOI: 10.1016/j.tem.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
Current therapies for pregnancy-related hypertension and its complications remain inadequate, although an increasing role for maternal susceptibility is becoming evident. Systemic vascular dysfunction in response to imbalances in angiogenic, inflammatory, and constricting factors is implicated in the pathogenesis of gestational hypertension, and growing evidence now links these factors with maternal metabolism. In particular, the crucial role of peroxisome proliferator-activated receptors (PPARs) in maternal vascular adaptation provides further insights into how obesity and gestational diabetes may be linked to pregnancy-induced hypertension and preeclampsia. This is especially important given the rapidly growing prevalence of obesity during pregnancy, and highlights a new approach to treat pregnancy-related hypertension and its complications.
Collapse
Affiliation(s)
- Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
22
|
Soluble receptor for advanced glycation end products mitigates vascular dysfunction in spontaneously hypertensive rats. Mol Cell Biochem 2016; 419:165-76. [DOI: 10.1007/s11010-016-2763-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/09/2016] [Indexed: 01/08/2023]
|
23
|
Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 2016; 17:ijms17060971. [PMID: 27331810 PMCID: PMC4926503 DOI: 10.3390/ijms17060971] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Male
- Mice
- Molecular Dynamics Simulation
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Multimerization
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, CXCR/genetics
- Receptors, CXCR/metabolism
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- Ann E Evans
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Kenneth L Byron
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, PO Box B, Frederick, MD 21702-1201, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607, USA.
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
24
|
Abstract
Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Masashi Mukohda
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Chunyan Hu
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
25
|
Hu C, Lu KT, Mukohda M, Davis DR, Faraci FM, Sigmund CD. Interference with PPARγ in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiol Genomics 2015; 48:124-34. [PMID: 26534936 DOI: 10.1152/physiolgenomics.00087.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
The ligand activated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in the endothelium regulates vascular function and blood pressure (BP). We previously reported that transgenic mice (E-V290M) with selectively targeted endothelial-specific expression of dominant negative PPARγ exhibited endothelial dysfunction when treated with a high-fat diet, and exhibited an augmented pressor response to angiotensin II (ANG II). We hypothesize that interference with endothelial PPARγ would exacerbate ANG II-induced endothelial dysfunction. Endothelial function was examined in E-V290M mice infused with a subpressor dose of ANG II (120 ng·kg(-1)·min(-1)) or saline for 2 wk. ANG II infusion significantly impaired the responses to the endothelium-dependent agonist acetylcholine both in basilar and carotid arteries from E-V290M but not NT mice. This impairment was not due to increased BP, which was not significantly different in ANG II-infused E-V290M compared with NT mice. Superoxide levels, and expression of the pro-oxidant Nox2 gene was elevated, whereas expression of the anti-oxidant genes Catalase and SOD3 decreased in carotid arteries from ANG II-infused E-V290M mice. Increased p65 and decreased Iκ-Bα suggesting increased NF-κB activity was also observed in aorta from ANG II-infused E-V290M mice. The responses to acetylcholine were significantly improved both in basilar and carotid arteries after treatment with Tempol (1 mmol/l), a scavenger of superoxide. These findings provide evidence that interference with endothelial PPARγ accelerates ANG II-mediated endothelial dysfunction both in cerebral and conduit arteries through an oxidative stress-dependent mechanism, suggesting a role for endothelial PPARγ in protecting against ANG II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ko-Ting Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Masashi Mukohda
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
26
|
Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Curr Opin Nephrol Hypertens 2015; 24:123-30. [PMID: 25587903 DOI: 10.1097/mnh.0000000000000103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the regulation of vascular tone by the nuclear receptor transcription factor, peroxisome proliferator activated receptor (PPAR) γ. Much of the recent work utilizes genetic tools to interrogate the significance of PPARγ in endothelial and smooth muscle cells and novel PPARγ target genes have been identified. RECENT FINDINGS Endothelial PPARγ prevents inflammation and oxidative stress, while promoting vasodilation by controlling the regulation of NADPH oxidase, catalase and superoxide dismutase gene expression. Moreover, the protective functions of endothelial PPARγ appear more prominent during disease conditions. Novel findings also suggest a role for endothelial PPARγ as a mediator of whole body metabolism. In smooth muscle cells, PPARγ regulates vascular tone by targeting genes involved with contraction and relaxation signaling cascades, some of which is via transcriptional activation, and some through novel mechanisms regulating protein turnover. Furthermore, aberrant changes in renin-angiotensin system components and exacerbated responses to angiotensin II induced vascular dysfunction are observed when PPARγ function is lost in smooth muscle cells. SUMMARY With these recent advances based partially on lessons from patients with PPARγ mutants, we conclude that vascular PPARγ is protective and plays an important role in the regulation of vascular tone.
Collapse
|
27
|
Holobotovskyy V, Chong YS, Burchell J, He B, Phillips M, Leader L, Murphy TV, Sandow SL, McKitrick DJ, Charles AK, Tare M, Arnolda LF, Ganss R. Regulator of G protein signaling 5 is a determinant of gestational hypertension and preeclampsia. Sci Transl Med 2015; 7:290ra88. [DOI: 10.1126/scitranslmed.aaa5038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a systemic vascular disorder of pregnancy and is associated with increased sensitivity to angiotensin II (AngII) and hypertension. The cause of preeclampsia remains unknown. We identified the role of regulator of G protein (heterotrimeric guanine nucleotide–binding protein) signaling 5 (RGS5) in blood pressure regulation during pregnancy and preeclampsia. RGS5 expression in human myometrial vessels is markedly suppressed in gestational hypertension and/or preeclampsia. In pregnant RGS5-deficient mice, reduced vascular RGS5 expression causes gestational hypertension by enhancing vascular sensitivity to AngII. Further challenge by increasing AngII results in preeclampsia-like symptoms, namely, more severe hypertension, proteinuria, placental pathology, and reduced birth weight. In pregnant heterozygote null mice, treatment with peroxisome proliferator–activated receptor (PPAR) agonists normalizes vascular function and blood pressure through effects on RGS5. These findings highlight a key role of RGS5 at the interface between AngII and PPAR signaling. Because preeclampsia is refractory to current standard therapies, our study opens an unrecognized and urgently needed opportunity for treatment of gestational hypertension and preeclampsia.
Collapse
Affiliation(s)
- Vasyl Holobotovskyy
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Yee Seng Chong
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jennifer Burchell
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Bo He
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Michael Phillips
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Royal Perth Hospital, Perth, Western Australia 6009, Australia
| | - Leo Leader
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Timothy V. Murphy
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shaun L. Sandow
- Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Douglas J. McKitrick
- School of Medicine and Pharmacology, The University of Western Australia & Cardiology Department, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Adrian K. Charles
- Princess Margaret Hospital and School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia 6008, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
- School of Rural Health, Monash University, Churchill, Victoria 3842, Australia
| | - Leonard F. Arnolda
- Medical School, Australian National University, and Cardiology Department, Canberra Hospital, Canberra, Australian Capital Territory 2606, Australia
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
28
|
Zhang Y, Lv J, Guo H, Wei X, Li W, Xu Z. Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway. Cell Biochem Funct 2015; 33:51-8. [PMID: 25703688 DOI: 10.1002/cbf.3080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yujuan Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Juanxiu Lv
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Hui Guo
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xiaoguang Wei
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Weisheng Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Center for Perinatal Biology; Loma Linda University; California USA
| |
Collapse
|
29
|
Atkins KB, Seki Y, Saha J, Eichinger F, Charron MJ, Brosius FC. Maintenance of GLUT4 expression in smooth muscle prevents hypertension-induced changes in vascular reactivity. Physiol Rep 2015; 3:3/2/e12299. [PMID: 25677552 PMCID: PMC4393207 DOI: 10.14814/phy2.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth-muscle-specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild-type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium-intact aortic rings from hypertensive wild-type mice but not in aortae of SMG4 mice. Inhibition of Rho-kinase equally reduced serotonin-stimulated contractility in aortae of hypertensive wild-type and SMG4-mice. In addition, acetylcholine-stimulated relaxation was significantly decreased in aortic rings of hypertensive wild-type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase-2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase-2 had no effect on relaxation in rings of hypertensive wild-type mice. Cyclooxygenase-2 protein expression was decreased in hypertensive wild-type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium-dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.
Collapse
Affiliation(s)
- Kevin B Atkins
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, New York, USA
| | - Jharna Saha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, New York City, New York, USA Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York City, New York, USA Medicine, Albert Einstein College of Medicine, New York City, New York, USA
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Cheang WS, Tian XY, Wong WT, Huang Y. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br J Pharmacol 2015; 172:5512-22. [PMID: 25438608 DOI: 10.1111/bph.13029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ/δ and PPARγ, are ligand-activated transcriptional factors belonging to the nuclear receptors superfamily and they are known to play important roles in glucose and lipid metabolism. Experimental studies in animal models of metabolic diseases have also revealed that activation of PPARs protects against the vascular complications of diabetes, hypertension, atherosclerosis, myocardial infarction and stroke, through exerting their anti-inflammatory, anti-atherogenic and antioxidant effects. In clinical trials and post-market surveillance, agonists of PPARs have been shown to effectively prevent cardiovascular events. However, adverse effects, particularly for PPARγ agonists, are also observed with the use of investigational PPAR agonists and even some approved drugs. Further exploration of underlying mechanisms is needed to develop novel ways of PPAR activation without causing serious side effects. This article reviews the cardiovascular effects of PPARs, with emphasis on the therapeutic potential of PPAR agonists in combating metabolic vascular diseases.
Collapse
Affiliation(s)
- Wai San Cheang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wing Tak Wong
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
32
|
Moran CS, Jose RJ, Biros E, Golledge J. Osteoprotegerin deficiency limits angiotensin II-induced aortic dilatation and rupture in the apolipoprotein E-knockout mouse. Arterioscler Thromb Vasc Biol 2014; 34:2609-16. [PMID: 25301844 DOI: 10.1161/atvbaha.114.304587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mounting evidence links osteoprotegerin with cardiovascular disease. Elevated serum and aortic tissue osteoprotegerin are associated with the presence and growth of abdominal aortic aneurysm in humans; however, a role for osteoprotegerin in abdominal aortic aneurysm pathogenesis remains to be shown. We examined the functional significance of osteoprotegerin in aortic aneurysm using an Opg-deficient mouse model and in vitro investigations. APPROACH AND RESULTS Homozygous deletion of Opg in apolipoprotein E-deficient mice (ApoE(-/-)Opg(-/-)) inhibited angiotensin II-induced aortic dilatation. Survival free from aortic rupture was increased from 67% in ApoE(-/-)Opg(+/+) controls to 94% in ApoE(-/-)Opg(-/-) mice (P=0.040). Serum concentrations of proinflammatory cytokines/chemokines, and aortic expression for cathepsin S (CTSS), matrix metalloproteinase 2, and matrix metalloproteinase 9 after 7 days (early-phase) of angiotensin II infusion were significantly reduced in ApoE(-/-)Opg(-/-) mice compared with ApoE(-/-)Opg(+/+) controls. In addition, aortic expression of markers for an inflammatory phenotype in aortic vascular smooth muscle cells in response to early-phase of angiotensin II infusion was significantly lower in Opg-deficient mice. In vitro, human abdominal aortic aneurysm vascular smooth muscle cells produced more CTSS and exhibited increased CTSS-derived elastolytic activity than healthy aortic vascular smooth muscle cells, whereas recombinant human osteoprotegerin stimulated CTSS-dependent elastase activity in aortic vascular smooth muscle cells. CONCLUSIONS These findings support a role for osteoprotegerin in aortic aneurysm through upregulation of CTSS, matrix metalloproteinase 2, and matrix metalloproteinase 9 within the aorta, promoting an inflammatory phenotype in aortic vascular smooth muscle cells in response to angiotensin II.
Collapse
Affiliation(s)
- Corey S Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.).
| |
Collapse
|
33
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
34
|
Carrillo-Sepulveda MA, Keen HL, Davis DR, Grobe JL, Sigmund CD. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension. PLoS One 2014; 9:e103786. [PMID: 25122005 PMCID: PMC4133177 DOI: 10.1371/journal.pone.0103786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/04/2014] [Indexed: 12/04/2022] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0±10.2 vs 129.1±3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2±6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0±3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (−13.53±1.39 in S-P467L vs −16.16±3.14 mmHg in non-transgenic). Our results suggest that interference with PPARγ in smooth muscle: a) causes enhanced angiotensin-II AT1 receptor-mediated ERK1/2 activation in resistance vessels, b) and may elevate arterial pressure through both angiotensin-II AT1 receptor-dependent and -independent mechanisms.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Arterial Pressure/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Hypertension/drug therapy
- Hypertension/metabolism
- Losartan/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Maria Alicia Carrillo-Sepulveda
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Keen
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah R. Davis
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Justin L. Grobe
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Curt D. Sigmund
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
35
|
Borges GR, Morgan DA, Ketsawatsomkron P, Mickle AD, Thompson AP, Cassell MD, Mohapatra DP, Rahmouni K, Sigmund CD. Interference with peroxisome proliferator-activated receptor-γ in vascular smooth muscle causes baroreflex impairment and autonomic dysfunction. Hypertension 2014; 64:590-6. [PMID: 24914194 DOI: 10.1161/hypertensionaha.114.03553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
S-P467L mice expressing dominant negative peroxisome proliferator-activated receptor-γ selectively in vascular smooth muscle exhibit impaired vasodilation, augmented vasoconstriction, hypertension, and tachycardia. We hypothesized that tachycardia in S-P467L mice is a result of baroreflex dysfunction. S-P467L mice displayed increased sympathetic traffic to the heart and decreased baroreflex gain and effectiveness. Carotid arteries exhibited inward remodeling but no changes in distensibility or stress/strain. Aortic depressor nerve activity in response to increased arterial pressure was blunted in S-P467L mice. However, the arterial pressure and heart rate responses to aortic depressor nerve stimulation were unaltered in S-P467L mice, suggesting that the central and efferent limbs of the baroreflex arc remain intact. There was no transgene expression in nodose ganglion and no change in expression of the acid-sensing ion channel-2 or -3 in nodose ganglion. There was a trend toward decreased expression of transient receptor potential vanilloid-1 receptor mRNA in nodose ganglion, but no difference in the immunochemical staining of transient receptor potential vanilloid-1 receptor in the termination area of the left aortic depressor nerve in S-P467L mice. Although there was no difference in the maximal calcium response to capsaicin in cultured nodose neurons from S-P467L mice, there was decreased desensitization of transient receptor potential vanilloid-1 receptor channels. In conclusion, S-P467L mice exhibit baroreflex dysfunction because of a defect in the afferent limb of the baroreflex arc caused by impaired vascular function, altered vascular structure, or compromised neurovascular coupling. These findings implicate vascular smooth muscle peroxisome proliferator activated receptor-γ as a critical determinant of neurovascular signaling.
Collapse
Affiliation(s)
- Giulianna R Borges
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Donald A Morgan
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Pimonrat Ketsawatsomkron
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Aaron D Mickle
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Anthony P Thompson
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Martin D Cassell
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Durga P Mohapatra
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Kamal Rahmouni
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology (G.R.B., D.A.M., P.K., A.D.M., D.P.M., K.R., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C.), and Center on the Functional Genomics of Hypertension (K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
36
|
Idris-Khodja N, Mian MOR, Paradis P, Schiffrin EL. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J 2014; 35:1238-44. [PMID: 24685711 PMCID: PMC4019914 DOI: 10.1093/eurheartj/ehu119] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/21/2022] Open
Abstract
Hypertension involves remodelling and inflammation of the arterial wall. Interactions between vascular and inflammatory cells play a critical role in disease initiation and progression. T effector and regulatory lymphocytes, members of the adaptive immune system, play contrasting roles in hypertension. Signals from the central nervous system and the innate immune system antigen-presenting cells activate T effector lymphocytes and promote their differentiation towards pro-inflammatory T helper (Th) 1 and Th17 phenotypes. Th1 and Th17 effector cells, via production of pro-inflammatory mediators, participate in the low-grade inflammation that leads to blood pressure elevation and end-organ damage. T regulatory lymphocytes, on the other hand, counteract hypertensive effects by suppressing innate and adaptive immune responses. The present review summarizes and discusses the adaptive immune mechanisms that participate in the pathophysiology in hypertension.
Collapse
Affiliation(s)
| | | | - Pierre Paradis
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Montreal, QC, Canada Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal,QC, Canada H3T 1E2
| |
Collapse
|
37
|
Yongjun Q, Huanzhang S, Wenxia Z, Hong T, Xijun X. From changes in local RAAS to structural remodeling of the left atrium. Herz 2014; 40:514-20. [DOI: 10.1007/s00059-013-4032-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
|
38
|
Nishijima Y, Zheng X, Lund H, Suzuki M, Mattson DL, Zhang DX. Characterization of blood pressure and endothelial function in TRPV4-deficient mice with l-NAME- and angiotensin II-induced hypertension. Physiol Rep 2014; 2:e00199. [PMID: 24744878 PMCID: PMC3967682 DOI: 10.1002/phy2.199] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is an endothelial Ca2+ entry channel contributing to endothelium‐mediated dilation in conduit and resistance arteries. We investigated the role of TRPV4 in the regulation of blood pressure and endothelial function under hypertensive conditions. TRPV4‐deficient (TRPV4−/−) and wild‐type (WT) control mice were given l‐NAME (0.5 g/L) in drinking water for 7 days or subcutaneously infused with angiotensin (Ang) II (600 ng/kg per minute) for 14 days, and blood pressure measured by radiotelemetry. TRPV4−/− mice had a lower baseline mean arterial pressure (MAP) (12‐h daytime MAP, 94 ± 2 vs. 99 ± 2 mmHg in WT controls). l‐NAME treatment induced a slightly greater increase in MAP in TRPV4−/− mice (day 7, 13 ± 4%) compared to WT controls (6 ± 2%), but Ang II‐induced increases in MAP were similar in TRPV4−/− and WT mice (day 14, 53 ± 6% and 37 ± 11%, respectively, P < 0.05). Chronic infusion of WT mice with Ang II reduced both acetylcholine (ACh)‐induced dilation (dilation to 10−5 mol/L ACh, 71 ± 5% vs. 92 ± 2% of controls) and the TRPV4 agonist GSK1016790A‐induced dilation of small mesenteric arteries (10−8 mol/L GSK1016790A, 14 ± 5% vs. 77 ± 7% of controls). However, Ang II treatment did not affect ACh dilation in TRPV4−/− mice. Mechanistically, Ang II did not significantly alter either TRPV4 total protein expression in mesenteric arteries or TRPV4 agonist‐induced Ca2+ response in mesenteric endothelial cells in situ. These results suggest that TRPV4 channels play a minor role in blood pressure regulation in l‐NAME‐ but not Ang II‐induced hypertension, but may be importantly involved in Ang II‐induced endothelial dysfunction. We investigated the role of transient receptor potential vanilloid type 4 (TRPV4) in regulating vascular tone in vivo under normal conditions and in response to hypertensive challenges. Our results indicate that TRPV4 channels may play a complex role in the control of vascular tone and endothelial function under stress.
Collapse
Affiliation(s)
- Yoshinori Nishijima
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin ; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaodong Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin ; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hayley Lund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Makoto Suzuki
- Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin ; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Cheang WS, Fang X, Tian XY. Pleiotropic effects of peroxisome proliferator-activated receptor γ and δ in vascular diseases. Circ J 2013; 77:2664-71. [PMID: 24107399 DOI: 10.1253/circj.cj-13-0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptors gamma (PPARγ) and delta (PPARδ) are nuclear receptors that have significant physiological effects on glucose and lipid metabolism. Experimental studies in animal models of metabolic disease have demonstrated their effects on improving lipid profile, insulin sensitivity, and reducing inflammatory responses. PPARγ and -δ are also expressed in the vasculature and their beneficial effects have been examined in various cardiovascular disease models such as atherosclerosis, hypertension, diabetic vascular complications, etc. using pharmacological ligands or genetic tools including viral vectors and transgenic mice. These studies suggest that PPARγ and δ are antiinflammatory, antiatherogenic, antioxidant, and antifibrotic against vascular diseases. Several signaling pathways, effector molecules, as well as coactivators/repressors have been identified as responsible for the protective effects of PPARγ and -δ in the vasculature. We discuss the pleiotropic effect of PPARγ and δ in vascular dysfunction, including atherosclerosis, hypertension, vascular remodeling, vascular injury, and diabetic vasculopathy, in various animal models, and the major underlying mechanisms. We also compare the phenotypes of several endothelial cell/vascular smooth muscle-specific PPARγ and -δ knockout and overexpressing transgenic mice in various disease models, and the implications underlying the functional importance of vascular PPARγ and δ in regulating whole-body homeostasis.
Collapse
Affiliation(s)
- Wai San Cheang
- Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong
| | | | | |
Collapse
|
40
|
Gu J, Liu X, Wang QX, Guo M, Liu F, Song ZP, Zhang DD. Beneficial effects of pioglitazone on atrial structural and electrical remodeling in vitro cellular models. J Mol Cell Cardiol 2013; 65:1-8. [PMID: 24100253 DOI: 10.1016/j.yjmcc.2013.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 11/13/2022]
Abstract
It has been demonstrated that atrial remodeling contributes toward atrial fibrillation (AF) maintenance and angiotensin II (AngII) is involved in the pathogenesis of atrial remodeling. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have been shown to inhibit atrial remodeling. However, the underlying mechanisms are poorly understood. In the present study we investigated the regulating effects of PPAR-γ agonist on AngII-induced atrial structural and electrical remodeling in vitro cellular models. The effects of pioglitazone on AngII-induced connective tissue growth factor (CTGF) expression and cell proliferation were assessed in primary-cultured mouse atrial fibroblasts. The influences of pioglitazone on AngII-induced L-type calcium channel (ICa-L) α1c expression and current density were evaluated in atrial myocytes (HL-1). Pioglitazone attenuated AngII-induced CTGF expression and proliferation in atrial fibroblasts, and pioglitazone also inhibited the expression or phosphorylation of AngII-induced transforming growth factor-β1 (TGF-β1), tumor necrosis factor receptor associated factor 6 (TRAF6), TGF-β-associated kinase 1 (TAK1) and Smad2/3. In HL-1 cells, pioglitazone suppressed AngII-induced ICa-L α1c expression and current density as well as CAMP responsive element binding protein (CREB) phosphorylation. Besides, pioglitazone inhibited AngII-induced production of AngII type I receptor (AT1R) and downregulation of PPAR-γ in both atrial fibroblasts and HL-1 cells. In conclusion, Pioglitazone suppresses AngII-induced CTGF expression and proliferation in atrial fibroblasts, which might be at least in part related with its inhibitory effects on TGF-β1/Smad2/3 and TGF-β1/TRAF6/TAK1 signaling pathways. Moreover, pioglitazone also attenuates AngII-induced ICa-L remodeling in HL-1 cells, which might be at least in part associated with its inhibitory effect on CREB phosphorylation. It is suggested that PPAR-γ agonist may have potential applications in preventing atrial remodeling.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Cardiology, Minhang hospital, Ruijin Hospital Group, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|