1
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. Long-term effects of siponimod on cardiovascular and autonomic nervous system in secondary progressive multiple sclerosis. Front Pharmacol 2024; 15:1431380. [PMID: 39364051 PMCID: PMC11447318 DOI: 10.3389/fphar.2024.1431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Siponimod, a second-generation, selective sphingosine 1-phosphate receptor (S1PR) 1 and 5 modulator, represents an important therapeutic choice for active secondary progressive multiple sclerosis (SPMS). Besides the beneficial immunomodulatory effects, siponimod impacts cardiovascular function through S1PR1 modulation. Short-term vagomimetic effects on cardiac activity have proved to be mitigated by dose titration. However, long-term consequences are less known. Objectives This study aimed to investigate the long-term impact of siponimod on cardiac autonomic modulation in people with SPMS (pwSPMS). Methods Heart rate variability (HRV) and vascular hemodynamic parameters were evaluated using Multiple Trigonometric Regressive Spectral analysis in 47 pwSPMS before siponimod therapy and after one, three, six and 12 months of treatment. Autonomic activation tests (tilt test for the sympathetic and deep breathing test for the parasympathetic cardiac modulation) were performed at each examination. Results pwSPMS preserved regular cardiovascular modulation responses during the autonomic tests reflected in the variation of several HRV parameters, such as RMSSD, pNN50, total power of HRV, high-frequency and low-frequency bands of the spectral domain or hemodynamic vascular parameters (Cwk, Zao, TPR, MAP) and baroreflex sensitivity (BRS). In the long-term follow-up, RMSSD, pNN50, total power, BRS and CwK presented a significant decrease, underlining a reduction of the parasympathetic and a shift towards sympathetic predominance in cardiac autonomic modulation that tends to stabilise after 1 year of treatment. Conclusion Due to dose titration, the short-term effects of siponimod on cardiac autonomic modulation are mitigated. The long-term impact on cardiac autonomic modulation is similar to fingolimod. The autonomic activation tests showed normal cardiovascular responses during 1-year follow-up in pwSPMS, confirming the safety profile of siponimod. Further research on autonomic function could reveal whether the observed sympathetic activation is a compensatory response to S1P signaling intervention or a feature of the disease, while also shedding light on the role of S1PR modulation in MS.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
- Department of Neurology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Iasi, Romania
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
2
|
Kang H, Kim J, Park CH, Jeong B, So I. Direct modulation of TRPC ion channels by Gα proteins. Front Physiol 2024; 15:1362987. [PMID: 38384797 PMCID: PMC10880550 DOI: 10.3389/fphys.2024.1362987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
GPCR-Gi protein pathways are involved in the regulation of vagus muscarinic pathway under physiological conditions and are closely associated with the regulation of internal visceral organs. The muscarinic receptor-operated cationic channel is important in GPCR-Gi protein signal transduction as it decreases heart rate and increases GI rhythm frequency. In the SA node of the heart, acetylcholine binds to the M2 receptor and the released Gβγ activates GIRK (I(K,ACh)) channel, inducing a negative chronotropic action. In gastric smooth muscle, there are two muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3. M2 receptor activates the muscarinic receptor-operated nonselective cationic current (mIcat, NSCC(ACh)) and induces positive chronotropic effect. Meanwhile, M3 receptor induces hydrolysis of PIP2 and releases DAG and IP3. This IP3 increases intracellular Ca2+ and then leads to contraction of GI smooth muscles. The activation of mIcat is inhibited by anti-Gi/o protein antibodies in GI smooth muscle, indicating the involvement of Gαi/o protein in the activation of mIcat. TRPC4 channel is a molecular candidate for mIcat and can be directly activated by constitutively active Gαi QL proteins. TRPC4 and TRPC5 belong to the same subfamily and both are activated by Gi/o proteins. Initial studies suggested that the binding sites for G protein exist at the rib helix or the CIRB domain of TRPC4/5 channels. However, recent cryo-EM structure showed that IYY58-60 amino acids at ARD of TRPC5 binds with Gi3 protein. Considering the expression of TRPC4/5 in the brain, the direct G protein activation on TRPC4/5 is important in terms of neurophysiology. TRPC4/5 channels are also suggested as a coincidence detector for Gi and Gq pathway as Gq pathway increases intracellular Ca2+ and the increased Ca2+ facilitates the activation of TRPC4/5 channels. More complicated situation would occur when GIRK, KCNQ2/3 (IM) and TRPC4/5 channels are co-activated by stimulation of muscarinic receptors at the acetylcholine-releasing nerve terminals. This review highlights the effects of GPCR-Gi protein pathway, including dopamine, μ-opioid, serotonin, glutamate, GABA, on various oragns, and it emphasizes the importance of considering TRPC4/5 channels as crucial players in the field of neuroscience.
Collapse
Affiliation(s)
- Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhyeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Christine Haewon Park
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Byeongseok Jeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sinha F, Schweda F, Maier LS, Wagner S. Impact of Impaired Kidney Function on Arrhythmia-Promoting Cardiac Ion Channel Regulation. Int J Mol Sci 2023; 24:14198. [PMID: 37762501 PMCID: PMC10532292 DOI: 10.3390/ijms241814198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a significantly increased risk of cardiovascular events and sudden cardiac death. Although arrhythmias are one of the most common causes of sudden cardiac death in CKD patients, the molecular mechanisms involved in the development of arrhythmias are still poorly understood. In this narrative review, therefore, we summarize the current knowledge on the regulation of cardiac ion channels that contribute to arrhythmia in CKD. We do this by first explaining the excitation-contraction coupling, outlining current translational research approaches, then explaining the main characteristics in CKD patients, such as abnormalities in electrolytes and pH, activation of the autonomic nervous system, and the renin-angiotensin-aldosterone system, as well as current evidence for proarrhythmic properties of uremic toxins. Finally, we discuss the substance class of sodium-glucose co-transporter 2 inhibitors (SGLT2i) on their potential to modify cardiac channel regulation in CKD and, therefore, as a treatment option for arrhythmias.
Collapse
Affiliation(s)
- Frederick Sinha
- Department for Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; (F.S.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Lars S. Maier
- Department for Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; (F.S.)
| | - Stefan Wagner
- Department for Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; (F.S.)
| |
Collapse
|
4
|
Findlay I, Pasqualin C, Yu A, Maupoil V, Bredeloux P. Selective Inhibition of Pulmonary Vein Excitability by Constitutively Active GIRK Channels Blockade in Rats. Int J Mol Sci 2023; 24:13629. [PMID: 37686437 PMCID: PMC10487709 DOI: 10.3390/ijms241713629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary veins (PV) are the main source of ectopy, triggering atrial fibrillation. This study investigated the roles of G protein-coupled inwardly rectifying potassium (GIRK) channels in the PV and the left atrium (LA) of the rat. Simultaneous intracellular microelectrode recording from the LA and the PV of the rat found that in the presence or absence of acetylcholine, the GIRK channel blocker tertiapin-Q induced AP duration elongation in the LA and the loss of over-shooting AP in the PV, suggesting the presence of constitutively active GIRK channels in these tissues. Patch-clamp recordings from isolated myocytes showed that tertiapin-Q inhibited a basal inwardly rectified background current in PV cells with little effect in LA cells. Experiments with ROMK1 and KCa1.1 channel blockers ruled out the possibility of an off-target effect. Western blot showed that GIRK4 subunit expression was greater in PV cardiomyocytes, which may explain the differences observed between PV and LA in response to tertiapin-Q. In conclusion, GIRK channels blockade abolishes AP only in the PV, providing a molecular target to induce electrical disconnection of the PV from the LA.
Collapse
Affiliation(s)
- Ian Findlay
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Université de Tours, 37200 Tours, France;
| | - Côme Pasqualin
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Angèle Yu
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Véronique Maupoil
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| | - Pierre Bredeloux
- EA4245, Transplantation, Immunologie et Inflammation, Université de Tours, 37200 Tours, France; (C.P.); (A.Y.); (V.M.)
| |
Collapse
|
5
|
Kingma J, Simard C, Drolet B. Overview of Cardiac Arrhythmias and Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:844. [PMID: 37375791 DOI: 10.3390/ph16060844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Maintenance of normal cardiac rhythm requires coordinated activity of ion channels and transporters that allow well-ordered propagation of electrical impulses across the myocardium. Disruptions in this orderly process provoke cardiac arrhythmias that may be lethal in some patients. Risk of common acquired arrhythmias is increased markedly when structural heart disease caused by myocardial infarction (due to fibrotic scar formation) or left ventricular dysfunction is present. Genetic polymorphisms influence structure or excitability of the myocardial substrate, which increases vulnerability or risk of arrhythmias in patients. Similarly, genetic polymorphisms of drug-metabolizing enzymes give rise to distinct subgroups within the population that affect specific drug biotransformation reactions. Nonetheless, identification of triggers involved in initiation or maintenance of cardiac arrhythmias remains a major challenge. Herein, we provide an overview of knowledge regarding physiopathology of inherited and acquired cardiac arrhythmias along with a summary of treatments (pharmacologic or non-pharmacologic) used to limit their effect on morbidity and potential mortality. Improved understanding of molecular and cellular aspects of arrhythmogenesis and more epidemiologic studies (for a more accurate portrait of incidence and prevalence) are crucial for development of novel treatments and for management of cardiac arrhythmias and their consequences in patients, as their incidence is increasing worldwide.
Collapse
Affiliation(s)
- John Kingma
- Department of Medicine, Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Chantale Simard
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| | - Benoît Drolet
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
6
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
7
|
Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. The Relevance of GIRK Channels in Heart Function. MEMBRANES 2022; 12:1119. [PMID: 36363674 PMCID: PMC9698958 DOI: 10.3390/membranes12111119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Among the large number of potassium-channel families implicated in the control of neuronal excitability, G-protein-gated inwardly rectifying potassium channels (GIRK/Kir3) have been found to be a main factor in heart control. These channels are activated following the modulation of G-protein-coupled receptors and, although they have been implicated in different neurological diseases in both human and animal studies of the central nervous system, the therapeutic potential of different subtypes of these channel families in cardiac conditions has remained untapped. As they have emerged as a promising potential tool to treat a variety of conditions that disrupt neuronal homeostasis, many studies have started to focus on these channels as mediators of cardiac dynamics, thus leading to research into their implication in cardiovascular conditions. Our aim is to review the latest advances in GIRK modulation in the heart and their role in the cardiovascular system.
Collapse
Affiliation(s)
- Ana Campos-Ríos
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Lola Rueda-Ruzafa
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, 04120 Almeria, Spain
| | - José Antonio Lamas
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| |
Collapse
|
8
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
9
|
Muscarinic receptor activation reduces force and arrhythmias in human atria independent of IK,ACh. J Cardiovasc Pharmacol 2022; 79:678-686. [PMID: 35170489 DOI: 10.1097/fjc.0000000000001237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/15/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT In human hearts, muscarinic receptors (M-R) are expressed in ventricular and atrial tissue, but the acetylcholine-activated potassium current (IK,ACh) is expressed mainly in the atrium. M-R activation decreases force and increases electrical stability in human atrium, but the impact of IK,ACh to both effects remains unclear. We employed a new selective blocker of IK,ACh to elaborate the contribution of IK,ACh to M-R activation-mediated effects in human atrium.Force and action potentials were measured in rat atria and in human right atrial trabeculae. Cumulative concentration-effect curves for norepinephrine-induced force and arrhythmias were measured in the presence of either carbachol (CCh;1µM) or CCh together with the IK,ACh -blocker XAF-1407 (1 µM) or in time-matched controls. To investigate the vulnerability to arrhythmias we performed some experiments also in the presence of cilostamide (0.3µM) and rolipram (1µM), inhibiting PDE3 and PDE4.In rat atria and human right atrial trabeculae, CCh shortened the action potential duration persistently. However, the direct negative inotropy of CCh was only transient in human, but stable in rat atria. In both rat and human atria, the negative inotropic effect was insensitive to blockage of IK,ACh by XAF-1407. In the presence of cilostamide and rolipram about 40% of trabeculae developed arrhythmias when exposed to norepinephrine. CCh prevented these concentration-dependent norepinephrine-induced arrhythmias, again insensitive to XAF-1407. Maximum catecholamine-induced force was not depressed by CCh.In human atrium, both the direct and the indirect negative inotropic effect of CCh are independent of IK,ACh. The same applies to the CCh-mediated suppression of norepinephrine/PDE-inhibition-induced arrhythmias.
Collapse
|
10
|
Anderson A, Vo BN, Marron Fernandez de Velasco E, Hopkins CR, Weaver CD, Wickman K. Characterization of VU0468554, a New Selective Inhibitor of Cardiac G Protein-Gated Inwardly Rectifying K + Channels. Mol Pharmacol 2021; 100:540-547. [PMID: 34503975 PMCID: PMC8626782 DOI: 10.1124/molpharm.121.000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are critical mediators of excitability in the heart and brain. Enhanced GIRK-channel activity has been implicated in the pathogenesis of supraventricular arrhythmias, including atrial fibrillation. The lack of selective pharmacological tools has impeded efforts to investigate the therapeutic potential of cardiac GIRK-channel interventions in arrhythmias. Here, we characterize a recently identified GIRK-channel inhibitor, VU0468554. Using whole-cell electrophysiological approaches and primary cultures of sinoatrial nodal cells and hippocampal neurons, we show that VU0468554 more effectively inhibits the cardiac GIRK channel than the neuronal GIRK channel. Concentration-response experiments suggest that VU0468554 inhibits Gβγ-activated GIRK channels in noncompetitive and potentially uncompetitive fashion. In contrast, VU0468554 competitively inhibits GIRK-channel activation by ML297, a GIRK-channel activator containing the same chemical scaffold as VU0468554. In the isolated heart model, VU0468554 partially reversed carbachol-induced bradycardia in hearts from wild-type mice but not Girk4-/- mice. Collectively, these data suggest that VU0468554 represents a promising new pharmacological tool for targeting cardiac GIRK channels with therapeutic implications for relevant cardiac arrhythmias. SIGNIFICANCE STATEMENT: Although cardiac GIRK-channel inhibition shows promise for the treatment of supraventricular arrhythmias, the absence of subtype-selective channel inhibitors has hindered exploration into this therapeutic strategy. This study utilizes whole-cell patch-clamp electrophysiology to characterize the new GIRK-channel inhibitor VU0468554 in human embryonic kidney 293T cells and primary cultures. We report that VU0468554 exhibits a favorable pharmacodynamic profile for cardiac over neuronal GIRK channels and partially reverses GIRK-mediated bradycardia in the isolated mouse heart model.
Collapse
Affiliation(s)
- Allison Anderson
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Baovi N Vo
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Ezequiel Marron Fernandez de Velasco
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Corey R Hopkins
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - C David Weaver
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Kevin Wickman
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| |
Collapse
|
11
|
Fei YD, Chen M, Guo S, Ueoka A, Chen Z, Rubart-von der Lohe M, Everett TH, Qu Z, Weiss JN, Chen PS. Simultaneous activation of the small conductance calcium-activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles. Heart Rhythm 2021; 18:98-108. [PMID: 32763429 PMCID: PMC7796982 DOI: 10.1016/j.hrthm.2020.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Concomitant apamin-sensitive small conductance calcium-activated potassium current (IKAS) activation and sodium current inhibition induce J-wave syndrome (JWS) in rabbit hearts. Sudden death in JWS occurs predominantly in men at night when parasympathetic tone is strong. OBJECTIVE The purpose of this study was to test the hypotheses that acetylcholine (ACh), the parasympathetic transmitter, activates IKAS and causes JWS in the presence of ajmaline. METHODS We performed optical mapping in Langendorff-perfused rabbit hearts and whole-cell voltage clamp to determine IKAS in isolated ventricular cardiomyocytes. RESULTS ACh (1 μM) + ajmaline (2 μM) induced J-point elevations in all (6 male and 6 female) hearts from 0.01± 0.01 to 0.31 ± 0.05 mV (P<.001), which were reduced by apamin (specific IKAS inhibitor, 100 nM) to 0.14 ± 0.02 mV (P<.001). More J-point elevation was noted in male than in female hearts (P=.037). Patch clamp studies showed that ACh significantly (P<.001) activated IKAS in isolated male but not in female ventricular myocytes (n=8). Optical mapping studies showed that ACh induced action potential duration (APD) heterogeneity, which was more significant in right than in left ventricles. Apamin in the presence of ACh prolonged both APD at the level of 25% (P<.001) and APD at the level of 80% (P<.001) and attenuated APD heterogeneity. Ajmaline further increased APD heterogeneity induced by ACh. Ventricular arrhythmias were induced in 6 of 6 male and 1 of 6 female hearts (P=.015) in the presence of ACh and ajmaline, which was significantly suppressed by apamin in the former. CONCLUSION ACh activates ventricular IKAS. ACh and ajmaline induce JWS and facilitate the induction of ventricular arrhythmias more in male than in female ventricles.
Collapse
Affiliation(s)
- Yu-Dong Fei
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Guo
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Akira Ueoka
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Zhenhui Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Rubart-von der Lohe
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhilin Qu
- Department of Medicine (Cardiology) and Physiology, University of California, Los Angeles, California
| | - James N Weiss
- Department of Medicine (Cardiology) and Physiology, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
12
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Matthews GDK, Grace AA. Unmasking Adenosine: The Purinergic Signalling Molecule Critical to Arrhythmia Pathophysiology and Management. Arrhythm Electrophysiol Rev 2020; 8:240-248. [PMID: 32685154 PMCID: PMC7358948 DOI: 10.15420/aer.2019.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine was identified in 1929 and immediately recognised as having a potential role in therapy for arrhythmia because of its negative chronotropic and dromotropic effects. Adenosine entered mainstream use in the 1980s as a highly effective agent for the termination of supraventricular tachycardia (SVT) involving the atrioventricular node, as well as for its ability to unmask the underlying rhythm in other SVTs. Adenosine has subsequently been found to have applications in interventional electrophysiology. While considered a safe agent because of its short half-life, adenosine may provoke arrhythmias in the form of AF, bradyarrhythmia and ventricular tachyarrhythmia. Adenosine is also associated with bronchospasm, although this may reflect irritant-induced dyspnoea rather than true obstruction. Adenosine is linked to numerous pathologies relevant to arrhythmia predisposition, including heart failure, obesity, ischaemia and the ageing process itself. This article examines 90 years of experience with adenosine in the light of new European Society of Cardiology guidelines for the management of SVT.
Collapse
Affiliation(s)
- Gareth DK Matthews
- Cambridge University NHS Foundation Trust, Cambridge, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Andrew A Grace
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Aguilar-Sanchez Y, Rodriguez de Yurre A, Argenziano M, Escobar AL, Ramos-Franco J. Transmural Autonomic Regulation of Cardiac Contractility at the Intact Heart Level. Front Physiol 2019; 10:773. [PMID: 31333477 PMCID: PMC6616252 DOI: 10.3389/fphys.2019.00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
The relationship between cardiac excitability and contractility depends on when Ca2+ influx occurs during the ventricular action potential (AP). In mammals, it is accepted that Ca2+ influx through the L-type Ca2+ channels occurs during AP phase 2. However, in murine models, experimental evidence shows Ca2+ influx takes place during phase 1. Interestingly, Ca2+ influx that activates contraction is highly regulated by the autonomic nervous system. Indeed, autonomic regulation exerts multiple effects on Ca2+ handling and cardiac electrophysiology. In this paper, we explore autonomic regulation in endocardial and epicardial layers of intact beating mice hearts to evaluate their role on cardiac excitability and contractility. We hypothesize that in mouse cardiac ventricles the influx of Ca2+ that triggers excitation–contraction coupling (ECC) does not occur during phase 2. Using pulsed local field fluorescence microscopy and loose patch photolysis, we show sympathetic stimulation by isoproterenol increased the amplitude of Ca2+ transients in both layers. This increase in contractility was driven by an increase in amplitude and duration of the L-type Ca2+ current during phase 1. Interestingly, the β-adrenergic increase of Ca2+ influx slowed the repolarization of phase 1, suggesting a competition between Ca2+ and K+ currents during this phase. In addition, cAMP activated L-type Ca2+ currents before SR Ca2+ release activated the Na+-Ca2+ exchanger currents, indicating Cav1.2 channels are the initial target of PKA phosphorylation. In contrast, parasympathetic stimulation by carbachol did not have a substantial effect on amplitude and kinetics of endocardial and epicardial Ca2+ transients. However, carbachol transiently decreased the duration of the AP late phase 2 repolarization. The carbachol-induced shortening of phase 2 did not have a considerable effect on ventricular pressure and systolic Ca2+ dynamics. Interestingly, blockade of muscarinic receptors by atropine prolonged the duration of phase 2 indicating that, in isolated hearts, there is an intrinsic release of acetylcholine. In addition, the acceleration of repolarization induced by carbachol was blocked by the acetylcholine-mediated K+ current inhibition. Our results reveal the transmural ramifications of autonomic regulation in intact mice hearts and support our hypothesis that Ca2+ influx that triggers ECC occurs in AP phase 1 and not in phase 2.
Collapse
Affiliation(s)
- Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ainhoa Rodriguez de Yurre
- Laboratorio de Cardio Inmunologia, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Mariana Argenziano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
15
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
16
|
Lee SW, Anderson A, Guzman PA, Nakano A, Tolkacheva EG, Wickman K. Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Front Physiol 2018; 9:943. [PMID: 30072916 PMCID: PMC6060443 DOI: 10.3389/fphys.2018.00943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023] Open
Abstract
Diminished parasympathetic influence is central to the pathogenesis of cardiovascular diseases, including heart failure and hypertension. Stimulation of the vagus nerve has shown promise in treating cardiovascular disease, prompting renewed interest in understanding the signaling pathway(s) that mediate the vagal influence on cardiac physiology. Here, we evaluated the contribution of G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels to the effect of vagus nerve stimulation (VNS) on heart rate (HR), HR variability (HRV), and arrhythmogenesis in anesthetized mice. As parasympathetic fibers innervate both atria and ventricle, and GIRK channels contribute to the cholinergic impact on atrial and ventricular myocytes, we collected in vivo electrocardiogram recordings from mice lacking either atrial or ventricular GIRK channels, during VNS. VNS decreased HR and increased HRV in control mice, in a muscarinic receptor-dependent manner. This effect was preserved in mice lacking ventricular GIRK channels, but was nearly completely absent in mice lacking GIRK channels in the atria. In addition, atrial-specific ablation of GIRK channels conferred resistance to arrhythmic episodes induced by VNS. These data indicate that atrial GIRK channels are the primary mediators of the impact of VNS on HR, HRV, and arrhythmogenesis in the anesthetized mouse.
Collapse
Affiliation(s)
- Steven W. Lee
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Pilar A. Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Kulkarni K, Xie X, Fernandez de Velasco EM, Anderson A, Martemyanov KA, Wickman K, Tolkacheva EG. The influences of the M2R-GIRK4-RGS6 dependent parasympathetic pathway on electrophysiological properties of the mouse heart. PLoS One 2018; 13:e0193798. [PMID: 29668674 PMCID: PMC5905881 DOI: 10.1371/journal.pone.0193798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
A large body of work has established the prominent roles of the atrial M2R-IKACh signaling pathway, and the negative regulatory protein RGS6, in modulating critical aspects of parasympathetic influence on cardiac function, including pace-making, heart rate (HR) variability (HRV), and atrial arrhythmogenesis. Despite increasing evidence of its innervation of the ventricles, and the expression of M2R, IKACh channel subunits, and RGS6 in ventricle, the effects of parasympathetic modulation on ventricular electrophysiology are less clear. The main objective of our study was to investigate the contribution of M2R-IKACh signaling pathway elements in murine ventricular electrophysiology, using in-vivo ECG measurements, isolated whole-heart optical mapping and constitutive knockout mice lacking IKACh (Girk4–/–) or RGS6 (Rgs6-/-). Consistent with previous findings, mice lacking GIRK4 exhibited diminished HR and HRV responses to the cholinergic agonist carbachol (CCh), and resistance to CCh-induced arrhythmic episodes. In line with its role as a negative regulator of atrial M2R-IKACh signaling, loss of RGS6 correlated with a mild resting bradycardia, enhanced HR and HRV responses to CCh, and increased propensity for arrhythmic episodes. Interestingly, ventricles from mice lacking GIRK4 or RGS6 both exhibited increased action potential duration (APD) at baseline, and APD was prolonged by CCh across all genotypes. Similarly, CCh significantly increased the slope of APD restitution in all genotypes. There was no impact of genotype or CCh on either conduction velocity or heterogeneity. Our data suggests that altered parasympathetic signaling through the M2R-IKACh pathway can affect ventricular electrophysiological properties distinct from its influence on atrial physiology.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xueyi Xie
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
18
|
Expression and relevance of the G protein-gated K + channel in the mouse ventricle. Sci Rep 2018; 8:1192. [PMID: 29352184 PMCID: PMC5775354 DOI: 10.1038/s41598-018-19719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The atrial G protein-gated inwardly rectifying K+ (GIRK) channel is a critical mediator of parasympathetic influence on cardiac physiology. Here, we probed the details and relevance of the GIRK channel in mouse ventricle. mRNAs for the atrial GIRK channel subunits (GIRK1, GIRK4), M2 muscarinic receptor (M2R), and RGS6, a negative regulator of atrial GIRK-dependent signaling, were detected in mouse ventricle at relatively low levels. The cholinergic agonist carbachol (CCh) activated small GIRK currents in adult wild-type ventricular myocytes that exhibited relatively slow kinetics and low CCh sensitivity; these currents were absent in ventricular myocytes from Girk1-/- or Girk4-/- mice. While loss of GIRK channels attenuated the CCh-induced shortening of action potential duration and suppression of ventricular myocyte excitability, selective ablation of GIRK channels in ventricle had no effect on heart rate, heart rate variability, or electrocardiogram parameters at baseline or after CCh injection. Additionally, loss of ventricular GIRK channels did not impact susceptibility to ventricular arrhythmias. These data suggest that the mouse ventricular GIRK channel is a GIRK1/GIRK4 heteromer, and show that while it contributes to the cholinergic suppression of ventricular myocyte excitability, this influence does not substantially impact cardiac physiology or ventricular arrhythmogenesis in the mouse.
Collapse
|
19
|
Kammerer S, Jahn SW, Winter E, Eidenhammer S, Rezania S, Regitnig P, Pichler M, Schreibmayer W, Bauernhofer T. Critical evaluation of KCNJ3 gene product detection in human breast cancer: mRNA in situ hybridisation is superior to immunohistochemistry. J Clin Pathol 2016; 69:1116-1121. [PMID: 27698251 PMCID: PMC5256407 DOI: 10.1136/jclinpath-2016-203798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
Increased expression levels of KCNJ3 have been correlated with lymph node metastases and poor prognosis in patients with breast cancer, suggesting a prognostic role of KCNJ3. We aimed to establish protocols for the detection of KCNJ3 in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue. Several antibodies were tested for sensitivity and specificity by western blot, followed by optimisation of the immunohistochemistry (IHC) procedure and establishment of KCNJ3 mRNA in situ hybridisation (ISH). Methods were validated by processing 15 FFPE breast cancer samples for which microarray data were available. Spearman's rank correlation analysis resulted in borderline significant correlation for IHC versus ISH (rS: 0.625; p<0.05) and IHC versus microarray (rS: 0.668; p<0.01), but in significant correlation for ISH versus microarray (rS: 0.861; p<0.001). The ISH method was superior to IHC, regarding robustness, sensitivity and specificity and will aid to further study expression levels of KCNJ3 in both malignant and physiological conditions.
Collapse
Affiliation(s)
- Sarah Kammerer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | | | - Elke Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Simin Rezania
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria.,Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Foster DB, Liu T, Kammers K, O'Meally R, Yang N, Papanicolaou KN, Talbot CC, Cole RN, O'Rourke B. Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. J Proteome Res 2016; 15:3009-28. [PMID: 27399916 DOI: 10.1021/acs.jproteome.6b00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Robert O'Meally
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
21
|
Abstract
Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms of proarrhythmic effects that arise as a response to blockers of cardiac K(+) channels. The largest and chemically most diverse groups of compound targets are Kv11.1 (hERG) and Kv7.1 (KvLQT1) channels. Finally, the proarrhythmic propensity of atrial-selective K(+) blockers inhibiting Kv1.5, Kir3.1/3.4, SK, and K2P channels is discussed.
Collapse
Affiliation(s)
- Lasse Skibsbye
- Danish Arrhythmia Research Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 3 Copenhagen N DK-2200, Denmark
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Institut für Pharmakologie und Toxikologie, TU Dresden, Fetscherstrasse 74, Dresden D-01307, Germany.
| |
Collapse
|
22
|
Zhao Y, Gao F, Zhang Y, Wang H, Zhu J, Chang L, Du Z, Zhang Y. Shensong Yangxin capsules prevent ischemic arrhythmias by prolonging action potentials and alleviating Ca2+ overload. Mol Med Rep 2016; 13:5185-92. [PMID: 27122298 DOI: 10.3892/mmr.2016.5203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Shensong Yangxin capsules (SSYX) are an effective traditional Chinese medicine that has been used to treat coronary heart disease clinically. The present study aimed to establish whether SSYX prevent ischemic arrhythmias in rats, and to explore the underlying mechanisms. Male rats were pretreated with distilled water, SSYX and amiodarone for one week. Acute myocardial ischemia (AMI) was performed to induce ischemic arrhythmias. The incidence and severity of ischemic arrhythmias were evaluated. The action potential, transient outward K+ current (Ito) and inward rectifier K+ current (IK1) of rat cardiomyocytes were measured using the patch‑clamp technique. The intracellular Ca2+ concentration of the cardiomyocytes was measured using a laser scanning confocal microscope. The results revealed that SSYX lowered the incidence of arrhythmia markedly during AMI. Furthermore, SSYX delayed the appearance, and reduced the severity, of ischemic arrhythmias compared with the control. In addition, SSYX markedly decreased the ratio of the myocardial infarction region to the whole heart. In an in vitro study, SSYX prolonged the action potential duration of rat cardiomyocytes, and inhibited Ito and IK1 markedly. Additionally, SSYX inhibited Ca2+ elevation induced by KCl in cardiomyocytes. These results suggested that SSYX prevents ischemic arrhythmia, and the underlying mechanism responsible for this process may include prolonging the action potential and alleviating Ca2+ overload.
Collapse
Affiliation(s)
- Yixiu Zhao
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Feng Gao
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongtao Wang
- State Key Laboratory of Collateral Disease Research and Innovation Medicine, Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, Hebei 050000, P.R. China
| | - Jiuxin Zhu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Liping Chang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhimin Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yan Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
23
|
van der Heyden MA, Jespersen T. Pharmacological exploration of the resting membrane potential reserve: Impact on atrial fibrillation. Eur J Pharmacol 2016; 771:56-64. [DOI: 10.1016/j.ejphar.2015.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
24
|
Chen AX, Nishimoto K, Nanba K, Rainey WE. Potassium channels related to primary aldosteronism: Expression similarities and differences between human and rat adrenals. Mol Cell Endocrinol 2015; 417:141-8. [PMID: 26375812 PMCID: PMC4646165 DOI: 10.1016/j.mce.2015.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 08/18/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022]
Abstract
Three potassium channels have been associated with primary aldosteronism (PA) in rodents and humans: KCNK3 (TASK-1), KCNK9 (TASK-3), and KCNJ5 (Kir3.4). Mice with deficiency in Kcnk3 and Kcnk9 have elevated aldosterone production and blood pressure. In humans, adrenal tumors with somatic mutations in KCNJ5 cause PA. However, there are very few reports on the expression patterns of these genes in humans versus rodents. Herein, we compared human and rat mRNA expression (by quantitative real-time polymerase chain reaction (qPCR) and protein levels (by immunohistochemistry) across three tissues (adrenal, brain, heart) and two laser-captured adrenal zones (zona glomerulosa, zona fasciculata). Our findings show that expression patterns of KCNK3, KCNK9, and KCNJ5 are inconsistent between rats and humans across both tissues and adrenal zones. Thus, species variation in the expression of PA-related potassium channels indicates an evolutionary divergence in their role in regulating adrenal aldosterone production.
Collapse
Affiliation(s)
- Andrew X Chen
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Koshiro Nishimoto
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
|
26
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Walfridsson H, Anfinsen OG, Berggren A, Frison L, Jensen S, Linhardt G, Nordkam AC, Sundqvist M, Carlsson L. Is the acetylcholine-regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans. Europace 2014; 17:473-82. [PMID: 25082948 DOI: 10.1093/europace/euu192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS We aimed at examining the acetylcholine-dependent inward-rectifier current (IKAch) as a target for the management of atrial fibrillation (AF). METHODS AND RESULTS The investigative agents AZD2927 and A7071 concentration-dependently blocked IKACh in vitro with minimal off-target activity. In anaesthetized dogs (n = 17) subjected to 8 weeks of rapid atrial pacing (RAP), the left atrial effective refractory period (LAERP) was maximally increased by 50 ± 7.4 and 50 ± 4.8 ms following infusion of AZD2927 and A7071. Ventricular refractoriness and the QT interval were unaltered. During sustained AF, both drugs significantly reduced AF frequency and effectively restored sinus rhythm. AZD2927 successfully restored sinus rhythm at 10/10 conversion attempts and A7071 at 14/14 attempts, whereas saline converted 4/17 episodes only (P<0.001 vs. AZD2927 and A7071). In atrial flutter patients (n = 18) undergoing an invasive investigation, AZD2927 did not change LAERP, the paced QT interval, or ventricular refractoriness when compared with placebo. To address the discrepancy on LAERP by IKACh blockade in man and dog and the hypothesis that atrial electrical remodelling is a prerequisite for IKACh blockade being efficient, six dogs were studied after 8 weeks of RAP followed by sinus rhythm for 4 weeks to reverse electrical remodelling. In these dogs, both AZD2927 and A7071 were as effective in increasing LAERP as in the dogs studied immediately after the 8-week RAP period. CONCLUSION Based on the present series of experiments, an important role of IKACh in human atrial electrophysiology, as well as its potential as a viable target for effective management of AF, may be questioned.
Collapse
Affiliation(s)
| | | | - Anders Berggren
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Lars Frison
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Steen Jensen
- Department of Cardiology, University Hospital, Umeå, Sweden
| | - Gunilla Linhardt
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Ann-Christin Nordkam
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Monika Sundqvist
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| | - Leif Carlsson
- AstraZeneca R&D, CVMD Innovative Medicine, Pepparedsleden 1, Mölndal S-43183, Sweden
| |
Collapse
|
28
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
29
|
Constitutive Activity of the Acetylcholine-Activated Potassium Current IK,ACh in Cardiomyocytes. ADVANCES IN PHARMACOLOGY 2014; 70:393-409. [DOI: 10.1016/b978-0-12-417197-8.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|