1
|
Wang Y, Li P, Zhu Y, Zhang F, Zhang S, He Y, Wu Y, Lin Y, Wang H, Ren W, Wang L, Yang Y, Wang R, Zheng P, Liu Y, Wang S, Yue J. Graph-Based Pangenome of Actinidia chinensis Reveals Structural Variations Mediating Fruit Degreening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400322. [PMID: 38757662 PMCID: PMC11267314 DOI: 10.1002/advs.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Fruit ripening is associated with the degreening process (loss of chlorophyll) that occurs in most fruit species. Kiwifruit is one of the special species whose fruits may maintain green flesh by accumulating a large amount of chlorophyll even after ripening. However, little is known about the genetic variations related to the fruit degreening process. Here, a graph-based kiwifruit pangenome by analyzing 14 chromosome-scale haplotype-resolved genome assemblies from seven representative cultivars or lines in Actinidia chinensis is built. A total of 49,770 non-redundant gene families are identified, with core genes constituting 46.6%, and dispensable genes constituting 53.4%. A total of 84,591 non-redundant structural variations (SVs) are identified. The pangenome graph integrating both reference genome sequences and variant information facilitates the identification of SVs related to fruit color. The SV in the promoter of the AcBCM gene determines its high expression in the late developmental stage of fruits, which causes chlorophyll accumulation in the green-flesh fruits by post-translationally regulating AcSGR2, a key enzyme of chlorophyll catabolism. Taken together, a high-quality pangenome is constructed, unraveled numerous genetic variations, and identified a novel SV mediating fruit coloration and fruit quality, providing valuable information for further investigating genome evolution and domestication, QTL genes function, and genomics-assisted breeding.
Collapse
Affiliation(s)
- Yingzhen Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- School of Forestry Science and TechnologyLishui Vocational and Technical CollegeLishui323000China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yanyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Sijia Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yan He
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Wu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Runze Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Junyang Yue
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| |
Collapse
|
2
|
Yue J, Chen Q, Wang Y, Zhang L, Ye C, Wang X, Cao S, Lin Y, Huang W, Xian H, Qin H, Wang Y, Zhang S, Wu Y, Wang S, Yue Y, Liu Y. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis. HORTICULTURE RESEARCH 2023; 10:uhac264. [PMID: 36778189 PMCID: PMC9909506 DOI: 10.1093/hr/uhac264] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 05/19/2023]
Abstract
Kiwifruit is an economically and nutritionally important fruit crop with extremely high contents of vitamin C. However, the previously released versions of kiwifruit genomes all have a mass of unanchored or missing regions. Here, we report a highly continuous and completely gap-free reference genome of Actinidia chinensis cv. 'Hongyang', named Hongyang v4.0, which is the first to achieve two de novo haploid-resolved haplotypes, HY4P and HY4A. HY4P and HY4A have a total length of 606.1 and 599.6 Mb, respectively, with almost the entire telomeres and centromeres assembled in each haplotype. In comparison with Hongyang v3.0, the integrity and contiguity of Hongyang v4.0 is markedly improved by filling all unclosed gaps and correcting some misoriented regions, resulting in ~38.6-39.5 Mb extra sequences, which might affect 4263 and 4244 protein-coding genes in HY4P and HY4A, respectively. Furthermore, our gap-free genome assembly provides the first clue for inspecting the structure and function of centromeres. Globally, centromeric regions are characterized by higher-order repeats that mainly consist of a 153-bp conserved centromere-specific monomer (Ach-CEN153) with different copy numbers among chromosomes. Functional enrichment analysis of the genes located within centromeric regions demonstrates that chromosome centromeres may not only play physical roles for linking a pair of sister chromatids, but also have genetic features for participation in the regulation of cell division. The availability of the telomere-to-telomere and gap-free Hongyang v4.0 reference genome lays a solid foundation not only for illustrating genome structure and functional genomics studies but also for facilitating kiwifruit breeding and improvement.
Collapse
Affiliation(s)
- Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Qinyao Chen
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Chen Ye
- School of Information and Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Shuo Cao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Huang
- Department of Bioinformatics, Anhui Double Helix Gene Technology Corporation, Hefei, Anhui 230022, China
| | - He Xian
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830012, China
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yanli Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Sijia Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Wu
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Yue
- School of Information and Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
Li S, Zhang Q, Chen Z, Huang Z, Zhang L, Chen F. Novel insight into ferroptosis-related genes, molecular subtypes, and immune characteristics in intracranial aneurysms. Inflamm Res 2022; 71:1347-1364. [PMID: 36057911 DOI: 10.1007/s00011-022-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to identify the role of ferroptosis in intracranial aneurysm (IA). METHODS GSE122897, GSE75436, GSE15629, and GSE75434 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed ferroptosis-related genes (DEFRGs) were selected to construct a diagnostic model integrating with machine learning. Then, a consensus clustering algorithm was performed to classify IA patients into distinct ferroptosis-related clusters. Functional analyses, including GO, KEGG, GSVA, and GSEA analyses, were conducted to elucidate the underlying mechanisms. ssGSEA and xCell algorithms were performed to uncover the immune characteristics. RESULTS We identified 28 DEFRGs between IAs and controls from the GSE122897 dataset. GO and KEGG results showed that these genes were enriched in cytokine activity, ferroptosis, and the IL-17 signaling pathway. Immune analysis showed that the IAs had higher levels of immune infiltration. A four FRGs model (MT3, CDKN1A, ZEP69B, and ABCC1) was established and validated with great IA diagnostic ability. We divided the IA samples into two clusters and found that cluster 2 had a higher proportion of rupture and immune infiltration. We identified 10 ferroptosis phenotypes-related markers in IAs. CONCLUSION Ferroptosis and the immune microenvironment are closely associated with IAs, providing a basis for understanding the IA development.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zhou Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.,Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520-8082, USA
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Metabolic modeling-based drug repurposing in Glioblastoma. Sci Rep 2022; 12:11189. [PMID: 35778411 PMCID: PMC9249780 DOI: 10.1038/s41598-022-14721-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a source of potential drug targets. Drug discovery is a long and resource-demanding process aiming at identifying and testing compounds early in the drug development pipeline. While drug repurposing efforts (i.e., inspecting readily available approved drugs) can be supported by a mechanistic rationale, strategies to further reduce and prioritize the list of potential candidates are still needed to facilitate feasible studies. Although a variety of ‘omics’ data are widely gathered, a standard integration method with modeling approaches is lacking. For instance, flux balance analysis is a metabolic modeling technique that mainly relies on the stoichiometry of the metabolic network. However, exploring the network’s topology typically neglects biologically relevant information. Here we introduce Transcriptomics-Informed Stoichiometric Modelling And Network analysis (TISMAN) in a recombinant innovation manner, allowing identification and validation of genes as targets for drug repurposing using glioblastoma as an exemplar.
Collapse
|
5
|
Sui Y, Zhao Q, Wang Z, Liu J, Jiang M, Yue J, Lan J, Liu J, Liao Q, Wang Q, Yang Q, Zhang H. A Comparative Analysis of the Microbiome of Kiwifruit at Harvest Under Open-Field and Rain-Shelter Cultivation Systems. Front Microbiol 2021; 12:757719. [PMID: 34659192 PMCID: PMC8515128 DOI: 10.3389/fmicb.2021.757719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
The composition of microbial communities can directly affect fruit quality, health status, and storability. The present study characterized the epiphytes and endophytes of “Hongyang” and “Cuiyu” kiwifruit at harvest under grown under open-field (OF) and rain-shelter (RS) cultivation systems. Disease incidence in kiwifruit was significantly lower (p < 0.05) under the RS system than it was under the OF system. High-throughput sequencing [16S V3-V4 ribosomal region and the fungal internal transcribed spacer (ITS2)] was conducted to compare the composition of the epiphytic and endophytic microbial community of kiwifruit under the two cultivation systems. Results indicated that the abundance of Actinobacteria, Bacteroidetes, Enterobacteriales, Acetobacterales, Sphingomonas, Pseudomonas, and Sphingobacterium was higher under the RS system, relative to the OF system, while the abundance of Capnodiales, Hypocreales, Vishniacozyma, and Plectosphaerella was also higher under the RS system. Some of these bacterial and fungal taxa have been reported to as act as biocontrol agents and reduce disease incidence. Notably, the α-diversity of the epiphytic bacterial and fungal communities on kiwifruit was higher under RS cultivation. In summary, RS cultivation reduced natural disease incidence in kiwifruit, which may be partially attributed to differences in the structure and composition of the microbial community present in and on kiwifruit.
Collapse
Affiliation(s)
- Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Junyang Yue
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jianbin Lan
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Pervaiz T, Liu T, Fang X, Ren Y, Li X, Liu Z, Fiaz M, Fang J, Shangguan L. Identification of GH17 gene family in Vitis vinifera and expression analysis of GH17 under various adversities. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1423-1436. [PMID: 34366587 PMCID: PMC8295436 DOI: 10.1007/s12298-021-01014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01014-1.
Collapse
Affiliation(s)
- Tariq Pervaiz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiyang Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fiaz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
7
|
Zhang H, Zhao Q, Lan T, Geng T, Gao C, Yuan Q, Zhang Q, Xu P, Sun X, Liu X, Ma T. Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit ( Actinidia) Cultivars-Comparative Analysis of Fifteen Kiwifruit ( Actinidia) Cultivars. Foods 2020; 9:E1267. [PMID: 32927636 PMCID: PMC7555710 DOI: 10.3390/foods9091267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Physicochemical characteristics, nutritional and functional components, and the antioxidant capacity of 15 kinds of domestic and imported kiwifruit in China were studied. Kiwifruit was classified according to flesh color or species, and the differences were analyzed and compared. Results demonstrated Ruiyu had the highest sugar-acid ratio, and Hongshi No.2 was an excellent cultivar with strong antioxidant capacity. TPC (total polyphenol content) and AAC (ascorbic acid content) showed a significant positive correlation. TPC was the greatest antioxidant contributor in the DPPH and FRAP assays. The sugar-acid ratio and TFC (total flavonoids content) in red-fleshed kiwifruit were significantly higher than those in yellow-fleshed and green-fleshed ones. The composition of free amino acids had a tendency to distinguish A. deliciosa and A. chinensis, but this needs further verification. In addition, the contents of mineral elements, folic acid and L-5-methyltetrahydrofolate were also analyzed. Generally, kiwifruit contains comprehensive nutrients and has strong antioxidant capacity. Cultivar is one of the main factors affecting nutritional and functional properties and antioxidant capacity.
Collapse
Affiliation(s)
- Hexin Zhang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Tonghui Geng
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Chenxu Gao
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Quyu Yuan
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Pingkang Xu
- Department of Chemistry, College of Science, Food Science and Technology Programme, National University of Singapore, Singapore 119077, Singapore;
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| | - Tingting Ma
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Q.Z.); (T.L.); (T.G.); (C.G.); (Q.Y.); (X.S.); (X.L.)
| |
Collapse
|
8
|
Yue J, Liu J, Tang W, Wu YQ, Tang X, Li W, Yang Y, Wang L, Huang S, Fang C, Zhao K, Fei Z, Liu Y, Zheng Y. Kiwifruit Genome Database (KGD): a comprehensive resource for kiwifruit genomics. HORTICULTURE RESEARCH 2020; 7:117. [PMID: 32821400 PMCID: PMC7395147 DOI: 10.1038/s41438-020-0338-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 05/25/2023]
Abstract
Kiwifruit (Actinidia spp.) plants produce economically important fruits containing abundant, balanced phytonutrients with extraordinarily high vitamin C contents. Since the release of the first kiwifruit reference genome sequence in 2013, large volumes of genome and transcriptome data have been rapidly accumulated for a handful of kiwifruit species. To efficiently store, analyze, integrate, and disseminate these large-scale datasets to the research community, we constructed the Kiwifruit Genome Database (KGD; http://kiwifruitgenome.org/). The database currently contains all publicly available genome and gene sequences, gene annotations, biochemical pathways, transcriptome profiles derived from public RNA-Seq datasets, and comparative genomic analysis results such as syntenic blocks and homologous gene pairs between different kiwifruit genome assemblies. A set of user-friendly query interfaces, analysis tools and visualization modules have been implemented in KGD to facilitate translational and applied research in kiwifruit, which include JBrowse, a popular genome browser, and the NCBI BLAST sequence search tool. Other notable tools developed within KGD include a genome synteny viewer and tools for differential gene expression analysis as well as gene ontology (GO) term and pathway enrichment analysis.
Collapse
Affiliation(s)
- Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Jiacheng Liu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Wei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Ya Qing Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Wei Li
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Shengxiong Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
| | - Kun Zhao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853 USA
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036 China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064 China
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
9
|
Yue J, Wang R, Ma X, Liu J, Lu X, Balaso Thakar S, An N, Liu J, Xia E, Liu Y. Full-length transcriptome sequencing provides insights into the evolution of apocarotenoid biosynthesis in Crocus sativus. Comput Struct Biotechnol J 2020; 18:774-783. [PMID: 32280432 PMCID: PMC7132054 DOI: 10.1016/j.csbj.2020.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022] Open
Abstract
Crocus sativus, containing remarkably amounts of crocin, picrocrocin and safranal, is the source of saffron with tremendous medicinal, economic and cultural importance. Here, we present a high-quality full-length transcriptome of the sterile triploid C. sativus, using the PacBio SMRT sequencing technology. This yields 31,755 high-confidence predictions of protein-coding genes, with 50.1% forming paralogous gene pairs. Analysis on distribution of Ks values suggests that the current genome of C. sativus is probably a product resulting from at least two rounds of whole-genome duplication (WGD) events occurred at ~28 and ~114 million years ago (Mya), respectively. We provide evidence demonstrating that the recent β WGD event confers a major impact on family expansion of secondary metabolite genes, possibly leading to an enhanced accumulation of three distinct compounds: crocin, picrocrocin and safranal. Phylogenetic analysis unravels that the founding member (CCD2) of CCD enzymes necessary for the biosynthesis of apocarotenoids in C. sativus might be evolved from the CCD1 family via the β WGD event. Based on the gene expression profiling, CCD2 is found to be expressed at an extremely high level in the stigma. These findings may shed lights on further genomic refinement of the characteristic biosynthesis pathways and promote germplasm utilization for the improvement of saffron quality.
Collapse
Affiliation(s)
- Junyang Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,School of Computer and Information, Hefei University of Technology, Hefei 230009, China.,State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Ran Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiayi Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaohui Lu
- College of Information Technology, Jiaxing Vocational Technical College, Jiaxing 314000, China
| | - Sambhaji Balaso Thakar
- State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China.,Department of Biotechnology, Shivaji University, Kolhapur 416003, India
| | - Ning An
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,State Key Laboratory of Tea Plant Biology and School of Horticulture, Anhui Agricultural University, Hefei 230036, China.,Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Wang L, Tang W, Hu Y, Zhang Y, Sun J, Guo X, Lu H, Yang Y, Fang C, Niu X, Yue J, Fei Z, Liu Y. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:359-378. [PMID: 30912865 DOI: 10.1111/tpj.14330] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Many Actinidia cultivars are characterized by anthocyanin accumulation, specifically in the inner pericarp, but the underlying regulatory mechanism remains elusive. Here we report two interacting transcription factors, AcMYB123 and AcbHLH42, that regulate tissue-specific anthocyanin biosynthesis in the inner pericarp of Actinidia chinensis cv. Hongyang. Through transcriptome profiling analysis we identified five MYB and three bHLH transcription factors that were upregulated in the inner pericarp. We show that the combinatorial action of two of them, AcMYB123 and AcbHLH42, is required for activating promoters of AcANS and AcF3GT1 that encode the dedicated enzymes for anthocyanin biosynthesis. The presence of anthocyanin in the inner pericarp appears to be tightly associated with elevated expression of AcMYB123 and AcbHLH42. RNA interference repression of AcMYB123, AcbHLH42, AcF3GT1 and AcANS in 'Hongyang' fruits resulted in significantly reduced anthocyanin biosynthesis. Using both transient assays in Nicotiana tabacum leaves or Actinidia arguta fruits and stable transformation in Arabidopsis, we demonstrate that co-expression of AcMYB123 and AcbHLH42 is a prerequisite for anthocyanin production by activating transcription of AcF3GT1 and AcANS or the homologous genes. Phylogenetic analysis suggests that AcMYB123 or AcbHLH42 are closely related to TT2 or TT8, respectively, which determines proanthocyanidin biosynthesis in Arabidopsis, and to anthocyanin regulators in monocots rather than regulators in dicots. All these experimental results suggest that AcMYB123 and AcbHLH42 are the components involved in spatiotemporal regulation of anthocyanin biosynthesis specifically in the inner pericarp of kiwifruit.
Collapse
Affiliation(s)
- Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yawen Hu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yabin Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Jiaqi Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Guo
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Han Lu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Yang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Niu
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Junyang Yue
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Horticulture and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
11
|
Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC, Templeton K, Luo Z, Davy M, Cheng C, McNeilage M, Scaglione D, Liu Y, Zhang Q, Datson P, De Silva N, Gardiner SE, Bassett H, Chagné D, McCallum J, Dzierzon H, Deng C, Wang YY, Barron L, Manako K, Bowen J, Foster TM, Erridge ZA, Tiffin H, Waite CN, Davies KM, Grierson EP, Laing WA, Kirk R, Chen X, Wood M, Montefiori M, Brummell DA, Schwinn KE, Catanach A, Fullerton C, Li D, Meiyalaghan S, Nieuwenhuizen N, Read N, Prakash R, Hunter D, Zhang H, McKenzie M, Knäbel M, Harris A, Allan AC, Gleave A, Chen A, Janssen BJ, Plunkett B, Ampomah-Dwamena C, Voogd C, Leif D, Lafferty D, Souleyre EJF, Varkonyi-Gasic E, Gambi F, Hanley J, Yao JL, Cheung J, David KM, Warren B, Marsh K, Snowden KC, Lin-Wang K, Brian L, Martinez-Sanchez M, Wang M, Ileperuma N, Macnee N, Campin R, McAtee P, Drummond RSM, Espley RV, Ireland HS, Wu R, Atkinson RG, Karunairetnam S, Bulley S, Chunkath S, Hanley Z, Storey R, Thrimawithana AH, Thomson S, David C, Testolin R, Huang H, Hellens RP, Schaffer RJ. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 2018; 19:257. [PMID: 29661190 PMCID: PMC5902842 DOI: 10.1186/s12864-018-4656-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. Results A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models. Conclusions Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4656-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Pilkington
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Simona Nardozza
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lena Fraser
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Simpson
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Jibran Tahir
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Kerry Templeton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcus Davy
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Canhong Cheng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mark McNeilage
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davide Scaglione
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy
| | - Yifei Liu
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Paul Datson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nihal De Silva
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John McCallum
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Helge Dzierzon
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yen-Yi Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lorna Barron
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kelvina Manako
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Judith Bowen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Toshi M Foster
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Zoe A Erridge
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Heather Tiffin
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Chethi N Waite
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kevin M Davies
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | | | - Rebecca Kirk
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marion Wood
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mirco Montefiori
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | - Christina Fullerton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | | | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nicola Read
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Don Hunter
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Huaibi Zhang
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Mareike Knäbel
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Alastair Harris
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew Gleave
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Angela Chen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davin Leif
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Declan Lafferty
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Edwige J F Souleyre
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Francesco Gambi
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Jenny Hanley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joey Cheung
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ken Marsh
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lara Brian
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcela Martinez-Sanchez
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nadeesha Ileperuma
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nikolai Macnee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Campin
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sean Bulley
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Shayhan Chunkath
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zac Hanley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Roy Storey
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Amali H Thrimawithana
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan Thomson
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Charles David
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Raffaele Testolin
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy.,Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Hongwen Huang
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.,Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Roger P Hellens
- Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, 4001, Australia
| | - Robert J Schaffer
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand. .,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
12
|
Yue J, Zhang D, Ban R, Ma X, Chen D, Li G, Liu J, Wisniewski M, Droby S, Liu Y. PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3053440. [PMID: 28365721 PMCID: PMC5467543 DOI: 10.1093/database/baw170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. Database URL : http://bdg.hfut.edu.cn/pcppi/index.html.
Collapse
Affiliation(s)
- Junyang Yue
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.,Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Danfeng Zhang
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rongjun Ban
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojing Ma
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Danyang Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guangwei Li
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jia Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Michael Wisniewski
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA
| | - Samir Droby
- Agricultural Research Organization (ARO), The Volcani Center, 50250 Bet Dagan, Israel
| | - Yongsheng Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.,Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Yue J, Lu X, Zhang H, Ge J, Gao X, Liu Y. Identification of Conserved and Novel MicroRNAs in Blueberry. FRONTIERS IN PLANT SCIENCE 2017; 8:1155. [PMID: 28713413 PMCID: PMC5492659 DOI: 10.3389/fpls.2017.01155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 06/15/2017] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in cells by negatively affecting gene expression at both transcriptional and post-transcriptional levels. There have been extensive studies aiming to identify miRNAs and to elucidate their functions in various plant species. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis identified 412 conserved miRNAs belonging to 29 families, and 35 predicted novel miRNAs that are likely to be unique to blueberries. Among them, expression profiles of five conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO) annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Particularly, anthocyanin biosynthesis has been predicted to be directly or indirectly regulated by diverse miRNA families. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.
Collapse
Affiliation(s)
- Junyang Yue
- School of Tea and Food Science, Anhui Agricultural UniversityHefei, China
- College of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Xiaohui Lu
- School of Tea and Food Science, Anhui Agricultural UniversityHefei, China
| | - Huan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of ChinaHefei, China
| | - Jiao Ge
- School of Tea and Food Science, Anhui Agricultural UniversityHefei, China
| | - Xueling Gao
- School of Tea and Food Science, Anhui Agricultural UniversityHefei, China
- *Correspondence: Xueling Gao, Yongsheng Liu,
| | - Yongsheng Liu
- School of Tea and Food Science, Anhui Agricultural UniversityHefei, China
- College of Food Science and Engineering, Hefei University of TechnologyHefei, China
- *Correspondence: Xueling Gao, Yongsheng Liu,
| |
Collapse
|