1
|
Wang D, Wang W, Song M, Xie Y, Kuang W, Yang P. Regulation of protein phosphorylation by PTPN2 and its small-molecule inhibitors/degraders as a potential disease treatment strategy. Eur J Med Chem 2024; 277:116774. [PMID: 39178726 DOI: 10.1016/j.ejmech.2024.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is an enzyme that dephosphorylates proteins with tyrosine residues, thereby modulating relevant signaling pathways in vivo. PTPN2 acts as tumor suppressor or tumor promoter depending on the context. In some cancers, such as colorectal, and lung cancer, PTPN2 defects could impair the protein tyrosine kinase pathway, which is often over-activated in cancer cells, and inhibit tumor development and progression. However, PTPN2 can also suppress tumor immunity by regulating immune cells and cytokines. The structure, functions, and substrates of PTPN2 in various tumor cells were reviewed in this paper. And we summarized the research status of small molecule inhibitors and degraders of PTPN2. It also highlights the potential opportunities and challenges for developing PTPN2 inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenmu Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingge Song
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yishi Xie
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Zhao X, Wang X, Xu Z, Chang X, Tian Y. PTPN2 dephosphorylates STAT3 to ameliorate anesthesia-induced cognitive decline in aged rats by altering the microglial phenotype and inhibiting inflammation. Biochim Biophys Acta Mol Basis Dis 2024:167545. [PMID: 39481492 DOI: 10.1016/j.bbadis.2024.167545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. Ptpn2 overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.
Collapse
Affiliation(s)
- Xiaochun Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China; Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110002, PR China.
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Xiaohan Chang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
3
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
5
|
Li HY, Jing YM, Shen X, Tang MY, Shen HH, Li XW, Wang ZS, Su F. Protein tyrosine phosphatase non-receptor II: A possible biomarker of poor prognosis and mediator of immune evasion in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3913-3931. [PMID: 39350977 PMCID: PMC11438766 DOI: 10.4251/wjgo.v16.i9.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND The incidence of primary liver cancer is increasing year by year. In 2022 alone, more than 900000 people were diagnosed with liver cancer worldwide, with hepatocellular carcinoma (HCC) accounting for 75%-85% of cases. HCC is the most common primary liver cancer. China has the highest incidence and mortality rate of HCC in the world, and it is one of the malignant tumors that seriously threaten the health of Chinese people. The onset of liver cancer is occult, the early cases lack typical clinical symptoms, and most of the patients are already in the middle and late stage when diagnosed. Therefore, it is very important to find new markers for the early detection and diagnosis of liver cancer, improve the therapeutic effect, and improve the prognosis of patients. Protein tyrosine phosphatase non-receptor 2 (PTPN2) has been shown to be associated with colorectal cancer, triple-negative breast cancer, non-small cell lung cancer, and prostate cancer, but its biological role and function in tumors remain to be further studied. AIM To combine the results of relevant data obtained from The Cancer Genome Atlas (TCGA) to provide the first in-depth analysis of the biological role of PTPN2 in HCC. METHODS The expression of PTPN2 in HCC was first analyzed based on the TCGA database, and the findings were then verified by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and immunoblotting. The value of PTPN2 in predicting the survival of patients with HCC was assessed by analyzing the relationship between PTPN2 expression in HCC tissues and clinicopathological features. Finally, the potential of PTPN2 affecting immune escape of liver cancer was evaluated by tumor immune dysfunction and exclusion and immunohistochemical staining. RESULTS The results of immunohistochemical staining, qRT-PCR, and immunoblotting in combination with TCGA database analysis showed that PTPN2 was highly expressed and associated with a poor prognosis in HCC patients. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that PTPN2 was associated with various pathways, including cancer-related pathways, the Notch signaling pathway, and the MAPK signaling pathway. Gene Set Enrichment Analysis showed that PTPN2 was highly expressed in various immune-related pathways, such as the epithelial mesenchymal transition process. A risk model score based on PTPN2 showed that immune escape was significantly enhanced in the high-risk group compared with the low-risk group. CONCLUSION This study investigated PTPN2 from multiple biological perspectives, revealing that PTPN2 can function as a biomarker of poor prognosis and mediate immune evasion in HCC.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Yi-Ming Jing
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Xue Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Ming-Yue Tang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Hong-Hong Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Xin-Wei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Zi-Shu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, Anhui Province, China
| |
Collapse
|
6
|
Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y, Gao F. Tofacitinib Citrate Coordination-Based Dual-Responsive/Scavenge Nanoplatform Toward Regulate Colonic Inflammatory Microenvironment for Relieving Colitis. Adv Healthc Mater 2024:e2401869. [PMID: 39180276 DOI: 10.1002/adhm.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Jiang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzuo Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100050, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
8
|
Jeong YJ, Lee HR, Park SA, Lee JW, Kim LK, Kim HJ, Seo JH, Heo TH. A derivative of 3-(1,3-diarylallylidene)oxindoles inhibits dextran sulfate sodium-induced colitis in mice. Pharmacol Rep 2024; 76:851-862. [PMID: 38916850 PMCID: PMC11294400 DOI: 10.1007/s43440-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND IA-0130 is a derivative of 3-(1,3-diarylallylidene)oxindoles, which is a selective estrogen receptor modulator (SERM). A previous study demonstrated that SERM exhibits anti-inflammatory effects on colitis by promoting the anti-inflammatory phenotype of monocytes in murine colitis. However, the therapeutic effects of oxindole on colitis remain unknown. Therefore, we evaluated the efficacy of IA-0130 on dextran sulfate sodium (DSS)-induced mouse colitis. METHODS The DSS-induced colitis mouse model was established by administration of 2.5% DSS for 5 days. Mice were orally administered with IA-0130 (0.01 mg/kg or 0.1 mg/kg) or cyclosporin A (CsA; 30 mg/kg). Body weight, disease activity index score and colon length of mice were calculated and histological features of mouse colonic tissues were analyzed using hematoxylin and eosin staining. The expression of inflammatory cytokines and tight junction (TJ) proteins were analyzed using quantitative real-time PCR and enzyme-linked immunosorbent assay. The expression of interleukin-6 (IL-6) signaling molecules in colonic tissues were investigated using Western blotting and immunohistochemistry (IHC). RESULTS IA-0130 (0.1 mg/kg) and CsA (30 mg/kg) prevented colitis symptom, including weight loss, bleeding, colon shortening, and expression of pro-inflammatory cytokines in colon tissues. IA-0130 treatment regulated the mouse intestinal barrier permeability and inhibited abnormal TJ protein expression. IA-0130 down-regulated IL-6 expression and prevented the phosphorylation of signaling molecules in colonic tissues. CONCLUSIONS This study demonstrated that IA-0130 suppressed colitis progression by inhibiting the gp130 signaling pathway and expression of pro-inflammatory cytokines, and maintaining TJ integrity.
Collapse
Affiliation(s)
- Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Hae-Ri Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Joong-Woon Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Jae Hong Seo
- Laboratory of Pharmaceutical Manufacturing Chemistry, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon‑si, Gyeonggi‑do, 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea.
| |
Collapse
|
9
|
Kim DH, Lee S, Ahn J, Kim JH, Lee E, Lee I, Byun S. Transcriptomic and metabolomic analysis unveils nanoplastic-induced gut barrier dysfunction via STAT1/6 and ERK pathways. ENVIRONMENTAL RESEARCH 2024; 249:118437. [PMID: 38346486 DOI: 10.1016/j.envres.2024.118437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The widespread prevalence of micro and nanoplastics in the environment raises concerns about their potential impact on human health. Recent evidence demonstrates the presence of nanoplastics in human blood and tissues following ingestion and inhalation, yet the specific risks and mechanisms of nanoplastic toxicity remain inadequately understood. In this study, we aimed to explore the molecular mechanisms underlying the toxicity of nanoplastics at both systemic and molecular levels by analyzing the transcriptomic/metabolomic responses and signaling pathways in the intestines of mice after oral administration of nanoplastics. Transcriptome analysis in nanoplastic-administered mice revealed a notable upregulation of genes involved in pro-inflammatory immune responses. In addition, nanoplastics substantially reduced the expression of tight junction proteins, including occludin, zonula occluden-1, and tricellulin, which are crucial for maintaining gut barrier integrity and function. Importantly, nanoplastic administration increased gut permeability and exacerbated dextran sulfate sodium-induced colitis. Further investigation into the underlying molecular mechanisms highlighted significant activation of signaling transsducer and activator of transcription (STAT)1 and STAT6 by nanoplastic administration, which was in line with the elevation of interferon and JAK-STAT pathway signatures identified through transcriptome enrichment analysis. Additionally, the consumption of nanoplastics specifically induced nuclear factor kappa-B (NF-κB) and extracellular signal-regulated kinase (ERK)1/2 signaling pathways in the intestines. Collectively, this study identifies molecular mechanisms contributing to adverse effects mediated by nanoplastics in the intestine, providing novel insights into the pathophysiological consequences of nanoplastic exposure.
Collapse
Affiliation(s)
- Da Hyun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungho Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisong Ahn
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunjung Lee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
Kong L, Chen S, Huang S, Zheng A, Gao S, Ye J, Hua C. Challenges and opportunities in inflammatory bowel disease: from current therapeutic strategies to organoid-based models. Inflamm Res 2024; 73:541-562. [PMID: 38345635 DOI: 10.1007/s00011-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lingjie Kong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Siyan Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anzhe Zheng
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Zuo S, Jiang L, Chen L, Wang W, Gu J, Kuai J, Yang X, Ma Y, Han C, Wei W. Involvement of Embryo-Derived and Monocyte-Derived Intestinal Macrophages in the Pathogenesis of Inflammatory Bowel Disease and Their Prospects as Therapeutic Targets. Int J Mol Sci 2024; 25:690. [PMID: 38255764 PMCID: PMC10815613 DOI: 10.3390/ijms25020690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China; (S.Z.); (L.J.); (L.C.); (W.W.); (J.G.); (J.K.); (X.Y.); (Y.M.)
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China; (S.Z.); (L.J.); (L.C.); (W.W.); (J.G.); (J.K.); (X.Y.); (Y.M.)
| |
Collapse
|
13
|
Ning K, Shi C, Chi YY, Zhou YF, Zheng W, Duan Y, Tong W, Xie Q, Xiang H. Portulaca oleracea L. polysaccharide alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal homeostasis. Int J Biol Macromol 2024; 256:128375. [PMID: 38000581 DOI: 10.1016/j.ijbiomac.2023.128375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Portulaca oleracea L. (purslane) is a vegetable that contains a variety of active compounds with nutritional properties and has the potential to treat ulcerative colitis (UC). However, the mechanisms underlying the effects of Portulaca oleracea L. polysaccharide (POP) in alleviating UC remain unclear. In this study, we prepared an aqueous extract of purslane and separated a fraction with molecular weight >10 kDa using membrane separation. This fraction was used to isolate POP. The effect of POP on gut microbiota and colon transcriptome in dextran sulfate sodium-induced UC model mice was evaluated. POP treatment reduced inflammation and oxidative stress imbalance in UC mice. In addition, POP improved the intestinal barrier and regulated intestinal homeostasis. Importantly, POP was found to regulate gut microbiota, maintain the levels of retinol and short-chain fatty acids in the gut, promote the proliferation and differentiation of B cells in the colon, and increase the expression of immunoglobulin A. These results provide novel insights into the role of POP in regulating intestinal homeostasis, which should guide further development of POP as a functional food.
Collapse
Affiliation(s)
- Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yong-Fei Zhou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiwei Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yameng Duan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiwei Tong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, PR China.
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, PR China.
| |
Collapse
|
14
|
Xu Q, Yao Y, Liu Y, Zhang J, Mao L. The mechanism of traditional medicine in alleviating ulcerative colitis: regulating intestinal barrier function. Front Pharmacol 2023; 14:1228969. [PMID: 37876728 PMCID: PMC10590899 DOI: 10.3389/fphar.2023.1228969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease mainly affects the large bowel and the rectum. The pathogenesis of this disease has not been fully elucidated, while the disruption of the intestinal barrier function triggered by various stimulating factors related to the host genetics, immunity, gut microbiota, and environment has been considered to be major mechanisms that affect the development of UC. Given the limited effective therapies, the treatment of this disease is not ideal and its incidence and prevalence are increasing. Therefore, developing new therapies with high efficiency and efficacy is important for treating UC. Many recent studies disclosed that numerous herbal decoctions and natural compounds derived from traditional herbal medicine showed promising therapeutic activities in animal models of colitis and have gained increasing attention from scientists in the study of UC. Some of these decoctions and compounds can effectively alleviate colonic inflammation and relieve clinical symptoms in animal models of colitis via regulating intestinal barrier function. While no study is available to review the underlying mechanisms of these potential therapies in regulating the integrity and function of the intestinal barrier. This review aims to summarize the effects of various herbal decoctions or bioactive compounds on the severity of colonic inflammation via various mechanisms, mainly including regulating the production of tight junction proteins, mucins, the composition of gut microbiota and microbial-associated metabolites, the infiltration of inflammatory cells and mediators, and the oxidative stress in the gut. On this basis, we discussed the related regulators and the affected signaling pathways of the mentioned traditional medicine in modulating the disruption or restoration of the intestinal barrier, such as NF-κB/MAPK, PI3K, and HIF-1α signaling pathways. In addition, the possible limitations of current studies and a prospect for future investigation and development of new UC therapies are provided based on our knowledge and current understanding. This review may improve our understanding of the current progression in studies of traditional medicine-derived therapies in protecting the intestinal barrier function and their roles in alleviating animal models of UC. It may be beneficial to the work of researchers in both basic and translational studies of UC.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
15
|
Guo M, Wang X. Pathological mechanism and targeted drugs of ulcerative colitis: A review. Medicine (Baltimore) 2023; 102:e35020. [PMID: 37713856 PMCID: PMC10508406 DOI: 10.1097/md.0000000000035020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon with abdominal pain, diarrhea, and mucopurulent stools as the main symptoms. Its incidence is increasing worldwide, and traditional treatments have problems such as immunosuppression and metabolic disorders. In this article, the etiology and pathogenesis of ulcerative colitis are reviewed to clarify the targeted drugs of UC in the latest research. Our aim is to provide more ideas for the clinical treatment and new drug development of UC, mainly by analyzing and sorting out the relevant literature on PubMed, summarizing and finding that it is related to the main genetic, environmental, immune and other factors, and explaining its pathogenesis from the NF-κB pathway, PI3K/Akt signaling pathway, and JAK/STAT signaling pathway, and obtaining anti-TNF-α monoclonal antibodies, integrin antagonists, IL-12/IL-23 antagonists, novel UC-targeted drugs such as JAK inhibitors and SIP receptor agonists. We believe that rational selection of targeted drugs and formulation of the best dosing strategy under the comprehensive consideration of clinical evaluation is the best way to treat UC.
Collapse
Affiliation(s)
- Meitong Guo
- Changchun University of Chinese Medicine, Changchun City, China
| | - Xiaoyan Wang
- Jilin Academy of Chinese Medicine, Chaoyang District, China
| |
Collapse
|
16
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
17
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Xiao Y, Powell DW, Liu X, Li Q. Cardiovascular manifestations of inflammatory bowel diseases and the underlying pathogenic mechanisms. Am J Physiol Regul Integr Comp Physiol 2023; 325:R193-R211. [PMID: 37335014 PMCID: PMC10979804 DOI: 10.1152/ajpregu.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD), consisting of ulcerative colitis and Crohn's disease, mainly affects the gastrointestinal tract but is also known to have extraintestinal manifestations because of long-standing systemic inflammation. Several national cohort studies have found that IBD is an independent risk factor for the development of cardiovascular disorders. However, the molecular mechanisms by which IBD impairs the cardiovascular system are not fully understood. Although the gut-heart axis is attracting more attention in recent years, our knowledge of the organ-to-organ communication between the gut and the heart remains limited. In patients with IBD, upregulated inflammatory factors, altered microRNAs and lipid profiles, as well as dysbiotic gut microbiota, may induce adverse cardiac remodeling. In addition, patients with IBD have a three- to four times higher risk of developing thrombosis than people without IBD, and it is believed that the increased risk of thrombosis is largely due to increased procoagulant factors, platelet count/activity, and fibrinogen concentration, in addition to decreased anticoagulant factors. The predisposing factors for atherosclerosis are present in IBD and the possible mechanisms may involve oxidative stress system, overexpression of matrix metalloproteinases, and changes in vascular smooth muscle phenotype. This review focuses mainly on 1) the prevalence of cardiovascular diseases associated with IBD, 2) the potential pathogenic mechanisms of cardiovascular diseases in patients with IBD, and 3) adverse effects of IBD drugs on the cardiovascular system. Also, we introduce here a new paradigm for the gut-heart axis that includes exosomal microRNA and the gut microbiota as a cause for cardiac remodeling and fibrosis.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| |
Collapse
|
19
|
Wang Y, Li P, Lavrijsen M, Rottier RJ, den Hoed CM, Bruno MJ, Kamar N, Peppelenbosch MP, de Vries AC, Pan Q. Immunosuppressants exert differential effects on pan-coronavirus infection and distinct combinatory antiviral activity with molnupiravir and nirmatrelvir. United European Gastroenterol J 2023; 11:431-447. [PMID: 37226653 PMCID: PMC10256998 DOI: 10.1002/ueg2.12417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs. OBJECTIVE This study aims to profile the effects of immunosuppressants and the combination of immunosuppressants with oral antiviral drugs molnupiravir and nirmatrelvir on pan-coronavirus infection in cell and human airway organoids (hAOs) culture models. METHODS Different coronaviruses (including wild type, delta and omicron variants of SARS-CoV-2, and NL63, 229E and OC43 seasonal coronaviruses) were used in lung cell lines and hAOs models. The effects of immunosuppressants were tested. RESULTS Dexamethasone and 5-aminosalicylic acid moderately stimulated the replication of different coronaviruses. Mycophenolic acid (MPA), 6-thioguanine (6-TG), tofacitinib and filgotinib treatment dose-dependently inhibited viral replication of all tested coronaviruses in both cell lines and hAOs. The half maximum effective concentration (EC50) of tofacitinib against SARS-CoV-2 was 0.62 μM and the half maximum cytotoxic concentration (CC50) was above 30 μM, which resulted in a selective index (SI) of about 50. The anti-coronavirus effect of the JAK inhibitors tofacitinib and filgotinib is dependent on the inhibition of STAT3 phosphorylation. Combinations of MPA, 6-TG, tofacitinib, and filgotinib with the oral antiviral drugs molnupiravir or nirmatrelvir exerted an additive or synergistic antiviral activity. CONCLUSIONS Different immunosuppressants have distinct effects on coronavirus replication, with 6-TG, MPA, tofacitinib and filgotinib possessing pan-coronavirus antiviral activity. The combinations of MPA, 6-TG, tofacitinib and filgotinib with antiviral drugs exerted an additive or synergistic antiviral activity. Thus, these findings provide an important reference for optimal management of immunocompromised patients infected with coronaviruses.
Collapse
Affiliation(s)
- Yining Wang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Pengfei Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Robbert J. Rottier
- Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
- Department of Cell BiologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Caroline M. den Hoed
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Nassim Kamar
- Department of NephrologyDialysis and Organ TransplantationCHU RangueilINSERM UMR 1291Toulouse Institute for Infectious and Inflammatory Disease (Infinity)University Paul SabatierToulouseFrance
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
20
|
Andretto V, Taurino G, Guerriero G, Guérin H, Lainé E, Bianchi MG, Agusti G, Briançon S, Bussolati O, Clayer-Montembault A, Lollo G. Nanoemulsions Embedded in Alginate Beads as Bioadhesive Nanocomposites for Intestinal Delivery of the Anti-Inflammatory Drug Tofacitinib. Biomacromolecules 2023. [PMID: 37228181 DOI: 10.1021/acs.biomac.3c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 μm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Giulia Guerriero
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Emmanuelle Lainé
- Université Clermont Auvergne, INRAe, UMR454 MEDIS (Microbiologie, Environnement Digestif et Santé), 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Alexandra Clayer-Montembault
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères (IMP), 15 boulevard Latarjet, F-69622 Villeurbanne, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
21
|
Guo M, Wang R, Geng J, Li Z, Liu M, Lu X, Wei J, Liu M. Human TFF2-Fc fusion protein alleviates DSS-induced ulcerative colitis in C57BL/6 mice by promoting intestinal epithelial cells repair and inhibiting macrophage inflammation. Inflammopharmacology 2023; 31:1387-1404. [PMID: 37129719 PMCID: PMC10153040 DOI: 10.1007/s10787-023-01226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The clinical drugs for ulcerative colitis mainly affect the inflammatory symposiums with limited outcomes and various side effects. Repairing the damaged intestinal mucosa is a promising and alternative strategy to treat ulcerative colitis. Trefoil factor family 2 (TFF2) could repair the intestinal mucosa, however, it has a short half-life in vivo. To improve the stability of TFF2, we have prepared a new fusion protein TFF2-Fc with much stability, investigated the therapeutic effect of TFF2-Fc on ulcerative colitis, and further illustrated the related mechanisms. We found that intrarectally administered TFF2-Fc alleviated the weight loss, the colon shortening, the disease activity index, the intestinal tissue injury, and the lymphocyte infiltration in dextran sulfate sodium (DSS)-induced colitis mice. In vitro, TFF2-Fc inhibited Caco2 cells injury and apoptosis, promoted cellular migration, and increased the expression of Occludin and ZO-1 by activating P-ERK in the presence of H2O2 or inflammatory conditioned medium (LPS-RAW264.7/CM). Moreover, TFF2-Fc could reduce lipopolysaccharide (LPS)-induced production of inflammation cytokines and reactive oxygen species in RAW264.7 cells, and also inhibits the polarization of RAW264.7 cells to M1 phenotype by reducing glucose consumption and lactate production. Taken together, in this work, we have prepared a novel fusion protein TFF2-Fc, which could alleviate ulcerative colitis in vivo via promoting intestinal epithelial cells repair and inhibiting macrophage inflammation, and TFF2-Fc might serve as a promising ulcerative colitis therapeutic agent.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jiajia Geng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhen Li
- Jingyuan Biomedicine (Suzhou) Co., Ltd., Suzhou, 215000, China
| | - Mingfei Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianteng Wei
- Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China
- Qingdao Special Food Research Institute, Qingdao, 266109, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
22
|
Abstract
The JAK signaling pathway plays a major role in the immunopathology of autoimmune diseases, including inflammatory bowel disease. JAK enzymes provide novel targets for rapidly effective inflammatory bowel disease therapy, particularly in ulcerative colitis. Upadacitinib is a targeted JAK1 inhibitor. In multiple phase III clinical trials, upadacitinib has demonstrated significant improvement in clinical and endoscopic outcomes and quality of life for patients with moderate-to-severe ulcerative colitis. In this drug evaluation we describe the role of the JAK signaling pathway in ulcerative colitis, the mechanism of action of upadacitinib and the current clinical evidence for its use in ulcerative colitis; we also review its safety and tolerability, including for special populations.
Collapse
Affiliation(s)
- Ariel A Jordan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Dr Higgins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Gastroenterology & Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Chen X, Yan Y, Cheng X, Zhang Z, He C, Wu D, Zhao D, Liu X. A novel CDK8 inhibitor with poly-substituted pyridine core: Discovery and anti-inflammatory activity evaluation in vivo. Bioorg Chem 2023; 133:106402. [PMID: 36791618 DOI: 10.1016/j.bioorg.2023.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
As an ideal anti-inflammatory target, cyclin-dependent kinase 8 (CDK8) has gradually attracted the attention of researchers. CDK8 inhibition up-regulates Interleukin-10 (IL-10) expression by enhancing the transcriptional activity of activator protein-1 (AP-1), and augmenting IL-10 abundance is a viable strategy for the treatment of inflammatory bowel disease (IBD). In this research, through structure-based drug design and dominant fragment hybridization, a series of poly-substituted pyridine derivatives were designed and synthesized as CDK8 inhibitors. Ultimately, compound CR16 was identified as the best one, which exhibited good inhibitory activity against CDK8 (IC50 = 74.4 nM). In vitro and in vivo studies indicated that CR16 could enhance the transcriptional activity of AP-1, augment the abundance of IL-10, and affect CDK8-related signaling pathways including TLR7/NF-κB/MAPK and IL-10-JAK1-STAT3 pathways. In addition, CR16 showed potent therapeutic effect in an animal model of IBD.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, PR China
| | - Xiu Cheng
- School of Pharmacy, BengBu Medical College, BengBu 233030, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, PR China
| | - Chuanbiao He
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, PR China
| | - Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei 238000, PR China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital, Anhui Medical University, Hefei 230032, PR China.
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
24
|
Gan F, Lin Z, Tang J, Chen X, Huang K. Deoxynivalenol at No-Observed Adverse-Effect Levels Aggravates DSS-Induced Colitis through the JAK2/STAT3 Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4144-4152. [PMID: 36847760 DOI: 10.1021/acs.jafc.3c00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The etiology of inflammatory bowel diseases (IBDs) involves complex genetic and environmental factors such as mycotoxin contamination. Deoxynivalenol (DON), a well-known mycotoxin, contaminates food and feed and can induce intestinal injury and inflammatory response. The dose of DON in many foods is also below the limit, although the dose of DON exceeds the limit. The present study aims to evaluate the effects of the nontoxic dose of DON on colitis induced by dextran sodium sulfate (DSS) and the mechanism in mice. The results showed a nontoxic dose of DON at 50 μg/kg bw per day exacerbated DSS-induced colitis in mice as demonstrated by increased disease activity index, decreased colon length, increased morphological damage, decreased occludin and mucoprotein 2 expression, increased IL-1β and TNF-α expression, and decreased IL-10 expression. DON at 50 μg/kg bw per day enhanced JAK2/STAT3 phosphorylation induced by DSS. Adding JAK2 inhibitor AG490 attenuated the aggravating effects of DON on DSS-induced colitis by reversing the morphological damage, occludin and mucoprotein 2 expression increased, IL-1β and TNF-α expression increased, and IL-10 expression decreased. Taken together, a nontoxic dose of DON could aggravate DSS-induced colitis via the JAK2/STAT3 signaling pathway. This suggests that DON, below the standard limit dose, is also a risk for IBD and may be harmful to the health of humans and animals, which could provide the basis for establishing limits for DON.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| |
Collapse
|
25
|
Nielsen OH, Boye TL, Gubatan J, Chakravarti D, Jaquith JB, LaCasse EC. Selective JAK1 inhibitors for the treatment of inflammatory bowel disease. Pharmacol Ther 2023; 245:108402. [PMID: 37004800 DOI: 10.1016/j.pharmthera.2023.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Janus kinase (JAK) inhibitors, also known as jakinibs, are third-generation oral small molecules that have expanded the therapeutic options for the management of chronic inflammatory diseases, including inflammatory bowel disease (IBD). Tofacitinib, a pan-JAK inhibitor, has spearheaded the new JAK class for IBD treatment. Unfortunately, serious adverse effects, including cardiovascular complications such as pulmonary embolism and venous thromboembolism or even death from any cause, have been reported for tofacitinib. However, it is anticipated that next-generation selective JAK inhibitors may limit the development of serious adverse events, leading to a safer treatment course with these novel targeted therapies. Nevertheless, although this drug class was recently introduced, following the launch of second-generation biologics in the late 1990s, it is breaking new ground and has been shown to efficiently modulate complex cytokine-driven inflammation in both preclinical models and human studies. Herein, we review the clinical opportunities for targeting JAK1 signaling in the pathophysiology of IBD, the biology and chemistry underpinning these target-selective compounds, and their mechanisms of actions. We also discuss the potential for these inhibitors in efforts to balance their benefits and harms.
Collapse
|
26
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
27
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
28
|
Serinc2 deficiency causes susceptibility to sepsis-associated acute lung injury. J Inflamm (Lond) 2022; 19:9. [PMID: 35799194 PMCID: PMC9260995 DOI: 10.1186/s12950-022-00306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Severe sepsis and its subsequent complications cause high morbidity and mortality rates worldwide. The lung is one of the most vulnerable organs sensitive to the sepsis-associated inflammatory storm and usually develops into acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). The pathogenesis of sepsis-associated ALI is accompanied by coordinated transmembrane signal transduction and subsequent programmed cell death; however, the underlying mechanism remains largely unclear. Results Here we find that the expression of serine incorporator 2 (Serinc2), a protein involved in phosphatidylserine synthesis and membrane incorporation, is upregulated in cecal ligation and puncture (CLP)-induced ALI. Furthermore, the Serinc2-knockout (KO) mouse line is generated by the CRISPR-cas9 approach. Compared with wild-type mice, the Serinc2-KO mice exhibit exacerbated ALI-related pathologies after CLP. The expressions of pro-inflammatory factors, including IL1β, IL6, TNFα, and MCP1, are significantly enhanced by Serinc2 deficiency, concurrent with over-activation of STAT3, p38 and ERK pathways. Conversely, Serinc2 overexpression in RAW264.7 cells significantly suppresses the inflammatory responses induced by lipopolysaccharide (LPS). Serinc2 KO aggravates CLP-induced apoptosis as evidenced by increases in TUNEL-positive staining, Bax expression, and cleaved caspase-3 and decreases in BCL-2 expression and Akt phosphorylation, whereas these changes are suppressed by Serinc2 overexpression in LPS-treated RAW264.7 cells. Moreover, the administration of AKTin, an inhibitor of Akt, abolishes the protective effects of Serinc2 overexpression against inflammation and apoptosis. Conclusions Our findings demonstrate a protective role of Serinc2 in the lung through activating the Akt pathway, and provide novel insight into the pathogenesis of sepsis-induced ALI. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00306-x.
Collapse
|
29
|
Interleukin-22 Ameliorates Dextran Sulfate Sodium-Induced Colitis through the Upregulation of lncRNA-UCL to Accelerate Claudin-1 Expression via Sequestering miR-568 in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8543720. [PMID: 36092152 PMCID: PMC9453001 DOI: 10.1155/2022/8543720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Background Bioactive compound such as interleukin-22 (IL-22) treatment is regarded as a sufficient treatment for ulcerative colitis (UC). It has been found that long noncoding RNAs (lncRNAs) expressed in many inflammatory diseases, including UC. We aimed to verify the treatment effect of bioactive compounds including IL-22 and lncRNAs in UC on colitis mice. Methods UC mice were induced using DSS, followed by IL-22 or PBS intraperitoneally (i.p.) injection. Then, the histopathological parameters of the mice were determined. Then, RNA sequencing was performed to screen the differential lncRNAs. Quantitative real-time PCR (qRT-PCR) and lentivirus identified lncRNA-Ulcerative Colitis lncRNA (lncRNA-UCL) were regarded as the molecular regulator of the colitis mice. The correlation with lncRNA-UCL and mmu-miR-568 was validated using RNA-pulldown. Meanwhile, claudin-1 was predicted and confirmed as the target molecule of mmu-miR-568 using dual-luciferase assay. Results IL-22 could significantly improve the histopathological features and decrease proinflammatory cytokine production in UC mice induced by DSS. It also can stimulate intestinal epithelial cell (IEC) reproduction and prevention of apoptosis. lncRNA-UCL was significantly downregulated in UC mice caused by DSS, while IL-22 treatment effectively reversed this effect. In terms of mechanism, lncRNA-UCL regulates intestinal epithelial homeostasis by sequestering mmu-miR-568 and maintaining close integrated protein expression, such as claudin-1. Conclusions We have demonstrated the incredible role of bioactive compound, such as IL-22, in alleviating DSS-induced colitis symptoms via enhancing lncRNA-UCL expression. It can be regulated using tight junction (TJ) protein.
Collapse
|
30
|
Chatterjee K, Dutta AK, Goel A, Aaron R, Balakrishnan V, Thomas A, John A, Jaleel R, David D, Kurien RT, Chowdhury SD, Simon EG, Joseph AJ, Premkumar P, Pulimood AB. Common polymorphisms of protein tyrosine phosphate non-receptor type 2 gene are not associated with risk of Crohn’s disease in Indian. World J Gastrointest Pathophysiol 2022; 13:114-123. [PMID: 36161231 PMCID: PMC9350595 DOI: 10.4291/wjgp.v13.i4.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple genetic risk factors for Crohn’s disease (CD) have been identified. However, these observations are not consistent across different populations. The protein tyrosine phosphate non-receptor type 2 (PTPN2) gene plays a role in various aspects of host defense including epithelial barrier function, autophagy, and innate and adaptive immune response. Two common polymorphisms in the PTPN2 gene (rs2542151 and rs7234029) have been associated with risk of CD in Western countries.
AIM To evaluate the association of PTPN2 gene polymorphisms with risk of CD in Indian population.
METHODS We conducted a prospective case-control study. Patients with CD were recruited, and their clinical and investigation details were noted. Controls were patients without organic gastrointestinal disease or other comorbid illnesses. Two common polymorphisms in the PTPN2 gene (rs2542151 and rs7234029) were assessed. DNA was extracted from peripheral blood samples of cases and controls and target DNA was amplified using specific sets of primers. The amplified fragments were digested with restriction enzymes and the presence of polymorphism was detected by restriction fragment length polymorphism. The frequency of alleles was determined. The frequencies of genotypes and alleles were compared between cases and controls to look for significant differences.
RESULTS A total of 108 patients with CD (mean age 37.5 ± 12.7 years, females 42.6%) and 100 controls (mean age 39.9 ± 13.5 years, females 37%) were recruited. For the single nucleotide polymorphism (SNP) rs7234029, the overall frequency of G variant genotype (AG or GG) was noted to be significantly lower in the cases compared to controls (35.2% vs 50%, P = 0.05). For the SNP rs2542151, the overall frequency of G variant genotype (GT or GG) was noted to be similar in cases compared to controls (43.6% vs 47%, P = 0.73). There were no significant differences in minor allele (G) frequency for both polymorphisms between the cases and controls. Both the SNPs had no significant association with age of onset of illness, gender, disease location, disease behaviour, perianal disease, or extraintestinal manifestations of CD.
CONCLUSION Unlike observation form the West, polymorphisms in the PTPN2 gene (rs7234029 and rs2542151) are not associated with an increased risk of developing CD in Indian patients.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Amit Kumar Dutta
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ashish Goel
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Rekha Aaron
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Vijayalekshmi Balakrishnan
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ajith Thomas
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Anoop John
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Rajeeb Jaleel
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Deepu David
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Reuben Thomas Kurien
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - SD Chowdhury
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ebby George Simon
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - AJ Joseph
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Prasanna Premkumar
- Departments of Biostatistics, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Anna B Pulimood
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| |
Collapse
|
31
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Li S, Feng G, Zhang M, Zhang X, Lu J, Feng C, Zhu F. Oxymatrine attenuates TNBS-induced colinutis in rats through TLR9/Myd88/NF-κB signal pathway. Hum Exp Toxicol 2022; 41:9603271221078866. [PMID: 35290143 DOI: 10.1177/09603271221078866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: Due to its well-known anti-inflammatory property, oxymatrine (OMT) has received more attention on the aspect of treating ulcerative colitis. Although efforts have been undertaken to understand the therapeutic mechanism of OMT on ulcerative colitis (UC), the remedial principle is still ambiguous. Numerous studies have shown that TLR9/Myd88/NF-κB signal pathway played a key role in the pathogenesis of UC. Moreover, TLR9/Myd88/NF-κB signal pathway is a part of the most important pathways for regulating the immune response.Methods: We explored the influence of OMT with different dosages on UC by establishing a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Moreover, the participation of TLR9/Myd88/NF-κB signal pathway and whether OMT protects against UC though targeting this pathway are further studied.Results: Our data revealed that OMT could significantly relieve the symptom of TNBS-induced colitis in rats by reactivating the tight junction protein and, more important, by inhibiting the activation of TLR9/Myd88/NF-κB pathway and protein expression levels of its downstream inflammatory factors.Conclusion: OMT could relieve colitis in rat models by impacting tight junction proteins' TLR9/Myd88/NF-κB signal pathways and activity.
Collapse
Affiliation(s)
- Shengwei Li
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China
| | - Guangqing Feng
- The Third Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Zhang
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Zhang
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jihong Lu
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China
| | - Chenyahui Feng
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China
| | - Fangshi Zhu
- The Third Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
34
|
Li Y, Jiang MY, Chen JY, Xu ZW, Zhang JW, Li T, Zhang LL, Wei W. CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-κB-NLRP3 inflammasome signaling pathway in macrophages. IUBMB Life 2021; 73:1406-1422. [PMID: 34590407 DOI: 10.1002/iub.2564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Deficiency of G protein-coupled receptor kinase 2 (GRK2) was found to protect mice from dextran sulfate sodium (DSS)-induced colitis. Paeoniflorin-6'-O-benzene sulfonate (CP-25) has been shown to exert anti-inflammatory immune regulatory effects in animal models of inflammatory autoimmune disease. This study aimed to investigate the of GRK2 in the pathogenesis of ulcerative colitis (UC) and its effects on macrophage polarization, macrophage subtype regulation of intestinal barrier function, and therapeutic effects of CP-25 in mice with DSS-induced colitis. We found imbalanced macrophage polarization, intestinal barrier dysfunction, and abnormal activation of GRK2 and TLR4-NF-κB-NLRP3 inflammasome signaling pathway in the colonic mucosa of patients with UC. CP-25, restored the damaged intestinal barrier function by inhibiting the transmembrane region of GRK2 in macrophages stimulated by lipopolysaccharides. CP-25 exerted therapeutic effects by ameliorating clinical manifestation, regulating macrophage polarization, and restoring abnormally activated TLR4-NF-κB-NLRP3 inflammasome signaling pathway by inhibiting GRK2. These data suggest the pathogenesis of UC may be related to the imbalance of macrophage polarization, which leads to abnormal activation of TLR4-NF-κB-NLRP3 inflammasome signaling pathway mediated by GRK2 and destruction of the intestinal mucosal barrier. CP-25 confers therapeutic effects on colitis by inhibiting GRK2 translocation to induce the downregulation of TLR4-NF-κB-NLRP3 inflammasome signaling in macrophages.
Collapse
Affiliation(s)
- Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Meng-Ya Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Jing-Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Wei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| |
Collapse
|
35
|
Lei H, Crawford MS, McCole DF. JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2021; 14:840. [PMID: 34577540 PMCID: PMC8466350 DOI: 10.3390/ph14090840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The epithelial barrier forms the interface between luminal microbes and the host immune system and is the first site of exposure to many of the environmental factors that trigger disease activity in chronic inflammatory bowel disease (IBD). Disruption of the epithelial barrier, in the form of increased intestinal permeability, is a feature of IBD and other inflammatory diseases, including celiac disease and type 1 diabetes. Variants in genes that regulate or belong to the JAK-STAT signaling pathway are associated with IBD risk. Inhibitors of the JAK-STAT pathway are now effective therapeutic options in IBD. This review will discuss emerging evidence that JAK inhibitors can be used to improve defects in intestinal permeability and how this plays a key role in resolving intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Declan F. McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.L.); (M.S.C.)
| |
Collapse
|
36
|
Wang YN, Liu S, Jia T, Feng Y, Zhang W, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Osteoimmunology. Front Immunol 2021; 12:620333. [PMID: 33692794 PMCID: PMC7938726 DOI: 10.3389/fimmu.2021.620333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoimmunology highlights the two-way communication between bone and immune cells. T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in regulating immune responses and bone metabolism via dephosphorylating target proteins. Tcptp knockout in systemic or specific immune cells can seriously damage the immune function, resulting in bone metabolism disorders. This review provided fresh insights into the potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis. TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under certain time and conditions. This review offers a comprehensive update on the roles of TCPTP in osteoimmunology, which can be a promising target for the prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
37
|
Spalinger MR, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Identification of a Novel Susceptibility Marker for SARS-CoV-2 Infection in Human Subjects and Risk Mitigation with a Clinically Approved JAK Inhibitor in Human/Mouse Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.09.416586. [PMID: 33330862 PMCID: PMC7743066 DOI: 10.1101/2020.12.09.416586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronavirus disease (COVID-19), caused by SARS-CoV-2, has affected over 65 million individuals and killed over 1.5 million persons (December 8, 2020; www.who.int)1. While fatality rates are higher among the elderly and those with underlying comorbidities2, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases.3-7 We report that the autoimmune PTPN2 risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry mediated by SARS-CoV-2 spike protein. Elevated ACE2 expression and viral entry were mediated by increased JAK-STAT signalling, and were reversed by the JAK inhibitor, tofacitinib. Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Rong Hai
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Alina N. Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | - Brigid S. Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Declan F. McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| |
Collapse
|